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Abhstract

The discret wavelet transform (DWT) has recently emerged as a powerful technique for image compression in
conjunction with & variety of quantization schemes. In this paper, a new image coding scheme - classified wavelet
transform, vector quantization [DWT/CVQ) - is proposed to efficiently exploit correlation among different DWT
layers aiming to improve its performance. In this scheme, DWT coefficients are rearranged to form the small
blocks, which are composed of the corresponding coefficients from all the subbands. The block matrices are clas-
sified into four classes depending on the directional activities, Le., energy distribution along cach direction. These
are further divided adaptively into subvectors depending on the DWT coefficient statistics as this allows efficient
distribution of bits, The subvectors are then vector quantized, Simulation results show that under this technique
the reconstruction images preserve the detail and structure in a subjective sense compared to other approaches
at a bit rate of 0.3 bit/pel.
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1 Introduction

Transform coding{TC) of images has proved to be an efficient compression technique and has been applied in various
forms [1]. According to Shannon’s rate distortion theory, vector quantization(VQ) of signals reduces the coding bit
rate significantly compared to scalar quantization [2, 3]. Especially, classified transform VQ (CVQ) reduces edge
degradation and improves coding efficiency [4]. This technique also takes advantage of the decorrelation and energy
compaction properties of transform coding and the superior rate distortion performance of VQ [5]. Classification in
transform domain results in efficient bit assignment with only a slight increase in bit rate due to overhead information
[5].

The DWT has recently emerged as a powerful technique for image compression because of its flexibility in
representing images and its ability in adapting to the human visual system characteristics. Several compression tech-
niques using the wavelet transform and different types of quantization methods have been proposed in the literature
[7, 8 9, 10, 11]. It decomposes an image into various multi-resolution approximations, which are accomplished by
iteratively applying high- and low-pass filters to the image. The advantage of using the DWT over the discrete cosine
transform {DCT) lies on the fact that the DWT projects high-detail image components onto shorter basis functions,
with higher resolution, while lower detail components are projected onto larger basis functions, which corresponds
to narrower subbands, establishing a trade between time and frequency resolutions [12]. In addition, the wavelet
transform coding provides a superior image quality at low bit rates, since it is free from both blocking effects and
mosquito noise [13]. However, there are still significant amounts of redundancies among the subbands. That is, most
coding techniques using the DWT disregard cross-correlation among the various scale and orientation bands., Hence,
the performance of the wavelet transform coding can be improved if the cross- correlations among these subbands
are exploited in the encoding process.

In this paper, we propose a new coding scheme for image compression using classified V() of the wavelet coeffi-
cients, which exploits the residual correlation between different layers and improves the encoding efficiency by taking
advantage of DWT and CV(}. In this scheme, DWT coefficients are rearranged to form the small blocks, which
are composed of the corresponding coefficionts from all the subbands. The block matrices are classified into four
classes depending on the directional activities and then each subvector of each class is quantized and coded using
its own codebook, which is generated for each subvector from a training sequence. In section 2, a brief review of
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Figure 1: Decomposition and reconstruction of the DWT.

DWT decomposition is described. Section 3 discusses classified VQ in the DWT domain for exploiting the residual
coreelations. The improved performance compared to other coders is presented in section 4.

2 Discrete wavelet transform

The DWT is known to be generated by a cascade of filter banks and it is essentially based on the well-known subband
decomposition. However, in its most popular form, the dyadic DWT, the input spectrum is partitioned into octave-
width subbands. The advantage comes from the trade-off between spatial and frequency resolutions, as the DWT
has shorter basis functions (filters) for higher frequencies, and longer basis functions (filters) for lower frequencies.
Also, there are more samples to represent the higher frequency subbands, than the lower frequency ones. Therefore,
more samples and shorter basis functions will attain a better subband selectivity, for lower frequencies, and as low
frequency components lack details, spatial resolution is less important,in this case.

Fig. 1{a) shows the analysis section of a two-dimemsional(2D) seperable filter bank, where first the image rows
are passed through the 2-channel filter bank, and then the columms are processed. The right side of Fig. 1(a} shows
the synthesis section to reconstruct the signal from the subband signals. The analysis section can be viewed as a 2 x
2 transform applied to the image (note that each subband has one fourth of the samples in the original signal). Also,
the synthesis section can be viewed as a 2 x 2 inverse transform. Fig. 1(b) shows the scheme we intend to apply,
which is composed of a succession of 3 stages of 2 x 2 transforms. The inverse transform is, of course, accomplished
by reversing the paths and the transforms. The decomposition of Lena image is shown Fig. 2 using these schemes.
To reconstruct the image from the subbands, one may choose the set of low-pass and high-pass filters in Fig. 1{a),
as to provide perfect reconstruction{PR). However, PR 2-channel filter banks, either have non-linear-phase or are
not orthogonal. As we intend to apply the DWT to low-bit-rate compression we decided to use Johnston's near-PR
filters (14|, which have linear-phase and very small reconstruction error. Also they can be easily implemented using
symmetric extensions [15], being free of any border distortions.

3 Classified DWT/VQ

The CVQ is well understood in terms of the compaosite source model for images, where the image is viewed as a bank
of subsources [4]. To apply CVQ in the DWT domain, DWT coefficients are rearranged to form the small blocks,
which are composed of the corresponding coefficients from all the subbands. The design of a block classifier that
effectively classifies the input block (rearranged small block) according to its activity is important. In order to get a
zoad quality of the reconstructed image at relatively low bit rates, the quantization has to adapt to the structure in
the DWT domain. Thus, the product code Vi scheme that partitions the DWT block into several smaller subvectors



Figure 2: Decomposition of Lena image,

and performs V0 on these subvectors is emploved. In this case the selection of an efficient partitioning scheme is
also important. The entire coding scheme is shown in Fig. 3.

3.1 Block rearrangement

The input image is first decomposed into a pyramid structure with 3 levels by using the DWT. In order to reduce
the correlation among the different layers, transform coefficients are rearranged to form the small blocks, which are
composed of the corresponding coefficients from all the subbands as shown Fig. 4. The size of small block is &V =« N,
where & = 203 of levels) 1 our scheme, therefore, the 8x8 matrix for a small block was constructed as the (&x8)
DCT has been most universally applied in image coding. Here, the size of subblock is 23— {{ = 1,2,3) for each
horizontal, vertical, and diagonal orientation band at the I -th level. Thus each 8 = 8 matrix has three subblocks of
sizge 4xd in level I three subblocks of size 2x2 in level II, and four elements in level I

3.2 Block classification

The main purpose of block classification is to separate the blocks into perceptually distinet categories (overhead hits
are needed to indicate the categories of the blocks) and to use a different quantization scheme for each category.
Blocks from different activity classes are then independently quantized with a bit allocation appropriate for each class.
The block matrices are classified into four classes depending on the direction] activities, i.e., ac energy distribution
along each direction. Though, the directional activities are essentially based on the subband distribution in wavelet
transform domain, final decisions are made by combining all subbands in a block. A similar scheme [3, 6] using the
activity measure defined in DCT domain is emploved in this DWT/CV(Q)},

But, we propose an adaptive threshold decision technique to classify the four classes of the image. A block is,
first, classified into two classes: low or high activity one. The decision criterion is Lo set an average directional energy
of all training images. No special values are applied for the test images. We assume that the directional energy
distributions are Ganssian with non-zero mean which we use for the first classification. The second threshaold is set
as half of mean energy and the third one is symmetrically defined. The lowest cnergy region is, of course, classified
as non-active (uniform). The seccond region, however, must be clissified s directional, if any activity s relatively
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Table 1: Typical variance distribution for horizontal class in the (8x8) DWT domain. Subvector configurations
corresponding to this variance distribution are shown in Fig. 5.

2267.030 243.460 111.041 113.038 27.306 30.937 30.476 28.838
9.974 26.466  117.630  113.583 31468 31.084 33.270 32.874
T.300 7.064 11.083 10.084 29198 34.216 33.212 30,669
B.489 7.262 10.45¢ 11,180 27.347 28457 29.164 28.625
3.052 4.241 4,900 4,296 3112 3108 3487 3332
4.022 4.422 4.633 4.370 2.869 3.491 3.360 3.123
4.373 4.272 4.513 4.240 2.831 3433 3886 3340
4.718 4.628 4,360 4.325 3004 2802 3,368 3258
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Figure 3: Subvector configurations. Coefficients with the same digit belong to a subvector

large (The human visual system is quite sensitive to edges i.e., horizantal, vertical, or diagonal). Otherwise, it is
classified as non-active (or low active).

Aceording to the contrast sensitivity of the HVE, the mininum luminance difference is proportional to the bright-
ness of the background. In our coder, the background levels can be block averages (DO coefficients), which are easily
obtained for the smaller blocks. In the third class, the directional energies are compared and the largest one can be
a directional moment in the block. If three directional energies are greater than the third threshold, then the block
is classified as non-directional (diagonal). This adaptive technique can classify the input image efficiently because
no predefined thereshold value for each image is needed.

3.3 Subvector construction

The blocks are partitioned into a number of subvectors(1-7) based on the variance distribution of the coefficients in
each class. The results of such partitioning is a product code. The partition chosen for each of the four classes are
shown in Fig. 5. These partitions are determined in such a manner that coefficients that have similar variances are
grouped into a single subvector, For example, the variance map for the horizontal class is shown in Table 1, In this
case we can easily construct subvectors due to the nature of the DWT as shown in Fig. 5. Some orientation bands
in this block were grouped together so that the interband correlation is efficiently utilized.

Larpe number of hits are assigned to subvectors which have coefficients with large variances and proportionally
fower hits to those with small variances, Hence, bits are allocated according to the total variance of each subvector.
Since most of the energy is concentrated in a few coefficients, some of the coefficients with small cnergy levels can
be excluded from the coding process. Ta achieve the high compression ratio, most high frequency coefficients are
discarded as well. Each snbvector of a class has & unique codebook since the statistics and dimensions of subvectors
are different. Hence, the effective bit rate reduction is achieved and the problem of high computational complexity
of conventional V() is alloviated. An example for the bit allocation and corresponding distortion {mse) for each class
for overall averapge bit rate at L3 bit/pel (bpp) is shown Table 2.



Table 2: Bit allocation of DWT/CV(Q for 0.5 bpp rate scheme

Subvector | Class H Class W Class D Class L
["dim, [ bit | dis. | dim. [ bit [ dis. | dim. | bit | dis. | dim. | bit | dis.
1 1 T 1 g 1 o 1 T
2 1 R[0018 | 1 7]0050( 2 g 0700 3 6 | 0.512
R I 10 | 4.502 ] 2 3 e 9 | 6ol | 4 51 0.629
4 4 7| 1178 | 4 8| 6068 8 | 9| 6652 ]
5 i 52015 & 7| 4.426 | & 4| 8538
6 8 8| 5377] 8 73962 | 9 | 7] 5490
- 8 §[ 6422 8 6| 4.723 | 11 8 | 7.001 ;

* dim: subvector dimension, bit: codebook size = 2%

Table 3: DWT/CVQ simulation results for several bit rates

Encoded image Bit rate
(peak signal to noise ratio)
Lena 020 bpp  0.21 bpp  0.33bpp 047 bpp  0.50 bpp
{512x512) (29.44 dB) (30.21dB) (32.27 dB) (33.02dB) (34.114dB)
Boat 0.21 bpp 0.31 bpp 0,33 bpp 0.47 bipp .50 bpp
(512x512) (30.30 dB) (3148 dB) (32.73 dB) (34.27 dB) (34.42dB)

3.4 Owerhead information

The class information for each black is included in the coded image so that reconstruction is possible. This overhead
information indicates to the decoder which codebook set has to be used and also the way in which the subvectors
have to be recombined to form the entire 8x8 block. Let there be B subblocks in an image. The number of bits
to represent the K classes is logy K. Thus the overhead bits for classification are by = B logp K. For 512x512 -
pels images, and (8x8) block size, the overhead information for four classes is by = 4006x2 = 5192 bits. The total
number of overhead bits is 8192 bits or, equivalently, 0,031 bpp for four classes.

4 Simulation results

Coding simulations were performed for monochrome images of 521x512 - pels, originally with 8 bpp. Two test
imnages, ‘Lena’and ‘Boat’, are shown in Fig. 6. Test images were coded using the codebook generated from a number
of training sets, A total of four images were used in the training sequence to generate the V) cadebooks,

After classifying the block into four classes and partitioning into subvectors, the de cocflicients are quantized using
the scalar quantization. All the ac coefficients are quantized using the codebooks generated by the LBG algorithm
[17]. The bit allocation for each of subvectors and total number of bits depend on the target output bit rates, For a
given quota of bits, therefore, we control the number of bits for each subwvector of each class based on the distortion
error rate. As an objective measure of reconstructed image quality, we used the peak sipnal-to-noise ratio (PENIR)
as

2552
FSP'!R — lﬂlf]glu }'._IEI'E '{1}
where v
| MM
MSE =353 3 &5 — vl ()

i=] =1



Table 4: Comparison of PSNR values among ditferent coding schemes

Tmage Bit rate e PSNR(dB)
(bpp) | DWT/CVQ | LOT/CVQ | DCT/CVQ
[ Lena | 0.33 323 i 30.6 [ 296
(512x512) 0.5 a4.1 337 328 |

where xj; and y,; are the (i, 7) th pixels in the original and reconstructed image, respectively, and the images are of
size M x M. The result of the several bit rates for two test images are shown in Table 3. Even at 0.21 bpp, our coder
vields 30.21 dB for image Lena. Three reconstructed Lena and Boat images at 0.33, and 0.5 bpp (including overhead
bits) are also shown in Figs. 7 and 8, respectively. No blocking effects as in DCT based coder are perceptible in our
proposed scheme at a bit rate of 0.33 bpp. As can be seen, the proposed scheme can yield higher compression ratio,
while maintaining a good reconstruction quality {both objective and subjective),

A similar coding scheme using DCT and LOT was introduced in [6, 16]. For comparision, the performance of
LOT/CV(Q based coder proposed in [16] is also shown in Table 4. It is evident from this table that the PSNLR
performance of our wavelet coder is better than the coder in [16] at all encoding rate.

5 Conclusions

In this paper, we have presented a new image coding scheme using CV() in the DWT domain. This scheme exploits
the residual correlation among different layers of the DWT domain using block rearrangement to improve the coding
efficiency. Further improvement can also be made by developing the adaptive threshold techniques for classification
based on the contrast sensitivity characteristics of the human visual system. The coding complexity of DWT/CVQ
is less than that of a ordinary V() becanse of the decomposition of the transform block into subvectors. Simulation
results have shown that the coder employing DWT/CVQ outperforms the conventional transform coding techniques
such as DCT/CV() and LOT/CVQ. One deficiency of the work presented here is the lack of adaptive bit allocation
procedure based on the rate distortion bound for various wavelet transform coefficients of an image. We plan to
study the bit allocation problem encountered here, devise an appropriate bit allocation strategy for this coder, and
report the results in the future,
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