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Variable-Block-Size Lapped Transforms

Ricardo L. de Queiroz and K. R. Rao

Abstract—A structure for implementing lapped transforms with time-
varying block sizes that allows fuoll orthogonality of the transient trans-
forms is presented. The formulation is based on a factorization of the
transfer matrix into orthogonal factors. Such an approach can be viewed
as a sequence of stages with variable-block-size transforms separated
by sample-shuffling (delay) stages. Details and design examples for a
first-order system are presented.

I. INTRODUCTION

The choice of a block size in transform coding is a tradeoff be-
tween time and frequency resolations. Although not always explicitly
pointed out, a variable block size is a local adaptation aiming to
obtain a better projection of the signal on the time-frequency plane.
The block size dictates the tradeoff. Larger blocks mean coarser time
resolution and narrower subbands, whereas small blocks mean better
time localization and worse frequency resolution. Block transforms
of variable sizes can be easily applied to images as the problem
is simplified to a tiling of the image into rectangular regions. We
address the issues of perfect reconstruction (PR) and orthogonality
using a lapped transform (LT) [1], i.e., a paraunitary uniform FIR
filter bank (PUFB) [2] instead of a block transform. A number of
recent papers deal with time-varying filter banks [3]-[6]. However,
few address a general framework to change the number of channels
with orthogonality in the transitions, and often, the mechanism for
change is applied to the filter coefficients. Here, as in [3], the change
occurs in the structural factors that compose the filter bank. Hence, the
transforms and the transitions are inherently orthogonal. We do not
use boundary filters nor do we segment the signal into independent
sections.

II. LAprPED TRANSFORMS

M-channel LT’s can be described through their respective
polyphase transfer matrices (PTM) [2] (the transfer matrix relating
the M polyphase components of the input signal to the M subbands).
The block size is M, and the length of ‘the filters is assumed to be
L = N M. The entries of the PTM have terms of order N — 1, i.e.,
polynomials up to 2=+, The PTM E(z) is assumed paraunitary
such that E7'(z) = ET(z7%). In other words, it is unitary in
the unit circle (z = e’¥), and the analysis system leading the
polyphase components to the subbands is lossless. For N = 1 (and
real coefficients), it is clear that the PTM is a regular orthogonal
matrix. The PTM can be parameterized using a cascade of delays
and orthogonal stages as

B() =By [] (AGB) <1>

where all stages B; are allowed to be arbitrary M x M orthogonal
matrices, N, is the number of stages, and A(z) is a paraunitary
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" matrix containing only delays. We assume that A(z) is a full-rank

matrix with only one nonzero element per row or column, where
each nonzero element can be 1 or =", The general factorization of
all PUFB’s is the one where NN, is the McMillan degree of E(z)
(i.e., the order of the determinant of E(z)) and where A(z) =
diag{z%,1,1,...,1} [2]. The symmetric delay factorization (SDF)
[7] is the case where M is even, Ny = N, and

‘ _ Z_llM/z 0

where I, is the n x n identity matrix.

1. TIME-VARYING LAPPED TRANSFORMS

For time-varying filters, however, the notation may not be that sim-
ple. For an invariant filter, if y;(m) = 3.%Z! hi;j(n) z;(m—n), then
the g-tap filter %;;(n) has z transform H;;(z) = 3021 hij(n)2 ™",
and Yi(z) = H.;(2)X;(z). Let the filter have time-varying coeffi-
cients so that its input-output relation is

q—1 » .

yi(m) = Y hij(m,n)z;(m — n). ©)

n=0
We cannot say that Y;(z) = H;;(z,m)X;(z) by using h;;(m,n)
to replace the coefficients of H;;(z,m). However, because of the
usual assumption of invariant filters, H;;(z) is often viewed as a
description of an implementation algorithm, and we simplify the
notation by using H;;(z,m) to represent the filter coefficients at
instant 7. Therefore, 2~ may be viewed in a strictly systemic
approach, meaning a delay of the input, i.c., retrieve output from
buffer and place input on buffer.

The key to obtaining time-varying orthogonal filter banks [3] is to
change the matrices B, along the time index while keeping them as
orthogonal matrices at all times. Thus, for PR orthogonal time-varying
LT’s (PUFB’s), we can rewrite (1) as

Ny—1 -

E(z,m) = Bo(m) [] (A(2)Bi(m)) @

where B;(m) changes with time but remains an M x M orthogonal
matrix. E(z, m) remains paraunitary for all m since
%

ETGC mE(Em) = AT HAGZ) =1y 4

i.e., E(z,m) is paraunitary because B;(m) and A(z) (as we have
defined it) are also paraunitary. From the above discussion on the z
transform of a time-varying filter, we apply the term instantaneously
paraunitary [3], [7] to describe the property of E(z, m). Furthermore,
the linear transform (not its state space representation) that leads all
input samples into subbands is an orthogonal transform [1], [3], [7].

IV. CHANGING THE BLOCK SIZE

With time-varying filter banks as described, the overall transform
is orthogonal. From a transform point of view, we can think of this as
a linear (orthogonal) transform T leading all input samples in vector
x to the subband samples in vector y. Thus

y=Tx and x= TTy 6)
where
~ N_l ~
T =By H W.;B; N
i=1

B; = ding{- -, Bi(m — 1), Bi(m), Bi(m +1),..}  (®)
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and W, is a permutation matrix representing all the delays in a stage.
As B;(m) is orthogonal, so is B;, and T is orthogonal if and only if
‘W is also orthogonal. As long as W; implies simple permutations, it
is clearly an orthogonal matrix. Therefore, the dimensions of B;(m)
have no effect on the orthogonality of T as long as B;(m) and W;
remain orthogonal. Clearly, we can change the number of channels
of the filter bank by changing the sizes of B;(m). Therefore, a PUFB
with a variable number of channels can be implemented through a
sequence of stages with variable-block-size orthogonal transforms.
These stages are intermediated by shuffling (delay) stages. It is, in
other words, a variable-block-size lapped transform. In a state-space
approach, we can rewrite (4) as
Ng—1 "
E(z,m) =Bo(m) [] (A(zi,m)Bi(m)) o)
i=1

where A(z,4,m) is the delay block at stage i and instant m. As in
the case of (1), we also consider it a full-rank matrix with only one
nonzero element per row or column. An entry 2~ in A(z,i,m) at
the kth row and I/th column means that the kth element of B;—;(m)’s
input vector is the /th element of B;(m — 1)’s output vector.
Similarly, the same occurs t6 a “1” entry in relation to B;(m)’s
output vector. For the class of delay matrices described, in order to
obtain orthogonality, it is necessary and sufficient to make W, a
permutation matrix. It is necessary because otherwise, W; would be
rank deficient, and it is sufficient because if W; is orthogonal, then
T is orthogonal, as we saw. Now, lef us examine the translation of
W, (as a permutation matrix) to the system described in (9). It is
clear that the set of columns of A(z,i,7m) with the entry z~* has
to match the set of all columns of A(z,¢,m — 1) that are all 0’s as
well as those that contain a 2™ * entry. Let

E(z,m) = Bo(z,m)A(z,i,m)E (z,m) (10)

- where Eo(z,m) is a k X k paraunitary matrix while E; (z,m) is an
1 x I one. Obviously, A(z,4,m) is a k x { matrix. If & > [,

AT m)A(z6,m) = T (11)
ET(z_l,m)E(z,m) = Ix. (12)

If & < I, on the other hand, these relations do not hold. The
stationary relations do not hold because the sizes of the matrices
involved also change. Assume a transition from M; to My channels

" (block size changes from M, to M, samples). With a quick transition
in mind, we assume that Eo(z,m — 1) and E:(z,m — 1) are
paraunitary matrices of size My x My, whereas Eq(z,m + 1) and
E1(2z,m + 1) are paraunitary matrices of size Mz x Ms. Let di,, be
the number of delays in A(z,7,m) and d,,, be the respective number
of “1” entries. Thus

dm—1+d 1 = M 13)
dm +do, =k
ot + oy = M,
A+ dipyy = L.
With the assamption that
At = A1 = dipy gy — Aoy (14)
we can show that
l—k= (M~ M)/2. (15)

Hence, we see that & # [ is a necessary restriction, as long as
M,y # M,. Furthermore, we cannot make [ and k& equal to M; or Mo.
In other words, when changing the number of channels from A to
M-, one cannot implement the transition using only block transforms
of size My or M. The process has to step over intermediary sizes
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for B;(m). The same conclusion can be reached using the general
factorization, i.e., using di,_; = dy, instead of (14).

V. EXAMPLE: FIRST-ORDER SYSTEM
For a first-order algorithm using SDF, we have
E(z) = Bo(m)A(2)B1(m) (16)

where A(z) is as in (2). The filters” length is twice the block size.
Assume that in a stationary state, the proposed. filter bank with M
channels is factorized as

E(z) = CpA(2)Das. a7n

Then, we change the block size (number of channels) from M1 = 2u
to Mo = 2v. As we discussed, the transition must contain blocks with
size different than M7 or M,. We present two distinct switching
methods in Fig. 1. In this figure, the number of samples carried in
each branch is indicated. Fig. 1(a) shows the original configuration
at instant m for the M;-channel case. Fig. 1(b) shows the desired
configuration (the Mgz-channel case). In the hard switch method
shown in Fig. 1(c), the lapped transform is quickly changed to an
M -channel output. The price paid for that is that we must have two

‘transient filter banks: one with M, = 2u channels and the other with

M, = 2v channels. This is because we used a block transform of
size (u+v) x (v +v) as B1(m+1). It does affect the filter’s length
but does not affect the number of channels. The filters have length’
3u + v (instant m + 1) and 3v + u (instant m + 2). The second
alternative is shown in Fig. 1(d). It is a soft switch stepping through
an intermediate filter bank of v -+ v channels with filters of 2(u + v)
taps. This would be the only transitory filter bank. In Fig. 1(c), the
matrices left to be optimized as free parameters ate Bi(m + 1),
Bo(m+1), and Bg(m -+ 2). In Fig. 1(d), the matrix to be optimized
is Bo(m+1). To summarize, the difference between the soft and hard
switch methods resides on the choice of which factor (Bo(m + 1) or
Bi(m + 1)) will be a matrix of different size (in this case, of size
(v 4+ v) x (u+ v)).

The framework in Fig. 1 is general for lapped transforms with
L = 2N.In a design example, we use (as stationary filter bank)
the modulated lapped transform (MLT) [1]. The MLT is a special
cosine-modulated filter bank possessing filters with good stopband
attenuation and that allows fast implementation [1]. An algorithm
for a variable-block-size MLT was presented in [4]. The approach in
[4] requires explicit changes in the basis functions by changing the
modulating window size. Our approach is based on the design of the
orthogonal factors composing a lapped transform [3], [7]. Hence,
we work directly with a fast implementation algorithm, which is
maintained. The MLT is simply an example, and the generality of
the framework allows us to replace it with any other LT.

The design examples in Fig. 2 show the transition filters for a
switch from a four-channel MLT to an eight-channel MLT. In the
hard switch method, there are two transition filter banks: one with
four channels and 10 taps and. the other with eight channels and 14
taps. If the soft switch is applied, there is only one transition filter
bank with six- chanoels and 12 taps. In both cases, the transition
filters were optimized for maximum coding gain of the instantaneous
filter bank [3], [7] for an- AR(1) spectrum with correlation coefficient
0.95.) Note that the transitory LI’s are not required to be cosine-
modulated filter banks. However, the lower frequency basis functions
of these transforms resemble the bases of the MLT, whereas the higher
frequency bases (which have less significance to the coding gain) do
not.

1The optimization was -carried by factorizing each orthogonal matrix as
a product of plane rotations and by applying a nonlinear unconstrained
optimization to the degrees of freedom (rotation angles). The optimization
algorithm selected uses simplex search and is provided by MATLAB 4.2c.
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Fig. 1. Flowgraph for variable-block-size lapped transform switching from M; = 2u channels to Mz = 2v channels: (2) Original state at instant 7.
(b) Desired state after p transform instants. (c) Hard switch method, switching abruptly from My to M, channels. This will imply two transitory states.
(d) Soft switch method, stepping through an intermediate filter bank of u + v channels.
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Fig. 2. Impulse response of the filters of the time-varying MLT, switching from four to eight channels. The normal MLT’s for M = 4 (L = 8) and
M = 8 (L = 16), the two transition filter banks for the hard switch, and the six-channel filter bank in the case of a soft switch are shown. The transition
filters were optimized for maximum coding gain. L is the length (in taps) of the filters.

VI. REMARKS

Filter banks can be associated in such a way as to construct
discrete wavelet and wavelet packets transforms. The association
of these filter banks follows the paths of a tree. By dynamically
pruning or expanding branches of the tree, one can continuously
reshape the tree paths. Such an approach is a time-varying wavelet
packet transform. In this fashion, one can obtain a better tiling of
the time-frequency plane. Often, the process is applied to a fixed
binary tree. Each node is either a leaf, or it is split into two branches
generating two child nodes. The extension to M-ary trees is trivial,
but the problem is still reduced to an on—off decision (prune or
expand branches). Pruning a branch can be viewed as applying a
one-channel filter bank. Using LT’s with time-varying block size
(number of channels), we can achieve a much-enhanced tiling of the
time-frequency plane. This is done by not only deciding on pruning a
branch or not but also by deciding the number of channels to assign
to each node in the tree (including the one-channel case). As the

decision is no longer a binary problem, an enhanced tiling can be
achieved.

In a one-node version of the time-varying wavelet-packet, we can
use a single variable size transform for image compression [8], [9].
Variable-block-size coding and quadtrees have been successfully used
to encode images [8]-[11]. The approach described here can be
readily applied to replace the DCT in [8] and [9]. In addition, it
can be combined with the approaches described in [10] and [11] by
encoding the variable-block-size partitions of the image in the LT
domain.
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Transform Domain Adaptive Linear Phase Filter

Soo-Chang Pei and Chien-Cheng Tseng

Abstract—This correspondence describes a new adaptive linear-phase
filter whose weights are updated by normalized least-mean-square (LMS)
algorithm in transform domain. This algorithm provides faster conver-
gence rate compared with the time domain linear phase LMS algorithm.
Various real-valued orthogonal transforms are investigated such as dis-
crete cosine transform (DCT), discrete Hartley transform (DHT), and
power of twe (PO2) transform; etc. By using the symmetry property
of transform matrix, an efficient implementation structure is proposed.
A system identification example is presented to demonstrate its perfor-
mance.

1. INTRODUCTION

In recent years, adaptive filtering has been widely used in various
applications such as equalization, noise cancelation, and system
identification [1], [2]. Until now, one of the popular adaptive algo-
rithms is the Widrow—Hoff least-mean-square (LMS) algorithm. This

is due to its simple realization and well-documented performance -

analysis. However, a major drawback of the LMS algorithm is its
. slow convergence rate when a long impulse response FIR filter is
employed. One of the methods to achieve higher convergence speed is
to implement adaptive filters in the frequency domain, i.e., the discrete
Fourier transform' (DFT) domain [3]. The DFT is later extended to
other orthogonal transforms such as the discrete cosine transform
(DCT), the power of two (PO2) transform, etc., [4], [5]. On the
other hand, considerable effort has been spent in developing the
recursive least squares (RLS) méthod for adaptive filtering [2]. The
RLS algorithm gives considerable improvement in convergence rate
over the LMS algorithm, but it réquires higher storage requirements
and is computationally intensive over LMS. In order to overcome
the limitations of RLS method, the fast RLS algorithm has been
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suggested [12]. Although the computation complexity of the fast RLS
algorithm is proportional to the filter length, it usually requires a more
sophisticated program to implement it.

In many applications, it is desirable to adaptively perform hnea;r—
phase filtering to prevent any phase distortion in the observed data.
The first example is that the signal passing through a nonlinear phase
equalizer will suffer an increasing intersymbol interference level and
degrade detectability; therefore, the adaptive linear-phase equalizer is
preferred [6], [11]. The second example is that the pseudonoise (PN)
spread-spectrum system can be further improved, with respect to its
immunity to narrowband interference, by incorporating an adaptive
linear-phase filter before despreading operation takes place [7]. The
third example is that exact linear-phase processing is useful in data
communication and speech processing where precise time alignment
is essential [8]. Other typical applications include image processing
[9], system identification, adaptive noise cancelation [10], etc. Despite
so many adaptive linear phase filters being developed, all of them
are performed in time demain. If an LMS algorithm is applied to
update filter parameters, it certainly has a slow convergence rate.
Thus, it is interesting to perform adapiive linear phase filtering in
transform domain. As for adaptive nonlinear phase filtering, a faster
convergence rate is undoubtedly expected.

II. TovE DOMAIN ADAPTIVE LINEAR-PHASE FILTER
The output sequence y, of an [V length FIR filter is obtained by
’ t
Yn = AnXp €8]
where the input signal vector x,, and the weight vector a, are given
by
Tn(vp)] (2)
“anv-nl’ ©)

The FIR filter is called a linear-phase filter if the following symmetric
condition is satisfied:

Xn :[xn Tp—1°""

8n =[Ano  Gn1--

a, = +Ja, @)
where the exchange matrix J is defined by
0 1
J= - . 5)
1 0
Using the linear-phase condition, the filter output is rewritten as
yn = &, Mx, ©6)

where reduced pararﬁeter vector a, and matrix M are defined in
Table I. By minimizing the mean square error (MSE) between the
filter output y, and the desired signal d,, i.e.,

E[(dn — 8, Mx5)"] O
we obtain an LMS adaptive algorithm as follows:
en =ds — AL Mx,
dnt1 =&, + 2peMx, (8)

where y is the step size. Let correlation matrix Ry = E(x,x% ) and
cross correlation vector pyq = F(Xndx ); then, it is easy to show that
this linear-phase LMS algorithm converges to its optimum solution
(MR, M*)~*Mp,, in the mean square sense if step size satisfies
condition : '

1

O<b< SR

®)

1053-587X/96$05.00 © 1996 IEEE



