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Variable-Block-Size Lapped Transforms 

Ricardo L. de Queiroz and K. R. Rao 

Abstract-A structure for implementing lapped transforms with time- 
varying block sizes that allows full orthogonality of the transient trans- 
forms is presented. The formulation is based on a factorization of the 
transfer matrix into orthogonal factors. Such an approach can be viewed 
as a sequence of stages with variable-block-size transforms separated 
by sample-shuffling (delay) stages. Details and design examples for a 
first-order system are presented. 

I. INTRODUCTION 
The choice of a block size in transform coding is a tradeoff be- 

tween time and frequency resolutions. Although not always explicitly 
pointed out, a variable block size is a local adaptation aiming to 
obtain a better projection of the signal on the time-frequency plane. 
The block size dictates the tradeoff. Larger blocks mean coarser time 
resolution and narrower subbands, whereas small blocks mean better 
time localization and worse frequency resolution. Block transforms 
of variable sizes can be easily applied to images as the problem 
is simplified to a tiling of the image into rectangular regions. We 
address the issues of perfect reconstruction (PR) and orthogonality 
using a lapped transform (LT) [l], i.e., a paraunitary uniform FIR 
filter bank (PUFB) [2] instead of a block transform. A number of 
recent papers deal with time-varying filter banks [3]-[6]. However, 
few address a general framework to change the number of channels 
with orthogonality in the transitions, and often, the mechanism for 
change is applied to the filter coefficients. Here, as in [3], the change 
occurs in the structural factors that compose the filter bank. Hence, the 
transforms and the transitions are inherently orthogonal. We do not 
use boundary filters nor do we segment the signal into independent 
sections. 

TI. LAPPED TRANSFORMS 
M-channel LT's can be described through their respective 

polyphase transfer matrices (PTM) [2] (the transfer matrix relating 
the M polyphase components of the input signal to the M subbands). 
The block size is M, and the length of the filters is assumed to be 
L = NM. The entries of the PTM have terms of order N - 1, i.e., 
polynomials up to zPN+l .  The PTM E(z)  is assumed paraunitary 
such that E-'(z) = ET(zP1). In other words, it is unitary in 
the unit circle ( z  = e,'"), and the analysis system leading the 
polyphase components to the subbands is lossless. For N = 1 (and 
real coefficients), it is clear that the PTM is a regular orthogonal 
matrix. The PTM can be parameterized using a cascade of delays 
and orthogonal stages as 

N,-1 

where all stages B, are allowed to be arbitrary M x M orthogonal 
matrices, N ,  is the number of stages, and A(z) is a paraunitary 
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matrix containing only delays. We assume that A(z) is a full-rank 
matrix with only one nonzero element per row or column, where 
each nonzero element can be 1 or z-l. The general factorization of 
all PUFB's is the one where N ,  is the McMillan degree of E(z)  
(i.e., the order of the determinant of E(z)) and where A(z) = 
diag{z-l, 1,1,. . . , 1) [2]. The symmetric delay factorization (SDF) 
[7] is the case where M is even, N ,  = N, and 

where I, is the n x n identity matrix. 

111. TIME-VARYING LAPPED TRANSFORMS 
For time-varying filters, however, the notation may not be that sim- 

ple. For an invariant filter, if yt (m) = E",_', h,, (n) 2, (m - n), then 
the q-tap filter h,,(n) has z transform H,,(z) = E:=', h,,(n)z-", 
and Y ,  ( z )  = H,, ( z ) X ,  ( z ) .  Let the filter have time-varying coeffi- 
cients so that its input-output relation is 

We cannot say that Y , ( z )  = H z , ( z , m ) X , ( z )  by using hZJ(m,n)  
to replace the coefficients of H,, (z, m). However, because of the 
usual assumption of invariant filters, Ht, (z )  is often viewed as a 
description of an implementation algorithm, and we simplify the 
notation by using H,, ( z ,  m)  to represent the filter coefficients at 
instant m. Therefore, 2-l may be viewed in a strictly systemic 
approach, meaning a delay of the input, i.e., retrieve output from 
buffer and place input on buffer. 

The key to obtaining time-varying orthogonal filter banks [3] is to 
change the matrices B, along the time index while keeping them as 
orthogonal matrices at all times. Thus, for PR orthogonal time-varying 
LT's (PUFB's), we can rewrite (1) as 

N ,  -1 

E(z ,m)  = Bo(m) n (A(z)B,(m)) (4) 
2 = 1  

where B, (m) changes with time but remains an M x M orthogonal 
matrix. E(z, m) remains paraunitary for all m since 

i.e., E ( z , m )  is paraunitary because B,(m) and A(z) (as we have 
defined it) are also paraunitary. From the above discussion on the z 
transform of a time-varying filter, we apply the term instantaneously 
paraunitary [3], [7] to describe the property of E(z, m). Furthermore, 
the linear transform (not its state space representation) that leads all 
input samples into subbands is an orthogonal transform [l], [3], [71. 

Iv. CHANCING THE BLOCK SIZE 
With time-varying filter banks as described, the overall transform 

is orthogonal. From a transform point of view, we can think of this as 
a linear (orthogonal) transform T leading all input samples in vector 
x to the subband samples in vector y. Thus 

(6) 

T = B o  W,B., (7) 

T y = T x  and x = T  y 

where 
N-1 

Z=1 

8, = diag{...,B,(m - l ) ,B,(m),B,(m+ l), ...} (8) 
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and Wz is a permutation matrix representing all the delays in a stage. 
As B,(m) is orthogonal, so is B,, and T is orthogonal if and only if 
W, is also orthogonal. As long as W, implies simple permutations, it 
is clearly an orthogonal matrix. Therefore, the dimensions of B,(m) 
have no effect on the orthogonality of T as long as B,(m) and W, 

for B, (m) .  The same conclusion can be reached using the general 
factorization, i.e., using d i P l  = di+, instead of (14). 

V. EXAMPLE: FIRST-ORDER SYSTEM 
For a first-order algorithm using SDF, we have 

remain orthogonal. Clearly, we can change the number of channels 
of the filter bank by changing the sizes of B, (m).  Therefore, a PUFB 
with a variable number of channels can be implemented through a 
sequence of stages with variable-block-size orthogonal transforms. 
These stages are intermediated by shuffling (delay) stages. It is, in 
other words, a variable-block-size lapped transform. In a state-space 
approach, we can rewrite (4) as 

N,-1 

E(z, m) Bo (m)  (A(z, i, m)B,(m)) (9) 
2 = 1  

where R ( z ,  i ,  m) is the delay block at stage i and instant m. As in 
the case of (l), we also consider it a full-rank matrix with only one 
nonzero element per row or column. An entry z-’ in A(z, i, m) at 
the kth row and Ith column means that the kth element of B,-i (m)’s 
input vector is the lth element of Bz(m - 1)’s output vector. 
Similarly, the same occurs to a “1” entry in relation to B,(m)’s 
output vector. For the class of delay matrices described, in order to 
obtain orthogonality, it is necessary and sufficient to make W, a 
permutation matrix. It is necessary because otherwise, W, would be 
rank deficient, and it is sufficient because if W, is orthogonal, then 
T is orthogonal, as we saw. Now, let us examine the translation of 
W, (as a permutation matrix) to the system described in (9). It is 
clear that the set of columns of R ( z , i ,  m) with the entry z-’ has 
to match the set of all columns of A(z, 2, m - 1) that are all 0’s as 
well as those that contain a z-l entry. Let 

(10) 

where Eo(z, m) is a k x k paraunitary matrix while El(z, m) is an 
I x 1 one. Obviously, A(z , i ,m)  is a 5 x I matrix. If k > I ,  

E(z, m) = Eo ( z ,  m)A(z ,  i, m)Ei  ( z ,  m)  

A ~ ( ~ - ’ , ~ , ~ ) A ( ~ , ~ , ~ )  = I& (1 1) 
E ~ ( . - ’ , ~ ) E ( . , ~ )  = I&. (12) 

If k < 1, on the other hand, these relations do not hold. The 
stationary relations do ndt hold because the sizes of the matrices 
involved also change. Assume a transition from M I  to M2 channels 
(block size changes from 1111 to ,342 samples). With a quick transition 
in mnd, we assume that Eo(z,m - 1) and El(z,m - 1) are 
paraunitary matrices of size M I  x M i ,  whereas Eo(z,m + 1) and 
El ( z ,  m + 1) are paraunitary matrices of size Mz x M z .  Let d i  be 
the number of delays in A(z,  2, m) and d ,  be the respective number 
of “1” entries. Thus 

& - I +  4 - 1  = ,341 (13) 
d, + d: = k 

& + I +  &+I = MZ 
d, + cl’,+, = 1. 

With the assumption that 

d,+i - dm-i = d’,+i- dL-1 

1 - k = (Mi! - MI)/2. 

(14) 
we can show that 

(15) 

Hence, we see that k # 1 is a necessary restriction, as long as 
M I  # Mz.  Furthermore, we cannot make I and k equal to MI or Mz. 
In other words, when changing the number of channels from MI to 
M z ,  one cannot implement the transition using only block transforms 
of size M I  or M2. The process has to step over intermediary sizes 

E(z) = Bo(m)A(z)Bi(m) (16) 
where A(z) is as in (2). The filters’ length is twice the block size. 
Assume that in a stationary state, the proposed filter bank with M 
channels is factorized as 

E(z)  = C M A ( ~ ) D M .  (17) 
Then, we change the block size (number of channels) from Mi = 2u 
to M2 = 211. As we discussed, the transition must contain blocks with 
size different than Mi or Mz. We present two distinct switching 
methods in Fig. 1. In this figure, the number of samples carried in 
each branch is indicated. Fig. l(a) shows the original configuration 
at instant m for the MI-channel case. Fig. 1@) shows the desired 
configuration (the ,342-channel case): In the hard switch method 
shown in Fig. l(c), the lapped transform is quickly changed to an 
Mz-channel output. The price paid for that is that we must have two 
transient filter banks: one with M I  = 2u channels and the other with 
Mz = 2w channels. This is because we used a block transform of 
size ( U  + v) x ( U  + w) as B1 ( m  + 1). It does affect the filter’s length 
but does not affect the number of channels. The filters have length 
3u + w (instant m + 1) and 3v + U (instant m + 2). The second 
alternative is shown in Fig. l(d). It is a soft switch stepping through 
an intermediate filter bank of U + U channels with filters of 2(u + v) 
taps. This would be the only transitory filter bank. In Fig. l(c), the 
matrices left to be optimized as free parameters are B l (m + l), 
Bo(m+l),andBo(m$2).InFig.  l(d), thematrix to beoptimized 
is Bo (m+ I-). To summarize, the difference between the soft and hard 
switch methods resides on the choice of which factor (Bo ( m  + 1) or 
Bl(m + 1)) will be a matrix of hfferent size (in this case, of size 

The framework in Fig. 1 is general for lapped transforms with 
L = 2N.  In a design example, we use (as stationary filter bank) 
the modulated lapped transform (MLT) [l]. The MLT is a special 
cosine-modulated filter bank possessing filters with good stopband 
attenuation and that allows fast implementation [l]. An algorithm 
for a variable-block-size MLT was presented in [4]. The approach in 
[4j requires explicit changes in the basis functions by changing the 
modulating window size. Our approach is based on the design of the 
orthogonal factors composing a lapped transform [3], [7]. Hence, 
we work directly with a fast implementation algorithm, which is 
maintained. The MLT is simply an example, and the generality of 
the framework allows us to replace it with any other LT. 

The design examples in Fig. 2 show the transition filters for a 
switch,from a four-channel MLT to an eight-channel MLT. In the 
hard switch method, there are two transition filter banks: one with 
four channels and 10 taps and the other with eight channels and 14 
taps. If the soft switch is applied, there is only one transition filter 
bank with six channels and 12 taps. In both cases, the transition 
filters were optimized for maximum coding gain of the instantaneous 
filter bank [3], [7j for an AR(1) spectrum with correlation coefficient 
0.95.’ Note that the transitory LT’s are not required to be cosine- 
modulated filter banks. However, the lower frequency basis functions 
of these transforms resemble the bases of the MLT, whereas the higher 
frequency bases (which have less significance to the coding gain) do 
not. 

(U  + U) x (U  + U)). 

‘The optimization was carried by factorizing each orthogonal matrix as 
a product of plane rotations and by applying a nonlinear unconstrained 
optimization to the degrees of freedom (rotation angles). The optimization 
algorithm selected uses simplex search and is provided by MATLAB 4 . 2 ~ .  
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uiv x u+v 2v x 2v 

Fig. 1. Flowgraph for variable-block-size lapped transform switching from M I  = 2u channels to M2 = 2v channels: (a) Original state at instant m. 
(b) Desired state after p transform instants. (c) Hard switch method, switching abruptly from M I  to Mz channels. This will imply two transitory states. 
(d) Soft switch method, stepping through an intermediate filter bank of U + v channels. 

Fig. 2 
M =  
filters 

VI. REMARKS 

Filter banks can be associated in such a way as to construct 
discrete wavelet and wavelet packets transforms. The association 
of these filter banks follows the paths of a tree. By dynamically 
pruning or expanding branches of the tree, one can continuously 
reshape the tree paths. Such an approach is a time-varying wavelet 
packet transform. In this fashion, one can obtain a better tiling of 
the time-frequency plane. Often, the process is applied to a fixed 
binary tree. Each node is either a leaf, or it is split into two branches 
generating two child nodes. The extension to M-ary trees is trivial, 

expand branches). Pruning a branch can be viewed as applying a 
one-channel filter bank. Using LT's with time-varying block size 
(number of channels), we can achieve a much-enhanced tiling of the 
time-frequency plane. This is done by not only deciding on pruning a 
branch or not but also by deciding the number of channels to assign 
to each node in the tree (including the one-channel case). As the 

but the problem is still reduced to an on-off decision (prune or 

( L  = 8) and 
The transition 

decision is no longer a binary problem, an enhanced tiling can be 
achieved. 

In a one-node version of the time-varying wavelet-packet, we can 
use a single variable size transform for image compression [8], [9]. 
Variable-block-size coding and quadtrees have been successfully used 
to encode images [8]-[ll]. The approach described here can be 
readily applied to replace the DCT in [8] and [9]. In addition, it 
can be combined with the approaches described in [lo] and [ll] by 
encoding the variable-block-size partitions of the image in the LT 
domain. 
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Transform Domain Adaptive inear Phase Filter 

Soo-Chang Pei and Chien-Cheng Tseng 

Abstract-This correspondence describes a new adaptive linear-phase 
filter whose weights are updated by normalized least-mean-square (LMS) 
algorithm in transform domain. This algorithm provides faster conver- 
gence rate compared with the time domain linear phase LMS algorithm. 
Various real-valued orthogonal transforms are investigated such as dis- 
crete cosine transform (DCT), discrete Hartley transform (DHT), and 
power of two CpQ2) transform, etc. By using the symmetry property 
of transform matrix, an efficient implementation structure is proposed. 
A system identification example is presented to demonstrate its perfor- 
mance. 

I. INTRODUCTION 
In recent years, adaptive filtering has been widely used in various 

applications such as equalization, noise cancelation, and system 
identification [l], [2]. Until now, one of the popular adaptive algo- 
rithms is the Widrow-Hoff least-mean-square (LMS) algonthm. T h ~ s  
is due to its simple realization and well-documented performance 
analysis. However, a major drawback of the LMS algonthm is its 
slow convergence rate when a long impulse response FIR filter is 
employed. One of the methods to achieve higher convergence speed is 
to implement adaptive filters in the frequency domain, i.e., the discrete 
Fourier transform (DFT) domain [3] .  The DFT is later extended to 
other orthogonal transforms such as the discrete cosine transform 
(DCT), the power of two (PO2) transform, etc., [4], [5].  On the 
other hand, considerable effort has been spent in developing the 
recursive least squares (RLS) method for adaptive filtering [2]. The 
RLS algorithm gives considerable improvement in convergence rate 
over the LMS algorithm, but it requires higher storage requirements 
and is computationally intensive over LMS. In order to overcome 
the limitations of RLS method, the fast RLS algorithm has been 
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suggested [12]. Although the computation complexity of the fast RLS 
algorithm is proportional to the filter length, it usually requires a more 
sophisticated program to implement it. 

In many applications, it is desirable to adaptively perform linear- 
phase filtering to prevent any phase distortion in the observed data. 
The first example is that the signal passing through a nonlinear phase 
equalizer will suffer an increasing intersymbol interference level and 
degrade detectability; therefore, the adaptive linear-phase equalizer is 
preferred [6], [I l l .  The second example is that the pseudonoise (PN) 
spread-spectrum system can be further improved, with respect to its 
immunity to narrowband interference, by incorporating an adaptive 
linear-phase filter before despreading operation takes place [7]. The 
third example is that exact linear-phase processing is useful in data 
communication and speech processing where precise time alignment 
is essential [8]. Other typical applications include image processing 
[9], system identification, adaptive noise cancelation [lo], etc. Despite 
so many adaptive linear phase filters being developed, all of them 
are performed in time domain. If an LMS algorithm is applied to 
update filter parameters, it certainly has a slow convergence rate. 
Thus, it is interesting to perform adaptive linear phase filtering in 
transform domain. As for adaptive nonlinear phase filtering, a faster 
convergence rate is undoubtedly expected. 

II. TIME DOMAIN ADAPTIVE LINEAR-PHASE FILTER 
The output sequence y, of an N length FIR filter is obtained by 

Y, = at,x, (1) 
where the input signal vector x, and the weight vector a, are given 
by 

(2)  
a, = [a,o unl  . . . u,(N-l)It. (3 )  

The FIR filter is called a linear-phase filter if the following symmetric 
condition is satisfied: ’ 

a, = +Jan (4) 
where the exchange matrix J is defined by 

J =  [ y  ’ b] .  (5) 

Using the linear-phase condition, the filter output is rewritten as 

y, = aiMx, (6 )  
where reduced parameter vector an and matrix M are defined in 
Table I. By minimizing the mean square error (MSE) between the 
filter output yn and the desired signal d,, i.e., 

E [ ( &  -a;Mx,)’] (7) 
we obtain an LMS adaptive algorithm as follows: 

e ,  = d, - aiMx, 

a , + ~  =a, + 2pe,Mx, (8) 
where p is the step size. Let correlation matrix R,, = E(xnx;) and 
cross correlation vector Prd = E(x,d,); then, it is easy to show that 
this linear-phase LMS algorithm converges to its optimum solution 
(MR,,Mt)-’Mp,d in the mean square sense if step size satisfies 
condition 

1053-587X/96$05.00 0 1996 IEEE 


