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Abstract. We present 2 method fo include walermarks in printed
images. With arcurale printer calibration, in theory, e same color
under different gray component replacement (GCA) sirategios
showld look the same, undar spaciic viewing condiions, We spa-
tially vary the GCR along the image in a manner that is not percap-
fikda, and we empioy an estimation method to detect such changes.,
The choice of GCA for a given pixel (or region) comprises an addi-
tional infermation channal that embeds a watermark or hidden infor-
mation. The challenge iz how to defect which GCR was usad and
that is our focus. For thal, we estimate the RGE valueg of each pixel

and the CMYK valves infendead to be pul onto the paper by scanning
thie printed page. With that information, we can eslimate which GCR
sirategy was used in & given region and ratiegve the watermark
msssane. instead of focusing on a particwlar walermasking schema,
we are concarmad only with the practical aspects of producing &
spalially vanying GCR and of robustly estimating which GCR strat-
egy was vsed at a region, Promising GCR detaction resulis are
shown fo flustrate the method's potenfial fo watermark printed
images. @ 2005 SPIE and 134T [DOL 1011712001571

1 Introduction

It is desirable to enable data hiding within a digital image,
for example, for image security or authentication, to covert
communication, to render instructions, and to provide ad-
ditional wselul information. Some existing digital water-
marking methods do not survive the printing process. In
fact, most known metheds are designed for continuous-tone
images and are too fragile 1o be encoded into a ].J:I][][{"J page
and remain retrievable and invisible, (_:I:,ph\ and other
low-frequency methods that can be used in a print setting
often introduce undesirable textures or lower the spatial
resolution of the image. If one has {ull control of the half-
tone, walermarks can sometimes be embedded inte the
halftone design itself.” " Other methods applicable to
printed pages such as image multiplexing” and Xerox

]
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Clossmarks® (Ref. 7) can also be used. In general, auto-
mated watermark retrieval is difficult and the watermarks
arg not always invisible,

To address the seemingly conflicting requirements of in-
visibility and retrievability of the watermark, one must fake
into account physical properties of the printing process. For
example, we know that very likely the printing will ocour al
a high resolution, i.e., 600 pixels per inch (ppi) and bevond,
Also, the printed images will be viewed at a comfortable
distance from the page. Hence, the densitv of pixels per
degree of subtended viewing angle is actually very high
and the visual sensitivity will be very low to pixel-level
details.

Another example of an important physical characterisic
is the absorption spectra ol the colerants. The three funda-
mental subtractive primaries, cvan (C), magenta {M), and
vellow [Yl are typically wsed as colorants In printing
devices." ™" All hues can be reproduced with these colo-
rants, however, black colerant is usually also employed for
reasons such as extending the dark pertion of the color
gamut, improving the rendering of newtrals, and reproduc-
ing colors with less CMYK colorant to save money and
reduce pile height. Hence, a ransformation is required to
convert from the set of fundamental primaries CMY to the
larger set CMYK, The inclusion of the neutral colorant K
enables us to substitule in some amount of K for an equiva-
lent darkness neutral mixture of CMY. Thus, lor a given
color, some K may be added and some CMY subtracted to
produce the same perceived color, This colorant ~L1|:|Sl:1ru-
tion method is known as gray component TLpIiLLmLm
(GCR). Because color is inherently a 3-D entiry, this addi-
ticn of a fourth colorant K allows for some redundancy. As
a limiting case, consider that for much of the color pamut,
a given color can be created with either a combination of
CMY or with K plus two of those colorants, which is
known as o 100% GCR swategy., Lesser amounts of gray
component may he substituted, creating the potential for
multiple GCE strategies. By switching in space belween
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multiple GCR strategies, we can produce the same color in
a region, while causing a subtle change in the high-
resolution dot pattern that produces the color

Our method embeds hidden data in a manner that is
designed for the printing process and does not degrade im-
age texture or resolution. It exploits the properties ol a
properly designed GCR strategy and applies spatially vary-
ing GCR. Tn Sec. 2, we describe the watermarking scheme.
In Sec. 3, we explain the enabling technique of detecting
the GCR emploved for a given pixel or region. Section 4
describes experiments that validate the method and indicate
that the method holds promise for embedding a significant
amount of data, Finally, Sec. 5 presents the conclusions of
this workl

2 Proposed Scheme: Data Hiding via Spatially

Varying GCR
We can view the present watermarking problem as the one
of embedding hidden information into the printed image.
Without loss of generality, assume we have i message com-
posed of N-ary symbols to embed and that we have at our
disposal N GCR schemes. The pixels are received in a color
space such as RGB, but note that other color spaces are also
valid input. To enable printing, the pixel representation 1s
converted to a CMY space. As in conventional GCR, the
minirum value of the CMY colorant set for a pixel is used
ta determine K via a GCR curve that relates min{C, M., Y}
to K. We have N curves to be chosen for each pixel: GCRy,
or GCR,, ... , up to GCRy. Hence, from the same RGB
data, two or more possible CMYK sets can be generated,
depending on the chosen GCR scheme. If the printing path
has heen properly calibrated, printed CMYK for each of the
GCR curves should look the same, at least under the illu-
minant for which the calibration was performed. Note that
under perfect circumstances, different GCRs produce im-
ages that look nearly identical and that appearance is pre-
sumably robust against small change of illuminants.

We refer to the method to embed the bits into a printed
page as the “encoder” and we refer to the method for re-
trieving the message out of the printed paper as the “de-
coder,” The encoder algorithm is depicted in the top half of
Fig. 1. It works as follows:

1. The input image is composed of pixels in a color
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space, such as RGB. The pixels are converted 1o
CMY color space.

2. The image is divided into regions, each region com-
posed of a number of pixels,

3. According to the information bits, in each region, we
embed one V-ary symbol. This is done by associating
each state of the A-ary symbol to one of the & avail-
able GCR schemes.

4. Each pixel is converted to CMYK representation via
the chasen GOR for the given region.

5. The image is printed.

The decader algorithm is depicted in the bottom half of Fig.
| and can be outlined as follows:

1. The image is scanned and aligned such that the de-
coder analysis can identify and operate on the en-
coded regions of the image. The scanning produces
RGE values ar pixel locations,

. The image is divided into the same regions as em-
ploved by the encoder.

3. For each region, it estimates the GCR by analyzing
the scanned RGB data and estimating the CMYK val-
ues that oceur on the paper, It then recovers the N-ary
symbol in that region using the estimate of CMYK.

4. By recovering each symbol, the hidden message is
retrieved.

]

This outline of the GCR encoding/decoding method gives
rise to several key questions:

|. How can we estimate CMYK values from scanned
RGE values? This is the most significant challenge of
the proposed watermarking and retrieval method and
is the core of this paper. Estimating the CMYEK val-
ues enables detecting the local GCR curve, We dis-
cuss this in Sec. 3.

2, How can we vary the GCR and not cause visible
artifacts? Calibration is never perfect and there might
be visible differences for some colors, under typical
illuminants, when we switch from one GCR o an-
other. We trv to calibrate the printing path as well as
possible and we suggest that the embedding be ap-
plied in a spatially diffuse manner. There are two
methods for employing spatial diffusion: make the
regions diffuse or make the information diffuse. For
example, one can blur the transitions of the embed-
ding message and apply error diffusion to avoid a
sharp transition between two different GCRs that
might cause perceptible artifacts, This crucial issue
must be thoroughly tested,

3. What happens at regions with little or no GCR {C
=0 or M=0 or ¥=0} or at very dark regions? Dark
regions in the image are not useful for embedding
information using this technique, since the excessive
dot overlap makes it very difficult to detect black
pixels. Also, in light regions, we lose the necessary
redundancy since no GCR is needed. These regions
can be either skipped, or one can just absorb the error
into the error correction (EC) mechanisms.

4. What EC mechanism should be employed? Any effi-
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lutional, and turbo cades.'*" Error correction is fur-
ther discussed in Sec. 4.

. How can we perfectly register the image? Registra-
tion is crucial to enable reading embedded data at any
moderate resolution. For example, we target data em-
bedding ar 100 or 200 dpi (before error correction). If
we do not accurately register the image, dots will he
observed out of position and bit error rates will be
large, which would lorce us to considerably drop the
resolution, This is another topic that must be explored
in a future study.

[

Undoubtedly there are many issues to be resolved befors
implementing a working watermarking scheme. The most
crucial one, retrieving CMYE rom RGE s discussed in
the next section, The other 1ssues will be addressed in fu-
e studies,

3 GCR Detection

There are important practical obstacles Tor estimating the
GCR strategy, particularly because one must retrieve the
CMYE wvalues from scanned RGB data, In general, exact
retrieval of CMYK from RGEB is not feasible because it is
an ill-posed problem. As a resolt, if one wanls 1o estimate
the printed CMYK from scanned RGE, some information
in addition to the color values is required. We exploit the
nonoverlap property ol rotated halfione sereens 1o provide
the additional information.

Let the printer-side mapping be: RGE-C MY K, where
we have the choice of GCR strategies, hence, of CMYEK
gquadruples to pick for a given RGB triple. On the scanning
{decoding) side, a scan of the page would produce some
colorimetric R7GB values. The estimation problem re
duces 1o estimating the value of « for a particular region. In
other words, estimale which GCR was vsed in that region.
If the color correction process used by the printer and its
prioter characterization are sufficiently accurate, we expect
the colorimetric RGE values of the printed page, as pro-
duced by a low-resolution scanner, e resemble the input
RGE values, Le., RGB=R'G'B’, Therefore if we can esti-
male the actual CMYK amounts pul onto the paper we
would have the RGB and CMYEK wvalves from which to
estimate the GCR strategy.

We derive estimates of the actual CMYK data from a
high-resolution scan, while the scanner RGB values are
found from a low-resolution scan. The nontrivial part is o
estimate £ from the scan. To simplily, we use RGE valoes
scanned ar a resolution higher than the print resolution,
where we might be able to discern ink dots and estimate K.
The process is illustrated in Fig. 2.

There are three different resclutions involved: the print-
ing, scanning and watermarking resolutions, For example,
printing might take place al G0 ppi, scanoimg may be at
1200 ppi, and the watermarking may be embedded and de
tected at a rate of 120 ppi, Le., transmission rate is 120 bits
per inch {bpi).

3.1 Estimating K from a High-Hesolution Scan

If we assume halftoning with rotated screens, it is likely
that all the four CMYEK dots do not overlap completely,
Actually, the amount ol averlap of CMY dols covers a
small area percentage at midtones. Assume the printed im
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age has perfect dots and that the scanner can resolve the
dots and their overlaps, In this hypothetical case, the
scanned RGE valves assume only a small number of com-
binations that depend on the geometry ol the dots against
the scanner resolution. If each of the scanned high-
resolution RGB values for a given pixel is very low, then
that pixel possesses a black color A black-colored pixel is
mdicatve of a & dot. This X assumplion is a good appros-
mation becavse for low values of RGB, there must be a &
dot or the overlap of CMY dots, Since the overlap area of
CMY dots 15 small dug o the rotated screens, i 18 more
likely the black pixel indicates the presence of a K dot,

Thus, we estimate the K signal by the following proce-
dure. The scanned RGB values are inverted to obtain CMY
estimates, then K ois estimated as K=min(C. .M. ¥)=1
—max{R, G B). Note that, except for when there iz full
CMY overlap or a K dot, at least one of the RGE values
will be near maximuom (paper) so that the estimate vields £,
Let &, be an estimate of the & toner image derived from a
high-resolution scan, We assume that information is em-
bedded in the image at a lower spatial resolution than the
scanmed image. Let § be a soitable operator to reduce the
image from the scanner resolution to the watermark resolu-
tion. For example, § can be a sequence of blurring fileers
followed by subsampling. Then K, can be written as
Ky =5min(C M. Y] = 8] 1 — max(R, G011 Y]
Even though the formula for K, resemnbles a formuola for
generating K in a 100% GCR strategy, its present use is
distinct from that relationship. In fact, its use is limited to
high-resolution scanned data where the printer dots can be
discerned. We call this method the deterministic approach.

A difficulry with the deterministic approach is thar the
luminance of a black dot depends on the luminance of the
patch it is primted on, as well as the size of the dot itsell. A
small black dot on a light-colored area has 2 higher lumi-
nance than a large black dot on a darker background. Thus,
a more empirical approach is employed, whereby K is es-
timated by adaptive thresholding, Scanned pixels below a
particular luminance level are assumed to be Black. The
idea is to determing how many pixels in each region corre-
spond o black dots. Thus, we varied the threshold level
based on the average luminance of the region, For each
average gray value it is desirable to apply a threshold that
maximizes the distinction between two GCRa,

The threshold versus lominance relation was obtained by
training on a number of scanned patches. Each palch was
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printed using both GCRy or GCR, strategies, by which we
denote as P! and P2, where n is the patch index or counter.
Fer the » 'th pair of patches, the average l[uminance is taken
as the average, i.e., L,=mean[{F,+ P-1/2]. Ideally, the lu-
minance of both patches should be equal, However, practi
cal limitations in calibration and printng, along with the
fact that the scannet is not the calibrated observer, might
make the Tuminance of the patches slightly different. We
apply a threshald to estimate whether or not the pixel is a K
pixel, We lest each threshold 7 (0= 72255 to evaluate the
number of pixels in patches | or 2 above the threshold, We
want to find the threshold that maximizes the ratio between
the estimated K values for each GCR, The reasoning s that
the given threshold wonld make the ¥ values for each GCR
1o be farther apart, thus facilitating some sepacation later
on. To do that, one can find the threshold 7, for the u'th
pateh, such that

1, = max,[Sum (Pl = EWSum (P2 = k),Sum (P2 = k)
Sum {E’r:_, = k). i2)

Then, every patch has an (L, 7,) pair. Figure 3 shows a
typical relation between thresholds and average luminance
values, We approximated this behavior by a plecewise-
linear curve (L) that passes through the following [L.AL]
points:  (0,.0), (23.20), {100,400, {150,80), (210,125).
{255 255). (This is a printer dependent curve.) Using this
curve, K, is estimated as

K, = S{{AL).LT, (3)

where TiT,x} is a threshold function such that T{r.x}
=2551f x>

is estimated as

7 and Tl 7.x)=0 otherwise. In other words, Kj

1. Convert the RGB high-resolution data into gray L, for
example using F=0253R+0.684G+ 00038,

7. Blur the image using a large filter o get the local
average luminance values L.

3. For each pixel, given L', lookup the associated
threshald 7 from the preceding T{L} curve. Then,
threshold £. to obtain K as a hinary dot.
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4. Reduce the image lo any suitable lower resolution,
This is the same resolution in which RGB will be
analyveed.

3.2 Maximum Likelihood Estimation of the GCR
Different GCR strategies generate images thal may look
different except under the illuminant for which the color
correction was  derived. This is known as illuminant
metamerism.'! This effect may be exacerbated by
melamerism hetween humans and typical scanners. That 15,
rwo colars (made up of two different CMYK combinations)
that match for humans may not match for the scanner be-
cause its spectral sensitivity is different from the human
visual system, Whereas Ky exploited high resolution and
halftone overlap geometry 1o extracl an amount of K toner,
we can define K, as a low-resolution measurs of the dark-
ness of a local area and provide a measure of the capacity
af that area to possess & toner. In this case, the K; values
are related to the RGB values in an average colorimetric
way and purposely do not comprehend microscopic halt-
tone dot geometry, If we assume there is only a high-
resolution scanner, the K, data can be reduced (using S} so
that

K. =1 = max[S(R),5(),S(B)]. i4)

Note the important difference batween Eq. (1) and Eq. (4).

One can derive the luminance value from the low-
resolution scans as L=0.2535(R)+0.6845(G) +0.0635(8)
and we now have two other quantities to normalize the
value of K, against some refercnce point so that we can
estimate the GCR used (hence, the embedded bit data) by
analyzing the wiplet {K;,K).L} somehow. Then, the GCR
detection prablem becomes similar o the one in classical
estimation Thn:.ur}-'.l'f' The N-ary symbaol is transmitted over a
noisy channel. Given the reception of some K value, ong
must estimate which symbol was actually used. Let PLA )
denote the conditional probability of an event A given B
and Eix|R) denote the conditional expectation of a random
variable. It is known that for equiprobable sources, the
mimum likelihood (ML) estimation is the symbal thut
Maxinizes

max P(K,— gi| &KL, (3

where g, are the values of K one would produce in a noise-
less environment, i.e.. the values obtained if there was per-
fect estimation of K. In other words, if GCR=m, then
=K, —g, is the noise input the system. Note that in this
simplified model we have not incorporated noise [rom mea-
suring either K; or L. For noise densities with a strictly
decaying spectrum, one wants 1o choose the closest g 1o
the given K.
Let us delineg

Bin. K, L) = E(K|K.L.GCR=n). (6]

then one can show that for a given well-behaved noisy
feamewark, the g, values are well estimated by
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Training

Fig. 4 Scanned image reduced to 200 dai.

min [ K, — (LK. L] (7]

Summarizing, the steps for detecting one out of ¥ GCRs
ire

1. In the taining session, find one image or region that
was processed with each GCR. For each region or
image compute  Sin, KL Li=EK,| K. L .GCR=r),
i.e., the average value of K for each (&, L) pair.

2. In the online detection phase, select & that is the clos-
est 1o the received /.

Note that in the hinary case, there are only two values to
compute, B, K, L) and #(2,K,,L), so that the algorithm
is equivalent to setting up a threshold:

AKL Ly =[B01.KL L) + B2.K L2, (8)

a0 that Ky is simply compared to a threshold (K, L) If
Ky = 1, then we pick GCR,, else we pick GCRy. It 1s very
simple and the array of thresholds for each K and L, typi-
cally of size 256 X 256, can be set up beforehand. Hence,
detection can be made with one look up and one compari-
S0

3.3 Look-up-table-based estimation of the GCR

To train the system, we creale an image (preferably of a test
target of patches) with the GCR strategies of interest. For
every pixel, a quintuple is organized: {R, G, B, K. @}, where
1 is a discrete number telling us which GCR was actually
used to print that given scanned pixel. We are now left with
the task of mapping the RGBE hyvpercube into one number
0.

The training algorithm works by simple majority.
1. Break the RGBE hypercube into A& cells,
2. For every pixel in the image,
Find its RGBEK cell.
Fill in its (2 value,
3. At the end, for each cell,
Compute the histogram of £ valoes,
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Fig. 5§ Luminance (L) corraspanding 1o Fig, d.

Associate the cell with the most “popular™ O value
for that cell.
4. Make a look-up table (LUT) with the RGBK values
as input and £ as output

Each cell maps the RGBK value o its most likely GCR
strategy. To ensure that no cells are empty, we start by
running the preceding training algorithm with a partition of
RGBK into 2 > 2 X 2 » 2 cells, If, at the end of train-
ing, any of the cells is still empty, assign a random ¢ value
te it Then we repeat the process for a d X 4 X 4 X 4
cell partition. 15 at the end of the process we obtain any
empty cell, make it inherit the @ value from the corre-
sponding position in the 2 X 2 % 2 % 2 partition stage,
For nonempty cells, we use the 4 x4 % 4 % 4 value. We
repeal the process for 8 X 8 X 8 X B Any empty cells
inherit the corresponding & value from the 4 = 4 X 4
* 4 partition stage. The process i2 repeated vel one more
fime to obtin 16 > 16 > 16 = 16 cells, inheriting @
values from the £ X 8 X 8 X B parlition slage. We
Judged the 16 > 16 > 16 16 partition might be accu-
rate enough w map RGBK values o o few GCRs, for ex-
ample, 2, i.e, a @=0or (=1 decision.
The run-time detection algorithm works as [ollows:

1. In the high-resclution image, estimate K.

2. Reduce the K image to low resolution.

3. Reduce RGEB scanner data to low resolution.

4. For every pixel in the low-resolution image,
Compute the RGBEK quadruple,
Feed RGRE into the cell LUT, and retrieve the 2
that is the GCR estimation.

4 Ewvaluating Embedding Potential

We have not yet implemented a real-data embedding svs-
lern. Future work will deal with registration and with dit-
fuse embedding patterns, We did not switch GCR on a
pixel-by-pixel basis but we set np whole images or large
regicns with each of the GCRs and measured detection er-
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Fig. 8 Value of colorimerric K (4 obtained from the image in Fig. 4.

ror rates in each region. This gives a very good measure of
the method's embedding potential, apart fromy any regisira-
on eTroTs,

4.1  Method —Deterministic Estimation of K Plus
ML Estimation of GCR

In an example, we processed several images using two dif-
erent GCRs, The GOR swralegies were devised using color
calibration tools tuned for a Xerox DocuColor 2060 printer,
which uses a 600-ppi rotated-line screen. Printer calibration
was a hit off, so the variation of GCR caused a very small
but sometimes noticeable change in appearance. The m-
ages were printed at the DC2060 and scanned using a Sci-
lex scanner at true 2000 ppi. The images were reduced (5]
using running averaging filters and straight subsampling,
until reaching a factor of 10:1 in cach direction, i.e., 200
ppi. This is the watermark resolution.

The left side of cach image was processed using GCR,,
while the right side was processed using GCR., except lor
the two images that were vsed lor iraining, One fraining

Fig. 7 Estimated K value (K,) fram the high-rezclution (Z2000-dpil
sgan. Image size reduction to 200 dpi cocurs after K is estimated
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Fig. 8 Detected information. Gray values indcate excluded areas
where L was out of bounds 15 to 240, The original infermaticn con-
sisls of different GCR for the left and right sides of sach image. The
two training images were fully processed using ong GCR, a different
GCR each, of course.

image was processed using GCR ) inits entirety, while the
other was only processed using GUR,, All images {includ-
ing the training images) were printed on the same page Lo
simplify the experiment, but this cenainly was not neces-
sary. The recovered 200-ppi RGB composite image is
shown in Fig. 4. The images that were used Tor training are
indicated.

Figure 5 shows the corresponding luminance L, Fiz. 6
shows the &, values, and Fig. 7 shows &) for the same
image. The detected image is shown in Fig. 8. Since data
cannot he effectively embedded in very light or dark arcas
because they have mostly uniform ink coverage, we de-
cided to exclude these arcas from processing, In regions
where Lowas larger than 240 or less than 13, the pixels in
Fig. 6 were marked as gray, ie.. not embedded. The bit
error rates (BERs) for these example images are shown at
Table 1.

4.2  Method I—Empirical Estimation of K Flus LUT-
Based Estimation of GCR
In this set of tests, we used scans made on a deskiop 1200-
ppi scanner of prints made on a Xerox Phaser 7700, After
reduction of 10:1, the watermark detection (RGBE data)
resolution is 1240 bpi. Figure 9 depicts a comparisen ol the
amount of K used during printing and the amount of &
detected from the scanned dala. The same image was
printed under two different GCRs and cach image was sob-

ject to our GCR detection method. Figure |} shows the

Table 1 BERSs for several images and for both GCRs as references.
where walarmark resclution is 200 bpi.

Image 1 2 a 4 5

GCR, 0,300 02753 015848 0.0867 00321

GCR: 0.3606 02364 03212 01562 0.3181

Jul-Sen 2005Vol. 1403
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Fig. 9 Original K valugs before printing (left] and esimated K val-
ues after printing and scanning (righth.

result of method 1. while Fig, 11 shows the result Tor
method 11 The left half of each figure was wades with
GCR, and the right half with GUR.. White pixels indicate
3 that GCR, was detected and black pixels that GCR, was
' detected. Thus, a perfeet result would be an image with the
left half white and the right half black. Comparing Figs. 10
and 11, we can see that the second lechnigque is much less
noisy for this class of printers. Method [ led to too many
noisy patches. A comparison of detection efficiency is
shown in Table 2. We then computed the percentage of
times there was a correct estimation for each method and
GCR. These results do not include the detection errors lrom
the borders between the patches. However, they do include
patches where it is impossible 1w embed information,
namely, those where one or more of the pre-GCR O, M, or
¥ wvalues s wero.

.

4.3 Channel Rate and Distorlion Considerations

The image embedding method can be viewed as a commu-
nications channel so that we can borrow information theory
results for it. The problem iz that we have not vet fully
characterized the channel, However, based on the results
for both methods we have not seen an average BER {1 to O
and wvice versal of more than 30%. Please note that these
tests were carried for o low-resolution RGBEK set at 200 and
120 dpi. The channel is not symmelric, as the resulis show,

Fig. 10 Resull for patches image using methad | Lelt image was
printad under GCR, while the one on tha right was printed under
GCR.. The part on the left should b white and the one on the right
should be all black.
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Fig. 11 Result for patches image using methad |I; laft image printed
under GOR,, while the one on the right was printed under GCR..
The part on the et should be while and the one on the right should
b all black.

It is not stationary either, since contiguous regions typically
have similar colors. We can homogenize the errar by logi-
cally scrambling the pixel locations before embedding, and
equalizing (biasing) the information so that the channel
should appear to the enceder as a binary symmetric channel
(BSC). The BSC is well known in the literature and let us
assume the error probability P, to be 173 (103 of the bits
are wrong in average). It is known that the equiprobable
BSC capacity for P,=113 is'"" about 0.0817 bits/ symbol.
At 200 ppi, there are 40,000 pels/in.%, hence the channel
capacity would be 3268 bits/in.?. At 100 ppi, assumning the
same error rate, the capacity drops to 317 bits/in.” or near
100 bytes/in=.

If we construet one of the simplest error correction
mechamsms there is, the recursive use of block codes, ep.,
the (7.4} Hamming code,"” we can profect the channel until
any prescribed BER. At each step, the embedding rate falls
by 47, tut BER drops by 0,627, The BER versus bil raie
curves for both 100 and 200 ppi watermarking RGBK data,
assuming the equiprobable BSC with £,=1/3, are shown
m g, 12, Figure 12 15 just an example. Other channel
coding schemes will greatly improve the curves in Fig, 12,

The pature of the GCR strategies that are used will in-
crease or decrease the probability of correct detection, de-
pending on how much they differ. For example, excellent
detection would be attainable from using 1009 GCR and
niy GCR. However, this would resull in more visibility ol
the embeddad signal as a result of metamerism than two
GCR strategies that are maore similar, The watermark vis-
ibility is not computed in any twade-off, so that the best
stratezy 15 to make the two GOR stralegies oot oo dissimi-
lar. The inclusion of visibility constraints in the rate
distortion trade-off is left 1o a future work.

Table 2 BERs for hoth msthods using patches images from Figs.
8-11, where watermarking detection resolution is 120 bpi.

Iethod GOH, GCH;
028 047
I 018 0.2g
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Fig. 12 Represenative rate versus distortion charactaristics of the
gystem. The above curves relate the BER and the payload capacity,
assuming ooth 200 and 100 bpi watermarking resolution. We as-
sumed an equiprebable symmetric channel with 1/3 probability of
arror and channel coding via recursive application of Hamming
block codes.

5 Final Remarks

In many applications where a watermark is embedded, all
the embeddad bits are taken together to embed just 1 bit
that is vsed to determine whether or not the watermark is
there. The rate distortion analvsis of the method assuming a
BSC with 1/3 ermor probability indicates thal @ reasonahble
number of hits can be embedded with a reasonable error
probability, It is sorely sofficient to simply recognize a wa-
termark (the 1-bit embedding) or to carry small payloads.
In other words, the method has large it orate and large
BER, so that good error correclion capabilitics are essen-
tial.

Certain colors in an image are not useful for embedding
information by varving GCR, namely, those that have no £
replacement, For example, CMY values of (o, m, 0] will he
converted to (o, m. 0, 0) using either GCR technique. Ide-
ally, these would be eliminated from the encoding/decoding
process in some way, or perhaps information could be re-
dundantly embedded such that information erased in one
region of the image could be found in another region. Al
this point, no such scheme has been devised.

We nsed raining images, but the technique would also
work if the nature of the GOCR alzonithms was known and 2
fully color-characterized svstem was used, The training im-
ages eliminate the need for such careful calibration,

The detection might be improved by using the spatial
orientation of the dots on the page. Black dots are expected
to appear at a 45-deg angle, which would differentiate them
from other dots, Attempts at using this information have not
vel been successful,

Inspection of the results shows the potential ol GCE
detection in watermarking. A working system s far from
being developed. There is much analvsis and fine-tuning
that can be done. Future work is planned on (1) improving
print path calibrations and extending the family of est
printers and technologies; (2) including error correcting ca
pabilities and analyzing the chamnel capacity, i.e., how
much payvload can we embed after error recovery, [3) opti-
mizing embedding patterns; and (4) reliable registration. 1n
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any case. the process has considerable potential and the
detection method appears W be robust enough W warrant
further research leading to practical applications.
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