
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 12, DECEMBER 1993 3293 

Time-Varying Lapped Transforms and Wavelet 
Packets 

Ricardo L. de Queiroz, Student Member, IEEE, and K .  R. Rao, Senior Member, IEEE 

Abstract-The perfect reconstruction conditions for a time- 
varying lapped transform (paraunitary filter bank) are devel- 
oped through the factorization of the transform matrix into 
sparse factors. A general formulation is presented allowing one 
to switch between two paraunitary filter banks. However, the 
extended lapped transform (ELT) is often used as an example. 
Furthermore, an adaptive wavelet packet is developed employ- 
ing a time varying tree association of ELT’s. In all cases perfect 
reconstruction is inherently assured. 

I. INTRODUCTION 
ULTIRATE filter banks are well-known powerful M tools in modem digital signal processing allowing 

easy data processing transform domain, and flexible time- 
frequency analysis. References such as [ 11-[3] cover the 
main issues on filter banks. The common denomination 
of “uniform paraunitary filter bank” [2], [4] is analogous 
to the term “lapped transform” as defined in [3]. Al- 
though studied independently in the past, both represent 
the same (see [3] for the demonstration and definitions). 
Similar relation is valid for orthogonal discrete wavelet 
basis, paraunitary filter banks and lapped transforms, 
mainly for the case of 2-channel banks [5]-[7]. In this 
paper, we will refer to uniform FIR paraunitary filter 
banks as lapped transforms. Furthermore, terms like ex- 
tended lapped transform (ELT) [3], [8], and lapped or- 
thogonal transform (LOT) [9] stand for particular choices 
of lapped transforms, obeying well defined structures, and 
are not synonymous for the general term lapped trans- 
form. 

We are assuming the use of a uniform analysis bank of 
M FIR filters, each one of length L as shown in Fig. 1. L 
is related to M as L = NM = 2 K M ,  where K is the over- 
lapping factor. The analysis filters are time-reversed ver- 
sions of the synthesis filters [3]. If the analysis and syn- 
thesis filters are represented by f m ( n )  and g , ( n ) ,  
respectively, for m = 0, 1, * . , M - 1 and n = 0, 1 ,  

, L - 1, we can define a matrix P with elements pmn 
as 

(1) 

. . .  

P m n  = g m ( n )  = fm(L - 1 - n ) .  
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P is a M x L matrix, which will throughout this paper be 
called the transform matrix. Define the counter-identity 
matrix Jk  of size k X k as 

Similar notation is used for the identity matrix and for the 
square null matrix (Z, and 0,). 

Filter banks are generally thought of as stationary 
forms, and several perfect reconstruction (PR) conditions 
have been presented under different viewpoints [4], [ 101. 
Recently, Nayebi et al. presented a study on the structure 
of time-varying filter banks [ 1 1 1 .  In their work, PR con- 
ditions were stated and it was mainly considered the tran- 
sition between two known PR systems. In this paper, we 
will present a structure that is inherently orthogonal and 
is based on lapped transforms with fast algorithms. In 
Section 11, a discussion concerning the factorization of the 
transform matrix and of the system of transforms that op- 
erates over an infinite sequence will be carried. Section 
I11 presents the approach for maintaining orthogonality 
under time variations. Also, time-domain PR conditions 
are stated as a function of time, applying the concept of 
an instantaneous filter bank. Section IV studies the ELT 
in a variational environment, and Section V is concerned 
with hierarchical systems, employing a time-varying tree- 
structure using the ELT. In this, the format of the tree is 
changed along the time axis, forming a time-varying 
wavelet packet. The paper ends with the conclusions in 
Section VI. 

11. FACTORIZATION INTO SPARSE MATRICES 

A .  General Case  

A lapped transform matrix of dimensions M x L ( L  = 
N M )  can be divided into square A4 x M submatrices P, ( i  
= 0 , 1 ; * *  , N - 1 ) a s  
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T M gM-i(n) 

Fig. 1. Critically decimated uniform filter bank. Analysis (left) and syn- 
thesis (right) sections are shown. 

It can be shown [3] that the PR conditions for a lapped 
transform, or for any paraunitary filter bank, are given by 

N -  1 - /  N - 1 - 1  

c P m P i + ,  = c Pm+/P,T, = 6 ( I ) Z ,  ( 3 )  
m = O  m = O  

for 1 = 0, 1, . . . , N - 1, where 6 ( 1 )  is the Kronecker 
delta. Alternately, (3) can be stated as [3] 

N -  I - /  N - I - /  

c P ; P m , ,  = c P ; + / P , ,  = 6(1)ZM. (4) 
m = O  m = O  

In [12], it was shown that any paraunitary filter bank 
(in our notation, any lapped transform) can have its 
polyphase component matrix E(z )  [2], [3], [12] decom- 
posed into a cascade of N ,  zero-order lossless (orthogonal) 
matrices and Nz - 1 diagonal matrices containing delays, 
where Nz - 1 is the degree of det { E ( z ) } .  Then, 

E ( z )  = zDO(z) B S I  ( z )  BI . ' DN, - 2 ( z )  BN: - 2 ( 5 )  
where Dk(z )  (k  = 0, 1, . . * , N ,  - 2) are diagonal ma- 
trices, with ones along the diagonal, except by one delay 
of the form z-l. Z is a general orthogonal transform, 
which has M ( M  - 1)/2 degrees of freedom, one for each 
possible plane rotation of the form 

cos (19) sin (e) 
-sin (e )  COS (e) 

and, from (3) and (4), we have the synthesis equation 

f = py = FTI'x = x .  (8) 
Given that the matrices 0, ( z )  have only pure delays and 

the matrices B, and Z are orthogonal matrices, we can 
combine the above relations with (5) and we can see that 
the matrix P can be factored into 

(9) P = ZDOB$lBl . * * DN,-2BNz-2 

where 
Z are block diagonal matrices, so that 

is a permutation matrix and the matrices B, and 

B, = diag { B , ,  B , ,  B, - . }  (10) 

Z = diag { *  . Z ,  Z ,  Z . . e } .  (1 1) 

The inverse operation is, therefore, given by 
p - I  = B T  N ~ - ~ D N : - ~  - T  ' '  ' B@TB@lzT. (12) 

Fig. 2 shows an example illustrating the relation among 
z-domain flow-graph (with delays), time-domain non- 
causal flow-graph and the sparse matrices. In this figure, 
the order of the input-output M-samples blocks is indi- 
cated, with each branch carrying M/2  samples. The syn- 
thesis is accomplished by following the flow-graphs from 
the right to the left, since the matrices are all orthogonal. 
P is, then, a layered implementation of transforms. If we 
could follow the paths connecting each output block to 
the input blocks, we would be able to also factorize P in 
a sense that while the matrices Bj can be implemented with only M - 

1 plane rotations 1121. 
L e t  us consider the time domain representation of the P = ZD0B;PIB; * * * DN.-2Bhzp2. (13) 

analysis-synthesis process. Let x and y be the infinite- 
length time and frequency domain vectors, respectively. 
The analysis process of Fig. 1 can be represented using 
the transform matrix P ,  which is defined as 

This would also be a general expression for a factorization 
of P .  The matrices B,! are square and block-diagonal in a 
size-limited version of B ; .  The number of blocks in the 

Thus, 

y = Px 

0 Po PI . . .  p N - I  

p N -  I 
0 0 Po P I  . . .  

p=\ 

diagonal of these matrices is dictated by the delays of the 
0, (2) matrices, and its a priori calculation for all cases is 
impractical for our purposes. The matrices Di are not nec- (7) 
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M/2 plane rotations [ 3 ] ,  (81. The components of the 
above factorization are 

(16) 
Time blocks Transform blocks Z=DCT'"[  O M / 2  I M / 2  1. 

I M / 2  O M 1 2  

B, D, B o  D o  z 
- , -  

k - 2  k - 2  

IC-1 k - 1  

k k 

ICs1 k + 1  

k + 2  k + 2  

Fig. 2. Example: relation between a-domain factors and its correspondent 
time-domain noncausal analysis flow-graph. Each branch corresponds to 
M / 2  samples, the blocks have M samples, and the boxes are M X M or- 
thogonal matrices. The sparse factors are also indicated, aligning their 
symbols with the flow-graph stages. Since all elements are orthogonal, the 
synthesis is implemented by following the paths of the flow-graph from 
right to left. 

essarily square and are size limited versions of the D,. 
They should not be confused with D , ( z )  which has a dif- 
ferent meaning and has complex entries. As a remark, us- 
ing the layering viewpoint, the matrices D, have to be 
lapped transforms, i.e., obey ( 3 ) ,  if the whole system is 
supposed to maintain the PR property. 

We will not attempt to design any lapped transform and 
we will assume that, given the lapped transform, its sparse 
factor decomposition is known, as in ( 5 ) .  

B. Example: The ELT 

We will now address a practical factorization. We con- 
sider the extended lapped transform (ELT) as defined by 
Malvar in [3], [8], among the most efficient factorization 
methods for a paraunitary filter bank. Although imposing 
restrictions (that lead to fast algorithms) the resulting fil- 
ter bank presents very good frequency response [3]. Other 
choices of modulated filter banks could also be made, such 
as those in [ 131, [ 141. However, the performance differ- 
ences, if of any significance, would not affect the general 
results. In the ELT's, the filters' length is basically an 
even multiple of the blocksize M ,  as L = 2 KM and P can 
be split into only K + 1 stages. 

E ( Z )  = zDo(~)e , ,D , (2 )e ,  . a . D K - , ( Z ) ~ K - ~ ,  (14) 

P = ZDoB0ij ,B, * . * D,- ,e,- I .  (15) 

Z is an M X M DCT type IV matrix [15], with inverted 
inputs and 0, are orthogonal matrices composed by only 

(17) 

B, = diag { .  e,, e,, e,,, . } ,  (18) 

( n = l ; . - , K - l ) ,  

C,, = diag {cos (O,,,), cos (e,,,), * * , 

cos ( e ( M / Z )  - 1 . n ) )  

S,, = diag {sin (eo, ,>, sin (e I ,  ,,I, * . , sin ( e ( M / 2 )  - 1 ~ n> 1 
(19) 

e;,, are the rotation angles and free parameters in the de- 
sign of an ELT [3]. 

Fig. 3 shows the flow graph for the case K = 2 .  From 
the information above, we can also factorize P as 

P = ZDoB;PlBi * * . DK- 1Bi.- I (20) 

where BA matrices are block diagonal with 2 (n + 1) rows 
of 2(n + 1) blocks, each block of size M X M (0 I n 5 
K - 1). The D, matrices have dimensions: M X 2 M  (n 
= 0), and 2nM x (2n + 2 ) M ,  for 1 5 n 5 K - 1. 
These matrices are more easily described as block ma- 
trices generated by a Kronecker product 

D,, = F,, 0 I M / 2  (21) 

where 0 denotes the Kronecker product. Then, we can 
describe the F,, matrices (with elements A j , J  by 

and F, = { A , ,  ,,} , where 

1 i = j = 2 k  

A,,, = 1 i = 4 n  - 1 - 2 k a n d j  = 4 n  + 3 - 2k 

0 otherwise 

(23) 

r 
for 0 I k I 2n - 1 and 1 I n 5 K - I 

111. PERFECT RECONSTRUCTION AND TIME-VARIATION 
Suppose the orthogonal building blocks in Fig. 3 were 

no longer identical, for each column. For example, if the 
angles belonging to eo are changed as we go from top to 
the bottom of the flow-graph, what should be the conse- 
quences for the filter bank, and more precisely, can we 
still maintain the PR property? If each building block is 
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Time blocks ELT blocks The elements in Fig. 3 are now varied with time, and 
another example is shown in Fig. 4. The relation (9) re- 
mains unchanged, but we can rewrite (13) as 

k - 2  k - 2  P ( k )  = Z(k)DO(k)B~(k)D, (k )B; (k )  * . . 

k - 1  k - 1  * DN: - 2(k) Bh: - 2 ( b  (28) 

In the example in Fig. 4, it is easy to see that a partic- 
ular choice of Z ( k )  would influence solely P ( k ) ,  but a 
choice of BO(k) would influence P ( k )  and P ( k  - 1). Sim- 
ilarly, any particular choice of B,(k) would affect P ( k  - 
2) through P ( k  + I) .  This suggests that any change of the 
filter bank is preceded and followed by transition regions 

The time-domain PR equations in (3) assume that P re- 

YSiS can be more easily presented due to the periodic na- 
ture of the problem [lo]. In fact, this was also done in 
[3], [4]. In time-varying systems, we have to choose an 

k k 

k + l  k + l  

ks2 ks2 
[11l. 

Fig. 3 ,  Flow graph for the ELT with K = 2 ,  Time and ELT domain sam- mains unchanged time-index‘ the 
ples are grouped into blocks of M samples and each branch corresponds to 
M / 2 .  

orthogonal, it is clear that the PR conditions are satisfied, 
with the same flow-graph for analysis and synthesis pro- 
cess. When nonorthogonal blocks are included, their in- 
verse must be applied in the synthesis process leading to 
biorthogonal filter banks. Although possible, we will dis- 
regard this case since we are mainly concerned with 
lapped transforms (paraunitary filter banks). 

Let the matrix B, contain different matrices along its 
diagonal. Let us also assume a time-index k to character- 
ize each block. From a decimation-interpolation view- 
point, arising from the classical filter bank analysis [l], 

index k and find the PR equations for it, noting that (3) is 
no longer valid. Roughly speaking, the PR conditions for 
steady systems must state the orthogonality of the basis 
functions and the so-called orthogonality of the “tails. ” 
This implies that aliased (shifted) versions of P would 
cancel in the synthesis process 131, [4]. Since P ( k )  is no 
longer constant with k ,  (3) must be rewritten to ensure the 
orthogonality among P ( k )  and its neighbors P ( k  k- I ) ,  
P ( k  f 2), P ( k  k 3) * . . Then, it is easy to show that 
the PR conditions for time-varying lapped transforms 
(paraunitary filter banks) are 

this index represents the decimated-rate sampling instants N - l - /  

C Pm(k)P:+,(k - 1 )  
m = O  

of the subbands. On the lapped transform viewpoint, k is 
the block number [3], [4]. Note that PR is inherently 
maintained, but the transform matrix is now a function of 

it as P ( k )  [16]. Then, 

N - I - /  

= c P , + / ( k ) P ; ( k  + I) = S(Z)ZM (29) k .  P is updated from block to block and we may refer to m = O  

p = ( . .  0 - 

0 

. . .  0 

. . .  

with 

This means that P ( k )  contains the instantaneous filter 
bank impulse responses. We can also rewrite 2 and B, as 

matrix equations. 
As a remark, the term lapped transform was maintained 

(although (3) is no longer valid) because P remains or- 
thogonal and for each instant k ,  the synthesis filters are 
time-reversed versions of the analysis ones. A filter bank 
is said instantaneously paraunitary if all factors in (26) 
and (27) are orthogonal matrices. In this case, (29) is sat- 
isfied, but not necessarily the steady conditions in (3) or 
(4) are met. In this situation, the filter bank is said tran- 

2 = diag { -  . * Z ( k  - l), Z ( k ) ,  Z ( k  + 1), - . * }  

(26) 

B, = diag { .  * * B,(k - l ) ,  B,(k) ,  B,(k + l ) ,  . . - }  

(27) 
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Time blocks ELT blocks 

Z(k-?) k - 2  

1 

Fig. 4. Flow graph for the time-varying ELT with K = 2. Now the or- 
thogonal matrices in the boxes can change and are a function of a time 
index k .  As long as these matrices maintain orthogonality the flow-graph 
for synthesis follows the paths from right to left. Time and ELT domain 
samples are grouped into blocks of M samples. 

sitory. Of course, all equations are satisfied when the fil- 
ter bank is not variable, i .e. ,  the factors in (26 )  and (27) 
are the same along the diagonal. 

Although possible, a continuous change of coefficients, 
like in adaptive filtering, is not likely to be beneficial, 
using this structure. Maybe the most practical idea would 
be to switch between two filter banks at a time. Each one 
would have its own characteristics (and factorization) well 
defined 

* . + filter bank 1 -+ filter bank 2 + 

filter bank 3 -+ . . 

It is, thus, possible to switch between any two filter banks, 
using the general factorization structure. But what are the 
limitations of the filter banks to be used in this approach? 
First, we cannot change the number of channels, unless 
we first switch to a "transparent state" as we will discuss 
later. Second, the filters' length is limited to lie between 
M and L. In fact, we can switch between block and lapped 
transforms, since the former is a special case of the latter 
[3], [4]. To see this, let the M X I matrix Q represent the 
transform matrix of a filter bank with M channels and fil- 
ters' length l I L. If we pad with zeros on both sides of 
Q in a balanced way such that Q is still centered and 

P = 10 Q 01, 
then, as long as (3) is satisfied, P is a valid lapped trans- 
form. Of course, I 2 M ,  otherwise P becomes rank de- 
ficient. 

Transparent States and Segmentation 
A special case of interest is when Q is the identity ma- 

trix. In this case the input samples are solely copied to 
output and the transform is bypassed. However, the tran- 
sitions between this state and any other state will have PR 
assured by the algorithm. This is what we call the trans- 
parent or bypass state of the filter bank. Furthermore, if 
one switches to a transparent state, after the transition is 
over, no transform is applied to the input. Therefore, these 

samples are independent from the samples of the region 
where either the filter bank was active or where there was 
a transition. These two regions would be independent seg- 
ments of the signal. If right at the beginning of the second 
segment we force a transition from the transparent state 
to a second filter bank, then we can switch transforms and 
even change the number of channels M, since the seg- 
ments are independent. We can have 

filter bank 1 ( M I  channels) -+ transparent state -+ 

filter bank 2 (M2 channels) 

or, directly 

M ,  channels -+ 

transition to bypass + transition from bypass --* 

M2 channels 

In the next section, we will describe this switching pro- 
cedure in the case of the ELT. See [17]-[19] for further 
results in segmentation and processing of finite-length 
signals. 

IV. TIME-VARYING ELT 
The filter bank is supposed instantaneously paraunitary 

and we may focus our attention on the analysis sections, 
since the synthesis filters would follow the analysis struc- 
ture with PR assured. We will now use the ELT for con- 
sidering adaptation issues, reminding the reader that, so 
far, with the actual factorization, the only parameter that 
can be changed is the frequency response of the filters. 

The ELT structure is based on the modulation of a co- 
sine train by a window. This window has 2 KM elements 
and is defined by the choice of the K M / 2  plane rotation 
angles (see Section I-B). The manipulation of these angles 
permits to shape the filters to some limited extent. At 
block k ,  the matrix P ( k )  with elements P m n , k  (m = 0, 1 ,  
* * * , M - 1 and n = 0, 1, - . , L - 1 )  can be defined, 
as in [3], but with a time-varying window, by 

+ ( N  + 1) ')] 2 

h(n,  k)  is the window for instant k .  The M impulse re- 
sponses of the analysis and synthesis filters, denoted as 
f m  ( n ,  k )  and gm (n ,  k ) ,  respectively are related by 

P m n , k  = gm(n, k )  = f m ( L  - 1 - k ) .  (31) 

Thus, for block k ,  we have the frequency response of 
the filters (dropping index k from the formula for conve- 
nience) given as [3] 

G,,, (e'") = - ' [e-jqmH(ej(u -m"t)) + eJqmH(eJ(" + w m )  >I 
J2M 

(32) 
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where U, = (m + ( 1 / 2 ) ) ~ / M ,  r],,, E w,(M + 1)/2, and window can be expressed as 
H(e'"), G,(eJ") are the frequency responses of h ( n ,  k )  
and g, (n ,  k ) ,  respectively. 

As discussed previously, the transparent state would 
cause the input samples to be copied to output without any 
transformation. To achieve this state we have to set all 

h ( ~  - 1 - 1, k )  = -sin (e,.,(k)) 

h(M + 1,  k )  = -sin (e,,,@ + 1)) 

h ( 2 ~  - 1 - I, k )  = (e,.,(k + 1)) 
angles as 7r/2 and replace Z by 

I = 0, 1, . * - , M / 2  - 1. Z =  

(35)  

For K = 2, with el also given by (19), we have 

z o o o o o o o  
o o o o o z o o  

0 0 0 ( k  + 1) o o z o o o o o  
o o o o o o o z  

0 0 e l ( k  + 2) /  

The reader can confirm this statement either by substi- 
tuting the values of the angles in the ELT matrix factor- 
ization, or by inspection of the flow-graph shown in Fig. 
5 .  If we switch from a regular ELT to a transparent state, 
or vice-versa, there will be a transition region, which will 
be focused later. As the transition region is over, it has 
no sense in following the paths in Fig. 5 and samples can 
be just copied to output. The notion of the transparent 
state is only necessary to maintain PR in the transition 
regions. 

A .  Cases K = 1 and K = 2 

We shall focus our attention on h ( n ,  k ) ,  since the win- 
dow defines the filter bank, being a low-pass prototype 
which is modulated by the cosine sequence. Regrettably, 
there is no direct analytical relation among the angles and 
the window for all K.  We will present only the cases of 
K equals to 1 and 2 under time variations, which is only 
an extension of the steady case presented in [ 3 ] .  Assume 
Z and 0 are of size M / 2  X M/2.  For K = 1, 

with €lo given by (19), but with time varying angles. The 

with the window given by 

h(1, k )  = COS (e , , , (o  COS (e/ ,  I ( k  - 1)) 

h ( M  - 1 - 1, k )  = cos (O,,,(k)) sin (e,, I ( k  - 1)) 

h ( M  + I, k )  = sin (e,,,(k + 1)) cos (O/,l(k)) 

h ( 2 M  - 1 - I, k )  = -sin (e , , , (k  + 1)) sin (O,,l(k)) 

h ( 2 M  + 1, k )  = -sin (O, , l (k))  sin ( e , , ( k  + 1)) 

h ( 3 M  - 1 - 1, k)  = sin (O,.o(k)) cos (O,,,(k + 1)) 

h ( 3 M  + 1, k )  = COS (e,,,(k + 1)) sin ( e , , , ( k  + 2)) 

h ( 4 ~  - 1 - I, k )  = cos (e,,,(k + 1)) COS (e,,,(k + 2)) 

(37)  

1 = 0 , 1 ,  * * * , M / 2  - 1. 

B. Transition 
A transition region can be defined as containing those 

indexes k where P ( k )  is formed by different e , ( n ) ,  for a 
fixed i. In other words, it is composed by transitory filter 
banks, as defined in a previous section. These transitory 
filter banks can have undesired frequency responses and 
the transition region, for the ELT, will last for K + 1 
blocks. 

As we saw in a previous section, the analysis or syn- 
thesis processes ( P )  can be viewed as a layered imple- 
mentation of block transforms and permutations. If, in the 
middle of the transition, the B matrices are changed, this 
will further prolong it. On the other hand, the 2 matrix in 
2 is directly connected to the output and Z ( k )  just influ- 
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Time blocks ELT blocks 

k - 2  

k - 1  

k 

k + l  

k + 2  

k - 2  

k - 1  

k 

k +  1 

k + 2  

Fig. 5.  Flow graph for the ELT with K = 4 under the transparent state, 
where input is solely copied to output. 

ences P ( k )  (see Fig. 4). A time-varying block transform 
is trivial and 

P(k)  = Z ( k )  W(k)  (38) 

W(k)  = Do(k) BOW D, ( k )  BI (4 * . DK - I@) B, - I @ )  

(39) 

We can find a “make-up” matrix to use as Z ( k )  and 
replace the matrix defined in (16). This approach has the 
intention to improve the filters’ characteristics. If the in- 
put signal has autocorrelation matrix R,,, then the signal 
after using the transforms W ( k )  and P ( k )  have autocor- 
relation matrices R,, and R,,, respectively, given by 

R,,(k) = W ( k )  R, W*(k) 

Ryy (4 = z (4 R,,, z * ( k ) .  

(40) 

(41) 

In compression-coding applications, we can find a ma- 
trix Z ( k )  that would decorrelate the signal and make R,, 
a diagonal matrix. It is well known that an orthogonal 
matrix for decorrelating y would have its rows as the M 
eigenvectors of R,,,. Hence, Z ( k )  can be expressed as 

where ql qu are the eigenvectors of Rw,w,. This con- 
cept was used in the development of the LOT in [9]. 

On the other hand, if one is switching between a trans- 
form and a transparent state, the goal can be exactly the 
opposite, i .e . ,  no decorrelation, and the filters’ frequency 
response should be as flat as possible. We just highlighted 
one point (increasing decorrelation) and each case may be 
treated separately. 

C. Some Applications 

1 )  Variable Overlap Transform: In image coding, 
block transforms such as the DCT 1151 are widely used 
for several reasons. However, block transforms lead to 
the so-called blocking effects [ 151 at low bit-rates, and the 
LOT [9] was designed to eliminate them by extending the 
basis functions across the traditional block boundaries. It 
does not completely eliminate all blocking structure, nei- 

ther do the ELT’s, although this effect is largely reduced. 
Some blocking is still noticeable if we decrease the bit- 
rate further. This is because the end of the basis functions 
for one block are still neighbors of the beginning of the 
basis functions for another block, forming a well defined 
boundary. On the other hand, we would like to keep the 
filters (basis functions) as long as possible to increase the 
filters selectivity and, therefore, the coding gain, through 
better spectral energy compaction. As the amount of dis- 
tortion in a particular region is kept small, the blocking 
tends to be eliminated and we can use the benefits of com- 
putational savings of block transforms with fast algo- 
rithms. All these facts account to a possible benefit if one 
uses transforms with variable overlap. One can develop 
an adaptive coder which would employ a variable overlap 
and even mix lapped transforms with block transforms. 
With the ELT, at least, we have the means to do it, while 
maintaining PR. 

For K = 1, in (35) we can set marginal elements of the 
window to be zero, by forcing the angles Ooo, Ole, - to 
be a / 2 .  All the basis functions are modulated by this win- 
dow and would also be set to zero. Actually, the angles 
can be changed at any point. The transition region will 
only encompass one block and the filters will have fre- 
quency response lying in between the responses of initial 
and final filter banks. Fig. 6(a) shows the frequency re- 
sponse of an ELT (K = 1) for M = 8. Fig. 6(b) shows 
the same plot, but setting Ooo = O I o  = a / 2  (two elements 
in each extreme are set to zero for each basis function). 

A more extreme case would be one where it is desired 
to switch betwen ELT’s and block transforms at any time. 
All the angles are, then, suddenly changed to n /2 .  The 
overlap disappears because the window becomes rectan- 
gular of length M .  Thus, we can substitute the Z matrix 
by any other matrix. The frequency responses in Fig. 6(a) 
for the steady ELT are repeated in Fig. 7(a) for the tran- 
sition filter bank and in Fig. 7(b) for the DCT. The flow- 
graph in Fig. 8 shows a fast algorithm for changing an 
ELT ( K  = 1) into a DCT. The inverse operation (DCT to 
ELT) is straight forward by turning the flow graph in Fig. 
8 upside down. We can see that PR is maintained and the 
transitory frequency response still preserves reasonable 
attenuations. We can also develop the same approach us- 
ing the concepts of transparent state and region segmen- 
tation as discussed earlier. 

2) Time-Varying Wavelet Packets: Wavelet packets 
are hierarchical associations of filter banks following the 
paths of a binary tree. We propose a way to fully vary the 
shape of the tree, by pruning and expanding branches. For 
this we can use the ELT as the filter bank for all branches. 
When a particular branch is to be pruned, we set the ELT 
to its transparent state, and when this branch is to be ex- 
panded we switch the ELT from its transparent state to its 
normal state again. The reason for switching to transpar- 
ent state is because if we suddenly prune the tree by not 
processing the input samples, the transition will not main- 
tain PR. We will devote the next section to the subject of 
wavelet packets. 
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Fig. 6.  Frequency response of the ELT with K = I ,  M = 8. Each plot 
corresponds to the frequency response (magnitude in dB) of each synthesis 
filter C,,, (e'"). (a) Top: regular design using all angles; (b) bottom: setting 
2 (out of 4) elements at each border of the overlapped part of the modulat- 
ing window to be zero without reoptimizing the remaining elements. 
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Fig. 7. Frequency response of instantaneous filter banks. Each plot cor- 
responds to the frequency response (magnitude in dB) of each synthesis 
filter G,(e'"). (a) Top: transition filter bank, half of the angles are normal 
and half of them are forced to be */2,  resulting in an asymmetrical win- 
dow; (b) bottom: DCT for M = 8. 
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Fig. 8. Flow graph for fast switch between the ELT ( K  = 1 )  and the DCT, 
beginning from block k ,  which belongs to the transition. 

V. TIME-VARYING WAVELET PACKETS USING VARIABLE 
TREE-PATHS AND THE ELT 

The hierarchical structures are gaining more and more 
attention due to their improved time-frequency resolution. 
Furthermore, it is possible to achieve a great variety of 
nonuniform filter banks. The wavelet transform has been 
largely used and investigated [5], [6], [20]-[22] and it is 
well known that in the discrete case, the orthogonal 
wavelet transform is an association of 2-channel ( M  = 2) 
filter banks [5]-[7], [23]. The ELT in the 2-channel case 
is a very good way to implement such transforms [24]. 
Wavelet transforms and octave analysis have an asymp- 
totic behavior, regarding compaction performance for a 
stationary AR (1) process [23]. It is easy to find an ELT 
with greater compaction and faster algorithms than 
wavelet transforms based on a single 2-channel bank, no 
matter how many stages are connected [23]. However, for 
nonstationary patterns the exchange of frequency by time 
resolution can make the wavelets superior to M-band sys- 
tems which have large filter responses for all frequencies. 
The so-called wavelet packet [7], [25]-[27] is a compro- 
mise between the wavelet transform and the full-tree and 
the filter banks association follows arbitrary shapes of the 
binary tree. The binary tree was only used for illustration 
purposes. M-ary and mixed trees can be also employed 
obeying the same basic principles as discussed here. 

A .  Binary Trees Notation 
If the same lapped transform is used as the analysis cell 

for each stage, it is sufficient to describe the paths of the 
tree to completely describe the whole analysis-synthesis 
system. With the aid of Fig. 9 we present a more conve- 
nient notation. In Fig. 9(a), we see a 2-band maximally 
decimated filter bank with its low- and high-pass filters, 
as well as subsamplers. This system will be represented 
here by tree nodes and branches [Fig. 9(b)], where the 
signal flows in the nodes and the branches represent filters 
and decimators. We denote the number of stages as S and 
clearly the maximum number of terminal nodes is 2' which 
is also the number of nodes in the last stage when we use 
a full-tree. We label the nodes in the tree as T ~ , ,  where i 
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Fig. 9. The binary tree notation. (a) 2-band filter bank; (b) its equivalent 
representation in a tree; (c) labelling of nodes in the tree. 

is the stage number a n d j  is the number of the node in that 
stage (0 5 j I 2’ - l),  just as indicated in Fig. 9(c), for 
a 3-stage binary tree. The familiar parenthood notation is 
used, so that node q,, is parent of nodes q, + and 
q r +  (0 means integer 
division). We denote x, , as the signal flowing in ql , , while 
xoo is the original input signal. As a remark, the number 
of a node in a level does not correspond to an increasing 
frequency ordering of bands. 

The idea is to adaptively reshape the tree. In this case, 
it is convenient to define an infinite number of stages and 
an activity map. This map indicates if the node is active 
(its signal is being processed as an input to a filter bank) 
or not. Let a I J ( n )  = 1 denote an active node i j ,  being 0 
otherwise. The rightmost node in a path will be called 
instantaneously virtual end node (IVEN). All nodes with 
a childhood relation to an IVEN are inactive at instant n ,  
and clearly an IVEN is inactive. 

1 ,  and is the child of q r -  

B. Pruning and Expanding Branches 
To prune a branch of the tree, it is sufficient to bypass 

the transform applied to the parent node of an IVEN 
which, after pruning, will become a new IVEN. The re- 
currence of this procedure applied to the desired branches 
will bypass the signal from the resulting IVEN to the right, 
pruning the tree. The inverse procedure expands the tree, 
activating nodes and branches. As discussed previously, 
the use of the transparent state is necessary, in our ap- 
proach, if we want to maintain PR in the transitions. One 
further detail should have our attention when the trans- 
form is bypassed. The filters have gain of & = &. 
Since some samples will be copied to the output and some 
others will be transformed, after several stages along the 
tree, the resulting signal can have highly unbalanced range 
of sample amplitudes. To facilitate the processing of the 
transformed samples, it is advisable to multiply the sam- 
ples by h when they are “transformed” by a transparent 
state ELT. At the inverse transform these samples should 
be divided by the same value. 

To bypass an ELT, there are K transitory filter banks 
(blocks). Fig. 10 shows the analysis flow-graph to bypass 
an ELT for K = 2.  A similar configuration is followed 
for any value of K .  The inverse transition between trans- 
parent and normal states of an ELT are, again, obtained 
by reversing the signal ordering, i.e.,  by viewing Fig. 10 
upside down. For K = 2,  the low- and high-pass basis 
functions are shown for the transition process in Fig. 1 1. 

Time blocks ELT blocks 

k - 2  k - 2  

k , -  1 k - 1  

k k 

k + 1  k + l  

Fig. 10. Flow graph for the ELT with K = 2 switching to transparent state, 
where input is solely copied to output. Blocks k and k + 1 belong to the 

more, being directly copied to output. 
transition. Blocks k + 2 ,  k + 3 . . .  do not need to follow the paths any- 

time index 

Fig. 11. Illustration of the basis for the signal space during transitions to 
transparent states, using a relatively short filter bank (ELT, K = 2).  The 
filter bank branches are pruned from the tree and after two blocks of two 
samples, are reexpanded. On the top 8 plots, it is shown the “low-pass” 
bases, while at the bottom it is shown the 8 “high-pass” ones. Thick lines 
represent regular bases, thin lines transitions, and dotted lines the trivial 
bases when the transform is bypassed. 

The pairs of impulse responses are shifted in time show- 
ing their support as basis of the space of the signal and 
four pairs are shown: the normal ELT, two transitory ba- 
sis (impulse responses) and the transparent state impulse 
responses which are actually impulses. As another ex- 

- 
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Fig. 12. Basis for the signal space during transition, for K = 4 .  On left it  
is shown the basis relative to the low-pass filters and on the right those 
relative to the high-pass one, at all stages of the transition to the bypass 
state. The topmost refers to regular ELT and at the bottom it is shown the 
trivial bases (transparent state). The first 4 bases used the DCT-IV as Z 
while the last in the transition used Z = I. 

ample, the bases, for K = 4,  at the transition to the trans- 
parent state are shown in Fig. 12. 

C. Adaptation and Tree-Shaping 

The best time-frequency representation of a signal, or 
the best wavelet packet, are abstract ideas. Almost all rep- 
resentations and tiling of the time-frequency plane may 
have their utility, including only frequency resolution (a 
transform such as DFT applied to the whole signal); only 
time resolution (no processing is applied to the input sig- 
nal); fragmentation into blocks and use of M-band lapped 
transforms; wavelets (octave analysis); etc. . . . In [27], 
it was developed a method to find the best wavelet packet 
based on a rate-distortion criterion. In an independent 
work [19], this criterion was applied to search for an 
adaptive wavelet packet which would track the best tree 
shape. The method populates each node of the tree with 
a Lagrangian cost function J i j ( X )  = Dij  + X R j j ,  where 
Dij and R j j  are the distortion and bit-rate associated with 
node T ~ ~ ,  respectively, and X is a Lagrange multiplier. 
Then, an algorithm is used to find the minimum cost for 

all possible set of terminal nodes, given a quality factor 
X [19], [27]. For variation in time, a “double-tree’’ al- 
gorithm was employed in [19]. This algorithm was also 
applied to code speech signals, and it can be applied to 
our case, since we are providing the means to adapt the 
tree and not the adaptation cost function. 

On the other hand, we can also use an ad-hoc simpli- 
fying strategy, which is solely based on intuition and con- 
cepts. This can simplify the adaptation procedure and even 
allow backward adaptation. If a stationary model is as- 
sumed, for minimum mean square error, the greater en- 
ergy compaction in fewer coefficients [28] results in less 
distortion for a given bit-rate. This will generally lead us 
to choose the full tree which has better frequency reso- 
lution [23]. However, as a transform is bypassed, the fil- 
ter for the resulting subband is shortened, therefore a bet- 
ter temporal localization is attainable. Furthermore, if we 
use shorter filters, the distortion in a coefficient in a par- 
ticular subband would spread along a smaller region than 
if the filters were longer. Therefore, we can seek the max- 
imum time resolution whenever not much energy com- 
paction is provided by the transform. Let x ( m )  = x i j ( m )  
and x L ( n )  = x H ( n )  = For this 
node, a ( n )  is the activity signal. Let 

U:. = E[x:.(n)] U:, = E[x:,(n)]. (43) 
The above variances are related to the variance of x ( n )  
since the ELT has filters (with gain of A, for orthonor- 
mality) which obey the power complementary property, 
i.e.,  

(44) 
The signal is not assumed stationary and the variances can 
be estimated continuously. Further computations over 
x(n) would lead to more complexity and we can work di- 
rectly with the decomposed signal. Then, a windowed es- 
timation of the variance using a filter with impulse re- 
sponse h(n) results in 

6;(n)  = xZ(n)  * h(n ) ,  a i ( n )  = x:,(n) * h(n).  (45) 
Using the estimated variances for energy compaction 
computations, we have a measure of the transform coding 
gain [28] as 

a; + a:, = 2a:. 

and we can compare G(n) to a threshold g in order to 
decide if we set a ( n )  = 1 or not. Hence, 

where U ( x )  is the step function. 
I )  Interrelation of the Nodes: To determine whether 

all nodes are to be made active or not we can start from 
the maximum available frequency resolution, i.e.,  check 
nodes in a maximum stage S and, then, their parents. At 
each node, we can evaluate a L j ( n )  as in (47). 
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Fig. 13. Sample segment of speech used as test. 

Start: a,, = 0 (all ij); n + S. 
repeat 

f o r m = O . - - 2 " -  1 

evaluate anm 
if anm = 1 

if anm = 0 

make a,, = 1 for q,, E path qo0 + qnm. 
if all anm = 1 then stop else n + n - 1. 

until n = 0 

2)  Backward Adaptation: In order to prune or expand 
the same branches in analysis (transmitter) and synthesis 
(receiver), it is necessary to reconstruct a,,(n) at the re- 
ceiver. In (46) and (47) we use ELT domain samples. If 
G(n)  in (46) uses quantized samples i , ( n ) ,  i , ( n )  to esti- 
mate the variances and if, for a node q,, , we use 

+ '1 = - g,,] (48) 

then the receiver can recover a,, without transmission of 
side-information, because it has available the past quan- 
tized ELT or time-domain samples and g,, can be a fixed 
threshold. Both receiver and transmitter have to be syn- 
chronized, such that the transmitter has to use quantized 
values also when the transform is bypassed. Furthermore, 
the same nodal interrelation algorithm has to be used, al- 
ways preparing future values of a,, (n  + l ) .  The filter h (n )  
has to be causal and a simple first or second order IIR 
filter can be adequate, having a narrow low-pass band- 
width to avoid frequent transitions. Whenever a transition 
occurs, the states of the IIR filter may be reset, intermpt- 
ing filtering until the transition is over. After that, filter- 
ing is resumed. This is because at a transition, the re- 
ceiver will not have ELT samples or time-domain ones. 
Therefore, it will not be able to perform filtering on 
i i ( n ) ,  i & ( n )  unless the time-domain samples are re- 
covered and transformed again. Setting the filters to avoid 
frequency changes may help in this case. 

3) Forward Adaptation: In case the activity map with 
all a,, is sent in parallel, then things get much easier. First, 
there is no need to calculate activity on the receiver side. 
Second, one can use any means to determine activity of 
the nodes, including non-causal filters. A noncausal h (n)  

is naturally preferred since it will avoid very short 
changes. The binary signal a,,(n) can be processed to 
avoid short bursts and locally oscillatory behaviors. A 
possible solution is a recursive median filter, which, in 
the binary case, is easily computed using tables. The for- 
mula for this is 

a,,(n) = round [mean (a,,(n - k )  * * a,,@ + k ) ) ] .  

(49) 
This would prevent bursts of up to k isolated values of a,, 
and would not oscillate if the input is an alternation of 0's 
and 1's. When an oscillation is encountered, the state just 
before it is preserved. The order in which the node activ- 
ity is evaluated may be found using the algorithm de- 
scribed earlier. 

The disadvantage is due to the transmission of side in- 
formation, since all the activity map has to be transmitted. 
Assuming 1 bit per sample and a maximum stage number 
S, it would require S /2  bits per sample as overhead. (Re- 
member that if node qoO works at a sampling rate&, node 
q,, works in a sampling rate 2-'f,.) However, assuming 
the filters would prevent very frequent changes, run-length 
coding can be applied to largely compress this map. Fur- 
thermore, as a node is active, all nodes connecting it to 
the root node will also be active. Therefore, information 
for them is not necessary. 

Tests were made using the forward adaptation algo- 
rithm to code a segment of 8192 samples of a speech sig- 
nal shown in Fig. 13, based on the ELT ( K  = 2, M = 2) 
and S,,, = 6. The transformed samples were coded using 
a uniform quantizer whose step size was varied. The en- 
tropy of the quantizer output plus tree-information was 
evaluated as a measure of the rate obtained. The measure 
of distortion was 

/ 8191 \ 112 

where i ( n )  is the reconstructed signal after synthesis. The 
plots of distortion versus entropy (DH) are shown in Fig. 
14 for several threshold values g. Once the threshold g is 
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Fig. 14. Distortion (D) versus Entropy (H),  in bits-per-sample, plot of the 
results simulating the adaptive wavelet packets, using several values of 
threshold and quantizer steps. The filter bank used was the ELT for K = 2 
and M = 2 .  Solid line shows the D x H plot for the wavelet transform, 
using the same filter bank. 

chosen (the same value g was applied to all nodes), we 
varied the quantizer step to obtain curves in the DH plane. 
The curves are not shown (only the points are shown), 
because we have tried several threshold values between g 
= 2.5 and g = 4.0 for several step sizes and the plot of 
each curve would be confusing. On solid line we have the 
same results obtained with the use of a regular wavelet 
transform. We can see the concentration of points below 
the solid line indicating the best performance of the adap- 
tive scheme. 

VI. CONCLUSIONS 

We have presented time-varying structures which guar- 
antee distortionless processing. Our main concern here 
does not lie on applications but on PR analysis-synthesis 
under time variations and structures for this purpose. The 
concept of an instantaneous filter bank was developed, 
along with the study of the transforms in their factorized 
forms. A general factorization was presented, allowing 
the use of time-varying systems which can switch be- 
tween any paraunitary filter bank (following the restric- 
tions of filters' length and maintaining the same number 
of channels), by a change of rotation angles. Thus, one 
can make the adaptation in order to perform distinct trans- 
forms for different regions of the signal. Also segmenta- 
tion of the signal is possible and would allow to switch 
between different number of channels, paying the price of 
a longer transition region. Other possible strategies can 
be to switch between block and lapped transforms or 
change the overlap factor. This strategy was developed 
for the ELT ( K  = 1). The use of the ELT factorization 
gives us insights over varying systems, although restrict- 
ing the filter bank responses and the design flexibility. 

The adaptive wavelet packet structure is reasonably ro- 
bust and the adaptation strategy, here presented, can be 
applied in the analysis of signals with variable statistics. 
An adaptive tree-path may be used when signal statistics 
vary from time to time and new conditions remain for a 
certain period, because of the transition regions. Clearly, 
each application would require a detailed study and ex- 
tensive simulations. As a remark, there was no concern 
with regularity in transitions. We hope this method could 
be useful in applications not requiring too many stages in 
the wavelet packet tree. In this case, regularity would not 
be so crucial as it is when several stages are cascaded. 
The addition of regularity constraints in the transitions 
would surely pose a challenging problem. 

REMARKS 

After the first version of this paper was submitted, we 
have learned that other researchers were obtaining similar 
results in the field of time-varying filter banks. This re- 
cent trend continuously produces new results and it has 
become impossible to track them while this paper was un- 
der review. However, the reader may find among the ref- 
erences interesting and different viewpoints. The work 
with time-varying filter banks in [ 111 gave us incentive 
to work in the field, while the finite-length solution for 
ELTs [3] inspired the use of time-varying (orthogonal) 
sparse factors. The concept of segmenting the signal 
through boundary filter banks is also reported in [19], 
[29]. While in [19], [29] the coefficients of the filters are 
adjusted, in a Gram-Schmidt orthogonalization proce- 
dure, here the parameters arising from a factorization of 
the filter bank in a lattice are changed with time. In [30], 
the same bypassing-segmentation approach was achieved 
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using another factorization of paraunitary filter banks, 

there is a different approach to adapt the tree-shape, as we 
mentioned earlier. Lattice factorization for time-varying 
two-channel filter bank can be found in [311 to reduce 

1221 0. Rioul and M. Vetterli, “Wavelets and signal processing,” IEEE 
Signal Processing Mag., pp. 14-38, Oct. 1991. 

of hierarchical transforms,” IEEE Trans. Signal Processing, vol. 40, 
pp. 2620-2622, Oct. 1922. 

[24] H. S .  Malvar, “Fast computation of wavelet transforms with the ex- 
tended lapped transform,” Pror. ICASSP, San Francisco, CA, vol. 

which is not based On plane in [ 1 9 i 3  [ 2 9 i 9  1231 R,  L, de Queiroz and H ,  S ,  Malvar, “On the asymptotic performance 

Gibbs phenomena when coding image edges, in a work IV, 1992, IJP. 393-396. .. 
parallel to the one presented here and in [16]. Finally, 

explored in [32] for FIR filters and in [33] for IIR filters. 
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processing and compression with wave packets,” preprint. 

print. 
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