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Time-Varying Lapped Transforms and Wavelet
Packets
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Abstract—The perfect reconstruction conditions for a time-
varying lapped transform (paraunitary filter bank) are devel-
oped through the factorization of the transform matrix into
sparse factors. A general formulation is presented allowing one
to switch between two paraunitary filter banks. However, the
extended lapped transform (ELT) is often used as an example.
Furthermore, an adaptive wavelet packet is developed employ-
ing a time varying tree association of ELT’s. In all cases perfect
reconstruction is inherently assured.

I. INTRODUCTION

ULTIRATE filter banks are well-known powerful

tools in modern digital signal processing allowing
easy data processing transform domain, and flexible time-
frequency analysis. References such as [1]-[3] cover the
main issues on filter banks. The common denomination
of ‘‘uniform paraunitary filter bank’’ [2], [4] is analogous
to the term ‘‘lapped transform’’ as defined in [3]. Al-
though studied independently in the past, both represent
the same (see [3] for the demonstration and definitions).
Similar relation is valid for orthogonal discrete wavelet
basis, paraunitary filter banks and lapped transforms,
mainly for the case of 2-channel banks [5]-[7]. In this
paper, we will refer to uniform FIR paraunitary filter
banks as lapped transforms. Furthermore, terms like ex-
tended lapped transform (ELT) [3], [8], and lapped or-
thogonal transform (LOT) [9] stand for particular choices
of lapped transforms, obeying well defined structures, and
are not synonymous for the general term lapped trans-
form.

We are assuming the use of a uniform analysis bank of
M FIR filters, each one of length L as shown in Fig. 1. L
is related to M as L = NM = 2KM, where K is the over-
lapping factor. The analysis filters are time-reversed ver-
sions of the synthesis filters [3]. If the analysis and syn-
thesis filters are represented by f,(n) and g,(n),
respectively, form =0,1, --- , M — landn =0, 1,
-+ - ,L — 1, we can define a matrix P with elements p,,,
as

Pmn = gm(”) zfm(L -1 - 11) (1)
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Pisa M X L matrix, which will throughout this paper be
called the transform matrix. Define the counter-identity
matrix J, of size k X k as

OOO “ e 01—
000 --- 10
L= :
010 --- 00
| 100 - - - 00_

Similar notation is used for the identity matrix and for the
square null matrix (f, and 0y).

Filter banks are generally thought of as stationary
forms, and several perfect reconstruction (PR) conditions
have been presented under different viewpoints [4], [10].
Recently, Nayebi et al. presented a study on the structure
of time-varying filter banks [11]. In their work, PR con-
ditions were stated and it was mainly considered the tran-
sition between two known PR systems. In this paper, we
will present a structure that is inherently orthogonal and
is based on lapped transforms with fast algorithms. In
Section II, a discussion concerning the factorization of the
transform matrix and of the system of transforms that op-
erates over an infinite sequence will be carried. Section
III presents the approach for maintaining orthogonality
under time variations. Also, time-domain PR conditions
are stated as a function of time, applying the concept of
an instantaneous filter bank. Section IV studies the ELT
in a variational environment, and Section V is concerned
with hierarchical systems, employing a time-varying tree-
structure using the ELT. In this, the format of the tree is
changed along the time axis, forming a time-varying
wavelet packet. The paper ends with the conclusions in
Section VI.

II. FACTORIZATION INTO SPARSE MATRICES

A. General Case

A lapped transform matrix of dimensions M X L (L =
NM) can be divided into square M X M submatrices P; (i
=0,1,--+,N—1)as

P=[Py, P, - ,Py_\l (2)
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Fig. 1. Critically decimated uniform fiiter bank. Analysis (left) and syn-
thesis (right) sections are shown.

It can be shown [3] that the PR conditions for a lapped
transform, or for any paraunitary filter bank, are given by

N-1-1 N—-1-1
2 PuPr.= X P Pn=d(h ()
for/ =0,1, ---,N — 1, where §(/) is the Kronecker
delta. Alternately, (3) can be stated as [3]
N-1-1 N—-1-1

T
m+1

Pm = 6(I)IM (4)

> PP, = 2 P
m=0 m=0
In [12], it was shown that any paraunitary filter bank
(in our notation, any lapped transform) can have its
polyphase component matrix E(z) [2], [3], [12] decom-
posed into a cascade of N, zero-order lossless (orthogonal)
matrices and N, — 1 diagonal matrices containing delays,
where N, — 1 is the degree of det {E(z)}. Then,

E@@) = ZDy(2) BoD\(2)B, - - - DN,—Z(Z)BN:~2 )

where Dy(z) (k = 0, 1, - -+, N, — 2) are diagonal ma-
trices, with ones along the diagonal, except by one delay
of the form z7!. Z is a general orthogonal transform,
which has M(M — 1) /2 degrees of freedom, one for each
possible plane rotation of the form

< cos (6) sin (6)

—sin (6) cos (6)
while the matrices B; can be implemented with only M —
1 plane rotations [12].

Let us consider the time domain representation of the
analysis-synthesis process. Let x and y be the infinite-
length time and frequency domain vectors, respectively.
The analysis process of Fig. 1 can be represented using
the transform matrix P, which is defined as

P, P,
P = 0 P, P
0 0 P
Thus,
y = Px 0]

and, from (3) and (4), we have the synthesis equation

£ =Py = PPx = x. ®)

Given that the matrices D;(z) have only pure delays and
the matrices B; and Z are orthogonal matrices, we can
combine the above relations with (5) and we can see that
the matrix P can be factored into

P = ZDB\D\B, - - - Dy._,By _, 9

where D is a permutation matrix and the matrices B; and
Z are block diagonal matrices, so that

B, =diag{- - B;,B;,B;, - --} (10)
Z=diag{---2,Z,Z--"}. (11)

The inverse operation is, therefore, given by
P~ =Bl Dl _, - BID'BIPIZ". (12)

Fig. 2 shows an example illustrating the relation among
z-domain flow-graph (with delays), time-domain non-
causal flow-graph and the sparse matrices. In this figure,
the order of the input-output M-samples blocks is indi-
cated, with each branch carrying M /2 samples. The syn-
thesis is accomplished by following the flow-graphs from
the right to the left, since the matrices are all orthogonal.
P is, then, a layered implementation of transforms. If we
could follow the paths connecting each output block to
the input blocks, we would be able to also factorize P in
a sense that

P = ZD,ByD B, (13)

This would also be a general expression for a factorization
of P. The matrices B; are square and block-diagonal in a
size-limited version of B;. The number of blocks in the

e DN;—sz'vfr

Pv., 0 0
Py, 0 6)
Py_,

diagonal of these matrices is dictated by the delays of the
D; (z) matrices, and its a priori calculation for all cases is
impractical for our purposes. The matrices D; are not nec-
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Fig. 2. Example: relation between z-domain factors and its correspondent
time-domain noncausal analysis flow-graph. Each branch corresponds to
M /2 samples, the blocks have M samples, and the boxes are M X M or-
thogonal matrices. The sparse factors are also indicated, aligning their
symbols with the flow-graph stages. Since all elements are orthogonal, the
synthesis is implemented by following the paths of the flow-graph from
right to left.

essarily square and are size limited versions of the D,.
They should not be confused with D;(z) which has a dif-
ferent meaning and has complex entries. As a remark, us-
ing the layering viewpoint, the matrices D; have to be
lapped transforms, i.e., obey (3), if the whole system is
supposed to maintain the PR property.

We will not attempt to design any lapped transform and
we will assume that, given the lapped transform, its sparse
factor decomposition is known, as in (5).

B. Example: The ELT

We will now address a practical factorization. We con-
sider the extended lapped transform (ELT) as defined by
Malvar in [3], [8], among the most efficient factorization
methods for a paraunitary filter bank. Although imposing
restrictions (that lead to fast algorithms) the resulting fil-
ter bank presents very good frequency response [3]. Other
choices of modulated filter banks could also be made, such
as those in [13], [14]. However, the performance differ-
ences, if of any significance, would not affect the general
results. In the ELT’s, the filters’ length is basically an
even multiple of the blocksize M, as L = 2KM and P can
be split into only K + 1 stages.

E@@) = ZDy2)0oD\(2)©, - * - Dx_1(2)O4 , (14)
P= ZDOBOD131 T DK—IBK—I' (15)

Zis an M x M DCT type IV matrix [15], with inverted
inputs and O, are orthogonal matrices composed by only
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M /2 plane rotations [3], [8]. The components of the
above factorization are

0 1
Z=:DCTW[ M2 M“}. (16)
IM/2 0M/2
z 'y, O 2y, 0
D) = [ m/2 Um/2 D,(2) = { m/2 Um/2
0M/2 IM/2 0M/2 IM/2
n=1,---,K-=1), (17)
B,, = diag{- - 6,,0,,0,, "}, (18)

- Cn Sn -IM /2 w
JM/ZSH JM//ZCHJM/Q
C, = diag {cos (8, ), cos (8, ), * * *,

e/IZL

08 (Opr/2)— 1.0}

§, = diag {sin (Bo.,), sin (81 ), * * -, sin(Bpg/2) - l.n)}
(19)

8, ; are the rotation angles and free parameters in the de-
sign of an ELT [3].

Fig. 3 shows the flow graph for the case K = 2. From
the information above, we can also factorize P as

P = ZD\ByD\B} -+ - Dx_ Bk (20)

where B, matrices are block diagonal with 2 (n + 1) rows
of 2(n + 1) blocks, each block of size M X M(0 = n <
K — 1). The D, matrices have dimensions: M X 2M (n
=0), and 2nM X 2n + 2)M, for1l = n < K — 1.
These matrices are more easily described as block ma-
trices generated by a Kronecker product

Dn = Fn ® IM/Z (21)

where ® denotes the Kronecker product. Then, we can
describe the F, matrices (with elements f;; ,) by

1 000
F():{ﬁj.o}:<0 0 0 1>

and F, = { f;; .}, where
| i=j =2k
fijn=141 i=4n — 1 —2kandj =4n + 3 — 2k

0 otherwise

(22)

(23)

forO0<k=<2n-1landl =n<K-1.

III. PERFECT RECONSTRUCTION AND TIME-VARIATION

Suppose the orthogonal building blocks in Fig. 3 were
no longer identical, for each column. For example, if the
angles belonging to O, are changed as we go from top to
the bottom of the flow-graph, what should be the conse-
quences for the filter bank, and more precisely, can we
still maintain the PR property? If each building block is
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Fig. 3. Flow graph for the ELT with K = 2. Time and ELT domain sam-
ples are grouped into blocks of M samples and each branch corresponds to
M/2.

orthogonal, it is clear that the PR conditions are satisfied,
with the same flow-graph for analysis and synthesis pro-
cess. When nonorthogonal blocks are included, their in-
verse must be applied in the synthesis process leading to
biorthogonal filter banks. Although possible, we will dis-
regard this case since we are mainly concerned with
lapped transforms (paraunitary filter banks).

Let the matrix B, contain different matrices along its
diagonal. Let us also assume a time-index k to character-
ize each block. From a decimation-interpolation view-
point, arising from the classical filter bank analysis [1],
this index represents the decimated-rate sampling instants
of the subbands. On the lapped transform viewpoint, k is
the block number [3], [4]. Note that PR is inherently
maintained, but the transform matrix is now a function of
k. P is updated from block to block and we may refer to
it as P(k) [16]. Then,

Pytk — 1)

Py_ (&
P = 0 Py(k)
0 0 Pk +
with
P(k) = [Pyk), Pi(k), = - -, Py_(K)]. (25)

This means that P(k) contains the instantaneous filter
bank impulse responses. We can also rewrite Zand B, as

Z=diag{ - Zk—1.ZKk,Zk+ 1), -}

(26)

=

diag {- - - B,(k — 1), B,(k), B,(k + 1), - - -}
@7
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The elements in Fig. 3 are now varied with time, and
another example is shown in Fig. 4. The relation (9) re-
mains unchanged, but we can rewrite (13) as

P(k)y = Z(k) Do(k) By(k) Dy (k) Bi(k) - - -
* Dy, _o(k) By _»(k). (28)

In the example in Fig. 4, it is easy to see that a partic-
ular choice of Z(k) would influence solely P(k), but a
choice of ©((k) would influence P(k) and P(k — 1). Sim-
ilarly, any particular choice of ©,(k) would affect P(k —
2) through P(k + 1). This suggests that any change of the
filter bank is preceded and followed by transition regions
[11].

The time-domain PR equations in (3) assume that P re-
mains unchanged along time-index. Therefore, the anal-
ysis can be more easily presented due to the periodic na-
ture of the problem [10]. In fact, this was also done in
[3], [4]. In time-varying systems, we have to choose an
index k and find the PR equations for it, noting that (3) is
no longer valid. Roughly speaking, the PR conditions for
steady systems must state the orthogonality of the basis
functions and the so-called orthogonality of the ‘‘tails.”’
This implies that aliased (shifted) versions of P would
cancel in the synthesis process [3], [4]. Since P(k) is no
longer constant with &, (3) must be rewritten to ensure the
orthogonality among P (k) and its neighbors P(k + 1),
Pk +2), P(k +£ 3) - - - . Then, it is easy to show that
the PR conditions for time-varying lapped transforms
(paraunitary filter banks) are

N-1-1

L PPk = 1)

N—-1-1

L Py WPLK+ D =Dy (29

-1 0 0

Py _ (k) 0 (24)
1) Py _(k+ 1)
for/=0,1, -+ ,N — 1, yielding 2N — 1 independent

matrix equations.

As a remark, the term lapped transform was maintained
(although (3) is no longer valid) because P remains or-
thogonal and for each instant k, the synthesis filters are
time-reversed versions of the analysis ones. A filter bank
is said instantaneously paraunitary if all factors in (26)
and (27) are orthogonal matrices. In this case, (29) is sat-
isfied, but not necessarily the steady conditions in (3) or
(4) are met. In this situation, the filter bank is said tran-
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Fig. 4. Flow graph for the time-varying ELT with K = 2. Now the or-
thogonal matrices in the boxes can change and are a function of a time
index k. As long as these matrices maintain orthogonality the flow-graph
for synthesis follows the paths from right to left. Time and ELT domain
samples are grouped into blocks of M samples.

sitory. Of course, all equations are satisfied when thé fil-
ter bank is not variable, i.e., the factors in (26) and (27)
are the same along the diagonal.

Although possible, a continuous change of coefficients,
like in adaptive filtering, is not likely to be beneficial,
using this structure. Maybe the most practical idea would
be to switch between two filter banks at a time. Each one
would have its own characteristics (and factorization) well
defined

- — filter bank 1 — filter bank 2 —
filter bank 3 — - - -

It is, thus, possible to switch between any two filter banks,
using the general factorization structure. But what are the
limitations of the filter banks to be used in this approach?
First, we cannot change the number of channels, unless
we first switch to a ‘‘transparent state’’ as we will discuss
later. Second, the filters’ length is limited to lie between
M and L. In fact, we can switch between block and lapped
transforms, since the former is a special case of the latter

[3], [4]. To see this, let the M X [ matrix @ represent the .

transform matrix of a filter bank with M channels and fil-
ters’ length / < L. If we pad with zeros on both sides of
Q in a balanced way such that @ is still centered and

P=10 Q 0],

then, as long as (3) is satisfied, P is a valid lapped trans-
form. Of course, [ = M, otherwise P becomes rank de-
ficient.

Transparent States and Segmentation

A special case of interest is when Q is the identity ma-
trix. In this case the input samples are solely copied to
output and the transform is bypassed. However, the tran-
sitions between this state and any other state will have PR
assured by the algorithm. This is what we call the trans-
parent or bypass state of the filter bank. Furthermore, if
one switches to a transparent state, after the transition is
over, no transform is applied to the input. Therefore, these
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samples are independent from the samples of the region
where either the filter bank was active or where there was
a transition. These two regions would be independent seg-
ments of the signal. If right at the beginning of the second
segment we force a transition from the transparent state
to a second filter bank, then we can switch transforms and
even change the number of channels M, since the seg-
ments are independent. We can have

filter bank 1 (M channels) — transparent state —

filter bank 2 (M, channels)
or, directly

M, channels —

transition to bypass — transition from bypass —
M, channels

In the next section, we will describe this switching pro-
cedure in the case of the ELT. See [17]-[19] for further
results in segmentation and processing of finite-length
signals.

IV. TiME-VARYING ELT

The filter bank is supposed instantaneously paraunitary
and we may focus our attention on the analysis sections,
since the synthesis filters would follow the analysis struc-
ture with PR assured. We will now use the ELT for con-
sidering adaptation issues, reminding the reader that, so
far, with the actual factorization, the only parameter that
can be changed is the frequency response of the filters.

The ELT structure is based on the modulation of a co-
sine train by a window. This window has 2 KM elements
and is defined by the choice of the KM /2 plane rotation
angles (see Section I-B). The manipulation of these angles
permits to shape the filters to some limited extent. At
block k, the matrix P (k) with elements p,,, ; (m = 0, 1,

- M—-—1landn=0,1, -+, L — 1)can be defined,
as in [3], but with a time-varying window, by

1 L—-1\n«
Prnk = h(n, k) cos Km + 5) <<n _ _2_> =

+ N+ %ﬂ

h(n, k) is the window for instant k. The M impulse re-
sponses of the analysis and synthesis filters, denoted as
fn(n, k) and g, (n, k), respectively are related by

Pmnk = gm(n, k) :fm(L - 1-=n, k) (31)

Thus, for block k, we have the frequency response of
the filters (dropping index & from the formula for conve-
nience) given as [3]

(30)

Gm(ejw) — [e*jan(ej(wfwm)) + ej'an(ej(w+wm))]

(32)
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where w,, = (m + (1/2)) 7 /M, n,, = 0,,(M + 1) /2, and
H(e’), G,(e’) are the frequency responses of h(n, k)
and g, (n, k), respectively.

As discussed previously, the transparent state would
cause the input samples to be copied to output without any
transformation. To achieve this state we have to set all
angles as w /2 and replace Z by

K
Z= <JM/2 0M/2>K <0M/z ’M/2> H, (33)
OM/Z Jur Ly/s Oy,
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window can be expressed as
h(l, k) = —cos (8, o(k))
h(M — 1 — 1, k) = —sin (6, o(k))
hM + I, k) = —sin (0, ok + 1))
h2M — 1 -1, k) = —cos (6, 9k + 1))
I=0,1,--+,M/2~ 1
(35)
For K = 2, with O, also given by (19), we have
I 00 000UO0U0O0

w01 1000 Oy(k) 0 00000T7CO0O0
Py = DCT X
10 00 0 1 0 Oyk+ 1 007 000O0O0UO0
00000O0CO0TT
6k —-1) 0 0 0
0 0,k 0 0
y 1(k) 36)
0 0 Ok+1) 0
0 0 0 0,k + 2)

The reader can confirm this statement either by substi-
tuting the values of the angles in the ELT matrix factor-
ization, or by inspection of the flow-graph shown in Fig.
5. If we switch from a regular ELT to a transparent state,
or vice-versa, there will be a transition region, which will
be focused later. As the transition region is over, it has
no sense in following the paths in Fig. 5 and samples can
be just copied to output. The notion of the transparent
state is only necessary to maintain PR in the transition
regions.

A. Cases K = 1and K = 2

We shall focus our attention on & (n, k), since the win-
dow defines the filter bank, being a low-pass prototype
which is modulated by the cosine sequence. Regrettably,
there is no direct analytical relation among the angles and
the window for all XK. We will present only the cases of
K equals to 1 and 2 under time variations, which is only
an extension of the steady case presented in [3]. Assume
I and 0 are of size M/2 X M /2. ForK = 1,

P(k)=DCT“’<0 1> (1 00 0>
I 0/\0 00 1

<90(k) 0 >
0 Oyk+ 1)

with ©; given by (19), but with time varying angles. The

(34)

with the window given by
h(l, k) = COS (0[0(]()) COS (9,,1(/( - 1))

hM — 1 — 1, k) = cos (8, 4(k)) sin (8, ,(k — 1))

h(M + 1, k) = sin (6, ok + 1)) cos (8, (k)
h@2M — 1 — I, k) = —sin (8, 4(k + 1)) sin (8, ,(k))
hQ2M + 1, ky = —sin (8, (k) sin (0, ok + 1))
h(BM — 1 — [, k) = sin (8, o(k)) cos (0, (k + 1))
h(3M + 1, k) = cos (0, ok + 1)) sin (0, (k + 2))

h@M — 1 — I, k) = cos (8, ok + 1)) cos (8, ,(k + 2))

=01, - ,M/2 1.
(37)

B. Transition

A transition region can be defined as containing those
indexes k where P (k) is formed by different ©;(n), for a
fixed i. In other words, it is composed by transitory filter
banks, as defined in a previous section. These transitory
filter banks can have undesired frequency responses and
the transition region, for the ELT, will last for K + 1
blocks.

As we saw in a previous section, the analysis or syn-
thesis processes (P) can be viewed as a layered imple-
mentation of block transforms and permutations. If, in the
middle of the transition, the B matrices are changed, this
will further prolong it. On the other hand, the Z matrix in
Z is directly connected to the output and Z (k) just influ-



DE QUEIROZ AND RAO: TIME-VARYING LAPPED TRANSFORMS

Time blocks

ELT blocks

k+1
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Fig. 5. Flow graph for the ELT with K = 4 under the transparent state,
where input is solely copied to output.

ences P(k) (see Fig. 4). A time-varying block transform
is trivial and

P(k) = Z(k) W(k) (38)
W(k) = Dy(k) Botk) Dy (k) By (k) - - - Dy _ (k) Bg_ (k)
(39

We can find a ‘‘make-up’’ matrix to use as Z(k) and
replace the matrix defined in (16). This approach has the
intention to improve the filters’ characteristics. If the in-
put signal has autocorrelation matrix R, then the signal
after using the transforms W(k) and P(k) have autocor-
relation matrices R, and R,,, respectively, given by

R..() = W) R, W' (k) (40)
Ry (k) = ZKRWZ" (k). @D

In compression-coding applications, we can find a ma-
trix Z (k) that would decorrelate the signal and make R,,
a diagonal matrix. It is well known that an orthogonal
matrix for decorrelating y would have its rows as the M
eigenvectors of R,,,. Hence, Z (k) can be expressed as

Z70 =191, & qul @2)
where g, - - - gy are the eigenvectors of R,,. This con-
cept was used in the development of the LOT in [9].

On the other hand, if one is switching between a trans-
form and a transparent state, the goal can be exactly the
opposite, i.e., no decorrelation, and the filters’ frequency
response should be as flat as possible. We just highlighted
one point (increasing decorrelation) and each case may be
treated separately.

C. Some Applications

1) Variable Overlap Transform: In image coding,
block transforms such as the DCT [15] are widely used
for several reasons. However, block transforms lead to
the so-called blocking effects [15] at low bit-rates, and the
LOT [9] was designed to eliminate them by extending the
basis functions across the traditional block boundaries. It
does not completely eliminate all blocking structure, nei-
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ther do the ELT’s, although this effect is largely reduced.
Some blocking is still noticeable if we decrease the bit-
rate further. This is because the end of the basis functions
for one block are still neighbors of the beginning of the
basis functions for another block, forming a well defined
boundary. On the other hand, we would like to keep the
filters (basis functions) as long as possible to increase the
filters selectivity and, therefore, the coding gain, through
better spectral energy compaction. As the amount of dis-
tortion in a particular region is kept small, the blocking
tends to be eliminated and we can use the benefits of com-
putational savings of block transforms with fast algo-
rithms. All these facts account to a possible benefit if one
uses transforms with variable overlap. One can develop
an adaptive coder which would employ a variable overlap
and even mix lapped transforms with block transforms.
With the ELT, at least, we have the means to do it, while
maintaining PR.

For K = 1, in (35) we can set marginal elements of the
window to be zero, by forcing the angles 6y, 0,9, * * * to
be 7 /2. All the basis functions are modulated by this win-
dow and would also be set to zero. Actually, the angles
can be changed at any point. The transition region will
only encompass one block and the filters will have fre-
quency response lying in between the responses of initial
and final filter banks. Fig. 6(a) shows the frequency re-
sponse of an ELT (K = 1) for M = 8. Fig. 6(b) shows
the same plot, but setting 8oy = 0,5 = m/2 (two elements
in each extreme are set to zero for each basis function).

A more extreme case would be one where it is desired
to switch betwen ELT’s and block transforms at any time.
All the angles are, then, suddenly changed to 7 /2. The
overlap disappears because the window becomes rectan-
gular of length M. Thus, we can substitute the Z matrix
by any other matrix. The frequency responses in Fig. 6(a)
for the steady ELT are repeated in Fig. 7(a) for the tran-
sition filter bank and in Fig. 7(b) for the DCT. The flow-
graph in Fig. 8 shows a fast algorithm for changing an
ELT (K = 1) into 2 DCT. The inverse operation (DCT to
ELT) is straight forward by turning the flow graph in Fig.
8 upside down. We can see that PR is maintained and the
transitory frequency response still preserves reasonable
attenuations. We can also develop the same approach us-
ing the concepts of transparent state and region segmen-
tation as discussed earlier.

2) Time-Varying Wavelet Packets: Wavelet packets
are hierarchical associations of filter banks following the
paths of a binary tree. We propose a way to fully vary the
shape of the tree, by pruning and expanding branches. For
this we can use the ELT as the filter bank for all branches.
When a particular branch is to be pruned, we set the ELT
to its transparent state, and when this branch is to be ex-
panded we switch the ELT from its transparent state to its
normal state again. The reason for switching to transpar-
ent state is because if we suddenly prune the tree by not
processing the input samples, the transition will not main-
tain PR. We will devote the next section to the subject of
wavelet packets.
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Fig. 6. Frequency response of the ELT with K = 1, M = 8. Each plot
corresponds to the frequency response (magnitude in dB) of each synthesis
filter G,,(e’*). (a) Top: regular design using all angles; (b) bottom: setting
2 (out of 4) elements at each border of the overlapped part of the modulat-
ing window to be zero without reoptimizing the remaining elements.
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Fig. 7. Frequency response of instantaneous filter banks. Each plot cor-
responds to the frequency response (magnitude in dB) of each synthesis
filter G,, (¢’“). (a) Top: transition filter bank, half of the angles are normal
and half of them are forced to be /2, resulting in an asymmetrical win-
dow; (b) bottom: DCT for M = 8.
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Time blocks

Transform blocks

k+2 DCT [ k+2

Fig. 8. Flow graph for fast switch between the ELT (K = 1) and the DCT,
beginning from block k, which belongs to the transition.

V. TIME-VARYING WAVELET PACKETS USING VARIABLE
TRrReE-PaTHs AND THE ELT

The hierarchical structures are gaining more and more
attention due to their improved time-frequency resolution.
Furthermore, it is possible to achieve a great variety of
nonuniform filter banks. The wavelet transform has been
largely used and investigated [5], {6], [20]-[22] and it is
well known that in the discrete case, the orthogonal
wavelet transform is an association of 2-channel (M = 2)
filter banks [5]-[7], [23]. The ELT in the 2-channel case
is a very good way to implement such transforms [24].
Wavelet transforms and octave analysis have an asymp-
totic behavior, regarding compaction performance for a
stationary AR (1) process [23]. It is easy to find an ELT
with greater compaction and faster algorithms than
wavelet transforms based on a single 2-channel bank, no
matter how many stages are connected [23]. However, for
nonstationary patterns the exchange of frequency by time
resolution can make the wavelets superior to M-band sys-
tems which have large filter responses for all frequencies.
The so-called wavelet packet [7], [25]-[27] is a compro-
mise between the wavelet transform and the full-tree and
the filter banks association follows arbitrary shapes of the
binary tree. The binary tree was only used for illustration
purposes. M-ary and mixed trees can be also employed
obeying the same basic principles as discussed here.

A. Binary Trees Notation

If the same lapped transform is used as the analysis cell
for each stage, it is sufficient to describe the paths of the
tree to completely describe the whole analysis-synthesis
system. With the aid of Fig. 9 we present a more conve-
nient notation. In Fig. 9(a), we see a 2-band maximally
decimated filter bank with its low- and high-pass filters,
as well as subsamplers. This system will be represented
here by tree nodes and branches [Fig. 9(b)], where the
signal flows in the nodes and the branches represent filters
and decimators. We denote the number of stages as S and
clearly the maximum number of terminal nodes is 25 which
is also the number of nodes in the last stage when we use
a full-tree. We label the nodes in the tree as 7;;, where i



DE QUEIROZ AND RAO: TIME-VARYING LAPPED TRANSFORMS

Fig. 9. The binary tree notation. (a) 2-band filter bank; (b) its equivalent
representation in a tree; (c) labelling of nodes in the tree.

is the stage number and j is the number of the node in that
stage (0 < j < 2' — 1), just as indicated in Fig. 9(c), for
a 3-stage binary tree. The familiar parenthood notation is
used, so that node 7; is parent of nodes 7., ,; and
Mi+1,2j+1s and is the child of Ni-1,j@2 (@ means integer
division). We denote x;; as the signal flowing in %;;, while
Xgq is the original input signal. As a remark, the number
of a node in a level does not correspond to an increasing
frequency ordering of bands.

The idea is to adaptively reshape the tree. In this case,
it is convenient to define an infinite number of stages and
an activity map. This map indicates if the node is active
(its signal is being processed as an input to a filter bank)
or not. Let a;;(n) = 1 denote an active node ij, being 0
otherwise. The rightmost node in a path will be called
instantaneously virtual end node (IVEN). All nodes with
a childhood relation to an IVEN are inactive at instant n,
and clearly an IVEN is inactive.

B. Pruning and Expanding Branches

To prune a branch of the tree, it is sufficient to bypass
the transform applied to the parent node of an IVEN
which, after pruning, will become a new IVEN. The re-
currence of this procedure applied to the desired branches
will bypass the signal from the resulting IVEN to the right,
pruning the tree. The inverse procedure expands the tree,
activating nodes and branches. As discussed previously,
the use of the transparent state is necessary, in our ap-
proach, if we want to maintain PR in the transitions. One
further detail should have our attention when the trans-
form is bypassed. The filters have gain of VM = V2.
Since some samples will be copied to the output and some
others will be transformed, after several stages along the
tree, the resulting signal can have highly unbalanced range
of sample amplitudes. To facilitate the processing of the
transformed samples, it is advisable to multiply the sam-
ples by V2 when they are ‘‘transformed’’ by a transparent
state ELT. At the inverse transform these samples should
be divided by the same value.

To bypass an ELT, there are K transitory filter banks
(blocks). Fig. 10 shows the analysis flow-graph to bypass
an ELT for K = 2. A similar configuration is followed
for any value of K. The inverse transition between trans-
parent and normal states of an ELT are, again, obtained
by reversing the signal ordering, i.e., by viewing Fig. 10
upside down. For K = 2, the low- and high-pass basis
functions are shown for the transition process in Fig. 11.
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Fig. 10. Flow graph for the ELT with K = 2 switching to transparent state,
where input is solely copied to output. Blocks & and k + 1 belong to the
transition. Blocks k + 2, k + 3 .. . do not need to follow the paths any-
more, being directly copied to output.
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Fig. 11. Illustration of the basis for the signal space during transitions to
transparent states, using a relatively short filter bank (ELT, K = 2). The
filter bank branches are pruned from the tree and after two blocks of two
samples, are reexpanded. On the top 8 plots, it is shown the ‘‘low-pass’’
bases, while at the bottom it is shown the 8 *‘high-pass’’ ones. Thick lines
represent regular bases, thin lines transitions, and dotted lines the trivial
bases when the transform is bypassed.

The pairs of impulse responses are shifted in time show-
ing their support as basis of the space of the signal and
four pairs are shown: the normal ELT, two transitory ba-
sis (impulse responses) and the transparent state impulse
responses which are actually impulses. As another ex-
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while the last in the transition used Z = I.

ample, the bases, for K = 4, at the transition to the trans-
parent state are shown in Fig. 12.

C. Adaptation and Tree-Shaping

The best time-frequency representation of a signal, or
the best wavelet packet, are abstract ideas. Almost all rep-
resentations and tiling of the time-frequency plane may
have their utility, including only frequency resolution (a
transform such as DFT applied to the whole signal); only
time resolution (no processing is applied to the input sig-
nal); fragmentation into blocks and use of M-band lapped
transforms; wavelets (octave analysis); etc. . . . In [27],
it was developed a method to find the best wavelet packet
based on a rate-distortion criterion. In an independent
work [19], this criterion was applied to search for an
adaptive wavelet packet which would track the best tree
shape. The method populates each node of the tree with
a Lagrangian cost function J;;(N) = D;; + AR;;, where
D;; and R;; are the distortion and bit-rate associated with
node »;;, respectively, and A is a Lagrange multiplier.
Then, an algorithm is used to find the minimum cost for
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all possible set of terminal nodes, given a quality factor
N\ [19], [27]. For variation in time, a ‘‘double-tree’’ al-
gorithm was employed in [19]. This algorithm was also
applied to code speech signals, and it can be applied to
our case, since we are providing the means to adapt the
tree and not the adaptation cost function.

On the other hand, we can also use an ad-hoc simpli-
fying strategy, which is solely based on intuition and con-
cepts. This can simplify the adaptation procedure and even
allow backward adaptation. If a stationary model is as-
sumed, for minimum mean square error, the greater en-
ergy compaction in fewer coefficients [28] results in less
distortion for a given bit-rate. This will generally lead us
to choose the full tree which has better frequency reso-
lution [23]. However, as a transform is bypassed, the fil-
ter for the resulting subband is shortened, therefore a bet-
ter temporal localization is attainable. Furthermore, if we
use shorter filters, the distortion in a coefficient in a par-
ticular subband would spread along a smaller region than
if the filters were longer. Therefore, we can seek the max-
imum time resolution whenever not much energy com-
paction is provided by the transform. Let x(m) = x;;(m)
and x;(n) = x;412;(n), x4(n) = X;1 25+ 1(n). For this
node, a(n) is the activity signal. Let

o = Exi(w)] o} = Elxi(m)].

The above variances are related to the variance of x (n)
since the ELT has filters (with gain of v2, for orthonor-
mality) which obey the power complementary property,
i.e.,

(43)

44)

The signal is not assumed stationary and the variances can
be estimated continuously. Further computations over
x (n) would lead to more complexity and we can work di-
rectly with the decomposed signal. Then, a windowed es-
timation of the variance using a filter with impulse re-
sponse A (n) results in

§1(n) = xi(n) * h(n), oy(n) = xp(n) * h(n).

Using the estimated variances for energy compaction
computations, we have a measure of the transform coding
gain [28] as

o2 + o} = 202

(45)

162(n) + 64(n)
Gn) = ————— (46)
2 G (m)oy(n)
and we can compare G(n) to a threshold g in order to
decide if we set a(n) = 1 or not. Hence,

a(n) = u[G(n) — gl @7

where u (x) is the step function.

1) Interrelation of the Nodes: To determine whether
all nodes are to be made active or not we can start from
the maximum available frequency resolution, i.e., check
nodes in a maximum stage S and, then, their parents. At
each node, we can evaluate a;;(n) as in (47).
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until n = 0

2) Backward Adaptation: In order to prune or expand
the same branches in analysis (transmitter) and synthesis
(receiver), it is necessary to reconstruct a;;(n) at the re-
ceiver. In (46) and (47) we use ELT domain samples. If
G(n) in (46) uses quantized samples £, (n), £5(n) to esti-
mate the variances and if, for a node 7;;, we use

a;(n + 1) = ulG;;(n) — gl (48)

then the receiver can recover g;; without transmission of
side-information, because it has available the past quan-
tized ELT or time-domain samples and g;; can be a fixed
threshold. Both receiver and transmitter have to be syn-
chronized, such that the transmitter has to use quantized
values also when the transform is bypassed. Furthermore,
the same nodal interrelation algorithm has to be used, al-
ways preparing future values of a;;(n + 1). The filter A (n)
has to be causal and a simple first or second order IIR
filter can be adequate, having a narrow low-pass band-
width to avoid frequent transitions. Whenever a transition
occurs, the states of the IIR filter may be reset, interrupt-
ing filtering until the transition is over. After that, filter-
ing is resumed. This is because at a transition, the re-
ceiver will not have ELT samples or time-domain ones.
Therefore, it will not be able to perform filtering on
if(n), ﬁ,(n) unless the time-domain samples are re-
covered and transformed again. Setting the filters to avoid
frequency changes may help in this case.

3) Forward Adaptation: In case the activity map with
all a;; is sent in parallel, then things get much easier. First,
there is no need to calculate activity on the receiver side.
Second, one can use any means to determine activity of
the nodes, including non-causal filters. A noncausal k(n)

n

3. Sample segment of speech used as test.

is naturally preferred since it will avoid very short
changes. The binary signal a;;(n) can be processed to
avoid short bursts and locally oscillatory behaviors. A
possible solution is a recursive median filter, which, in
the binary case, is easily computed using tables. The for-
mula for this is

a;;(n) = round [mean (a;;(n — k) * - - a;;(n + k))].

(49)

This would prevent bursts of up to & isolated values of q;;
and would not oscillate if the input is an alternation of 0’s
and 1’s. When an oscillation is encountered, the state just
before it is preserved. The order in which the node activ-
ity is evaluated may be found using the algorithm de-
scribed earlier.

The disadvantage is due to the transmission of side in-
formation, since all the activity map has to be transmitted.
Assuming 1 bit per sample and a maximum stage number
S, it would require S/2 bits per sample as overhead. (Re-
member that if node 75y, works at a sampling rate f;, node
n;; works in a sampling rate 27'f;.) However, assuming
the filters would prevent very frequent changes, run-length
coding can be applied to largely compress this map. Fur-
thermore, as a node is active, all nodes connecting it to
the root node will also be active. Therefore, information
for them is not necessary.

Tests were made using the forward adaptation algo-
rithm to code a segment of 8192 samples of a speech sig-
nal shown in Fig. 13, based on the ELT (K = 2, M = 2)
and S,,,, = 6. The transformed samples were coded using
a uniform quantizer whose step size was varied. The en-
tropy of the quantizer output plus tree-information was
evaluated as a measure of the rate obtained. The measure
of distortion was

8191 1/2
D= (ﬁ T e - x(n)f)
where £ (n) is the reconstructed signal after synthesis. The
plots of distortion versus entropy (DH) are shown in Fig.
14 for several threshold values g. Once the threshold g is
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Fig. 14. Distortion (D) versus Entropy (H), in bits-per-sample, plot of the
results simulating the adaptive wavelet packets, using several values of
threshold and quantizer steps. The filter bank used was the ELT for K = 2
and M = 2. Solid line shows the D x H plot for the wavelet transform,

using the same filter bank.

chosen (the same value g was applied to all nodes), we
varied the quantizer step to obtain curves in the DH plane.
The curves are not shown (only the points are shown),
because we have tried several threshold values between g
= 2.5 and g = 4.0 for several step sizes and the plot of
each curve would be confusing. On solid line we have the
same results obtained with the use of a regular wavelet
transform. We can see the concentration of points below
the solid line indicating the best performance of the adap-
tive scheme.

V1. CoNcLusIiONS

We have presented time-varying structures which guar-
antee distortionless processing. Our main concern here
does not lie on applications but on PR analysis—synthesis
under time variations and structures for this purpose. The
concept of an instantaneous filter bank was developed,
along with the study of the transforms in their factorized
forms. A general factorization was presented, allowing
the use of time-varying systems which can switch be-
tween any paraunitary filter bank (following the restric-
tions of filters’ length and maintaining the same number
of channels), by a change of rotation angles. Thus, one
can make the adaptation in order to perform distinct trans-
forms for different regions of the signal. Also segmenta-
tion of the signal is possible and would allow to switch
between different number of channels, paying the price of
a longer transition region. Other possible strategies can
be to switch between block and lapped transforms or
change the overlap factor. This strategy was developed
for the ELT (K = 1). The use of the ELT factorization
gives us insights over varying systems, although restrict-
ing the filter bank responses and the design flexibility.

The adaptive wavelet packet structure is reasonably ro-
bust and the adaptation strategy, here presented, can be
applied in the analysis of signals with variable statistics.
An adaptive tree-path may be used when signal statistics
vary from time to time and new conditions remain for a
certain period, because of the transition regions. Clearly,
each application would require a detailed study and ex-
tensive simulations. As a remark, there was no concemn
with regularity in transitions. We hope this method could
be useful in applications not requiring too many stages in
the wavelet packet tree. In this case, regularity would not
be so crucial as it is when several stages are cascaded.
The addition of regularity constraints in the transitions
would surely pose a challenging problem.

REMARKS

After the first version of this paper was submitted, we
have learned that other researchers were obtaining similar
results in the field of time-varying filter banks. This re-
cent trend continuously produces new results and it has
become impossible to track them while this paper was un-
der review. However, the reader may find among the ref-
erences interesting and different viewpoints. The work
with time-varying filter banks in [11] gave us incentive
to work in the field, while the finite-length solution for
ELTs [3] inspired the use of time-varying (orthogonal)
sparse factors. The concept of segmenting the signal
through boundary filter banks is also reported in [19],
[29]. While in [19], [29] the coefficients of the filters are
adjusted, in a Gram-Schmidt orthogonalization proce-
dure, here the parameters arising from a factorization of
the filter bank in a lattice are changed with time. In [30],
the same bypassing-segmentation approach was achieved
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using another factorization of paraunitary filter banks,
which is not based on plane rotations. Also, in [19], [29],
there is a different approach to adapt the tree-shape, as we
mentioned earlier. Lattice factorization for time-varying
two-channel filter bank can be found in [31] to reduce
Gibbs phenomena when coding image edges, in a work
parallel to the one presented here and in [16]. Finally,
time-varying filter banks for wavelet transforms are also
explored in [32] for FIR filters and in [33] for IIR filters.
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