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RESUMO

Este estudo propõe um novo arcabouço para a mensuração e avaliação da qualidade visual de
conteúdos tridimensionais representados através de nuvens de pontos, baseado na projeção bidi-
mensionais dos conteúdos sob análise. A escolha do número e orientação das projeções é feita
de maneira a cobrir a superfície do conteúdo em análise da maneira mais uniforme possível. As
projeções são então mensuradas através de métricas objetivas comuns para a avaliação de conteúdo
bidimensional. Por meio de experimentos subjetivos, o desempenho do arcabouço é explorado em
conjunto com diversas métricas comumente utilizadas em análise de imagens ou vídeos, e compa-
rado com métricas baseadas em pontos já utilizadas para a avaliação de conteúdo tridimensional.
Em relação a outras métricas já existentes, o desempenho do arcabouço proposto se mostra consi-
deravelmente superior em prever a qualidade subjetiva percebida por pessoas.

Palavras-chave: Nuvem de pontos, métrica objetiva.

ABSTRACT

This study proposes a novel framework for the measuring and evaluation of visual quality of three
dimensional content represented by point clouds, based on two dimensional projections of the
contents under evaluation. The choice of the number and orientation of the projections is done so
as to cover content surface as uniformly as possible. Projections are then evaluated using objective
metrics usual to two dimensional content. By performing subjective experiments, the framework’s
performance is explored combined with several metrics common in analysis of images or video,
and compared with point-based metrics normally used in three-dimensional content evaluation.
Relative to other previously existing metrics, the framework’s performance is considerably superior
at predicting subjective quality as perceived by human beings.

Key-words: Point cloud, objective metric
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Capítulo 1

Introdução

Nesta seção são estabelecidos conceitos necessá-
rios para a compreensão de como conteúdo visual
tridimensional pode ser representado através de
nuvens de pontos e como esse tipo de conteúdo
pode ter sua qualidade avaliada.

1.1 Contextualização

O sistema visual humano é naturalmente adaptado à percepção de conteúdos tridimensionais.
No entanto, historicamente a maior parte do conteúdo de mídias visuais foi bidimensional [1, 2].
Conteúdo bidimensional não se aproveita da totalidade da capacidade sensorial humana, perdendo
oportunidades de comunicar riqueza de detalhes e imersão em níveis próximos ao de interações em
pessoa.

O aumento da disponibilidade de conteúdo tridimensional ocorreu principalmente nos últimos
anos. Acompanhando essa tendência, tecnologias voltadas a esse tipo de conteúdo começaram a
se desenvolver recentemente [3].

1.2 Motivação

Durante o desenvolvimento de qualquer técnica de processamento de conteúdo visual, como
compressão de vídeo, uma etapa necessária é a comparação relativa da degradação da fidelidade
entre duas imagens. Isto é, para determinar entre dois processos qual é o mais vantajoso em termos
de qualidade, é necessário obter uma medida de quanto o conteúdo modificado por cada processo
tem sua qualidade degradada em relação ao conteúdo original, no contexto da visão humana.

Quanto mais correlacionada com a percepção subjetiva humana, maior a garantia de que as con-
clusões da análise objetiva de técnicas de processamento sejam significativas e tenham resultados
consistentes com a realidade.
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1.3 Definição do problema

Maneiras de se disponibilizar, processar e avaliar a qualidade de conteúdos de duas dimensões
já foram bem exploradas na literatura [4, 5, 6, 7, 8, 9].

No entanto, processamento de conteúdo de três dimensões é um campo com poucos padrões
definidos e sem consenso sobre a melhor maneira de realizar todas as tarefas necessárias para a
análise e desenvolvimento de novas tecnologias.

Além do mais, propostas existentes falham tanto em incorporar à medida da qualidade aspectos
relacionados à geometria e à cor dos conteúdos avaliados, como em manter uma correlação próxima
com a qualidade visual subjetiva percebida por seres humanos [10, 11, 12].

1.4 Objetivos do projeto

Propõe-se uma nova técnica computacionalmente simples e eficiente para a avaliação objetiva
de qualidade de imagens tridimensionais no formato de nuvens de pontos que é capaz de incorporar
aspectos visuais de cor e geometria, ao mesmo tempo que mantém uma correlação robusta com
avaliações subjetivas de qualidade.

1.5 Apresentação do manuscrito

No Capítulo 2 será feita uma revisão bibliográfica sobre o tema de estudo. Em seguida, o Capí-
tulo 3 descreve a metodologia empregada no desenvolvimento do projeto. Resultados experimentais
são discutidos no capítulo 4, seguido das conclusões no Capítulo 5.
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Capítulo 2

Revisão Bibliográfica

2.1 Introdução

Avaliação objetiva e subjetiva da qualidade de nuvens de pontos ainda são problemas abertos [4,
5, 10, 11, 12, 6, 7, 8, 9]. Particularmente, a combinação das avaliações de geometria e de cor tem
sido difícil.

Para compreender a relação entre métricas objetivas e conteúdos tridimensionais, principal-
mente aqueles representados através de nuvens de pontos, é interessante observar a mesma relação
acerca de conteúdos bidimensionais. Ao longo deste capítulo são abordados temas relacionados
com a representação e análise de conteúdo bidimensional. Em seguida, são traçados paralelos en-
tre o caso bidimensional e tridimensional, em termos de análise do conteúdo. Por fim, é explorado
o estado da arte na análise de qualidade de conteúdo tridimensional.

2.2 Representação de imagens

2.2.1 Gráficos raster

No campo da computação gráfica, um gráfico raster (gráfico em varredura), também chamado
de bitmap (mapa de bits) é uma estrutura de dados usada para representar imagens através de
uma matriz de pontos regularmente e densamente espaçados em uma área retangular. Cada ele-
mento nessa matriz tem um valor definido, representando alguma característica visual (e.g. cor,
intensidade luminosa) de um elemento mínimo que compõe uma imagem, o pixel, do inglês picture
element.

Esse tipo de representação obtém vantagem do modo como imagens digitais são visualizadas
em praticamente qualquer equipamento eletrônico de mídia moderno. De computadores a TVs e
smartphones, a adoção de telas compostas por elementos emissores de luz individuais arranjados
em uma estrutura regular é ubíqua. Isso cria uma relação de um para um entre a representação de
imagens através de gráficos raster e a maneira como o hardware fornece o conteúdo diretamente ao

3



usuário. De fato, a relação de proximidade entre gráficos raster e visualização de conteúdo digital
é inerente, ao ponto de que representações alternativas de conteúdo gráfico normalmente requerem
a conversão para gráficos raster (rasterização) antes que possam ser disponibilizadas a usuários.

2.2.2 Gráficos vetoriais

Em oposição a gráficos raster, que definem diretamente o valor de cada posição de uma imagem,
gráficos vetoriais descrevem apenas alguns pontos presentes na imagem e a maneira como eles se
conectam. É possível estabelecer que dois pontos estejam conectados por uma linha reta, ou uma
curva polinomial de terceira ordem, por exemplo. Também é possível especificar a cor, largura e
estilo (e.g. pontilhada, rajada), entre outras características da linha. Combinando esses elementos,
se formam objetos visuais gradualmente mais complexos, desde simples polígonos e letras a objetos
físicos completos.

Uma vantagem de representar uma imagem através de um gráfico vetorial é a resolução ser
independente de escala. Ampliar ou diminuir a imagem não causa o surgimento de artefatos de
pixelização (quando pixels individuais podem ser identificados em uma imagem), como é comum
em imagens raster. Gráficos vetoriais também são capazes de representar imagens de maneira mais
eficiente em termos de armazenamento: como a imagem não precisa ser descrita explicitamente
em termos de cada região presente (i.e. gráficos vetoriais são uma representação esparsa, ao invés
de densa), no total menos bits precisam ser escritos para representá-la.

No entanto, a principal desvantagem acerca de gráficos vetoriais decorre da natureza dos dis-
positivos que são usados para visualizar imagens. Em praticamente qualquer mídia eletrônica
moderna, o princípio de funcionamento é inerentemente análogo a gráficos raster. Dessa maneira,
mesmo uma imagem vetorial precisa ser convertida para uma imagem raster antes de poder ser
visualizada na tela de algum dispositivo eletrônico.

2.3 Representação de volumes

Com o surgimento de conteúdo digital tridimensional, foi necessário o desenvolvimento de
maneiras de representá-lo de maneiras que possibilitassem seu consumo direto por seres humanos.
Nesta seção, são exploradas algumas maneiras de representar conteúdos dessa natureza comumente
aplicadas atualmente.

2.3.1 Nuvens de pontos

Nuvens de pontos (point clouds ou PCs) são uma maneira de baixa complexidade e alta efici-
ência de captura, codificação e visualização de conteúdo tridimensional. Um determinado objeto
é representado por nuvens de pontos listando-se, com a desejada precisão, cada posição espacial
que é ocupada pelo objeto em questão. Se cada ponto pi tem sua posição definida por uma tupla

4



vi = (xi, yi, zi), a geometria de um objeto pode ser descrita por um conjunto V , tal que

V = {v1, v2, ..., vn} =


(x1, y1, z1)

(x2, y2, z2)
...

(xn, yn, zn)

 . (2.1)

É possível também listar de maneira similar algum atributo (por exemplo, cores, vetores nor-
mais ao ponto) que se deseja representar acerca do objeto. No caso de valores de cor representados
no espaço RGB, cada ponto pi tem sua cor determinada por uma tupla ci = (ri, gi, bi), em que ri,
gi e bi são valores inteiros de 0 a 255, diretamente proporcionais à intensidade luminosa dos canais
vermelho, verde e azul da imagem, respectivamente1. Chega-se então ao conjunto

C = {c1, c2, ..., cn} =


(r1, g1, b1)

(r2, g2, b2)
...

(rn, gn, bn)

 (2.2)

que, junto com o conjunto V , é capaz de formar uma representação visual completa de um objeto
tridimensional.

É interessante notar que, baseando-se nas Equações 2.1 e 2.2, os conjuntos V e C podem
facilmente ser representados através de notação matricial. Assim, obtém-se uma lista de pontos
(coordenadas espaciais) e uma lista de atributos cujos itens são pareados um a um com os pontos
da lista de posições. Isso resulta em uma representação esparsa do conteúdo visual do objeto de
interesse. Em contraste, imagens raster são uma representação densa do conteúdo em questão, i.e.
cada posição possível de ser representada no espaço visual tem um valor atribuído com alguma
grandeza (por exemplo, cor).

Na maioria dos casos, conteúdo tridimensional representa apenas a superfície de objetos. Por
isso, há uma grande redução dos requisitos de armazenamento e processamento ao se adotarem
representações esparsas para esse tipo de conteúdo, já que a maior parte do volume espacial não é
ocupado.

Quanto à representação das coordenadas espaciais dos pontos ocupados, não existe uma li-
mitação prévia do formato que deve ser seguido. A maioria dos sistemas adota a representação
através de coordenadas cartesianas com precisão de ponto flutuante. Este trabalho adota uma
representação similar no sistema cartesiano, no entanto, optou-se por limitar o escopo à precisão
inteira, fazendo uso do conceito de voxels.

2.4 Visualização de nuvens de pontos

Toda aplicação gráfica tem em comum uma etapa de visualização, ou renderização. A melhor
maneira de visualizar um conteúdo depende da finalidade da aplicação. Isso é verdade principal-

1Considerando-se 8 bits de precisão por canal para a representação do sinal de cor.
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mente para nuvens de pontos. Uma aplicação que requer o máximo de qualidade visual pode se
beneficiar de uma abordagem baseada em ray tracing [13], em que os possíveis caminhos de raios
de luz entre o objeto e o observador são exaustivamente explorados. No entanto, essa aborda-
gem é extremamente custosa em termos computacionais. Aplicações que requerem desempenho e
funcionamento rápido, como visualizações interativas em tempo real, ou streaming, precisam de
abordagens alternativas.

Aplicações que permitem menor fidelidade visual em troca de desempenho costumam adotar
abordagens baseadas em rasterização, ou seja, convertem diretamente os elementos de represen-
tação da nuvem de pontos em pixels. Aplicações baseadas em rasterização permitem que a visu-
alização seja feita de maneira mais rápida e mais flexível. A seguir são discutidas duas maneiras
de renderização baseadas em rasterização de nuvens de pontos, primeiro através de splats e em
seguida através de voxels.

Em ambos os casos, independentemente da natureza do conteúdo, nessa etapa o conteúdo é
fornecido ao usuário através de imagens bidimensionais. Isso revela uma possível relação subja-
cente, pelo menos em termos de maneira de consumo e percepção do conteúdo, entre conteúdos de
natureza a princípio diferentes (bidimensional e tridimensional).

2.4.1 Renderização através de splats

Figura 2.1: Exemplo de projeção e subsequente rasterização de um splat. Imagem disponível em
http://www.cs.rug.nl/ roe/courses/acg/rendering

Algoritmos baseados em splats são alguns dos mais utilizados na visualização de nuvens de
pontos. O elemento mínimo de uma nuvem de pontos, o ponto adimensional, é um objeto abstrato,
sem volume ou área associados, tendo apenas posição definida. A visualização através de splatting
tem a ideia de considerar um ponto como uma amostra de uma superfície orientada. Isto é, cada
ponto pode estar associado a um objeto que, além de posição, tem área, formato, orientação e cor
definidos, chamado de splat [14]. Quando pontos suficientes são tomados em conjunto, a união de
seus respectivos splats forma uma descrição completa da superfície do objeto modelado.
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Existem diversas maneiras possíveis de se definirem os splats respectivos de cada ponto em
uma nuvem de pontos. Para se determinar a orientação do splats, pode-se levar em consideração a
normal no ponto em questão, ou até as normais em uma dada vizinhança ao redor do mesmo. O
mesmo pode ser feito para determinar o tamanho ou formato do splats, dependendo do objetivo
da aplicação. Outra opção é adotar valores fixos e pré-determinados dos mesmos. Normalmente,
splats são feitos usando círculos ou elipses, mas outros formatos são possíveis. Após uma represen-
tação adequada ter sido adotada, a representação é rasterizada, sendo convertida a uma projeção
bidimensional da superfície do objeto, agora composta por splats. Esse processo é demonstrado na
Figura 2.1.

(a) (b)

Figura 2.2: Nuvem de pontos visualizada através de splats quadrados, a partir de diferentes dis-
tâncias. Para um mesmo tamanho de elemento primitivo, à medida que se aproxima do modelo,
lacunas surgem na geometria.

Em princípio, splats podem ocupar qualquer posição no espaço e ter qualquer orientação,
independentemente de outros splats em sua vizinhança geométrica. Uma consequência disto é que,
caso procedimentos adicionais não sejam incorporados no processo de visualização (como filtragem
ou limitações às posições/orientações possíveis), artefatos desagradáveis, como buracos, aliasing e
sobreposição de splats, podem surgir e prejudicar a qualidade percebida na imagem.

Especialmente, buracos e espaços entre splats consecutivos são perceptíveis. Esse tipo de
artefato pode ser ainda exacerbado caso a aplicação de visualização não utilize splats com tamanhos
que reagem ao nível de proximidade entre observador e imagem (i.e. zoom). Nesse caso, expandir
a imagem torna os pontos relativamente mais distantes entre si, enquanto que o tamanho do splats
na imagem continua o mesmo, causando o efeito de que o objeto fica cada vez menos denso e mais
translúcido, até que pontos individuais conseguem ser distinguidos e o espaço entre eles é visto
claramente. Esse efeito é demonstrado na Figura 2.2.

7



Figura 2.3: Exemplo de interpolação de cores durante o processo de voxelização

2.4.2 Renderização através de Voxels

Assim como imagens bidimensionais são compostas pela união de elementos mínimos (deno-
minados de pixels) organizados regularmente em uma matriz, objetos volumétricos podem ser
descritos em um espaço regularmente amostrado em voxels (do inglês volume element).

Para se representar conteúdo visual através de voxels, é preciso limitar o domínio espacial a um
volume conhecido e estabelecer um nível de resolução geométrico. O mais comum é se trabalhar
com volumes cúbicos com lados de dimensão igual a uma potência de 2, e resolução espacial igual
a 1. Ou seja, cada voxel tem dimensões iguais a 1 × 1 × 1 e ocupa uma posição inteira em uma
grade tridimensional regular de dimensões W ×W ×W (em que W = 2L, L ∈ N), capaz de conter
até W 3 voxels.

É comum, no entanto, que inicialmente uma dada nuvem de pontos se encontre não voxelizada.
Ou seja, seus pontos podem ocupar qualquer posição real no espaço tridimensional. O processo de
representar tal nuvem de pontos através de voxels, denominado voxelização, é realizado percorrendo
cada voxel do volume de representação e atribuindo ao mesmo um valor de cor dependendo dos
pontos que ocupam posições contidas em seu volume. Uma descrição visual do processo se encontra
na Figura 2.3. Voxels não ocupados não tem cor atribuída, equivalente a serem completamente
transparentes. No caso de mais de um ponto se encontrar ocupando um mesmo voxel, a cor
atribuída a tal voxel é calculada como a média dos pontos em seu interior.

É de especial interesse a restrição do conteúdo voxelizado a posições inteiras pela semelhança
como imagens bidimensionais são representadas. Isso permite a visualização de maneira simples e
rápida do conteúdo em um contexto bidimensional, através da projeção do conteúdo tridimensional.

2.5 Projeções

Apesar de humanos serem adaptados à vida em um ambiente com três dimensões espaciais, o
aparato visual humano é inerentemente baseado em representações de duas dimensões desse mesmo
ambiente, já que a própria luz é interceptada no olho humano pela superfície da retina [15]. De
fato, como mencionado na Seção 2.4, mesmo conteúdos tridimensionais são disponibilizados em
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formato bidimensional. Esse processo em que um objeto volumétrico é representado através de
uma imagem bidimensional é denominado projeção.

De maneira geral, projeções são uma representação matemática, ou um mapeamento, de um
conjunto a um subconjunto dele. Diversas técnicas de projeções existem, e podem incluir diversos
campos matemáticos e aplicações. No entanto, o próprio conceito de projeção tem sua origem no
ramo da geometria, que é o foco do presente estudo. Para este trabalho, dois tipos de projeção são
mais relevantes: projeções perspectivas e projeções ortográficas.

2.5.1 Projeção perspectiva

Projeções perspectivas são o tipo de projeção mais similar ao o funcionamento da visão humana.
Elas são obtidas traçando-se linhas de visão entre o objeto a ser presentado e um determinado ponto
de vista virtual no espaço. Entre o objeto e o ponto de vista há um plano de projeção. Nos pontos
do plano cruzados por cada uma das linhas de visão se armazena a imagem do ultimo ponto do
objeto pelo qual aquela linha de visão passou. Isso resulta em uma imagem bidimensional da
superfície tridimensional visível a partir do ponto vista escolhido, contida no plano de projeção.

Devido à característica convergente das linhas de visão em direção ao ponto de vista, projeções
perspectivas tem o efeito de representarem objetos, ou partes de objetos, mais próximas ao plano
de projeção com um tamanho aparente maior que o de objetos ou suas partes mais distantes.
Apesar de ser natural observar esse comportamento no mundo real, imagens observadas dessa
maneira podem distorcer algumas características do objeto original de maneiras indesejadas. Para
este estudo, optou-se pelo uso de outra opção de projeção, as projeções ortográficas.

2.5.2 Projeção ortográfica

Projeções ortográficas são um tipo de projeção paralela. Neste tipo de projeção as linhas de
visão são traçadas paralelas entre si, diferente de projeções perspectivas, em que linhas de visão
convergem para um ponto de vista virtual. Em projeções ortográficas, as linhas são traçadas
perpendiculares ao plano de projeção escolhido.

Essa característica é especialmente interessante quando a projeção ortogonal é usada para se
visualizar objetos compostos por voxels. Caso o plano de projeção seja paralelo a alguma das faces
dos voxels, existe uma relação direta entre os pixels da imagem projetada e os voxels visíveis no
objeto original. Isso é ilustrado na Figura 2.4, em que cada uma das projeções mostradas coincide
com uma face de um cubo em volta do objeto visualizado. Determinar o voxel correspondente
a um pixel de coordenadas conhecidas também é simples, bastando encontrar o voxel com as
mesmas coordenadas cuja terceira coordenada (no eixo perpendicular ao plano de projeção) é a
mais próxima desse plano. Por exemplo, caso se assuma que o plano contenha os eixos x e y e
esteja localizado na posição 0 do eixo z, o pixel na posição (xn, yn) é uma imagem do voxel de
coordenadas (xn, yn, z) com o menor z.

Outra característica interessante de projeções ortográficas é que elas equivalem a projeções
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Figura 2.4: Projeções ortográficas visualizadas quando os planos de projeção se encontram em
direções ortogonais entre si

perspectivas em que o ponto de vista se localiza a uma distância infinita do objeto sendo projetado.
Ou seja, quando observados de distâncias cada vez maiores, objetos tendem de uma projeção
perspectiva a uma projeção ortográfica.

2.6 Espaços de cores

Tanto imagens bidimensionais como conteúdos tridimensionais dependem de um sistema de
representação de cores definido para que informações de cor possam ser transmitidas ou armaze-
nadas.

O sistema visual humano envolve mais variáveis do que apenas a intensidade e o comprimento
de onda da luz que atinge os receptores localizados nos olhos. Fatores como a diferença de lumi-
nosidade entre partes de uma imagem, velocidade de movimento, posição relativa entre objeto e
observador podem afetar como uma pessoa percebe cor ou luz [16, 17].

No entanto, na maioria dos casos, modelos simples são suficientes para oferecer conteúdo visual
em diversas mídias. Logo após o surgimento das primeiras fotografias, por volta do início do século
XIX, já havia pesquisa no campo de fotografia em cores, com resultados experimentais sendo
obtidos já desde 1840 [18].

Tentativas iniciais de se reproduzir cores foram baseadas principalmente em projetar luz sobre
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anteparos preparados com substâncias químicas capazes de reagir a diferentes cores do espectro
visual. No entanto, já em 1860 havia-se percebido que o aparato visual humano não dispõe de
sensores para cada valor possível do espectro de luz visível e que, com a mistura de apenas algumas
cores específicas, era possível representar, se não todas, a maior parte das cores que seres humanos
são capazes de perceber [19].

Isso levou tanto a indústria visual e a comunidade acadêmica à representação de cores através de
sistemas denominados espaços de cores. Um espaço de cor é um modelo abstrato em que cada cor
possível é representada através de tuplas de números. Cada elemento da tupla indica a quantidade
de um certo componente de cor que o sinal de cor em questão apresenta.

A modelagem através de espaços de cores oferece ferramentas matemáticas para se lidar com
imagens. Cores individuais podem ser tratadas como pontos em um sistema de coordenadas
específico, e sistemas alternativos mais convenientes para determinadas tarefas podem ser usados,
com a possibilidade de se alternar livremente entre diferentes espaços de cores, tanto em uma
como em outra direção [20]. Além disso, valores respectivos a cada uma das coordenadas podem
ser tratados individualmente e independentemente das outras coordenadas usadas para descrever a
imagem. A cada uma dessas coordenadas é dado o nome de canal (e.g. canal vermelho, no espaço
RGB). A seguir são discutidos dois espaços de cores mais relevantes para a representação de cores
de conteúdos tridimensionais através de nuvens de pontos.

2.6.1 Espaço RGB

O espaço de cores RGB é um sistema de representação de cores através da combinação aditiva
de três componentes primários de cor, independentes de nível de luminosidade: vermelho, verde e
azul [21]. Variando as quantidades de cada componente de cor, é possível representar qualquer tom
de cor entre os componentes primários utilizados, além de suas variações de luminosidade entre
branco puro e preto puro.

O motivo da escolha das cores vermelho, verde e azul está relacionado com os mecanismos de
visão que ocorrem no olho humano, no nível celular. Apesar de existirem duas teorias complemen-
tares que descrevem esse processo em maior detalhe (teoria tricromática [22] e teoria do processo
oponente [23]), o espaço RGB está ligado principalmente com conceitos da teoria tricromática, que
descreve um primeiro estágio da visão humana [24].

Na retina, parte do olho humano que converte luz em impulsos elétricos neurológicos, há a
ocorrência de dois tipos especializados de células: bastonetes, mais sensíveis a luz em luminosida-
des baixas (independentemente de comprimento de onda), e cones, que são excitados em função,
além da intensidade, do comprimento de onda de luz incidente. Se observa também que há uma
subdivisão dos cones em outras três especializações: cones dos tipos S, M e L [25, 26].

Cones do tipo S demonstram serem excitados principalmente na faixa entre 400 nm e 500
nm. Já cones M são excitados principalmente entre 450 nm e 630 nm, e cones L entre 500 nm e
700 nm. Essas faixas não apresentam limites nítidos, e há sobreposições consideráveis entre elas,
principalmente entre os cones M e L.
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Historicamente, os cones dos tipo S, M e L passaram a ser associados com cores específicas,
respectivamente azul, verde e vermelho, mesmo em face de apresentarem um comportamento mais
complexo do que simplesmente serem excitados por essas cores específicas. Especialmente, cones
do tipo L demonstram um pico de excitação para cores mais próximas de amarelo-esverdeado do
que para o vermelho. No entanto, a nomenclatura não é totalmente sem justificativa. De fato,
cada uma das cores do padrão RGB está associada com o cone que apresenta maior sensibilidade
a ela.

2.6.2 Espaço YUV

O espaço de cores YUV é uma representação alternativa ao RGB em que um canal é usado
para representar exclusivamente a luminância (ou luma) presente na imagem, enquanto dois outros
representam a crominância azul e vermelha, respectivamente. Isto é, um dos canais descreve com-
pletamente a intensidade luminosa (ou brilho) da imagem, enquanto os outros dois, em combinação,
representam o tom de cor da imagem.

Existem diversas variações do padrão YUV, além de outros espaços de cores similares, como
Y’UV, YCbCr e Y’CbCr, sendo comum ocorrer alguma confusão na nomenclatura desses sistemas,
com alguns nomes sendo usados de maneira intercambiável em alguns contextos. A presença do
símbolo apóstrofo (’) seguido ao símbolo de um canal denota que aquele canal passa por compressão
(ou correção) gama, que é uma escala não linear que tem por objetivo aproximar a percepção
humana de diferença luminosa [21].

Especialmente, quando o canal Y não passa por compressão gama (escala linear de intensidade
luminosa) ele é denominado de luminância. Já quando ocorre compressão gama (canal Y’) o canal
é denoninado de luma. Sendo assim, a única diferença entre os sistemas YUV e Y’UV é referente
ao canal de intensidade luminosa. A mesma diferença ocorre entre os sistemas YCbCr e Y’CbCr,
com o canal Y sendo idêntico entre os sistemas YUV e YCbCr.

Quanto aos canais de crominância, no sistema YUV (e Y’UV), os canais U e V são definidos,
respectivamente, como a diferença entre o valor de azul e de intensidade luminosa, e a diferença
entre o valor de vermelho e de intensidade luminosa. Já nos sistemas YCbCr (e Y’CbCr) os canais
Cb e Cr são obtidos através do desvio da cor cinza no eixo azul-amarelo e no eixo vermelho-ciano,
respectivamente.

Os sistemas de cores YCbCr, YUV e suas variantes adotam ideias compatíveis com a etapa
da visão humana denominada de processo oponente. Após a aquisição de luz colorida através
das células da retina, antes de ser transmitido pelo nervo ótico, o sinal visual gerado no olho é
processado por neurônios especializados que tem ativações reguladas pelas diferenças de excitação
que os bastonetes e cada um dos tipos de cones apresentam [27].

O processamento dos sinais gerados pelos cones envolve principalmente dois tipos de neurô-
nios: as células retinais bipolares e as células retinais ganglionares. Células bipolares efetivamente
regulam os sinais emitidos por cones e bastonetes, e os transmitem às células ganglionares, que
processam diferenças de contraste ou cor ao longo do tempo ou do campo visual [28]. Parte dos
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neurônios ganglionares é excitada por cones L e S mas inibida por cones M (diferenças no eixo
vermelho-verde), enquanto que outra parte é excitada pelos cones L e M mas inibidos por cones S
(diferenças no eixo azul-amarelo), de maneira similar ao sistema YUV.

Adotar um modelo de representação de cores com funcionamento próximo ao exibido pelo or-
ganismo humano permite que algoritmos de compressão se aproveitem do fato de que nem todos os
detalhes de uma imagem são igualmente percebidos por seres humanos. Assim, é possível descar-
tar informação pouco perceptível e alocar mais recursos para representar detalhes mais relevantes,
resultando em uma qualidade observada maior, a uma taxa de bits menor.

A conversão do espaço RGB para YUV pode ser feita usando as seguintes fórmulas:

Y ′ =WRR+WGG+WBB (2.3)

U = UMAX
B − Y ′

1−WB
(2.4)

V = VMAX
R− Y ′

1−WR
(2.5)

em que, de acordo com o padrão BT.601 [20],

WR = 0.299 (2.6)

WB = 0.114 (2.7)

WG = 1−WR −WB = 0.587 (2.8)

UMAX = 0.436 (2.9)

VMAX = 0.615 (2.10)

Adotando uma representação matricial, tem-se queY
′

U

V

 =

 0.299 0.587 0.114

−0.14713 −0.28886 0.436

0.615 −0.51499 −0.10001


RG
B

 (2.11)

e que, inversamente,

RG
B

 =

1 0 1.13983

1 −0.39465 −0.58060
1 2.03211 0


Y

′

U

V

 (2.12)

.

2.7 Codificação de nuvens de pontos

Como foi mencionado na Seção 2.6, e principalmente na Seção 2.6.2, existe a possibilidade de
se escolher a representação de um conteúdo de maneira a dedicar mais informação para representar
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informações mais relevantes para a percepção humana de qualidade, enquanto que detalhes menos
importantes são descartados.

O mesmo pode ser feito com informação respectiva a geometria de modelos de objetos. Intui-
tivamente, deseja-se uma representação em que seja possível escolher o nível de detalhamento da
estrutura geométrica da representação. Deve ser possível gradualmente descartar detalhes mais
finos, ao mesmo tempo que a estrutura geral não é descaracterizada de maneira demasiada.

A seguir, são exploradas as octrees, uma estrutura comumente usada para a codificação de
nuvens de pontos, que oferece a capacidade representar níveis graduais de detalhe.

2.7.1 Octrees

No contexto de ciência da computação, uma árvore é uma estrutura de dados em que elementos
(ou nós) se relacionam hierarquicamente entre si através elos. Árvores são compostas por um nó
inicial, denominado raiz, acima de todos os outros, além de seus nós filhos. Cada nó subsequente
pode ter um ou mais filhos. Quando um nó não tem nenhum filho, ele é denominado de nó
folha [29].

Octrees são um tipo específico de árvore em que cada nó tem exatamente 0 ou 8 filhos [30]. Essa
característica é interessante para aplicações relacionadas com geometrias tridimensionais. Como
8 = 23, e em um espaço tridimensional existem três direções ortogonais, ao se subdividir o espaço
em dois, na direção de cada uma de suas coordenadas, obtém-se 8 octantes. Dessa maneira, é
possível facilmente representar a geometria de objetos contidos na região delimitada pela união
desses octantes através de uma estrutura baseada em octrees.

De maneira mais específica, se cada nó da octree representa um octante, um valor binário
designado ao nó em questão indica se aquele octante está ocupado ou não. O octante pode ser
então subdividido em mais 8 octantes, se repetindo o processo para determinar cada uma de suas
regiões ocupadas. No caso de um dos sub-octantes se encontrar não ocupado, o presente nó é
considerado como não tendo nenhum filho (nó folha). Ao final do processo, cada nível da octree
é representado por um byte, cujo cada bit indica se o n-ésimo octante estava ocupado. O byte
seguinte representa essa mesma informação respectiva ao primeiro bit ocupado do nível anterior
da octree, e assim por diante, até o último bit ocupado do nível anterior. Quando todos os bits
de um nível foram considerados, o processo continua para os bits e bytes dos próximos níveis. A
ordem de percorrimento da octree é arbitrária, bastando apenas que o codificador e o decodificador
estejam de acordo quanto a ela.

2.8 Métricas objetivas de qualidade

A qualidade visual de mídias geralmente é avaliada através do uso ou de métricas subjetivas
ou de métricas objetivas. Avaliações subjetivas consomem muito tempo e são caras. Devido a isso,
fazem-se necessárias métricas objetivas eficientes, que consigam prever com exatidão a qualidade
de algum conteúdo, ou o nível de distorção ao qual ele está sujeito. No caso de nuvens de pontos,
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Figura 2.5: Diagrama demonstrando o fluxo de informação entre diferentes categorias de métricas
objetivas de qualidade.

avaliação objetiva de qualidade ainda é um problema aberto [10].

Métricas objetivas podem ser classificadas em três categorias distintas, em função da quantidade
de informação disponível acerca dos conteúdos envolvidos na análise. Um diagrama demonstrando a
relação entre o compartilhamento de informação em cada uma dessas categorias pode ser observado
na Figura 2.5.

Métricas de referência completa avaliam a qualidade de um sinal recebido (que passou por
algum processo de distorção) através de suas diferenças em relação a ao sinal original, antes de
sofrer modificações, denominado sinal de referência. Este método assume que todas as informações
acerca de ambos os sinais (ou pelo menos os dois sinais em sua íntegra) estão disponíveis. Em
alguns casos, isso pode se tornar um impedimento.

Métricas de referência reduzida podem utilizar informações de ambos os sinais, mas não é ne-
cessário que eles sejam utilizados inteiramente. Em casos em que ter acesso completo a algum
dos sinais é impossível ou impraticável, métodos dessa natureza permitem alguma mensuração de
qualidade, ainda que com exatidão reduzida. Estes métodos também costumam ser computacio-
nalmente mais eficientes que métodos de referência completa, já que precisam de menos dados.

Existem ainda métricas sem referência. Esses modelos tem o objetivo de estimar a qualidade
de sinais distorcidos sem o uso de qualquer informação acerca do sinal original. Normalmente,
são observadas características internas do sinal recebido, como a variação de pixels, ou dados
acerca da transmissão em si, como vetores de movimento, parâmetros de quantização e outros
metadados, ou ainda uma combinação dessas informações para determinar se há ocorrência de
artefatos desagradáveis no conteúdo recebido. Esses métodos costumam ser os mais rápidos, sendo
que algumas variações não requerem nem a codificação do sinal recebido. No entanto, essas métricas
também são as que oferecem o menor poder preditivo de qualidade [31].

Avaliação objetiva da qualidade de nuvens de pontos é geralmente realizada através de métricas
de referência completa. Métricas da distorção da cor de nuvens de pontos são baseadas em métricas
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convencionais aplicadas a conteúdos bidimensionais. Já o estado da arte de métricas de referência
completa para a avaliação distorções geométricas de nuvens de pontos podem ser separadas em
duas categorias: as baseadas em distância e as baseadas em normais. Apenas um tipo de métrica é
classificado atualmente como baseado em normais, as denominadas métricas plano a plano. Já as
métricas classificadas como baseadas em distância consistem nos seguintes tipos: métricas ponto
a ponto, métricas ponto a plano, e métricas ponto a malha. Cada um desses tipos de métricas é
explorado na Seção 2.8.1 e na Seção 2.8.2.

Tanto métricas de degradação de geometria e de cor costumam calcular suas medidas de erro
de maneira simétrica. Isto é, o erro é obtido calculando-se primeiro com um dos dois conteúdos
utilizados na métrica (ou a versão original da nuvem de pontos ou sua versão distorcida) como
referência e o outro como conteúdo de teste. O primeiro valor calculado é armazenado, e o cálculo
é feito novamente com as duas versões da nuvem de pontos trocadas: se primeiro a versão original
foi adotada como referência e a versão distorcida foi tida como conteúdo sob teste, agora a versão
original será o teste, enquanto que a versão distorcida é a referência, e vice-versa. O valor de erro
final é escolhido como o valor máximo entre os dois valores de erro calculados.

2.8.1 Métricas de cor baseadas em pontos

Métricas de distorção de cor em nuvens de pontos são realizadas se associando pontos do
conteúdo sob análise com seus respectivos pontos no conteúdo de referência. Tipicamente para
isso se usa o algoritmo de busca do vizinho mais próximo.

Em seguida, se calcula a degradação de cor como se cada tupla de cor de pontos correspon-
dentes tivessem a mesma relação de pixels de pares de imagens bidimensinais em métricas de
referência completa convencionais, como as descritas na Seção 2.8.3. No entanto, como não são
necessariamente levadas em consideração relações de proximidade no ordenamento dos pontos, é
mais comum o uso de métricas que atuam somente na escala de pixels individuais (em oposição a
métricas como o SSIM, que considera regiões da imagem em seu cálculo).

É possível, por exemplo, utilizar a PSNR para calcular a distorção de cor dessa maneira. Pode-
se usar tanto valores de cor no espaço RGB ou em qualquer outro que a aplicação exigir. Utilizando
o espaço YUV no padrão ITU-R, recomendação BT.709-3 [32], uma medida do erro de cor é
calculada através de uma média ponderada das diferenças nos canais de luma e crominância [33]:

PSNRYUV =
(
6 · PSNRY + PSNRU + PSNRV

)
/8. (2.13)

2.8.2 Métricas de geometria baseadas em pontos

As métricas discutidas a seguir são baseadas no cálculo de medidas de erro individuais para
cada ponto presente na nuvem de pontos sob análise. Para se obter valor referente à degradação
geométrica da nuvem de pontos como um conjunto, é preciso calcular algum valor através dos erros
individuais obtidos. Opções comuns são o erro total (soma de todos os erros individuais), o erro
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Figura 2.6: Relação entre os pontos de interesse em duas PCs durante o cálculo de métricas
baseadas em geometria.

quadrático médio (MSE), a raiz do erro quadrático médio (RMSE), ou a distância de Hausdorff [34],
esta última sendo definida como

dH(X,Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(y, x)}, (2.14)

em que d(x, y) é alguma medida de distância entre dois elementos dos conjuntos X e Y , e sup e
inf denotam respectivamente o supremum e o infimum de um subconjunto em relação ao conjunto
em que está contido. No entanto, para conjuntos ordenados e finitos o infimum e o supremum
coincidem respectivamente como o elemento mínimo e o elemento máximo do subconjunto sob
análise [35]. Dessa maneira, no presente contexto a distância de Hausdorff pode ser intuitivamente
compreendida como a maior distância observada entre cada ponto das duas nuvens de pontos e
seu respectivo par mais próximo (dada uma métrica d de distância) na outra nuvem de pontos.

2.8.2.1 Métrica ponto a ponto

Métricas ponto a ponto são baseadas na distância geométrica entre pontos associados dos
conteúdos sob análise e de referência. Geralmente o valor de erro é relacionado com o deslocamento
do ponto do conteúdo sob análise em relação a seu vizinho mais próximo no conteúdo de referência.
Ou seja, seguindo a nomenclatura presente na Figura 2.6, para cada ponto bk do conteúdo sob
análise (B), seu vizinho mais próximo, ai no conteúdo de referência (A) é selecionado. Em seguida,
alguma métrica de distância entre os dois pontos, normalmente a distância euclideana, é calculada:

E(bk, ai) =
∥∥∥−→v bkai∥∥∥2 . (2.15)

O erro referente à nuvem de pontos B pode então ser calculado como a soma, ou a média, das
distâncias entre todos os pontos do conteúdo analisado e seus respectivos vizinhos mais próximos
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em A:

MSE(B,A) =
∑

bk∈B E(bk, ai)
|B|

, (2.16)

em que |B| é a cardinalidade (número de elementos) do conjunto B.

2.8.2.2 Métrica ponto a plano

Métricas ponto a plano são baseadas no erro projeção de um ponto, que pertence a um conteúdo
sob análise, em relação ao vetor normal de um ponto associado no conteúdo de referência. Isto é,
após se identificar, para cada ponto bk no conteúdo analisado (B) seu vizinho mais próximo, ai,
no conteúdo de referência (A), o erro é projetado sobre a normal −→n ai através da fórmula

Ê(bk, ai) = −→n ai ·
−→v bkai , (2.17)

novamente podendo-se obter o valor médio do erro através de

MSE(B,A) =
∑

bk∈B Ê
2
(bk, ai)

|B|
, (2.18)

com ambas equações seguindo a nomenclatura da Figura 2.6.

A interpretação por trás da métrica ponto a plano é baseada no fato de que custos maiores
ocorrem devido a pontos que desviam da superfície local aproximada do objeto de referência. Essa
métrica requer que pelo menos um dos conteúdos tenha normais conhecidas. No caso das normais
do conteúdo de referência sejam conhecidas, o cálculo da métrica se dá normalmente. Caso apenas
os vetores normais de um dos conteúdos sejam conhecidos e deseje-se usar o conteúdo sem normais
como referência, ainda é possível utilizar essa métrica estimando-se as normais do conteúdo sem os
vetores calculando-se a média dos vetores presentes nos vizinhos mais próximos correspondentes
no outro conteúdo.

2.8.2.3 Métrica plano a plano

Métricas plano a plano são baseadas na similaridade angular de planos tangentes que corres-
pondem a pontos associados entre a referência e o conteúdo sob análise. O valor de erro oferece
uma aproximação da dissimilaridade entre superfícies locais correspondentes. Para cada ponto bj
que pertence ao conteúdo sob análise (B), seu vizinho mais próximo, ai no conteúdo de referência
(A) é identificado. Através dos vetores normais correspondentes a cada um dos pontos, pode-se
calcular a similaridade angular dos planos tangentes aos mesmos. Isso é realizado calculando-se o
ângulo θ̂ entre os vetores normais −→n bj e −→n ai . O ângulo efetivo adotado é restringido ao menor dos
dois ângulos entre as duas normais, de modo que

θ = min{θ̂, π − θ̂}, (2.19)

com π em radianos.
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A similaridade angular sim(θ) é então calculada como

sim(θ) = 1− 2θ

π
, (2.20)

sendo a imagem da função limitada ao conjunto fechado [0, 1]. Finalmente, alguma média das simi-
laridades individuais pode ser calculada, de maneira similar como foi feito nas Equações 2.16 e 2.18.

Esta métrica é baseada na premissa de que o sistema visual humano naturalmente interpola um
conjunto de pontos visualizado para inferir o objeto em questão. O plano tangente serve como uma
aproximação linear da superfície local do conteúdo. Portanto, a similaridade angular entre planos
tangentes de pontos associados entre o conteúdo analisado e o conteúdo de referência oferece uma
aproximação da dissimilaridade entre superfícies locais correspondentes entre os dois objetos.

Uma desvantagem dessa métrica é que ela requer que as normais, tanto do objeto de referência
como do objeto sob análise, sejam conhecidas. Caso não estejam disponíveis, os vetores precisam ser
estimados. Assim, o desempenho desta métrica, tanto em termos computacionais como em termos
de correlação com qualidade subjetiva observada, fica limitado ao desempenho do algoritmo de
estimativa de normais utilizado.

2.8.2.4 Métrica ponto a malha

Métricas ponto a malha envolvem a representação das nuvens de ponto de interesse através de
malhas poligonais (meshes), um processo denominado neste contexto de reconstrução de superfície.
Inicialmente, o conteúdo de referência é reconstruído através de um mesh. Em seguida, para cada
ponto do conteúdo de teste, é calculada a menor distância para a superfície mais próxima do
mesh de referência. Considerando que não existe uma maneira única de se gerar uma malha de
um conjunto de pontos, as notas objetivas obtidas dependem consideravelmente do algoritmo de
reconstrução de superfície selecionado. Assim, métricas ponto a malha são consideradas soluções
sub-ótimas para a avaliação de qualidade de nuvens de pontos. Neste trabalho, tais métricas não
serão mais investigadas daqui em diante.

2.8.3 Métricas baseadas em imagens

Ao longo das Seções 2.2, 2.5 e 2.6, pôde-se notar que o desenvolvimento das mídias visuais mo-
dernas está intimamente ligado ao funcionamento da visão no organismo humano. Adicionalmente,
como também foi mencionado nas Seções 2.4 e 2.5, devido à própria natureza do sistema visual
humano, nuvens de pontos (e outros conteúdos naturalmente tridimensionais) ainda são ligados a
conceitos e aspectos de imagens bidimensionais.

Em luz dessas observações, é intuitivo considerar que a análise da qualidade visual de algum
conteúdo, especialmente, esteja conectada com a fisiologia humana, e que medidas dessa qualidade
se beneficiem de maior correlação com a real qualidade subjetiva percebida à medida que elas se
tornam cada vez mais embasadas no funcionamento do sistema visual humano. Essa premissa leva
a crer que, assim como parte da visão humana se relaciona com imagens bidimensionais projetadas,
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basear a avaliação qualidade de conteúdos tridimensionais na projeção e no subsequente tratamento
das imagens resultantes pode ser vantajoso.

A seguir, são exploradas algumas métricas classicamente utilizadas na análise de imagens bi-
dimensionais.

2.8.3.1 PSNR

A relação sinal-ruído de pico (peak signal-to-noise ratio - PSNR) é uma das métricas de quali-
dade de sinais mais utilizadas, principalmente no contexto de processamento de imagens. Ela foi
uma das primeiras métricas capaz de traduzir diferenças entre sinais ou imagens para uma escala
objetiva e de fácil comparação entre conteúdos.

A PSNR é definida através da fórmula

PSNR = 10 log10

(
MAX2

MSE

)
, (2.21)

em que MAX é o valor máximo na escala adotada que o sinal pode assumir (255 para imagens de 8
bits, por exemplo), e MSE é o erro quadrático médio entre o sinal de referência e o sinal analisado.
Para uma imagem de referência R e sua aproximação ruidosa I, ele é calculado como

MSE =
1

mn

n∑
i=1

m∑
j=1

[R(i, j)− I(i, j)]2. (2.22)

Mensurar a proporção entre o erro médio e o sinal de pico garante que diferenças na escala de
sinais não afetam a métrica. Além disso, como é comum sinais apresentarem uma faixa dinâmica
ampla, adotar a escala logarítmica proporciona uma métrica com valores em um intervalo mais
conveniente e gerenciável.

No entanto, a PSNR apresenta uma grande variação, mesmo para conteúdos similares. A PSNR
é, por exemplo, consideravelmente sensível a translações espaciais: deslocamentos da ordem de um
pixel entre uma imagem e sua referência já são suficientes para provocar uma queda da PSNR.
Ademais, nem sempre ocorre uma correlação direta entre PSNR e qualidade observada. É possível
que conteúdos praticamente idênticos tenham PSNRs consideravelmente diferentes e, em certas
situações, imagens com melhor qualidade subjetiva podem apresentar PSNR piores do que uma
imagem com artefatos de distorções mais perceptíveis. Para evitar esse tipo de comportamento,
é importante limitar a comparação através de PSNR a apenas imagens com conteúdos similares e
distorcidas por procedimentos de mesma natureza.

2.8.3.2 SSIM

O índice de similaridade estrutural (structural similarity index - SSIM) foi proposto como
uma melhoria em relação à PSNR, capaz de prever com melhor acurácia a qualidade percebida
do conteúdo medido. O SSIM propõe calcular a similaridade entre pares de imagens através
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medidas intuitivamente relacionadas com características perceptuais que, se preservadas, espera-
se observar uma qualidade visual maior do que caso contrário. Especificamente, essas grandezas
são denominadas luminância (l(x, y)), contraste (c(x, y)) e estrutura (s(x, y)), para uma imagem
distorcida y e sua referência x. Elas são definidas como

l(x, y) =
2µxµy + c1
µ2x + µ2y + c1

, (2.23)

c(x, y) =
2σxσy + c2
σ2x + σ2y + c2

, (2.24)

s(x, y) =
σxy + c3
σxσy + c3

, (2.25)

em que µx, µy, σ2x, σ2y , σxy são, respectivamente, o valor médio dos valores na imagem x, o valor
médio dos valores na imagem y, a variância dos valores da imagem x, a variância dos valores da
imagem y e a covariância entre os valores das imagem x e y. Além disso, c1 = (k1L)

2, c2 = (k2L)
2

e c3 = c2/2, três coeficientes que estabilizam a divisão em casos em que o denominador é muito
pequeno, e L é o intervalo dinâmico de valores possíveis nas imagens. Em imagens de 8 bits,
L = 255. Em geral k1 e k2 são escolhidos como 0.01 e 0.03, respectivamente.

O SSIM é proporcional à média geométrica ponderada das medidas obtidas de luminância,
contraste e estrutura. Assim,

SSIM(x, y) = l(x, y)α × c(x, y)β × s(x, y)γ , (2.26)

com α, β e γ arbitrários. Caso sejam escolhidos todos como iguais a 1,

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2x + µ2y + c1)(σ2x + σ2y + c2)
. (2.27)

O SSIM costuma ser calculado não sobre a imagem como um todo, mas aplicado a janelas que
cobrem subregiões da imagem completa. Podem-se escolher janelas de qualquer tamanho, que
podem ser tomadas através de deslocamentos sucessivos de um ou mais pixels, até que toda a
imagem seja coberta. O SSIM pode ser calculado para apenas um dos canais presentes na imagem,
normalmente o canal de luma, ou para mais canais. Nesse caso, o SSIM é calculado separadamente
para cada canal, e a métrica total da imagem é obtida através de uma média entre os índices de
cada canal.

2.8.3.3 VIF e VIFP

O índice de fidelidade de informação visual (VIF), e sua realização baseada em pixels, o VIFP,
são métricas de referência completa para a avaliação de qualidade em imagens. O VIF é baseado
nas chamadas estatísticas de cena natural (NSS) e na noção de como o sistema visual humano
extrai informação de imagens. É adotado um critério de fidelidade que quantifica a informação de
Shannon [36] compartilhada entre as imagens distorcida e de referência, relativamente à informação
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contida na imagem em si. Dessa maneira, são adotados três modelos em conjunto para a obtenção
do VIF: um modelo de NSS, um modelo de degradação de imagem e um modelo do sistema visual
humano [37].

Cenas naturais se referem ao conjunto de informações presentes em um ambiente físico que
são percebidas por agentes através de seus sentidos, especificamente aqueles que seres humanos
estão acostumados a observar no modo natural de operação de seus órgãos sensoriais [38]. Esse
conjunto de cenas pode incluir ambientes como ruas em uma cidade, o interior de uma casa ou
plantas em um jardim, por exemplo. Tem-se interesse principalmente nos aspectos visuais de uma
cena. Apesar de serem uma fração pequena dos sinais visuais possíveis, cenas naturais formam
uma grande parte da mídia consumida, e modelos estatísticos robustos já foram desenvolvidos para
modelar essa classe de sinais.

A maior parte dos processos de distorção observados em sistemas reais modifica essas esta-
tísticas e torna as cenas não naturais. Medir esse desvio estatístico, através da quantidade da
informação compartilhada entre o sinal distorcido e o sinal de referência, portanto, pode indicar a
qualidade observada em conteúdos que se encaixem nesse modelo. Além disso, é possível determi-
nar a quantidade de informação total presente na imagem de referência. Dessa maneira, pode-se
calcular a perda de informação relativa à quantidade de informação originalmente presente.

No contexto do índice VIF, imagens de cenas naturais perfeitas (sem qualquer distorção ou
ruído) são modeladas como uma fonte estocástica, especificamente o modelo de mistura de escala
gaussiana (GSM) no domínio da transformada Wavelet, que então é distorcida por um canal
(operador de distorção), fornecendo as imagens a serem avaliadas.

Campos aleatórios (RFs) são generalizações de processos estocásticos que, em vez de serem
parametrizados por um índice unidimensional (seja discreto ou contínuo), são parametrizados por
vetores multidimensionais, ou pontos em uma superfície multidimensional [39]. Um GSM é um RF
que pode ser expressado como o produto de dois RFs independentes [40]. Ou seja, um GSM C tal
que C = {

−→
Ci : i ∈ I} pode ser escrito como

C = S · U = {Si ·
−→
Ui : i ∈ I}, (2.28)

em que I denota um conjunto de índices espaciais para o RF. S = {Si : i ∈ I} é um RF de escalares
positivos, enquanto que U = {

−→
Ui : i ∈ I} é um RF de vetores com distribuição gaussiana de média

zero e covariância igual a CU .
−→
Ci e

−→
Ui são vetores M dimensionais.

A distorção na cena natural é modelada como um ganho de sinal acompanhado de ruído aditivo
no domínio Wavelet, tal que

D = GC + V = {gi
−→
Ci +

−→
Vi : i ∈ I}, (2.29)

em que C é o RF do sinal de referência e D = {
−→
Di : i ∈ I}, G = {gi : i ∈ I} e V = {

−→
Vi : i ∈ I} são,

respectivamente, o RF do sinal distorcido, um campo determinístico de ganho escalar e um RF
estacionário de ruído aditivo gaussiano, de média zero e variância CV = σ2vI, em que I é a matriz
identidade.

O RF V é branco (potência uniforme para todas as frequências) e independente de S e de U .
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Isso significa que o modelo, apesar de simples, captura dois tipos importantes de ruídos, ruído
branco, devido à presença do RF V, e suavização (blur), devido ao campo escalar de atenuação G.
Uma motivação mais detalhada desse modelo pode ser encontrada em [41].

O modelo de sistema visual humano é dual ao modelo de NSS, com muitos aspectos dele já
sendo incluídos na descrição do modelo NSS. Dentre os aspectos não incluídos no modelo NSS, há
a função de espalhamento ótico, a função de sensitividade ao contraste e o ruído neural interno,
entre outros. Uma comparação de desempenho mais detalhada entre diferentes modelos de NSS e
visão humana se encontra em [41].

O modelo de visão humana incluído na implementação padrão do VIF leva em conta apenas o
ruído neural interno, o que já é suficiente para aumentar consideravelmente o desempenho preditivo
da métrica. Ele pode ser modelado como ruído aditivo gaussiano branco:

E = C +N , (2.30)

F = D +N , (2.31)

em que E e F são os sinais visuais dos quais o cérebro humano extrai informações cognitivas acerca
da imagem de referência e da imagem imagem distorcida, respectivamente. N = {

−→
Ni : i ∈ I} é

um RF, com vetores gaussianos multivariados descorrelacionados
−→
Ni, de média zero e covariância

CN = σ2nI.

Cada um desses modelos considera apenas uma das sub-bandas da decomposição wavelet de
escala-espaço-orientação como um GSM. Por exemplo, para a imagem de referência, cada sub-
banda é particionada em blocos de M coeficientes cada, sem sobreposição. Assume-se que cada
bloco é independente dos outros. Cada bloco é então modelado como o vetor

−→
Ci. Assim, se observa

que C segue uma distribuição normal condicionada a S, e que os vetores Ci são condicionalmente
independentes entre si, dado S [40].

Para se obter o valor final do VIF, basta então se considerar a informação para cada uma das
sub-bandas presentes. Portanto, para o conjunto de todas as sub-bandas J , tem-se

VIF =

∑
j∈J I(

−→
CN,j ;

−→
F N,j |sN,j)∑

j∈J I(
−→
CN,j ;

−→
EN,j |sN,j)

, (2.32)

em que
−→
CN,j representa N elementos da RF Cj (RF C da sub-banda j), com definições similares

para
−→
F N,j e

−→
EN,j . Na fórmula 2.32, I(

−→
CN,j ;

−→
F N,j |sN,j) é a informação mútua de Shannon [36]

entre
−→
CN,j e

−→
F N,j dada uma realização sN,j de SN (N elementos do RF S) na banda j. A mesma

relação se mantém para
−→
EN,j , no denominador. Em termos gerais, a informação mútua entre duas

variáveis aleatórias X e Y se dá por

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
, (2.33)

em que p(x, y) é a função de probabilidade conjunta entre X e Y , enquanto que p(x) e p(y) são as
respectivas funções de probabilidade marginal.
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Vale notar que a informação mútua só pode ser calculada diretamente entre RFs com parâmetros
que se assumem conhecidos, e não entre realiações dessas RFs (i.e. uma imagem contendo uma
cena natural). No entanto, é possível estimar os parâmetros relevantes de cada RF, dada uma
realização e respeitando-se as devidas condições. Por exemplo, em [42] é demonstrada uma série
de métodos para estimar os parâmetros s2i e CU do modelo de fonte do sinal quando as RFs são
ergódicas. Em [43] também se propõe obter G e σ2v , respectivos ao modelo de distorção, através
regressão linear entre a entrada do modelo (a imagem de referência) e a saída (imagem de teste).
Se considera que ambos os parâmetros são constantes entre todos os blocos espaço-temporais que
dividem cada canal do sinal. Também em [43] se propõe estimar o parâmetro σ2n empiricamente,
variando-o até se obter o melhor desempenho para os dados disponíveis.

2.9 Testes subjetivos de qualidade

Como foi mencionado na Seção 2.8, a qualidade visual de mídias é avaliada principalmente
através de métricas objetivas. De fato, avaliações subjetivas costumam apresentar mais custos
associados. Entretanto, em casos em que a avaliação objetiva não é um problema resolvido, ou
pelo menos caso se deseje validar alguma métrica objetiva nova, é necessário validar o poder
preditivo de métricas propostas, levando em consideração principalmente como o desempenho da
métrica proposta se compara com outras alternativas existentes. Isso é feito com a realização de
testes subjetivos de qualidade.

Existem duas classes de avaliações subjetivas. A primeira classe, denominada avaliação de
qualidade, estabelece o desempenho de sistemas de mídia sob condições ótimas. A segunda classe,
denominada avaliação de degradação, estabelece a capacidade de sistemas de manter a qualidade
sob condições sub-ótimas (e.g. canais de transmissão ruidosa, codecs que introduzem artefatos de
compressão).

Testes subjetivos procedem com participantes sendo informados sobre o tipo de avaliação que
deverão desempenhar. É necessário fornecer aos participantes informações acerca do tipo de con-
teúdo que será analisado, no que o participante deve focar ao avaliar o conteúdo, o funcionamento
da escala de avaliação, e como o experimento deve ocorrer (por exemplo, quantas sequências de
conteúdo devem ser observadas, tempo permitido para a avaliação, se o participante deve realizar
alguma tarefa de maneira específica ou permanecer passivo durante a avaliação).

A maior organização responsável por propor e padronizar testes subjetivos de conteúdos de
telecomunicação é a ITU-T. A ITU-T recomenda que exemplos práticos do tipo de conteúdo a ser
avaliado, que não devem ser usados nos testes em si, sejam mostrados aos participantes antes do
início da aquisição real de avaliações. Isso pode ser feito através de uma rodada de avaliações de
treinamento cujos dados não serão considerados. Também é recomendado que avaliações, em vez
de adotar uma escala puramente numérica, sejam baseadas em ideias subjetivas relacionadas com
os termos linguísticos usados para descrever qualidade.

Além de definir condições ambientes ideais para a realização de testes, a ITU-T também propõe
esquemas experimentais específicos desenvolvidos para medir aspectos de qualidade específicos.
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Alguns deles são discutidos a seguir.

2.9.1 Absolute Category Rating

(a) Variante I

(b) Variante II

Figura 2.7: Diagramas de realizações típicas de duas variantes de testes de qualidade subjetiva do
tipo ACR.

O método de avaliação de categoria absoluta (ACR), também chamado de método de estímulo
único, é um teste subjetivo de qualidade em que os conteúdos a serem avaliados são mostrados aos
participantes e então avaliados de maneira independente, um por vez, em uma escala categórica.
A avaliação indica a qualidade observada no conteúdo que acabou de ser mostrado. Para cada
conteúdo, é calculada a nota de opinião média (MOS) através das médias das notas fornecidas
pelos participantes.

As notas escolhidas pelos participantes devem ser uma escala de 5 categorias. Cada categoria
representa um nível subjetivo de qualidade, e tem um valor numérico associado para calculo do
MOS. A escala é indicada por:

5. Excelente

4. Boa

3. Razoável

2. Pobre

1. Ruim

É possível incluir na sequência de conteúdos mostrados uma versão não distorcida do conteúdo
de referência, porém não identificada ao avaliador. Nessa variante, denominada ACR com referência
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oculta (ACR-HR), a nota de cada conteúdo é calculada de maneira relativa a sua respectiva
referência. Em vez do MOS, se obtém o DMOS, a média das notas diferenciais de cada avaliador
(DV), tal que, para algum conteúdo distorcido k e para algum participante n,

DVn(k) = PSn(k)−RSn(k) + 5, (2.34)

em que PSn(k) é a nota ACR dada pelo participante n ao conteúdo k e RSn(k) é a nota dada pelo
mesmo participante à versão de referência do conteúdo distorcido em questão. O DMOS daquele
conteúdo é então a média de DV, entre todos os participantes:

DMOS(k) =

∑N
n=1DVn(k)

N
. (2.35)

Seguindo a Equação 2.34, uma nota diferencial igual a 5 indica uma qualidade excelente, enquanto
que uma nota igual a 1 indica qualidade ruim. Em geral, valores acima de 5 (casos em que algum
conteúdo distorcido foi considerado como tendo uma qualidade maior do que sua referência) não
são descartados, sendo incluídos normalmente no cálculo do DMOS.

A sequência de conteúdos apresentada na sessão de testes deve ser aleatória, de preferência de
maneira que dois avaliadores não observem a mesma sequência. Antes e depois da visualização
de cada conteúdo, são mostradas telas em um tom de cinza intermediário. Isso tem o objetivo de
evitar que possíveis efeitos de fadiga alterem de maneira indesejada a avaliação dos participantes.
Há duas variantes quanto à estrutura de apresentações. O processo de ambas as variantes se
encontra representado na Figura 2.7.

Na primeira variante, cada conteúdo é mostrado uma única vez. Uma sequência típica inclui
uma visualização inicial em um tom intermediário de cinza por algum tempo determinado, a
visualização do conteúdo a ser analisado, e novamente uma visualização de cinza, após a qual o
participante registra sua avaliação. Após o período de avaliação, o próximo conteúdo é mostrado
da mesma maneira, e o ciclo de visualizações se repete, até que todos os conteúdos sejam avaliados.

Na segunda variante, conteúdos são mostrados da mesma maneira que na primeira variante.
Após o fim do primeiro ciclo, é anunciado ao participante que outro ciclo se iniciará. Novamente
os conteúdos são mostrados e o participante deve avaliá-los. Esse processo se repete mais uma
vez e a sessão de testes termina. O primeiro ciclo tem o objetivo de estabilizar as avaliações do
participante, e dados coletados nessa etapa não devem ser levados em consideração. As avaliações
finais são calculadas com as médias das avaliações realizadas no segundo e no terceiro ciclo de
visualizações. É importante que em nenhuma das sequências geradas em cada ciclo um mesmo
conteúdo esteja localizado na mesma posição que em outro ciclo. Os mesmos dois conteúdos
também não podem ocorrer seguidos um do outro em mais de um ciclo.

2.9.2 Double Stimulus Impairment Scale

O método de escala de distorção de estímulo duplo (DSIS) é um teste subjetivo de degradação
baseado na comparação direta entre um conteúdo distorcido e uma versão de referência do mesmo
conteúdo, livre de distorções. Sessões de avaliação tem duração de aproximadamente 30 minutos
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Figura 2.8: Diagrama de uma realização típica de testes de qualidade subjetiva do tipo DSIS.

e contam com um participante no papel de avaliador por vez. O método DSIS é caracterizado
por períodos alternados de observação e votação, que se repetem de maneira cíclica até que todos
os conteúdos sob análise sejam avaliados pelo participante. É comum a inclusão do próprio con-
teúdo de referência na sequência de conteúdos que devem ser avaliados pelos participantes, sem
a sua identificação para os mesmos. Esse tipo de variante experimental é identificado pelo termo
“referência oculta” (DSIS-HR).

A sequência de conteúdos mostrada deve ser escolhida de modo cobrir todos os níveis de degra-
dações dispostos na escala adotada no experimento, pelo menos para a maioria dos participantes.
Ao final da aquisição de dados, a nota média obtida entre todos os conteúdos e todos os parti-
cipantes seja aproximadamente 3. Indica que a faixa de distorções mostrada no experimento foi
adequada.

A sequência deve ter ordem aleatória evitando que participantes diferentes observem os con-
teúdos na mesma sequência ou, pelo menos, de maneira que um mesmo participante não observe o
mesmo conteúdo duas vezes seguidas, seja com o mesmo nível de degradação ou com degradações
diferentes. Isso pode ser obtido arranjando as sequências, por exemplo, através de um quadrado
latino [44, 45]. Quadrados latinos são arranjos de símbolos em uma matriz quadrada de lado n,
de tal maneira que cada símbolo ocorre exatamente uma vez em cada coluna e cada linha [46].
Uma maneira de aplicar o quadrado latino a sequências de um experimento é tratar cada eixo
como um passo da realização do experimento (usuário versus conteúdo de referência, por exemplo)
e cada símbolo como outra variável de interesse (uma permutação da sequência de degradações).
Isso permite projetar experimentos reduzindo a ocorrência de combinações repetidas de variáveis
independentes (controladas) entre realizações do experimento.

Evitar repetições na ordens de observações de diferentes participantes diminui a influência que
a relação de proximidade entre diferentes distorções possa ter nos resultados, e reduz a chance de
possíveis vieses ocorrerem. Um exemplo de realização de um teste DSIS se encontra diagramado
na Figura 2.8.

Ao final da série de sessões de avaliações, as notas atribuídas pelos participantes a cada conteúdo
têm suas médias calculadas. As notas variam em uma escala de distorção com as seguintes opções

5. Imperceptível

4. Perceptível, mas não incomoda

3. Incomoda levemente
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2. Incomoda

1. Incomoda muito

Esse tipo de escala costuma apresentar resultados mais estáveis para pequenas distorções do
que para grandes distorções. É possível realizar o método DSIS com uma escala reduzida a apenas
uma faixa da escala completa (e.g. de “incomoda levemente” a “imperceptível”), apesar de que se
recomenda o uso da escala toda. Em casos em que uma resolução maior das avaliação subjetiva
dos participantes, é possível ainda estender, sem muita alteração do design experimental, a escala
de avaliação de 5 pontos para 9 pontos, da seguinte maneira:

9. Imperceptível

8.

7. Perceptível, mas não incomoda

6.

5. Incomoda levemente

4.

3. Incomoda

2.

1. Incomoda muito

Existem duas variantes quanto ao formato das apresentações no método DSIS. Na variante I,
o conteúdo analisado e sua respectiva versão de referência são mostrados apenas uma vez cada, e
em seguida o participante registra sua nota. Na variante II, o par de conteúdos é mostrado duas
(ou múltiplas) vezes para cada participante, que então registra sua nota. A variante II requer mais
tempo para sua realização, e normalmente é utilizada quando o objeto de análise envolve distorções
com detalhes muito sutis.

2.10 Trabalhos prévios

Uma investigação preliminar [9] tentou estudar a relevância de artefatos de formato e de cor
para a qualidade geral, porém sem um estudo estatístico aprofundado. A questão de como ava-
liar distorções de geometria em conteúdo tridimensional foi previamente discutida em um estudo
sobre avaliação de qualidade em vídeos estéreo [47], que sugeriu que avaliações de qualidade são
dependentes da estrutura e do conteúdo da cena, e propôs que apenas alguns níveis de qualidade
geométrica poderiam ser distinguidos.

Em trabalhos recentes [10, 11], foi proposta uma metodologia realista para se avaliar a qualidade
do atributo geométrico de nuvens de pontos. Avaliações subjetivas foram feitas sobre conteúdos
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sujeitos a distorções de ruído gaussiano e de compressão baseada em octrees, que afetam apenas a
geometria. Os modelos distorcidos foram visualizados como nuvens de pontos, sem conversão para
representações baseadas em malhas (meshes), e avaliados usando um protocolo interativo, através
de um arranjo composto por um desktop mais um monitor, no primeiro artigo [10], e depois através
um dispositivo de realidade aumentada (AR), no segundo artigo [11]. Outro estudo [7] realizou
avaliações subjetivas de conteúdos codificados através de octrees e através de grafos, mantendo
os atributos de cor dos modelos originais inalterados. As nuvens de pontos foram visualizadas
representando pontos individuais como cubos, cujo tamanho era ajustado automaticamente em
função dos pontos vizinhos mais próximos. A visualização foi realizada de maneira passiva durante
a avaliação. O efeito de artefatos não-sintéticos também é discutido em outro estudo [48], apesar
de que restrito a métricas ponto-a-ponto. Métricas baseadas na distância de ponto-a-plano [4, 10]
se mostram mais robustas para avaliar defeitos no formato.

Também foi feita uma avaliação de qualidade de algoritmos de remoção de ruído em nuvens de
pontos [6]. Participantes visualizavam os conteúdos processados por um processo Screened Poisson
de reconstrução de superfície [49]. Outro estudo [12] adotou um procedimento similar. Nuvens de
pontos sem cor foram codificadas através de poda de octrees e visualizadas como malhas poligonais,
criadas através do mesmo algoritmo de reconstrução de superfícies (Screened Poisson).

Avaliação da qualidade de cor foi inicialmente discutida em um estudo [9] dentro de um escopo
limitado e de maneira mais extensa em outro estudo [48]. O primeiro sinteticamente adiciona
ruído ao sinal de cor e não propõe uma métrica objetiva, enquanto o segundo considera apenas
uma métrica SNR ponto-a-ponto para medir a qualidade de cor.

Em face das questões levantadas pelos estudos mencionados, o presente trabalho foca em um
novo método combinado de avaliação de qualidade de cor e de geometria em nuvens de pontos
voxelizadas. Para validar esse novo framework proposto, foi realizada uma série de experimentos
para determinar a correlação entre as métricas obtidas e a percepção humana subjetiva de qualidade
visual em conteúdo tridimensional, comparando com o desempenho de outras métricas atualmente
empregadas para medir a qualidade visual desse tipo de conteúdo. Nos próximos Capítulos são
descritos os experimentos realizados e os resultados obtidos são analisados.
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Capítulo 3

Desenvolvimento

3.1 Introdução

Neste capítulo o processo de elaboração do framework de métricas objetivas proposto é descrito
em detalhe. Em seguida, são descritos os experimentos realizados para verificar a correlação entre
as métricas obtidas através do framework e a percepção subjetiva de qualidade visual de nuvens
de pontos.

3.2 Representação de nuvens de pontos

O primeiro passo do método proposto de avaliação de qualidade visual de nuvens de pontos é
gerar múltiplas projeções ortográficas, de diferentes pontos de vista, do conteúdo voxelizado sob
análise. A escolha do número e posições dos pontos de vista deve garantir a extração eficiente da
maior quantidade de informação possível acerca do conteúdo original.

Sem conhecimento a priori da geometria e da importância de diferentes partes do objeto, ide-
almente deve-se obter uma amostragem uniforme dos voxels presentes no conteúdo. Em outras
palavras, projeções devem ser tomadas de direções uniformemente espaçadas entre si ao redor do
objeto. Isso é equivalente a amostrar uniformemente a superfície de uma esfera ou, em termos de
coordenadas esféricas, o plano composto pelas coordenadas θ (ângulo polar) e φ (ângulo azimutal).
Isso só é garantido de maneira exata para uma quantidade limitada de números de amostras. Espe-
cificamente, os únicos arranjos de amostras que se distribuem uniformemente através da superfície
de uma esfera são aqueles que coincidem com os vértices de um sólido platônico inscrito em tal
esfera. Consequentemente, apenas projeções tomadas desses pontos de vista amostram uniforme-
mente as direções possíveis ao redor de objetos [50]. Para números diferentes de amostragens, a
configuração ótima é dependente da tarefa em questão [51, 52, 53, 54]. No presente caso, se con-
sidera que quanto menor a variação da área da esfera associada com cada ponto de amostragem,
melhor a distribuição.

Na Figura 3.1, encontra-se um exemplo de projeções de um modelo tridimensional de uma
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Figura 3.1: Seis projeções ortográficas igualmente espaçadas ao redor de um modelo humano.

pessoa, tomadas a partir dos 6 vértices de um octaedro virtual circunscrevendo o volume repre-
sentado. Outro exemplo de projeções do mesmo modelo se encontra na Figura 3.9, porém a partir
de 4, 8, 14 e 40 pontos de vista. Nos dois últimos casos, o espaçamento entre os pontos de vista é
aproximadamente uniforme. Além disso, nos 4 casos os pontos de vista não se alinham mais com
a grade de voxels. Assim, para rasterizar a imagem é preciso interpolar os voxels que se encontram
em posições não inteiras, efetivamente tendo que se voxelizar o modelo novamente.

Existem maneiras de se aproximar o comportamento uniforme de amostragem da esfera, princi-
palmente quando o número de amostras se aproxima do infinito. É possível, por exemplo, amostrar
as direções aleatoriamente, ou amostrar através do algoritmo da espiral de Fibonacci [50]. Um
exemplo de amostragem usando a espiral de Fibonacci está disposto na Figura 3.2. No entanto,
para a maioria dos casos, um número pequeno de projeções se mostra suficiente. Na Figura 3.3
é mostrado o percentual de voxels de uma nuvem de pontos que é visto de alguma projeção (i.e.
não fica ocluso em pelo menos alguma projeção) em função do número de pontos de vista utili-
zados para se realizarem as projeções. Nos casos em que o número de pontos de vistas coincidiu
com o número de vértices de algum dos sólidos platônicos, as projeções foram tomadas de acordo.
Nos demais casos, foi realizada uma amostragem aproximadamente uniforme através da espiral de
Fibonacci. Se observa que a taxa com que o número de voxels vistos aumenta é cada vez menor
à medida que o número de ponto de vistas usados para se obter projeções do modelo aumenta
também. Isso revela que caso haja um custo maior associado a amostrar mais pontos de vista, um
número relativamente menor de amostras pode ser mais vantajoso.
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Figura 3.2: Pontos de amostragem distribuídos ao redor das esfera de acordo com o algoritmo da
espiral de Fibonacci e projetados no plano θ × φ.

Especialmente, o uso de 6 projeções se revelou conveniente. Nesse caso, os pontos de vista
coincidem com os vértices de um tetraedro regular. Isso ainda implica que os planos de projeções
formam exatamente um cubo ao redor do objeto avaliado, o que permite que as projeções se
alinhem paralelamente com as faces dos voxels que compõem o conteúdo em questão, mantendo
uma relação direta entre voxels do objeto e pixels de suas projeções, sem a necessidade de qualquer
interpolação ou outro tipo de pré-processamento. Isso pode explicar o comportamento da PSNR
média das projeções à medida que o número de pontos de vista utilizados varia, demonstrado na
Figura 3.4. Além da eventual convergência do valor de PSNR a partir de 15 projeções, se observa
um pico da PSNR para certos números de pontos de vista no início do gráfico. Principalmente
para 6 e 12 projeções, o valor de PSNR é mais alto.

Valores maiores de PSNR indicam um erro relativamente menor entre a imagem sob análise
e sua referência. De maneira análoga, quando o número de pontos de vista não permite que
as projeções tomadas se alinhem com os vértices de um octaedro (6 vértices) ou um icosaedro
(12 vértices), o erro medido entre as versões de teste e de referência aumenta. Pode se observar
que dos sólidos regulares, o octaedro e o icosaedro são os que apresentam o maior número de
vértices alinhados com as faces de um cubo, assumindo orientações compatíveis. Isso indica que a
interpolação necessária para a projeção de conteúdos voxelizados fora dos eixos ortogonais de seu
sistema de coordenadas introduz erro nas imagens geradas, pelo menos quando a métrica adotada
é a PSNR. Assim, o uso de 6 pontos de vista garante a maior fidelidade entre o conteúdo de teste
e sua versão de referência. Portanto, escolheu-se fixar em 6 o número de projeções no cálculo das
métricas usadas nos experimentos subjetivos realizados neste estudo.
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Figura 3.3: Proporção de voxels vistos para um determinado modelo em função no número de
pontos de vista projetados.

3.3 Métrica objetiva das projeções

De posse de um conjunto de projeções de um objeto tridimensional de referência e outro
conjunto de projeções a partir dos mesmos pontos de vista da versão distorcida desse objeto, é
possível realizar uma comparação entre os dois conjuntos de imagens através de qualquer métrica
objetiva existente para a qualidade de imagens bidimensionais. Foram exploradas 6 métricas
diferentes, entre elas PSNR e SSIM (e variações delas) e VIFP.

Para cada par de projeções, respectivas ao conteúdo de referência e o conteúdo distorcido,
obtém-se uma medida do nível de distorção. A métrica final para o conteúdo tridimensional é
calculada a partir da média da métrica entre todos os pares. Caso haja informação acerca da
relevância de cada projeção, uma média ponderada pode ser empregada.

3.4 Validação experimental

Foram realizados dois experimentos independentes para validar a correlação da métrica pro-
posta com a percepção humana de qualidade visual em conteúdos tridimensionais estáticos. O
primeiro experimento consistiu de participantes voluntários interagindo com modelos tridimensi-
onais de pessoas através de um visualizador e atribuindo notas para diversas características de
versões diferentes de cada conteúdo. O segundo experimento contou com modelos tanto de pessoas
como objetos. Assim como no primeiro, cada participante interagia com o conteúdo disponibili-
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Figura 3.4: PSNR médio entre diferentes projeções em função do número de pontos de vista
utilizados.

zado. No entanto, apenas uma única nota era atribuída a pares de conteúdos, referente à diferença
de qualidade geral observada entre cada conteúdo do par.

3.4.1 Experimento ACR

Este experimento foi desenvolvido como uma modificação do método de avaliação subjetiva
ACR-HR [55]. Cada participante observava em uma janela quadrada uma projeção ortográfica
de uma sequência com duas nuvens de pontos. Cada nuvem de pontos apresentava cinco versões
diferentes, uma de referência oculta e outras 4 versões degradadas através de diferentes processos.

A visualização era interativa, e os participantes podiam, para uma determinada nuvem de
pontos, alternar livremente e sem limite de tempo entre suas versões disponíveis, escolher o ponto
de vista (rotacionando e transladando o conteúdo) e o nível de ampliação da projeção. Cada versão
era disponibilizada em uma ordem aleatória e sem identificação para o participante. A interface
gráfica do programa utilizado para a visualização é mostrada na Figura 3.5.

A partir do momento que se sentisse confortável com sua aferição, o participante selecionava,
através da interface gráfica, uma nota para a qualidade observada em cada versão do conteúdo.
Foi considerada a escala ACR de 5 categorias:
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Figura 3.5: Interface gráfica do visualizador utilizado nos experimentos preliminares.

5. Excelente

4. Boa

3. Razoável

2. Pobre

1. Ruim

Após confirmar suas avaliações, as notas dadas pelo participantes para todas as versões da nuvem
de pontos avaliada eram registradas simultaneamente, e o próximo conteúdo era mostrado para
ele.

Foram utilizados dois conteúdos diferentes, cada um com 4 níveis de distorção e mais um
de referência, somando 10 avaliações por participante. No total, 12 voluntários participaram do
experimento.
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Figura 3.6: Interface gráfica do visualizador utilizado nos experimentos com estímulo duplo.

3.4.1.1 Conteúdos utilizados

Como conteúdos a serem avaliados no experimento, foram usadas duas nuvens de pontos. Am-
bas as nuvens de pontos foram obtidas extraindo um único quadro de uma sequência de vídeo
tridimensional (nuvem de pontos dinâmicas). O primeiro conteúdo, denominado de Ricardo, apre-
senta um modelo tridimensional da metade anterior do torso de uma pessoa. O segundo conteúdo,
denominado de Loot, apresenta um modelo completo do corpo de uma pessoa.

As versões sob avaliação da nuvem de pontos Ricardo foram geradas usando um algoritmo de
compressão com compensação de movimento [56] seguindo quatro níveis diferentes de quantização,
que degradavam tanto cor como geometria.

A sequência Loot foi avaliada sob quatro degradações diferentes:

• Alta qualidade, que sofreu apenas uma leve distorção de cor [56].

• Baixa qualidade, que sofreu uma distorção considerável de cor.

• Alta qualidade passa-baixas, que sofreu distorções de cor e de geometria leves. A distorção
de geometria foi obtida por um processo de filtragem passa-baixas composto por uma sub-
amostragem seguida de uma super-amostragem de mesmo nível.

• Baixa qualidade passa-baixas, que sofreu uma distorção considerável de cor e a mesma dis-
torção de geometria descrita na versão anterior.
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3.4.2 Experimento DSIS

Este experimento consistiu de sessões de avaliação subjetiva de maneira similar ao experimento
anterior. Neste caso, em vez de observar um conteúdo de cada vez, participantes viam pares de
projeções do mesmo ponto de vista, lado a lado. Em um dos lados, havia uma projeção do
conteúdo original. Do outro lado, a projeção de uma versão distorcida do conteúdo. Era usado
apenas um nível de distorção por vez. O lado em que a imagem de referência era mostrada era
aleatório, permanecendo o mesmo até o final da seção de cada participante. Ambos os lados eram
devidamente identificados para o usuário através da interface.

O participante podia então interagir com os pares de conteúdo, novamente podendo rotacionar,
transladar e ampliar eles livremente e sem limite de tempo. Toda interação era aplicada igualmente
a cada uma das duas projeções, resultando sempre em imagens equivalentes, exceto pela presença
de distorção em um delas. Uma representação da interface se encontra disposta na Figura 3.6.

Após o período de observação, o participante selecionava uma nota, de 1 (ruim) a 5 (bom),
para o grau de distorção observado entre a imagem de referência e a imagem distorcida. O usuário
então confirmava o envio de sua avaliação e o próximo conteúdo era mostrado para ele, em uma
ordem aleatória. Cada participante observou 8 níveis de distorção para 10 conteúdos diferentes
(incluindo tanto pessoas como objetos), totalizando 80 pares por participante, com 20 pessoas
tendo participado do experimento.

3.4.2.1 Conteúdos utilizados

No total, 7 conteúdos diferentes foram utilizados no decorrer do experimento. Projeções de-
monstrativas das nuvens de pontos estão dispostas na Figura 3.7. Projeções vistas de 6 pontos de
vista diferentes (formando um cubo ao redor do objeto) dos mesmos conteúdos estão dispostas nas
Figuras 3.10, 3.11, 3.12, 3.13, 3.14 e 3.15. Os conteúdos foram escolhidos de forma a apresentar
uma ampla gama de características diferentes. Tanto objetos inanimados e corpos humanos foram
incluídos, ambas as classes contendo variações de níveis de detalhes geométricos e de cor. Os
conteúdos longdress_vox10_1300 (longdress), loot_vox10_1200 (loot) redandblack_vox10_1550
(redandblack) e statue_Klimt foram obtidos do repositório MPEG e apresentam modelos huma-
nos. Já os conteúdos romanoillamp11 e biplane foram obtidos do repositório JPEG enquanto o
conteúdo amphoriskos12 foi obtido da plataforma Sketchfab1, sendo esses últimos modelos de ob-
jetos inanimados. A aquisição desses modelos pode se dar de diversas maneiras. Por exemplo,
os modelos longdress, loot e redandblack foram gerados filmando-se pessoas realizando ações em
tempo real no interior de uma estrutura com câmeras arranjadas em uma esfera ao redor do volume
sendo modelado. Para este experimento, foram utilizados apenas um dos quadros de cada uma
das sequências de vídeo.

O passo seguinte da preparação dos conteúdos foi processar as nuvens de pontos dos modelos
de forma a reduzir os possíveis fatores de influência dos resultados. Principalmente o número
de pontos precisou ser padronizado em algumas das nuvens de pontos utilizadas. Nem todos os

1https://sketchfab.com/
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(a) amphoriskos (b) biplane (c) longdress (d) loot

(e) redandblack (f) romanoillamp (g) statue_Klimt

Figura 3.7: Nuvens de pontos de referência usadas no experimento DSIS. O conteúdo "sta-
tue_Klimt" (g) foi utilizado apenas para o treinamento dos participantes.

Figura 3.8: Etapas do processamento dos conteúdos visualizados no experimento.

conteúdos precisaram passar por todos os processos empregados. Na figura 3.8 são demonstradas as
etapas de processamento. Em verde são mostradas etapas pelas quais apenas alguns dos conteúdos
passaram, enquanto que em azul estão os processos pelos quais todos os conteúdos passaram.

A etapa de pré-processamento serviu para garantir que o número de pontos não variasse dema-
siadamente entre conteúdos. O conteúdo biplane, principalmente, precisou passar por essa etapa.
Ele está disponível em múltiplas versões correspondentes a capturas de diferentes partes do objeto
representado (um avião biplano). Para o experimento, um modelo completo foi reconstruído a
partir das diferentes varreduras. Isso resultou em uma nuvem de pontos com cerca 106 milhões
de pontos, muito acima da média dos outros conteúdos e acima das capacidades de desempenho
aceitável do visualizador. Para reduzir o número de pontos a um limite aceitável, o programa
CloudCompare132 foi utilizado. Foi feita uma subamostragem uniforme da nuvem de pontos ori-

2Aplicação disponível em http://www.cloudcompare.org/
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Tabela 3.1: Descrição geométrica de cada conteúdo de referência. Além do número total de pontos
em cada modelo, são especificadas as distâncias mínimas e máximas entre todos os pares de vizinhos
mais próximos do modelo. São também especificadas as dimensões (após normalização) em cada
uma das direções ortogonais do sistema de coordenadas cartesiano.

Conteúdos: amphoriskos biplane longdress loot redandblack romanoillamp statue_Klimt

Pontos: 828,820 773,447 857,966 805,285 757,691 636,097 482,941

Min NN: 0.000977501 0.000977516 0.00101107 0.00101936 0.00103515 0.000977516 0.000977516

Max NN: 0.00239442 0.0470835 0.00226096 0.00203872 0.00253568 0.0693761 0.0100166

X/Y/Z: 0.60/1/0.68 0.65/0.23/1 0.40/1/0.20 0.35/1/0.41 0.44/1/0.30 1/0.45/0.51 0.30/1/0.29

ginal, com uma distância máxima permitida entre amostragens mais próximas igual a 0.009 (na
escala interna da própria nuvem de pontos, já que não é assumida nenhuma unidade de distância
na representação do modelo). Outro conteúdo que sofreu alterações em seu número de pontos foi o
modelo amphoriskos. Neste caso, foi preciso aumentar o número de pontos presente. Isso foi feito
utilizando um processo de reconstrução de superfície de Poisson, também através do programa
CloudCompare. Foi utilizada uma amostra por nó, mantendo-se os valores padrão das outras con-
figurações. Foram utilizados os vetores normais originais da nuvem de pontos. De posse da malha
reconstruída, 1 milhão de pontos foram aleatoriamente amostrados através do mesmo programa.
Nenhum dos outros conteúdos passou por esta etapa de pré-processamento.

A etapa de voxelização garante que todas as nuvens de pontos fiquem restritas a uma geometria
com pontos regularmente espaçados. Isso evita que o visualizador utilizado ou que a compressão
aplicada nas nuvens de pontos introduzam vieses. Especificamente, como todos os modelos hu-
manos do conjunto de dados utilizado já era originalmente voxelizado, os modelos de objetos
inanimados foram convertidos a grades de voxels quantizadas com precisão de 10 bits para que a
representação geométrica contínua desses conteúdos não afetasse as avaliações.

Em seguida, ocorre a etapa de redimensionamento e translação das nuvens de pontos. Isso
garante que todas as nuvens de pontos se encontrem na mesma faixa dinâmica de posições. O
codec utilizado para a introdução de distorções retorna nuvens de pontos na faixa de posições que
vai de -0.5 a 0.5 em cada direção, enquanto que os conteúdos originais ocupam uma faixa de 0
a 1023. Como o experimento requer a visualização simultânea dos dois conteúdos, é preciso que
eles estejam em posições e escalas equivalentes quando mostrados. Como padronização, todos os
conteúdos foram redimensionados de acordo e transladados para a origem, antes da codificação. Os
conteúdos de referência são obtidos diretamente desta etapa de redimensionamento e translação.
Informação sobre as características geométricas desses conteúdos está disposta na Tabela 3.1.

A etapa de codificação é responsável por produzir as versões distorcidas dos conteúdos a serem
usadas no teste subjetivo. A codificação aplicada nas nuvens de pontos de referência foi feita
através do software opensource disponibilizado como âncora em uma das chamadas de propostas
para compressão de nuvens de pontos emitida pelo MPEG3. Essa codificação segue um esquema

3Disponível em https://github.com/cwi-dis/cwi-pcl-codec
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Tabela 3.2: Pontos remanescentes e taxa (bpp) de geometria e color para cada conteúdo de teste
codificado.

Conteúdo Profundidade de octree
Percentual de

pontos remanescentes Geometria (bpp)
Cor (bpp)

QP = 10 QP = 50 QP = 90

amphoriskos

OD = 08 16.61% 0.400 0.078 0.234 0.652

OD = 09 53.92% 1.561 0.188 0.612 1.764

OD = 10 100% 5.006 0.301 1.004 2.889

biplane

OD = 08 8.04% 0.142 0.069 0.191 0.430

OD = 09 32.69% 0.618 0.209 0.686 1.623

OD = 10 100% 2.890 0.589 2.101 4.926

longdress

OD = 08 7.76% 0.169 0.047 0.134 0.358

OD = 09 29.63% 0.649 0.125 0.414 1.178

OD = 10 100% 2.520 0.347 1.169 3.423

loot

OD = 08 7.84% 0.173 0.034 0.078 0.210

OD = 09 29.99% 0.662 0.073 0.213 0.636

OD = 10 100% 2.556 0.182 0.561 1.716

redandblack

OD = 08 8.13% 0.182 0.039 0.093 0.258

OD = 09 31.09% 0.699 0.084 0.249 0.773

OD = 10 100% 2.694 0.199 0.632 2.037

romanoillamp

OD = 08 12.14% 0.282 0.055 0.159 0.447

OD = 09 42.47% 1.059 0.136 0.491 1.488

OD = 10 100% 3.827 0.289 1.124 3.492

statue_Klimt

OD = 08 15.00% 0.324 0.098 0.286 0.722

OD = 09 50.56% 1.384 0.240 0.792 2.147

OD = 10 100% 4.552 0.413 1.392 3.889

de compressão através de octrees. Cores são codificadas utilizando o algoritmo JPEG após serem
mapeadas a uma grade bidimensional, percorrendo a octree em ordem de profundidade. Para se
obter uma ampla faixa de distorções, foram aplicadas codificações em 3 níveis de qualidade de
geometria e 3 níveis de qualidade de cor: geometrias com octree de 8-bits, 9-bits e 10-bits, e cores
com parâmetro de qualidade JPEG (QP) igual a 10, 50 e 90. Tanto para a geometria como para
a cor, quanto maior o parâmetro utilizado, se espera obter uma qualidade visual maior. Foram
feitas todas as combinações entre os níveis de degradação utilizados, fornecendo 9 degradações
diferentes para cada conteúdo de referência. Outros parâmetros de degradação presentes no codec
utilizado não foram explorados, com todas as outras configurações mantendo seus valores padrão.
Esta etapa resulta nos conteúdos distorcidos a serem avaliados. Todos os 9 níveis de distorção dos
conteúdos de referência foram observados e avaliados por cada participante. Na Tabela 3.2 estão
listados o número de bits por pontos de cada modelo degradado e a porcentagem correspondente
de pontos remanescentes. Em alinhamento com o esperado, se observa que a distribuição de bits,
tanto em termos de geometria e de cor, varia consideravelmente dados a profundidade na octree e
o valor de QP, dependendo do conteúdo.

Para se calcularem as notas objetivas das métricas ponto a ponto, ponto a plano e baseadas em
cor, foi usado o programa de avaliação de compressão de nuvens de pontos adotado pelo MPEG
em sua versão 0.12 [57, 58]. No caso da métrica baseada em cor, o programa fornece os valores
PSNRY, PSNRU, and PSNRV, que são então combinados através da Equação 2.13, resultando na
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degradação de cor total do conteúdo. Para as métricas ponto a ponto e ponto a plano, os valores
totais de degradação de geometria foram baseados no erro quadrático médio (MSE) e na distância
de Hausdorff dos erros individuais.

As métricas plano a plano foram calculadas através do software proposto em [59], em usa
versão 1.04. Como tanto as nuvens de ponto distorcidas como suas versões de referência continham
vetores normais previamente associados a suas coordenadas, a metodologia proposta por Hoppe et
al. [60] foi utilizada para estimar as normais. Este método se baseia no ajuste de planos através
de mínimos quadrados para o conjunto dos 12 pontos mais próximos na vizinhança de cada ponto
de interesse ajustado pelo plano. Foi utilizada a implementação realizada na Point Cloud Library
(PCL) [61].

3.4.2.2 Equipamentos e ambiente

Os experimentos se realizaram em dois laboratórios durante aproximadamente o mesmo pe-
ríodo: na Universidade de Brasília (UnB), em Brasília, Brasil, e na École Polytechnique Fédérale de
Lausanne (MMSPG - EPFL), em Lausanne, Suíça. Nos dois laboratórios, foi utilizado um arranjo
com computador pessoal e um monitor Apple Cinema Display de 27 polegadas e resolução de 2560
pixels na horizontal por 1440 pixels na vertical, de modelo A1316. Participantes observavam os
conteúdos através do visualizador descrito na Seção 3.4.2, e eram capazes de rotacionar, transladar
e redimensionar os conteúdos usando um mouse. Para avaliar os conteúdos observados, botões de
rádio presentes na interface gráfica do visualizador eram selecionados, também com uso do mouse.

No MMSPG, experimentos se deram em uma sala que cumpre os requisitos para avaliação de
representação visual de dados da recomendação ITU-R BT.500-1316. A sala foi equipada com
luzes neon com temperatura de cor de 6500 K. A cor das paredes e das cortinas era de tom cinza
médio. A luminosidade da tela foi regulada para 120 cd/m2 seguindo o perfil CIE D65, e a luz
ambiente foi ajustada para o nível de 15 lux incidentes de maneira perpendicular à tela, medidos
de acordo com a recomendação ITU-R BT.2022. Na UnB, a sala de testes se encontrou isolada de
luz natural, sem acesso a janelas para o exterior. A iluminação foi composta por luzes fluorescentes
de temperatura de cor de 4000 K, e a cor das parede era branca.

4https://github.com/mmspg/point-cloud-angular-similarity-metric
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(a) 4 vistas (b) 8 vistas

(c) 14 vistas

(d) 40 vistas

Figura 3.9: Projeções ortográficas igualmente espaçadas ao redor de um modelo humano.
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(a) vista superior (b) vista posterior (c) vista direita

(d) vista anterior (e) vista esquerda (f) vista inferior

Figura 3.10: Projeções ao redor da nuvem de pontos de referência do conteúdo amphoriskos.

(a) vista superior (b) vista posterior (c) vista direita

(d) vista anterior (e) vista esquerda (f) vista inferior

Figura 3.11: Projeções ao redor da nuvem de pontos de referência do conteúdo biplane.
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(a) vista superior (b) vista posterior (c) vista direita

(d) vista anterior (e) vista esquerda (f) vista inferior

Figura 3.12: Projeções ao redor da nuvem de pontos de referência do conteúdo longdress.

(a) vista superior (b) vista posterior (c) vista direita

(d) vista anterior (e) vista esquerda (f) vista inferior

Figura 3.13: Projeções ao redor da nuvem de pontos de referência do conteúdo loot.
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(a) vista superior (b) vista posterior (c) vista direita

(d) vista anterior (e) vista esquerda (f) vista inferior

Figura 3.14: Projeções ao redor da nuvem de pontos de referência do conteúdo redandblack.

(a) vista superior (b) vista posterior (c) vista direita

(d) vista anterior (e) vista esquerda (f) vista inferior

Figura 3.15: Projeções ao redor da nuvem de pontos de referência do conteúdo romanoillamp.
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Capítulo 4

Resultados Experimentais

4.1 Introdução

Neste Capítulo são apresentados os resultados obtidos através dos experimentos subjetivos
realizados ao longo deste estudo. São discutidos tanto os comportamentos dos dados respectivos
às notas subjetivas em si, quanto as relações entre as notas e as métricas objetivas exploradas.

Especialmente são investigadas as relações com as métricas objetivas obtidas através do fra-
mework proposto (métricas projetivas). Como as métricas projetivas exploradas são baseadas na
aplicação de métricas bidimensionais já estabelecidas para a avaliação de imagens, as métricas
projetivas são denominadas pelo nome da respectiva métrica bidimensional acrescido do prefixo
“P” (e.g. a versão projetiva da métrica PSNR é denominada P-PSNR).

A seguir, na Seção 4.2, são mostrados os resultados do experimento baseado no método Absolute
Category Rating with Hidden Reference (ACR-HR). Logo após, são mostrados os resultados acerca
do experimento baseado no método Double Stimulus Impairment Scale, na Seção 4.3.

4.2 Experimento ACR-HR

Uma análise inicial da Figura 4.1 demonstra que a P-PSNR consegue discriminar um sinal
de alta qualidade dentre outros. Os resultados também demonstram uma correlação positiva
entre DMOS e P-PSNR com respeito ao sinal original. As avaliações de qualidade aparentaram ser
altamente dependentes do conteúdo presente na cena observada, e níveis de qualidade intermediária
são correlacionados de maneira menos consistente com a P-PSNR [10].

A sequência Loot revelou um comportamento inesperado quando usuários tenderam a preferir
a versão “alta qualidade passa baixas” em vez da versão “alta qualidade”, mesmo a primeira in-
troduzindo mais distorção e apresentando uma P-PSNR inferior. Isso pode ser justificado por um
viés causado pelo conteúdo da cena [10]. Todas as outras relações entre as notas mantiveram o
comportamento esperado de correlação com a P-PSNR.

Os resultados foram realizados com um número relativamente pequeno de participantes. Por
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Figura 4.1: Comparação entre a PSNR projetada em 6 vistas e as notas subjetivas dos participantes
obtidas no experimento baseado em ACR-HR.

consequência foi encontrada uma variância significativa nos dados obtidos. Apesar de os resultados
não serem estatisticamente fortes, eles indicam o potencial da métrica proposta e justificam um
estudo mais extenso.

4.3 Experimento DSIS

Nesta seção, apresentam-se e discutem-se as notas subjetivas coletadas durantes os experi-
mentos com esquema DSIS e os resultados de desempenho de métricas objetivas de qualidade
no estado da arte baseadas em projeção e baseadas em pontos. Para se referir às métricas pré-
existentes baseadas em pontos, nas tabelas e figuras desta seção se usam as abreviaturas po2point,
po2plane e pl2plane para indicar se a métrica em questão é baseada nas distâncias ponto-a-ponto,
ponto-a-plano e plano-a-plano, respectivamente. A métrica de cor baseada em pontos explorada,
denominada PSNRYUV, é calculada através da fórmula definida na Equação 2.13. Para se refe-
rir às métricas baseadas em projeções, propostas neste estudo, o prefixo P é omitido nas tabelas
e figuras em função de clareza visual, e a métrica é identificada pela métrica 2D aplicada nas
projeções.

4.3.1 Análise das notas subjetivas

Notas subjetivas obtidas dos dois laboratórios se mostraram estatisticamente distintas. Por isso,
a análise comparativa entre as métricas foi feita de maneira separada entre os dois conjuntos de
dados. Além disso, as notas também se mostraram estatisticamente distintas entre tipos diferentes
de conteúdos. Assim, a análise foi separada também em três conjuntos de dados, para os conjuntos
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(a) EPFL

(b) UNB

Figura 4.2: Avaliações subjetivas de cada conteúdo, separadas por degradação.
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(a) OD10_QP90 (b) OD09_QP90 (c) OD08_QP90

(d) OD10_QP50 (e) OD09_QP50 (f) OD08_QP50

(g) OD10_QP10 (h) OD09_QP10 (i) OD08_QP10

Figura 4.3: Diferentes níveis de distorção aplicados ao conteúdo longdress.

de dados de cada laboratório: o conjunto de dados completo (i), dados referentes a conteúdos
mostrando corpos humanos (ii) e dados referentes a conteúdos mostrando objetos inanimados (iii).

Os resultados acerca das notas subjetivas referentes às 6 nuvens de pontos descritas na Se-
ção 3.4.2.1 são mostrados na Figura 4.2. Cada subfigura indica o local de onde os dados foram
obtidos. São mostrados os histogramas das notas de opinião médias (MOS) de cada conteúdo
e cada tipo de degradação, com seus respectivos intervalos de confiança. Foi adotada a seguinte
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convenção de nomenclatura: dada uma profundidade de octree (OD) igual a XX ∈ {08, 09, 10}, que
determina nível de qualidade da geometria da nuvem de pontos, e dada um parâmetro de qualidade
JPEG (QP) igual a YY ∈ {10, 50, 90}, que denota o nível de qualidade de cor da nuvem de pontos,
o conteúdo é denominado ODXX_QPYY. Exmplos das diferentes combinações de distorção do
conteúdo longdress se encontram na Figura 4.3.

Baseado nos resultados indicados na Figura 4.2, as notas subjetivas variam entre os tipos
de degradação, mesmo para um mesmo conteúdo. Em particular, se nota que para as versões
de geometria mais esparsa dos conteúdos (OD = 08), independentemente do conteúdo em si,
melhorias na qualidade de cor (aumento do QP) causam um aumento relativamente mais lento da
nota subjetiva média. As avaliações aumentam mais rapidamente quando a resolução da geometria
é maior. Isso indica que quando a geometria do conteúdo tem uma resolução muito baixa, como
na Figura 4.3f, a percepção de qualidade é consideravelmente limitada, independentemente de
melhorias na cor. Esse é o caso pelo menos quando uma geometria pouco densa se traduz na falta
de espaços preenchidos pelo modelo (i.e. buracos entre os pontos).

Neste estudo não se exploraram efeitos que diferentes métodos de visualização podem ter na
percepção subjetiva dos avaliadores, como quando geometrias mais esparsas são interpoladas de
modo a preencher espaços vazios entre os pixels. No visualizador utilizado, o tamanho máximo
dos voxels/pixels renderizados foi mantido em um tamanho reduzido de modo a evitar efeitos
de borramento (blurring) do conteúdo de referência. Assim, se observaram lacunas nos modelos
principalmente para uma profundidade de octree igual a 08. Para nuvens de pontos de octree de
profundidade igual a 09, tais artefatos só se tornavam visíveis quando o avaliador inspecionava os
modelos com um nível de ampliação (zoom) considerável.

Outra razão que explica os comportamentos das avaliações de conteúdos com os menores níveis
de qualidade de geometria é o uso da estrutura de octree como base para a compressão. À medida
que se reduz a resolução de geometria de uma octree, um número cada vez maior de pontos da
nuvem de pontos original se encontra em nós folha da árvore. Considerando que a cor de um ponto
após compressão é determinada pela combinação dos pontos que se encontravam em um mesmo nó
folha antes da compressão, inerentemente os detalhes de cor de uma nuvem de pontos são limitados
pela resolução (e consequentemente, pela degradação) de sua geometria.

Outra informação que pode ser deduzida da Figura 4.2 é que, para um dado tipo de degradação,
o perfil de variação da qualidade percebida varia consideravelmente dependendo do tipo de conteúdo
em questão. Especificamente, avaliadores tenderam a ser mais críticos em relação a conteúdos que
representavam humanos do que aos conteúdos representando objetos inanimados. Também se
observam desvios menores nas notas de conteúdos que pertencem ao mesmo tipo, indicando que
comportamentos de avaliações similares ocorrem dentro de cada um dos grupos.

Ao se analisar as taxas de bits dos conteúdos codificados, como estão descritas na Tabela 3.2,
e comparar com as notas registradas na Figura 4.2, é possível concluir que taxas de bits mais altas
não necessariamente resultam em uma maior qualidade visual percebida. Por exemplo, em todos
os conteúdos participantes de ambos os locais de teste demonstraram uma preferência significativa
pela combinação entre melhor qualidade de cor (QP = 90) com uma qualidade média de geometria

50



(a) EPFL

(b) UNB

Figura 4.4: Matriz de diferença de significância com nível de confiança de 5% das preferências
subjetivas dos participantes nos testes, comparadas com cada outra combinação de distorções.
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(OD = 09), em vez da melhor qualidade de geometria (OD = 10) combinada com a pior qualidade
de cor (QP = 10), mesmo a primeira combinação apresentando uma taxa de bits menor do que a
segunda para todos os conteúdos avaliados.

Apesar dos valores de taxa de bits por ponto (bpp) serem dependentes do codec utilizado,
as observações feitas sugerem que uma melhor relação entre qualidade visual e recursos exigidos
(tanto para espaço de armazenamento como transmissão) pode ser atingida com a apropriada
alocação de bits para a representação de geometria e cor. Para corroborar as observações, foi
realizado um teste-t unicaudal com nível de confiança de 5%. O teste foi aplicado separadamente
aos dados obtidos em cada laboratório. A hipótese nula assumiu que uma nota média, obtida
através da média das avaliações de todos os conteúdos dadas um determinado nível de geometria e
de cor, é a mesma para qualquer outra combinação de níveis de geometria e de cor. Os resultados
estão dispostos na Figura 4.4. Em cada uma das sub-figuras, a cor do ladrilho de posição (X,Y )

representa quantas vezes, de 6 comparações no total, a combinação ODYY_QPYY foi preferida
contra a combinação ODXX_QPXX.

Considerando os dados obtidos na EPFL, as combinações OD09_QP50 e OD09_QP90, em 6
comparações com a combinação OD10_QP10, foram preferidas respectivamente 1 e 5 vezes. Um
padrão similar é observado com os dados obtidos na UnB, com as combinações mencionadas sendo
preferidas 2 e 5 vezes contra a combinação OD10_QP10, respectivamente. De maneira menos
pronunciada, ainda considerando os dados provenientes da UnB, uma preferência por taxas de bits
menores foi observado até mesmo em para níveis mais baixos de geometria, com as combinações
OD08_QP50 e OD08_QP90 sendo preferidas em vez da combinação OD09_QP10 1 e 3 vezes,
respectivamente.

É importante constatar que houve diferenças entre as notas obtidas em cada laboratório. Por
exemplo, observando a Figura 4.2, participantes na EPFL demonstraram uma rejeição maior a
degradações mais intensas de cor (QP = 10) do que participantes na UnB, especialmente com
nuvens de pontos contendo corpos humanos. Um teste t unicaudal com nível de confiança de
5% foi realizado para determinar se os comportamentos dos participantes diferiram de maneira
significante, estatisticamente. Resultados estão dispostos na Figura 4.5. A hipótese nula nesse
caso considerou que a MOS calculada para cada conteúdo degradado era a mesma entre os dois
laboratórios. De acordo com os resultados do teste, em casos que a hipótese nula foi rejeitada
participantes na EPFL apresentaram avaliações com notas menores do que participantes na UnB.
Essa diferença é observada principalmente para níveis de qualidade de cor intermediários ou meno-
res, com a única exceção sendo o conteúdo amphoriskos com qualidade de cor média e qualidade de
geometria inferior, que foi avaliado com uma nota mais baixa na UnB. É interessante notar que o
conteúdo redandblack recebeu notas maiores na UnB do que na EPFL na maioria das combinações
de distorções.

Também foi realizado um teste ANOVA multivariado para corroborar as observações feitas.
Resultados estão presentes na Tabela 4.1. Os valores p obtidos sugerem que tanto o laboratório
onde o experimento foi realizado (UnB versus EPFL), como o tipo de conteúdo (corpos humanos
versus objetos inanimados) e os níveis de geometria e de cor levaram a conjuntos de dados que são
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(a) amphoriskos (b) biplane

(c) longdress (d) loot

(e) redandblack (f) romanoillamp

Figura 4.5: Matrizes de diferença de significância com nível de confiança de 5% indicando se
participantes do experimento em um laboratório avaliaram a qualidade visual, acerca de uma dada
degradação de um conteúdo em particular, de maneira significativamente mais alta ou mais baixa
em relação a participantes do teste no outro laboratório.
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estatisticamente distintos entre si, com um intervalo de confiança de 5%.

4.3.2 Comparação entre métricas objetivas

Para a comparação das métricas objetivas investigadas, se considerou que os dados obtidos
nos testes realizados nos dois laboratórios eram estatisticamente distintos entre si, como foi de-
monstrado na Seção 4.3.1. Sendo assim, o benchmarking foi realizado nos dois conjuntos de dados
separadamente. Além disso, dado que as notas subjetivas se mostraram estatisticamente distin-
tas também para cada tipo de conteúdo, a análise também foi feita de maneira separada para 3
conjuntos de dados:

1. O conjunto de dados completo, incluindo todos os conteúdos

2. Dados respectivos somente a conteúdos contento objetos inanimados

3. Dados respectivos somente a conteúdos contendo corpos humanos

Na Tabela 4.2, estão dispostos os índices de desempenho para cada métrica objetiva de quali-
dade comparada com as notas subjetivas obtidas na EPFL, consideradas como valores de referência.
Para cada par de métrica e conjunto de dados, foram comparados o coeficiente de correlação de
Pearson [62] (PCC), o coeficiente de correlação de postos de Spearman [63] (SROCC), a raiz do erro
quadrático médio (RMSE) e a proporção de outliers (OR), este último definido como a proporção
de dados que se encontram fora do intervalo de confiança da curva ajustada. De maneira geral, as
métricas baseadas em projeção demonstram um desempenho melhor que as métricas baseadas em
pontos. A métrica de melhor desempenho para o conjunto de dados completo foi a baseada em
VIFP, apesar de que com uma baixa correlação entre métrica objetiva e notas subjetivas.

A correlação melhora drasticamente quando se comparam as métricas referentes apenas para
os determinados tipos de conteúdos separadamente. Particularmente, tanto o MSSIM como o
VIFP demonstram alto poder preditivo, em ambos os conjuntos de dados. Especialmente, o MS-
SIM apresenta um resultado relativamente maior para objetos inanimados e o VIFP para corpos
humanos.

Na Figura 4.6, são apresentados gráficos da distribuição de notas objetivas da métrica baseada
em projeções e baseada em pontos de melhor desempenho versus notas subjetivas de todos os
conteúdos, junto com um ajuste de curvas cúbico, para cada métrica. Também são apresentados
gráficos das distribuições de notas objetivas versus notas subjetivas para os conteúdos contendo
objetos inanimados na Figura 4.7 e versus conteúdos contendo corpos humanos na Figura 4.8.

Métricas baseadas em pontos se demonstram limitadas por não conseguirem examinar simul-
taneamente degradações de cor e de geometria. Nas Figuras 4.6b, 4.7b, 4.8b, 4.9b e 4.10b, cada
conteúdo está associado com uma nota determinada inteiramente pela profundidade da octree. No
entanto, à medida que a qualidade de cor é elevada e as notas subjetivas aumentam, a métrica
é incapaz de discriminar entre as versões, atribuindo a mesma nota objetiva para conteúdos de
qualidades perceptivelmente distintas. Em contraposição, as métricas baseadas em projeções não
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(a) Baseada em projeções.

(b) Baseada em pontos.

Figura 4.6: Métricas de maior correlação com notas subjetivas respectivas a todos os conteúdos
provenientes da EPFL.
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(a) Baseada em projeções.

(b) Baseada em pontos.

Figura 4.7: Métricas de maior correlação com notas subjetivas respectivas a conteúdos contendo
objetos inanimados provenientes da EPFL.
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(a) Baseada em projeções.

(b) Baseada em pontos.

Figura 4.8: Métricas de maior correlação com notas subjetivas respectivas a conteúdos contendo
corpos humanos provenientes da EPFL.
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(a) Baseada em projeções.

(b) Baseada em pontos.

Figura 4.9: Métricas de maior correlação com notas subjetivas respectivas a todos os conteúdos
provenientes da UnB.
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(a) Baseada em projeções.

(b) Baseada em pontos.

Figura 4.10: Métricas de maior correlação com notas subjetivas respectivas a conteúdos contendo
objetos inanimados provenientes da UnB.
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(a) Baseada em projeções.

(b) Baseada em pontos.

Figura 4.11: Métricas de maior correlação com notas subjetivas respectivas a conteúdos contendo
corpos humanos provenientes da UnB.
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demonstram dificuldade em diferenciar entre esses conteúdos e prever com uma boa correlação a
qualidade subjetiva dos conteúdos.

A correlação entre as métricas objetivas e os dados de notas subjetivas obtidos na UnB estão
dispostos na Tabela 4.3. Foram usados as mesmas relações estatísticas empregadas na Tabela 4.2.
Gráficos da distribuição de notas objetivas em função de notas subjetivas de todos os conteúdos
se encontram na Figuras 4.9, enquanto que na Figura 4.10 se encontra a distribuição apenas
para conteúdos contendo objetos inanimados, e na Figura 4.11 a distribuição é feita considerando
apenas conteúdos com corpos humanos. Ocorre um comportamento similar ao observado para o
conjunto de dados obtidos na EPFL. A correlação para todas as métricas é mais forte quando
dados referentes a objetos e a modelos humanos são analisados separadamente, e em ambos os
casos as duas métricas com maior correlação com as notas subjetivas são novamente o MSSIM e o
VIFP.

O RMSE e o OR observados para os dados obtidos na UnB se mantiveram menores com respeito
aos valores respectivos aos dados obtidos na EPFL. Uma explicação para esse comportamento são
os intervalos de confiança relativamente maiores encontrados nos dados obtidos na UnB, com o
intervalo de confiança médio dos mesmos sendo 26,95% maior que os dos dados EPFL.

Outra característica observada é que uma acurácia maior é encontrada para conteúdos repre-
sentando objetos inanimados. Observadores humanos tendem a avaliar conteúdos que contém seres
humanos de maneira mais fina do que outros tipos de conteúdo. Assim, pequenas degradações afe-
tam relativamente mais a qualidade percebida de conteúdos contendo pessoas do que os de outros
tipos. Nenhuma das métricas leva essa diferença em consideração, resultando em comportamen-
tos e relações diferentes entre a qualidade prevista através das métricas e a qualidade subjetiva
percebida. Isso é confirmado pelos resultados de um teste ANOVA, presentes na Tabela 4.1, que
demonstram que as notas não são estatisticamente equivalentes.

É interessante notar que as observações sobre o desempenho relativo das métricas projetivas
comparadas se mantêm para dados obtidos em ambos os locais de realização dos experimentos.
Mesmo com diferenças estatísticas entre as notas subjetivas em função do local do experimento, a
melhor métrica encontrada era a mesma entre os dois locais. Isso é evidência de que a correlação
entre métricas projetivas e qualidade visual percebida pode ser robusta entre diferentes populações.

Ressalta-se que, apesar de durante a avaliação subjetiva os participantes terem tido um acesso
interativo ao conteúdo, com escolha livre de ponto de vista, apenas 6 pontos de vista distintos e
específicos foram usados para calcular a métrica objetiva. Ainda assim, isso foi o suficiente para
prever a qualidade visual dos conteúdos. É possível que uma correlação maior seja observada para
uma escolha diferente de pontos de vista para as projeções, tanto em maior número ou em arranjos
diferentes entre si.

Outro fator que pode ter influenciado os resultados obtidos é a presença do plano de fundo
cinza nas projeções. Como ele é incluído no cálculo das métricas objetivas, é possível que essa seja
a causa das diferenças observadas em métricas objetivas de conteúdos de notas subjetivas próximas
(i.e., amphoriskos e romanoillamp).

61



Por fim, uma outra extensão possível do arcabouço proposto é o cálculo contínuo e em tempo
real da métrica objetiva enquanto um observador interage com o objeto sendo avaliado, a partir
da mesma visualização fornecida para o observador.

Tabela 4.1: ANOVA multivariado.
Fonte SS DF MS F p

Laboratório de teste 8.82 1 8.817 13.92 0.0002
Tipo de conteúdo 249.42 1 249.424 393.81 0
Degradação de geometria 1460.84 2 730.422 1153.24 0
Degradação de cor 618.86 2 309.429 488.55 0
Erro 1363.64 2153 0.633

Total 3701.58 2159

Tabela 4.2: Benchmarking das métricas objetivas considerando os dados obtidos na EPFL como
valores de referência. As métricas comparadas encontram-se separadas entre baseadas em projeções
(tal qual no framework proposto) e baseadas em pontos (já previamente estabelecidas). Os índices
de correlação entre cada métrica e as notas subjetivas são calculados para 3 conjuntos de dados
(todos os conteúdos, conteúdos de objetos e conteúdos de pessoas).

Métrica
Conjunto completo Objetos inanimados Corpos humanos

PCC SROCC RMSE OR PCC SROCC RMSE OR PCC SROCC RMSE OR

B
as

ea
d
a

em
p
ro

je
çã

o

PSNR 0.520 0.497 0.981 0.741 0.797 0.786 0.735 0.630 0.744 0.739 0.633 0.704

PSNR-HVS 0.570 0.564 0.943 0.741 0.845 0.841 0.650 0.630 0.797 0.773 0.572 0.667

PSNR-HVS-M 0.601 0.585 0.918 0.741 0.866 0.851 0.609 0.593 0.822 0.795 0.539 0.667

SSIM 0.494 0.497 0.998 0.778 0.873 0.838 0.593 0.704 0.847 0.815 0.503 0.630

MSSIM 0.677 0.682 0.845 0.685 0.929 0.934 0.451 0.556 0.814 0.861 0.550 0.667

VIFP 0.754 0.717 0.754 0.648 0.906 0.932 0.516 0.593 0.905 0.861 0.402 0.519

B
as

ea
d
a

em
p
on

to
s po2pointMSE 0.672 0.597 0.850 0.667 0.795 0.822 0.738 0.630 0.651 0.702 0.719 0.704

po2pointHausdorff 0.683 0.725 0.839 0.648 0.793 0.824 0.741 0.630 0.651 0.707 0.719 0.704

po2planeMSE 0.656 0.598 0.866 0.704 0.763 0.755 0.786 0.741 0.637 0.689 0.730 0.741

po2planeHausdorff 0.683 0.686 0.839 0.648 0.792 0.778 0.743 0.667 0.652 0.686 0.718 0.741

pl2planeRMS 0.679 0.676 0.843 0.759 0.707 0.702 0.861 0.778 0.756 0.653 0.620 0.630

pl2planeMSE 0.675 0.676 0.847 0.759 0.662 0.753 0.912 0.852 0.701 0.715 0.676 0.593

Color - PSNRYUV 0.539 0.491 0.967 0.833 0.669 0.753 0.904 0.852 0.702 0.715 0.675 0.593
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Tabela 4.3: Benchmarking das métricas objetivas considerando os dados obtidos na UnB como
valores de referência. O mesmo esquema de organização da Tabela 4.2 é seguido.

Métrica
Conjunto completo Objetos inanimados Corpos humanos

PCC SROCC RMSE OR PCC SROCC RMSE OR PCC SROCC RMSE OR

B
as

ea
d
a

em
p
ro

je
çã

o

PSNR 0.582 0.545 0.874 0.667 0.799 0.794 0.683 0.481 0.756 0.747 0.616 0.444

PSNR-HVS 0.623 0.608 0.840 0.648 0.835 0.850 0.625 0.519 0.805 0.783 0.558 0.407

PSNR-HVS-M 0.652 0.629 0.814 0.630 0.853 0.862 0.592 0.444 0.830 0.806 0.524 0.444

SSIM 0.566 0.570 0.886 0.667 0.880 0.893 0.539 0.593 0.865 0.831 0.471 0.370

MSSIM 0.739 0.738 0.724 0.537 0.940 0.961 0.389 0.222 0.859 0.886 0.482 0.370

VIFP 0.784 0.740 0.667 0.519 0.877 0.884 0.545 0.444 0.919 0.890 0.370 0.296

B
as

ea
d
a

em
p
on

to
s po2pointMSE 0.747 0.652 0.714 0.556 0.843 0.792 0.610 0.481 0.728 0.758 0.645 0.519

po2pointHausdorff 0.757 0.775 0.702 0.537 0.844 0.839 0.609 0.481 0.728 0.757 0.645 0.519

po2planeMSE 0.736 0.670 0.727 0.500 0.824 0.798 0.643 0.519 0.713 0.740 0.659 0.556

po2planeHausdorff 0.758 0.749 0.701 0.537 0.844 0.806 0.610 0.481 0.730 0.762 0.643 0.519

pl2planeRMS 0.520 0.461 0.918 0.815 0.654 0.596 0.859 0.741 0.685 0.607 0.685 0.593

pl2planeMSE 0.666 0.664 0.801 0.704 0.629 0.678 0.882 0.778 0.771 0.781 0.599 0.444

Color - PSNRYUV 0.672 0.664 0.795 0.704 0.629 0.678 0.883 0.778 0.773 0.781 0.597 0.444
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Capítulo 5

Conclusões

Uma métrica objetiva para avaliação de qualidade que inerentemente leva em consideração
distorções de cor e de geometria foi proposta. Experimentos de avaliação subjetiva verificaram
uma forte correlação entre o framework proposto e a qualidade subjetiva percebida.

Outras métricas propostas na literatura, além de não incorporar os aspectos de cor e de geo-
metria simultaneamente, apresentam correlação menor com avaliações subjetivas. Isso evidencia
a superioridade do sistema proposto em relação a métodos existentes no campo de processamento
de nuvens de pontos.

Também foram feitas observações interessantes acerca do comportamento dos avaliadores du-
rante os testes subjetivos. O principal artefato que prejudicou a percepção da qualidade dos
conteúdos analisados para os participantes no experimento foi o surgimento de lacunas entre os
pixels das imagens projetadas. Também se percebe que participantes tendem a ser mais críticos
quando o conteúdo em questão representa pessoas.

Se revela a possibilidade de se explorar a percepção humana sob mais fatores. Especialmente,
em trabalhos futuros deseja-se determinar a relação entre qualidade percebida, distorções de cor e
distorções geométricas que não introduzam lacunas na superfície dos modelos ou que diminuam a
densidade de pontos/voxels da nuvem de pontos.

Esforços já estão sendo realizados para a elaboração de experimentos subsequentes com um fra-
mework de visualização com melhor desempenho, em uma plataforma web com aceleração gráfica.
Isso permitirá a aquisição de dados com mais participantes, aumentando a significância estatística
dos padrões de comportamento observados e o uso de conteúdos mais variados.

Também deseja-se incluir em futuros estudos novas metodologias de compressão no estado da
arte, propostas ao longo do desenvolvimento deste trabalho. Além de uma validação subsequente
da métrica proposta, poderão se traçar considerações acerca dos desempenhos relativos de cada
codec, em termos de suas relações de rate-distortion.
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