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RESUMO

Este estudo propoe um novo arcaboucgo para a mensuracao e avaliacdo da qualidade visual de
contetudos tridimensionais representados através de nuvens de pontos, baseado na projecao bidi-
mensionais dos contetdos sob anélise. A escolha do ntmero e orientacao das projecoes é feita
de maneira a cobrir a superficie do conteiido em anélise da maneira mais uniforme possivel. As
projecoes sao entao mensuradas através de métricas objetivas comuns para a avaliacao de conteido
bidimensional. Por meio de experimentos subjetivos, o desempenho do arcabougo é explorado em
conjunto com diversas métricas comumente utilizadas em anélise de imagens ou videos, e compa-
rado com métricas baseadas em pontos ja utilizadas para a avaliacao de contetdo tridimensional.
Em relagao a outras métricas ja existentes, o desempenho do arcabougo proposto se mostra consi-

deravelmente superior em prever a qualidade subjetiva percebida por pessoas.

Palavras-chave: Nuvem de pontos, métrica objetiva.

ABSTRACT

This study proposes a novel framework for the measuring and evaluation of visual quality of three
dimensional content represented by point clouds, based on two dimensional projections of the
contents under evaluation. The choice of the number and orientation of the projections is done so
as to cover content surface as uniformly as possible. Projections are then evaluated using objective
metrics usual to two dimensional content. By performing subjective experiments, the framework’s
performance is explored combined with several metrics common in analysis of images or video,
and compared with point-based metrics normally used in three-dimensional content evaluation.
Relative to other previously existing metrics, the framework’s performance is considerably superior

at predicting subjective quality as perceived by human beings.

Key-words: Point cloud, objective metric
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Capitulo 1

Introducao

Nesta secao sao estabelecidos conceitos necessd-
ri0s para a compreensao de como conteudo visual
tridimensional pode ser representado através de
nuvens de pontos e como esse tipo de conteido

pode ter sua qualidade avaliada.

1.1 Contextualizagao

O sistema visual humano é naturalmente adaptado & percepcao de conteidos tridimensionais.
No entanto, historicamente a maior parte do conteido de midias visuais foi bidimensional [1, 2].
Contetido bidimensional nao se aproveita da totalidade da capacidade sensorial humana, perdendo
oportunidades de comunicar riqueza de detalhes e imersao em niveis proximos ao de interacoes em

pessoa.

O aumento da disponibilidade de contetido tridimensional ocorreu principalmente nos ultimos
anos. Acompanhando essa tendéncia, tecnologias voltadas a esse tipo de conteiido comecaram a

se desenvolver recentemente [3].

1.2 Motivacao

Durante o desenvolvimento de qualquer técnica de processamento de contetido visual, como
compressao de video, uma etapa necessaria é a comparacao relativa da degradacdo da fidelidade
entre duas imagens. Isto é, para determinar entre dois processos qual é o mais vantajoso em termos
de qualidade, é necessario obter uma medida de quanto o contetido modificado por cada processo

tem sua qualidade degradada em relagao ao contetdo original, no contexto da visao humana.

Quanto mais correlacionada com a percepgao subjetiva humana, maior a garantia de que as con-
clusoes da analise objetiva de técnicas de processamento sejam significativas e tenham resultados

consistentes com a realidade.



1.3 Definicao do problema

Maneiras de se disponibilizar, processar e avaliar a qualidade de contetidos de duas dimensoes

ja foram bem exploradas na literatura [4, 5, 6, 7, 8, 9].

No entanto, processamento de contetdo de trés dimensoes é um campo com poucos padroes
definidos e sem consenso sobre a melhor maneira de realizar todas as tarefas necessarias para a

analise e desenvolvimento de novas tecnologias.

Além do mais, propostas existentes falham tanto em incorporar a medida da qualidade aspectos
relacionados & geometria e & cor dos contetidos avaliados, como em manter uma correlacao proxima

com a qualidade visual subjetiva percebida por seres humanos [10, 11, 12].

1.4 Objetivos do projeto

Propoe-se uma nova técnica computacionalmente simples e eficiente para a avaliagdo objetiva
de qualidade de imagens tridimensionais no formato de nuvens de pontos que é capaz de incorporar
aspectos visuais de cor e geometria, ao mesmo tempo que mantém uma correlagao robusta com

avaliacoes subjetivas de qualidade.

1.5 Apresentacao do manuscrito

No Capitulo 2 sera feita uma revisao bibliografica sobre o tema de estudo. Em seguida, o Capi-
tulo 3 descreve a metodologia empregada no desenvolvimento do projeto. Resultados experimentais

sao discutidos no capitulo 4, seguido das conclusodes no Capitulo 5.



Capitulo 2

Revisao Bibliografica

2.1 Introducao

Avaliagao objetiva e subjetiva da qualidade de nuvens de pontos ainda sao problemas abertos [4,
5,10, 11, 12, 6, 7, 8, 9]. Particularmente, a combinacao das avalia¢oes de geometria e de cor tem
sido dificil.

Para compreender a relacao entre métricas objetivas e contetidos tridimensionais, principal-
mente aqueles representados através de nuvens de pontos, é interessante observar a mesma relagao
acerca de contetdos bidimensionais. Ao longo deste capitulo sdo abordados temas relacionados
com a representacao e analise de contetido bidimensional. Em seguida, sdo tragados paralelos en-
tre o caso bidimensional e tridimensional, em termos de anéalise do contetido. Por fim, é explorado

o estado da arte na analise de qualidade de contetido tridimensional.

2.2 Representacao de imagens

2.2.1 Graficos raster

No campo da computagao grafica, um gréfico raster (grafico em varredura), também chamado
de bitmap (mapa de bits) é uma estrutura de dados usada para representar imagens através de
uma matriz de pontos regularmente e densamente espagados em uma &area retangular. Cada ele-
mento nessa matriz tem um valor definido, representando alguma caracteristica visual (e.g. cor,
intensidade luminosa) de um elemento minimo que compo6e uma imagem, o pizel, do inglés picture

element.

Esse tipo de representacao obtém vantagem do modo como imagens digitais sao visualizadas
em praticamente qualquer equipamento eletrénico de midia moderno. De computadores a TVs e
smartphones, a adocao de telas compostas por elementos emissores de luz individuais arranjados
em uma estrutura regular é ubiqua. Isso cria uma relagao de um para um entre a representacao de

imagens através de graficos raster e a maneira como o hardware fornece o contetido diretamente ao



usudario. De fato, a relacao de proximidade entre graficos raster e visualizacao de contetido digital
é inerente, ao ponto de que representagoes alternativas de contetido grafico normalmente requerem

a conversao para graficos raster (rasterizagao) antes que possam ser disponibilizadas a usuéarios.

2.2.2 Graficos vetoriais

Em oposicao a graficos raster, que definem diretamente o valor de cada posi¢ao de uma imagem,
graficos vetoriais descrevem apenas alguns pontos presentes na imagem e a maneira como eles se
conectam. E possivel estabelecer que dois pontos estejam conectados por uma linha reta, ou uma
curva polinomial de terceira ordem, por exemplo. Também é possivel especificar a cor, largura e
estilo (e.g. pontilhada, rajada), entre outras caracteristicas da linha. Combinando esses elementos,
se formam objetos visuais gradualmente mais complexos, desde simples poligonos e letras a objetos

fisicos completos.

Uma vantagem de representar uma imagem através de um grafico vetorial é a resolugao ser
independente de escala. Ampliar ou diminuir a imagem nao causa o surgimento de artefatos de
pixelizacao (quando pizels individuais podem ser identificados em uma imagem), como é comum
em imagens raster. Graficos vetoriais também sao capazes de representar imagens de maneira mais
eficiente em termos de armazenamento: como a imagem nao precisa ser descrita explicitamente
em termos de cada regiao presente (i.e. graficos vetoriais sdo uma representagdo esparsa, ao invés

de densa), no total menos bits precisam ser escritos para representa-la.

No entanto, a principal desvantagem acerca de graficos vetoriais decorre da natureza dos dis-
positivos que sao usados para visualizar imagens. Em praticamente qualquer midia eletrénica
moderna, o principio de funcionamento é inerentemente analogo a graficos raster. Dessa maneira,
mesmo uma imagem vetorial precisa ser convertida para uma imagem raster antes de poder ser

visualizada na tela de algum dispositivo eletrénico.

2.3 Representagao de volumes

Com o surgimento de conteido digital tridimensional, foi necessario o desenvolvimento de
maneiras de representa-lo de maneiras que possibilitassem seu consumo direto por seres humanos.
Nesta segao, sao exploradas algumas maneiras de representar contetidos dessa natureza comumente

aplicadas atualmente.

2.3.1 Nuvens de pontos

Nuvens de pontos (point clouds ou PCs) sao uma maneira de baixa complexidade e alta efici-
éncia de captura, codificagdo e visualizagao de contetido tridimensional. Um determinado objeto
é representado por nuvens de pontos listando-se, com a desejada precisao, cada posi¢ao espacial

que é ocupada pelo objeto em questao. Se cada ponto p; tem sua posi¢ao definida por uma tupla



v; = (x4, Yi, zi), a geometria de um objeto pode ser descrita por um conjunto V', tal que

($17y1, 21)
($2,y2722)
V ={v1,v2,...,vn} = i . (2.1)

(l‘nayna Zn)

E possivel também listar de maneira similar algum atributo (por exemplo, cores, vetores nor-
mais ao ponto) que se deseja representar acerca do objeto. No caso de valores de cor representados
no espago RGB, cada ponto p; tem sua cor determinada por uma tupla ¢; = (r4, g;, b;), em que 7y,
gi € b; sdo valores inteiros de 0 a 255, diretamente proporcionais & intensidade luminosa dos canais

vermelho, verde e azul da imagem, respectivamente!. Chega-se entdo ao conjunto

(r1,91,b1)

9,72, b
O = (ercmnen) = 4 29202 (2.2)

(rnv 9n, bn)

que, junto com o conjunto V', é capaz de formar uma representacao visual completa de um objeto

tridimensional.

E interessante notar que, baseando-se nas Equacoes 2.1 e 2.2, os conjuntos V e C podem
facilmente ser representados através de notacdo matricial. Assim, obtém-se uma lista de pontos
(coordenadas espaciais) e uma lista de atributos cujos itens sao pareados um a um com os pontos
da lista de posigoes. Isso resulta em uma representacao esparsa do conteudo visual do objeto de
interesse. Em contraste, imagens raster sao uma representagao densa do conteiido em questao, i.e.
cada posig¢ao possivel de ser representada no espago visual tem um valor atribuido com alguma

grandeza (por exemplo, cor).

Na maioria dos casos, contetido tridimensional representa apenas a superficie de objetos. Por
isso, ha uma grande redugao dos requisitos de armazenamento e processamento ao se adotarem
representacoes esparsas para esse tipo de contetdo, ji que a maior parte do volume espacial nao é

ocupado.

Quanto a representacao das coordenadas espaciais dos pontos ocupados, nao existe uma li-
mitacao prévia do formato que deve ser seguido. A maioria dos sistemas adota a representagao
através de coordenadas cartesianas com precisdao de ponto flutuante. Este trabalho adota uma
representacao similar no sistema cartesiano, no entanto, optou-se por limitar o escopo & precisao

inteira, fazendo uso do conceito de vozxels.

2.4 Visualizagao de nuvens de pontos

Toda aplicacao grafica tem em comum uma etapa de visualizagdo, ou renderizacdo. A melhor

maneira de visualizar um contetdo depende da finalidade da aplicagao. Isso é verdade principal-

LConsiderando-se 8 bits de precisdo por canal para a representacio do sinal de cor.



mente para nuvens de pontos. Uma aplicacao que requer o maximo de qualidade visual pode se
beneficiar de uma abordagem baseada em ray tracing[13|, em que os possiveis caminhos de raios
de luz entre o objeto e o observador sao exaustivamente explorados. No entanto, essa aborda-
gem ¢é extremamente custosa em termos computacionais. Aplicagoes que requerem desempenho e
funcionamento rapido, como visualizagoes interativas em tempo real, ou streaming, precisam de

abordagens alternativas.

Aplicagoes que permitem menor fidelidade visual em troca de desempenho costumam adotar
abordagens baseadas em rasterizagao, ou seja, convertem diretamente os elementos de represen-
tacdo da nuvem de pontos em pizels. Aplicagoes baseadas em rasterizacdo permitem que a visu-
alizacao seja feita de maneira mais rapida e mais flexivel. A seguir sdo discutidas duas maneiras
de renderizagao baseadas em rasterizacao de nuvens de pontos, primeiro através de splats e em

seguida através de vozxels.

Em ambos os casos, independentemente da natureza do contetido, nessa etapa o contetudo é
fornecido ao usuéario através de imagens bidimensionais. Isso revela uma possivel relagao subja-
cente, pelo menos em termos de maneira de consumo e percepcao do contetido, entre contetidos de

natureza a principio diferentes (bidimensional e tridimensional).

2.4.1 Renderizacao através de splats

tela

normal

splat projetado

Figura 2.1: Exemplo de projecao e subsequente rasterizacao de um splat. Imagem disponivel em

http://www.cs.rug.nl/ roe/courses/acg/rendering

Algoritmos baseados em splats sdo alguns dos mais utilizados na visualizagdo de nuvens de
pontos. O elemento minimo de uma nuvem de pontos, o ponto adimensional, é um objeto abstrato,
sem volume ou area associados, tendo apenas posicao definida. A visualizacao através de splatting
tem a ideia de considerar um ponto como uma amostra de uma superficie orientada. Isto é, cada
ponto pode estar associado a um objeto que, além de posicao, tem area, formato, orientacao e cor
definidos, chamado de splat[14]. Quando pontos suficientes sdo tomados em conjunto, a unido de

seus respectivos splats forma uma descrigao completa da superficie do objeto modelado.



Existem diversas maneiras possiveis de se definirem os splats respectivos de cada ponto em
uma nuvem de pontos. Para se determinar a orientagao do splats, pode-se levar em consideracao a
normal no ponto em questao, ou até as normais em uma dada vizinhanca ao redor do mesmo. O
mesmo pode ser feito para determinar o tamanho ou formato do splats, dependendo do objetivo
da aplicagao. Outra opcao é adotar valores fixos e pré-determinados dos mesmos. Normalmente,
splats sao feitos usando circulos ou elipses, mas outros formatos s&o possiveis. Apos uma represen-
tagdo adequada ter sido adotada, a representacao é rasterizada, sendo convertida a uma projecao
bidimensional da superficie do objeto, agora composta por splats. Esse processo é demonstrado na

Figura 2.1.

Figura 2.2: Nuvem de pontos visualizada através de splats quadrados, a partir de diferentes dis-
tancias. Para um mesmo tamanho de elemento primitivo, & medida que se aproxima do modelo,

lacunas surgem na geometria.

Em principio, splats podem ocupar qualquer posigao no espaco e ter qualquer orientacao,
independentemente de outros splats em sua vizinhanga geométrica. Uma consequéncia disto é que,
caso procedimentos adicionais ndo sejam incorporados no processo de visualiza¢ao (como filtragem
ou limitagdes as posi¢oes/orientagdes possiveis), artefatos desagradaveis, como buracos, aliasing e

sobreposicao de splats, podem surgir e prejudicar a qualidade percebida na imagem.

Especialmente, buracos e espagos entre splats consecutivos sao perceptiveis. Esse tipo de
artefato pode ser ainda exacerbado caso a aplicagao de visualizacao nao utilize splats com tamanhos
que reagem ao nivel de proximidade entre observador e imagem (i.e. zoom). Nesse caso, expandir
a imagem torna os pontos relativamente mais distantes entre si, enquanto que o tamanho do splats
na imagem continua o mesmo, causando o efeito de que o objeto fica cada vez menos denso e mais
translicido, até que pontos individuais conseguem ser distinguidos e o espago entre eles é visto

claramente. Esse efeito é demonstrado na Figura 2.2.



Figura 2.3: Exemplo de interpolagao de cores durante o processo de voxelizagao

2.4.2 Renderizacao através de Voxels

Assim como imagens bidimensionais sdo compostas pela unido de elementos minimos (deno-
minados de pizels) organizados regularmente em uma matriz, objetos volumétricos podem ser

descritos em um espago regularmente amostrado em vozels (do inglés volume element).

Para se representar contetido visual através de voxels, é preciso limitar o dominio espacial a um
volume conhecido e estabelecer um nivel de resolugdo geométrico. O mais comum é se trabalhar
com volumes cubicos com lados de dimensao igual a uma poténcia de 2, e resolugao espacial igual
a 1. Ou seja, cada voxel tem dimensoes iguais a 1 X 1 X 1 e ocupa uma posicao inteira em uma
grade tridimensional regular de dimensdes W x W x W (em que W = 2%, L € N), capaz de conter

até W3 voxels.

E comum, no entanto, que inicialmente uma dada nuvem de pontos se encontre nio voxelizada.
Ou seja, seus pontos podem ocupar qualquer posigao real no espago tridimensional. O processo de
representar tal nuvem de pontos através de vozxels, denominado voxelizagao, é realizado percorrendo
cada voxel do volume de representacao e atribuindo ao mesmo um valor de cor dependendo dos
pontos que ocupam posigoes contidas em seu volume. Uma descrigao visual do processo se encontra
na Figura 2.3. Vozels nao ocupados nao tem cor atribuida, equivalente a serem completamente
transparentes. No caso de mais de um ponto se encontrar ocupando um mesmo vozxel, a cor

atribuida a tal vozel é calculada como a média dos pontos em seu interior.

E de especial interesse a restricao do contetido voxelizado a posi¢oes inteiras pela semelhanca
como imagens bidimensionais sao representadas. Isso permite a visualizacao de maneira simples e

rapida do contetido em um contexto bidimensional, através da projegao do contetido tridimensional.

2.5 Projecoes

Apesar de humanos serem adaptados & vida em um ambiente com trés dimensoes espaciais, o
aparato visual humano é inerentemente baseado em representacoes de duas dimensoes desse mesmo

ambiente, ja que a propria luz é interceptada no olho humano pela superficie da retina [15]. De

fato, como mencionado na Se¢do 2.4, mesmo contetidos tridimensionais sdo disponibilizados em



formato bidimensional. Esse processo em que um objeto volumétrico é representado através de

uma imagem bidimensional é denominado projecao.

De maneira geral, projecoes sao uma representagao matematica, ou um mapeamento, de um
conjunto a um subconjunto dele. Diversas técnicas de projegoes existem, e podem incluir diversos
campos matemaéticos e aplicacdes. No entanto, o préprio conceito de projecao tem sua origem no
ramo da geometria, que é o foco do presente estudo. Para este trabalho, dois tipos de projecao sao

mais relevantes: projegoes perspectivas e projegoes ortograficas.

2.5.1 Projecao perspectiva

ProjecGes perspectivas sdo o tipo de projecao mais similar ao o funcionamento da visdo humana.
FElas sao obtidas tragando-se linhas de visao entre o objeto a ser presentado e um determinado ponto
de vista virtual no espago. Entre o objeto e o ponto de vista h4 um plano de projecao. Nos pontos
do plano cruzados por cada uma das linhas de visao se armazena a imagem do ultimo ponto do
objeto pelo qual aquela linha de visao passou. Isso resulta em uma imagem bidimensional da

superficie tridimensional visivel a partir do ponto vista escolhido, contida no plano de projecao.

Devido & caracteristica convergente das linhas de visao em direcao ao ponto de vista, projecoes
perspectivas tem o efeito de representarem objetos, ou partes de objetos, mais préximas ao plano
de projecao com um tamanho aparente maior que o de objetos ou suas partes mais distantes.
Apesar de ser natural observar esse comportamento no mundo real, imagens observadas dessa
maneira podem distorcer algumas caracteristicas do objeto original de maneiras indesejadas. Para

este estudo, optou-se pelo uso de outra opgao de projecao, as projegoes ortogréficas.

2.5.2 Projegao ortografica

Projecoes ortograficas sao um tipo de projecao paralela. Neste tipo de projecao as linhas de
visao sao tracadas paralelas entre si, diferente de projegoes perspectivas, em que linhas de visao
convergem para um ponto de vista virtual. Em proje¢bes ortograficas, as linhas sdo tracadas

perpendiculares ao plano de projecao escolhido.

Essa caracteristica é especialmente interessante quando a projecao ortogonal é usada para se
visualizar objetos compostos por voxels. Caso o plano de projecao seja paralelo a alguma das faces
dos wvozels, existe uma relagao direta entre os pirels da imagem projetada e os wvozels visiveis no
objeto original. Isso é ilustrado na Figura 2.4, em que cada uma das projecoes mostradas coincide
com uma face de um cubo em volta do objeto visualizado. Determinar o vozel correspondente
a um pixel de coordenadas conhecidas também é simples, bastando encontrar o vozel com as
mesmas coordenadas cuja terceira coordenada (no eixo perpendicular ao plano de projegao) é a
mais proxima desse plano. Por exemplo, caso se assuma que o plano contenha os eixos z e y e
esteja localizado na posi¢ao 0 do eixo z, o pixel na posi¢ao (zn,y,) ¢ uma imagem do vozel de

coordenadas (xy, Yn, z) com o menor z.

Outra caracteristica interessante de projecoes ortograficas é que elas equivalem a projecoes



Figura 2.4: Projecbes ortograficas visualizadas quando os planos de projecdo se encontram em

direcoes ortogonais entre si

perspectivas em que o ponto de vista se localiza a uma distancia infinita do objeto sendo projetado.
Ou seja, quando observados de distancias cada vez maiores, objetos tendem de uma projecgao

perspectiva a uma projecao ortografica.

2.6 Espacos de cores

Tanto imagens bidimensionais como contetidos tridimensionais dependem de um sistema de
representacao de cores definido para que informagdes de cor possam ser transmitidas ou armaze-

nadas.

O sistema visual humano envolve mais varidveis do que apenas a intensidade e o comprimento
de onda da luz que atinge os receptores localizados nos olhos. Fatores como a diferenca de lumi-
nosidade entre partes de uma imagem, velocidade de movimento, posicao relativa entre objeto e

observador podem afetar como uma pessoa percebe cor ou luz [16, 17].

No entanto, na maioria dos casos, modelos simples sao suficientes para oferecer contetido visual
em diversas midias. Logo apds o surgimento das primeiras fotografias, por volta do inicio do século
XIX, ja havia pesquisa no campo de fotografia em cores, com resultados experimentais sendo
obtidos ja desde 1840 [18|.

Tentativas iniciais de se reproduzir cores foram baseadas principalmente em projetar luz sobre
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anteparos preparados com substéncias quimicas capazes de reagir a diferentes cores do espectro
visual. No entanto, ji& em 1860 havia-se percebido que o aparato visual humano nao dispoe de
sensores para cada valor possivel do espectro de luz visivel e que, com a mistura de apenas algumas
cores especificas, era possivel representar, se nao todas, a maior parte das cores que seres humanos

sao capazes de perceber [19].

Isso levou tanto a indtustria visual e a comunidade académica & representacao de cores através de
sistemas denominados espacos de cores. Um espago de cor € um modelo abstrato em que cada cor
possivel é representada através de tuplas de nameros. Cada elemento da tupla indica a quantidade

de um certo componente de cor que o sinal de cor em questao apresenta.

A modelagem através de espagos de cores oferece ferramentas matematicas para se lidar com
imagens. Cores individuais podem ser tratadas como pontos em um sistema de coordenadas
especifico, e sistemas alternativos mais convenientes para determinadas tarefas podem ser usados,
com a possibilidade de se alternar livremente entre diferentes espagos de cores, tanto em uma
como em outra dire¢ao [20]. Além disso, valores respectivos a cada uma das coordenadas podem
ser tratados individualmente e independentemente das outras coordenadas usadas para descrever a
imagem. A cada uma dessas coordenadas é dado o nome de canal (e.g. canal vermelho, no espago
RGB). A seguir sao discutidos dois espagos de cores mais relevantes para a representacao de cores

de contetdos tridimensionais através de nuvens de pontos.

2.6.1 Espaco RGB

O espago de cores RGB é um sistema de representagao de cores através da combinagao aditiva
de trés componentes primarios de cor, independentes de nivel de luminosidade: vermelho, verde e
azul [21]. Variando as quantidades de cada componente de cor, é possivel representar qualquer tom
de cor entre os componentes primérios utilizados, além de suas variagbes de luminosidade entre

branco puro e preto puro.

O motivo da escolha das cores vermelho, verde e azul esti relacionado com os mecanismos de
visao que ocorrem no olho humano, no nivel celular. Apesar de existirem duas teorias complemen-
tares que descrevem esse processo em maior detalhe (teoria tricromatica [22] e teoria do processo
oponente [23]), o espaco RGB esta ligado principalmente com conceitos da teoria tricromética, que

descreve um primeiro estégio da visdo humana [24].

Na retina, parte do olho humano que converte luz em impulsos elétricos neurolégicos, ha a
ocorréncia de dois tipos especializados de células: bastonetes, mais sensiveis a luz em luminosida-
des baixas (independentemente de comprimento de onda), e cones, que sdo excitados em fungao,
além da intensidade, do comprimento de onda de luz incidente. Se observa também que ha uma

subdivisao dos cones em outras trés especializagoes: cones dos tipos S, M e L |25, 26].

Cones do tipo S demonstram serem excitados principalmente na faixa entre 400 nm e 500
nm. Ja cones M sao excitados principalmente entre 450 nm e 630 nm, e cones L entre 500 nm e
700 nm. Essas faixas nao apresentam limites nitidos, e hé sobreposi¢oes consideraveis entre elas,

principalmente entre os cones M e L.
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Historicamente, os cones dos tipo S, M e L passaram a ser associados com cores especificas,
respectivamente azul, verde e vermelho, mesmo em face de apresentarem um comportamento mais
complexo do que simplesmente serem excitados por essas cores especificas. Especialmente, cones
do tipo L demonstram um pico de excitagao para cores mais préximas de amarelo-esverdeado do
que para o vermelho. No entanto, a nomenclatura nao é totalmente sem justificativa. De fato,
cada uma das cores do padrao RGB esta associada com o cone que apresenta maior sensibilidade

a ela.

2.6.2 Espaco YUV

O espaco de cores YUV é uma representacao alternativa ao RGB em que um canal é usado
para representar exclusivamente a luminancia (ou luma) presente na imagem, enquanto dois outros
representam a crominancia azul e vermelha, respectivamente. Isto é, um dos canais descreve com-
pletamente a intensidade luminosa (ou brilho) da imagem, enquanto os outros dois, em combinagao,

representam o tom de cor da imagem.

Existem diversas variagoes do padrao YUV, além de outros espagos de cores similares, como
YUV, YCbCr e Y’CbCr, sendo comum ocorrer alguma confusao na nomenclatura desses sistemas,
com alguns nomes sendo usados de maneira intercambiével em alguns contextos. A presenca do
simbolo apdéstrofo (’) seguido ao simbolo de um canal denota que aquele canal passa por compressao

(ou corre¢ao) gama, que é uma escala nao linear que tem por objetivo aproximar a percepgao

humana de diferenga luminosa [21].

Especialmente, quando o canal Y ndo passa por compressao gama (escala linear de intensidade
luminosa) ele é¢ denominado de luminancia. Ja quando ocorre compressao gama (canal Y’) o canal
¢ denoninado de luma. Sendo assim, a tnica diferenca entre os sistemas YUV e YUV é referente
ao canal de intensidade luminosa. A mesma diferenga ocorre entre os sistemas YCbCr e Y’CbCr,

com o canal Y sendo idéntico entre os sistemas YUV e YCbCr.

Quanto aos canais de crominéncia, no sistema YUV (e Y'UV), os canais U e V sao definidos,
respectivamente, como a diferenca entre o valor de azul e de intensidade luminosa, e a diferenca
entre o valor de vermelho e de intensidade luminosa. J& nos sistemas YCbCr (e Y’CbCr) os canais
Cb e Cr sao obtidos através do desvio da cor cinza no eixo azul-amarelo e no eixo vermelho-ciano,

respectivamente.

Os sistemas de cores YCbCr, YUV e suas variantes adotam ideias compativeis com a etapa
da visdo humana denominada de processo oponente. ApoOs a aquisicdo de luz colorida através
das células da retina, antes de ser transmitido pelo nervo 6tico, o sinal visual gerado no olho é
processado por neurdnios especializados que tem ativagoes reguladas pelas diferencas de excitagao

que os bastonetes e cada um dos tipos de cones apresentam [27].

O processamento dos sinais gerados pelos cones envolve principalmente dois tipos de neurd-
nios: as células retinais bipolares e as células retinais ganglionares. Células bipolares efetivamente
regulam os sinais emitidos por cones e bastonetes, e os transmitem as células ganglionares, que

processam diferengas de contraste ou cor ao longo do tempo ou do campo visual [28]. Parte dos
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neurdnios ganglionares ¢ excitada por cones L e S mas inibida por cones M (diferengas no eixo
vermelho-verde), enquanto que outra parte ¢ excitada pelos cones L ¢ M mas inibidos por cones S

(diferengas no eixo azul-amarelo), de maneira similar ao sistema YUV.

Adotar um modelo de representagao de cores com funcionamento préximo ao exibido pelo or-
ganismo humano permite que algoritmos de compressao se aproveitem do fato de que nem todos os
detalhes de uma imagem sao igualmente percebidos por seres humanos. Assim, é possivel descar-
tar informagao pouco perceptivel e alocar mais recursos para representar detalhes mais relevantes,

resultando em uma qualidade observada maior, a uma taxa de bits menor.

A conversao do espaco RGB para YUV pode ser feita usando as seguintes férmulas:

Y'=WgrR+ WqG + WgB (2.3)
B-Y'
U =0, 2.4
MAX T (2.4)
R-Y'
V =W 2.5
MAXT 7 (2.5)

em que, de acordo com o padrao BT.601 [20],

Wgr = 0.299 (2.6)
Wpg =0.114 (2.7)
Wa=1—Wgr—Wpg =0.587 (2.8)
Umax = 0.436 (2.9)
VMmax = 0.615 (2.10)
Adotando uma representacao matricial, tem-se que
Y’ 0.299 0.587 0.114 R
U| =1-0.14713 —0.28886 0.436 G (2.11)
\%4 0.615 —0.51499 —0.10001| [B
e que, inversamente,
R 1 0 1.13983 Y’
G| =11 —-0.39465 —0.58060| |U (2.12)
B 1 2.03211 0 v

2.7 Codificagao de nuvens de pontos

Como foi mencionado na Se¢ao 2.6, e principalmente na Secao 2.6.2, existe a possibilidade de

se escolher a representacao de um conteiido de maneira a dedicar mais informagao para representar
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informagoes mais relevantes para a percepcao humana de qualidade, enquanto que detalhes menos

importantes sdo descartados.

O mesmo pode ser feito com informagao respectiva a geometria de modelos de objetos. Intui-
tivamente, deseja-se uma representagao em que seja possivel escolher o nivel de detalhamento da
estrutura geométrica da representacao. Deve ser possivel gradualmente descartar detalhes mais

finos, ao mesmo tempo que a estrutura geral ndo é descaracterizada de maneira demasiada.

A seguir, sao exploradas as octrees, uma estrutura comumente usada para a codificacao de

nuvens de pontos, que oferece a capacidade representar niveis graduais de detalhe.

2.7.1 Octrees

No contexto de ciéncia da computacao, uma arvore é uma estrutura de dados em que elementos
(ou nos) se relacionam hierarquicamente entre si através elos. Arvores sdo compostas por um no
inicial, denominado raiz, acima de todos os outros, além de seus nés filhos. Cada né subsequente
pode ter um ou mais filhos. Quando um né nao tem nenhum filho, ele é denominado de né
folha [29].

Octrees sao um tipo especifico de arvore em que cada né tem exatamente 0 ou 8 filhos [30]. Essa
caracteristica é interessante para aplicagoes relacionadas com geometrias tridimensionais. Como
8 = 23, e em um espaco tridimensional existem trés direcdes ortogonais, ao se subdividir o espaco
em dois, na dire¢cao de cada uma de suas coordenadas, obtém-se 8 octantes. Dessa maneira, é
possivel facilmente representar a geometria de objetos contidos na regiao delimitada pela uniao

desses octantes através de uma estrutura baseada em octrees.

De maneira mais especifica, se cada n6 da octree representa um octante, um valor binério
designado ao n6 em questao indica se aquele octante estd ocupado ou nao. O octante pode ser
entao subdividido em mais 8 octantes, se repetindo o processo para determinar cada uma de suas
regioes ocupadas. No caso de um dos sub-octantes se encontrar nao ocupado, o presente né é
considerado como nao tendo nenhum filho (n6 folha). Ao final do processo, cada nivel da octree
é representado por um byte, cujo cada bit indica se o n-ésimo octante estava ocupado. O byte
seguinte representa essa mesma informacao respectiva ao primeiro bit ocupado do nivel anterior
da octree, e assim por diante, até o ultimo bit ocupado do nivel anterior. Quando todos os bits
de um nivel foram considerados, o processo continua para os bits e bytes dos proximos niveis. A
ordem de percorrimento da octree é arbitraria, bastando apenas que o codificador e o decodificador

estejam de acordo quanto a ela.

2.8 Meétricas objetivas de qualidade

A qualidade visual de midias geralmente é avaliada através do uso ou de métricas subjetivas
ou de métricas objetivas. Avaliacoes subjetivas consomem muito tempo e sdo caras. Devido a isso,
fazem-se necessarias métricas objetivas eficientes, que consigam prever com exatidao a qualidade

de algum contetdo, ou o nivel de distorcao ao qual ele esta sujeito. No caso de nuvens de pontos,
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Metricas de referéncia completa
Métricas de referéncia reduzida
IMétricas sem referéncia

Informacdes

complementares Sinal distorcido

Sinal de referéncia

Codificacio — Transmissio = ——»  Decodificacdo

Figura 2.5: Diagrama demonstrando o fluxo de informagao entre diferentes categorias de métricas

objetivas de qualidade.

avaliacao objetiva de qualidade ainda ¢ um problema aberto [10].

Meétricas objetivas podem ser classificadas em trés categorias distintas, em fungao da quantidade
de informagao disponivel acerca dos contetidos envolvidos na analise. Um diagrama demonstrando a
relacao entre o compartilhamento de informacao em cada uma dessas categorias pode ser observado

na Figura 2.5.

Métricas de referéncia completa avaliam a qualidade de um sinal recebido (que passou por
algum processo de distorgao) através de suas diferengas em relagdo a ao sinal original, antes de
sofrer modificagoes, denominado sinal de referéncia. Este método assume que todas as informagoes
acerca de ambos os sinais (ou pelo menos os dois sinais em sua integra) estao disponiveis. Em

alguns casos, isso pode se tornar um impedimento.

Métricas de referéncia reduzida podem utilizar informacoes de ambos os sinais, mas nao é ne-
cessario que eles sejam utilizados inteiramente. Em casos em que ter acesso completo a algum
dos sinais é impossivel ou impraticavel, métodos dessa natureza permitem alguma mensuracao de
qualidade, ainda que com exatidao reduzida. Estes métodos também costumam ser computacio-

nalmente mais eficientes que métodos de referéncia completa, ja que precisam de menos dados.

Existem ainda métricas sem referéncia. Esses modelos tem o objetivo de estimar a qualidade
de sinais distorcidos sem o uso de qualquer informacao acerca do sinal original. Normalmente,
sao observadas caracteristicas internas do sinal recebido, como a variacao de pizels, ou dados
acerca da transmissao em si, como vetores de movimento, pardmetros de quantizagao e outros
metadados, ou ainda uma combinagdo dessas informacoes para determinar se h& ocorréncia de
artefatos desagradaveis no contetdo recebido. Esses métodos costumam ser os mais rapidos, sendo
que algumas variagoes nao requerem nem a codifica¢ao do sinal recebido. No entanto, essas métricas

também s@o as que oferecem o menor poder preditivo de qualidade [31].

Avaliagao objetiva da qualidade de nuvens de pontos é geralmente realizada através de métricas

de referéncia completa. Métricas da distorcao da cor de nuvens de pontos sao baseadas em métricas
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convencionais aplicadas a contetidos bidimensionais. Ja o estado da arte de métricas de referéncia
completa para a avaliagado distorgoes geométricas de nuvens de pontos podem ser separadas em
duas categorias: as baseadas em distancia e as baseadas em normais. Apenas um tipo de métrica é
classificado atualmente como baseado em normais, as denominadas métricas plano a plano. Ja as
métricas classificadas como baseadas em distancia consistem nos seguintes tipos: métricas ponto
a ponto, métricas ponto a plano, e métricas ponto a malha. Cada um desses tipos de métricas é

explorado na Segao 2.8.1 e na Segao 2.8.2.

Tanto métricas de degradagao de geometria e de cor costumam calcular suas medidas de erro
de maneira simétrica. Isto é, o erro é obtido calculando-se primeiro com um dos dois contetidos
utilizados na métrica (ou a versao original da nuvem de pontos ou sua versao distorcida) como
referéncia e o outro como contetido de teste. O primeiro valor calculado é armazenado, e o calculo
é feito novamente com as duas versoes da nuvem de pontos trocadas: se primeiro a versao original
foi adotada como referéncia e a versao distorcida foi tida como contetido sob teste, agora a versao
original sera o teste, enquanto que a versao distorcida é a referéncia, e vice-versa. O valor de erro

final é escolhido como o valor maximo entre os dois valores de erro calculados.

2.8.1 Meétricas de cor baseadas em pontos

Meétricas de distor¢ao de cor em nuvens de pontos sao realizadas se associando pontos do
conteiido sob andlise com seus respectivos pontos no contetido de referéncia. Tipicamente para

isso se usa o algoritmo de busca do vizinho mais proximo.

Em seguida, se calcula a degradacao de cor como se cada tupla de cor de pontos correspon-
dentes tivessem a mesma relacao de pizels de pares de imagens bidimensinais em métricas de
referéncia completa convencionais, como as descritas na Secao 2.8.3. No entanto, como nao sao
necessariamente levadas em consideracao relagoes de proximidade no ordenamento dos pontos, é
mais comum o uso de métricas que atuam somente na escala de pizels individuais (em oposigao a

métricas como o SSIM, que considera regides da imagem em seu célculo).

E possivel, por exemplo, utilizar a PSNR para calcular a distorcao de cor dessa maneira. Pode-
se usar tanto valores de cor no espago RGB ou em qualquer outro que a aplicagao exigir. Utilizando
o espa¢o YUV no padrao ITU-R, recomendacao BT.709-3 [32], uma medida do erro de cor é

calculada através de uma média ponderada das diferengas nos canais de luma e crominancia [33]:

PSNRy 7y = (6 - PSNRy + PSNRy; + PSNRy;) /8. (2.13)

2.8.2 Meétricas de geometria baseadas em pontos

As métricas discutidas a seguir sdo baseadas no calculo de medidas de erro individuais para
cada ponto presente na nuvem de pontos sob analise. Para se obter valor referente a degradagao
geométrica da nuvem de pontos como um conjunto, é preciso calcular algum valor através dos erros

individuais obtidos. Opgdes comuns sao o erro total (soma de todos os erros individuais), o erro
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@ pontos que pertencem a PC 4
@ pontos que pertencem a PC B
@ ponto de mesmas coordenadas em 4e B A

Figura 2.6: Relacao entre os pontos de interesse em duas PCs durante o calculo de métricas

baseadas em geometria.

quadratico médio (MSE), a raiz do erro quadratico médio (RMSE), ou a distancia de Hausdorff [34],

esta ultima sendo definida como

dp(X,Y) = max{sup inf d(z,y),sup inf d(y,z)}, (2.14)
reX YEY yey zeX
em que d(z,y) é alguma medida de distancia entre dois elementos dos conjuntos X e Y, e sup e
inf denotam respectivamente o supremum e o infimum de um subconjunto em relagdo ao conjunto
em que estd contido. No entanto, para conjuntos ordenados e finitos o infimum e o supremum
coincidem respectivamente como o elemento minimo e o elemento maximo do subconjunto sob
analise [35]. Dessa maneira, no presente contexto a distancia de Hausdorff pode ser intuitivamente
compreendida como a maior distdncia observada entre cada ponto das duas nuvens de pontos e

seu respectivo par mais proximo (dada uma métrica d de distancia) na outra nuvem de pontos.

2.8.2.1 Meétrica ponto a ponto

Meétricas ponto a ponto sao baseadas na distancia geométrica entre pontos associados dos
contetudos sob analise e de referéncia. Geralmente o valor de erro é relacionado com o deslocamento
do ponto do contetido sob analise em relacao a seu vizinho mais préoximo no conteido de referéncia.
Ou seja, seguindo a nomenclatura presente na Figura 2.6, para cada ponto b do contetdo sob
andlise (B), seu vizinho mais proximo, a; no conteudo de referéncia (A) é selecionado. Em seguida,

alguma métrica de distancia entre os dois pontos, normalmente a distancia euclideana, é calculada:

(2.15)

O erro referente & nuvem de pontos B pode entao ser calculado como a soma, ou a média, das

distancias entre todos os pontos do contetido analisado e seus respectivos vizinhos mais proximos
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E(b 5 g
MSE(B, A) = ZbkEB‘B’( ko di) (2.16)

em que |B| é a cardinalidade (ntiimero de elementos) do conjunto B.

2.8.2.2 Meétrica ponto a plano

Métricas ponto a plano sao baseadas no erro projecao de um ponto, que pertence a um contetido
sob analise, em relagao ao vetor normal de um ponto associado no contetido de referéncia. Isto é,
apo6s se identificar, para cada ponto by no conteiudo analisado (B) seu vizinho mais proximo, a;,

no contetdo de referéncia (A), o erro é projetado sobre a normal ﬁ)ai através da formula
E(by, ai) = MWa, - Vo, (2.17)
novamente podendo-se obter o valor médio do erro através de

. 2
ZbkeBE (brs a;)
| B ’

MSE(B, A) = (2.18)

com ambas equacoes seguindo a nomenclatura da Figura 2.6.

A interpretacido por tras da métrica ponto a plano é baseada no fato de que custos maiores
ocorrem devido a pontos que desviam da superficie local aproximada do objeto de referéncia. Essa
métrica requer que pelo menos um dos contetidos tenha normais conhecidas. No caso das normais
do contetudo de referéncia sejam conhecidas, o calculo da métrica se d4 normalmente. Caso apenas
os vetores normais de um dos contetidos sejam conhecidos e deseje-se usar o conteiido sem normais
como referéncia, ainda é possivel utilizar essa métrica estimando-se as normais do contetido sem os
vetores calculando-se a média dos vetores presentes nos vizinhos mais proximos correspondentes

no outro conteudo.

2.8.2.3 Meétrica plano a plano

Meétricas plano a plano sao baseadas na similaridade angular de planos tangentes que corres-
pondem a pontos associados entre a referéncia e o conteiido sob anéalise. O valor de erro oferece
uma aproximagao da dissimilaridade entre superficies locais correspondentes. Para cada ponto b;
que pertence ao conteido sob analise (B), seu vizinho mais proximo, a; no conteido de referéncia
(A) é identificado. Através dos vetores normais correspondentes a cada um dos pontos, pode-se
calcular a similaridade angular dos planos tangentes aos mesmos. Isso é realizado calculando-se o
angulo 6 entre os vetores normais ij e Wai. O angulo efetivo adotado é restringido ao menor dos

dois dngulos entre as duas normais, de modo que
0 = min{d, 7 — 0}, (2.19)

com 7 em radianos.
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A similaridade angular sim(6) é entao calculada como

sim() =1 — 2—0, (2.20)
T

sendo a imagem da fungao limitada ao conjunto fechado [0, 1]. Finalmente, alguma média das simi-

laridades individuais pode ser calculada, de maneira similar como foi feito nas Equacoes 2.16 e 2.18.

Esta métrica é baseada na premissa de que o sistema visual humano naturalmente interpola um
conjunto de pontos visualizado para inferir o objeto em questao. O plano tangente serve como uma
aproximagao linear da superficie local do contetido. Portanto, a similaridade angular entre planos
tangentes de pontos associados entre o contetdo analisado e o conteido de referéncia oferece uma

aproximagcao da dissimilaridade entre superficies locais correspondentes entre os dois objetos.

Uma desvantagem dessa métrica é que ela requer que as normais, tanto do objeto de referéncia
como do objeto sob anélise, sejam conhecidas. Caso ndo estejam disponiveis, os vetores precisam ser
estimados. Assim, o desempenho desta métrica, tanto em termos computacionais como em termos
de correlagao com qualidade subjetiva observada, fica limitado ao desempenho do algoritmo de

estimativa de normais utilizado.

2.8.2.4 Meétrica ponto a malha

Métricas ponto a malha envolvem a representagao das nuvens de ponto de interesse através de
malhas poligonais (meshes), um processo denominado neste contexto de reconstrugao de superficie.
Inicialmente, o conteudo de referéncia é reconstruido através de um mesh. Em seguida, para cada
ponto do conteido de teste, é calculada a menor distancia para a superficie mais proxima do
mesh de referéncia. Considerando que nao existe uma maneira tnica de se gerar uma malha de
um conjunto de pontos, as notas objetivas obtidas dependem consideravelmente do algoritmo de
reconstrugao de superficie selecionado. Assim, métricas ponto a malha sdo consideradas solugoes
sub-6timas para a avaliagao de qualidade de nuvens de pontos. Neste trabalho, tais métricas nao

serao mais investigadas daqui em diante.

2.8.3 Meétricas baseadas em imagens

Ao longo das Segoes 2.2, 2.5 e 2.6, pdde-se notar que o desenvolvimento das midias visuais mo-
dernas esté intimamente ligado ao funcionamento da visao no organismo humano. Adicionalmente,
como também foi mencionado nas Segbes 2.4 e 2.5, devido & prépria natureza do sistema visual
humano, nuvens de pontos (e outros contetidos naturalmente tridimensionais) ainda sao ligados a

conceitos e aspectos de imagens bidimensionais.

Em luz dessas observagoes, é intuitivo considerar que a anélise da qualidade visual de algum
contetudo, especialmente, esteja conectada com a fisiologia humana, e que medidas dessa qualidade
se beneficiem de maior correlacao com a real qualidade subjetiva percebida & medida que elas se
tornam cada vez mais embasadas no funcionamento do sistema visual humano. Essa premissa leva

a crer que, assim como parte da visao humana se relaciona com imagens bidimensionais projetadas,
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basear a avaliacao qualidade de contetdos tridimensionais na projecao e no subsequente tratamento

das imagens resultantes pode ser vantajoso.

A seguir, sao exploradas algumas métricas classicamente utilizadas na andlise de imagens bi-

dimensionais.

2.8.3.1 PSNR

A relagao sinal-ruido de pico (peak signal-to-noise ratio - PSNR) é uma das métricas de quali-
dade de sinais mais utilizadas, principalmente no contexto de processamento de imagens. Ela foi
uma das primeiras métricas capaz de traduzir diferencas entre sinais ou imagens para uma escala

objetiva e de facil comparagdo entre contetudos.

A PSNR é definida através da féormula

(2.21)

2
PSNR =10 loglo <MAX ) y

MSE
em que MAX é o valor maximo na escala adotada que o sinal pode assumir (255 para imagens de 8

bits, por exemplo), e MSE é o erro quadratico médio entre o sinal de referéncia e o sinal analisado.

Para uma imagem de referéncia R e sua aproximacao ruidosa I, ele é calculado como

MSE = % > Y IR, §) — I3, 5)). (2.22)

i=1 j=1

Mensurar a proporg¢ao entre o erro médio e o sinal de pico garante que diferencas na escala de
sinais nao afetam a métrica. Além disso, como é comum sinais apresentarem uma faixa dindmica
ampla, adotar a escala logaritmica proporciona uma métrica com valores em um intervalo mais

conveniente e gerencidvel.

No entanto, a PSNR apresenta uma grande variacao, mesmo para conteudos similares. A PSNR
é, por exemplo, consideravelmente sensivel a translagoes espaciais: deslocamentos da ordem de um
pixel entre uma imagem e sua referéncia ji sao suficientes para provocar uma queda da PSNR.
Ademais, nem sempre ocorre uma correlacio direta entre PSNR e qualidade observada. E possivel
que contetdos praticamente idénticos tenham PSNRs consideravelmente diferentes e, em certas
situagoes, imagens com melhor qualidade subjetiva podem apresentar PSNR piores do que uma
imagem com artefatos de distor¢oes mais perceptiveis. Para evitar esse tipo de comportamento,
¢ importante limitar a comparagao através de PSNR a apenas imagens com contetidos similares e

distorcidas por procedimentos de mesma natureza.

2.8.3.2 SSIM

O indice de similaridade estrutural (structural similarity indexz - SSIM) foi proposto como
uma melhoria em relaggo & PSNR, capaz de prever com melhor acuréicia a qualidade percebida

do contetido medido. O SSIM propoe calcular a similaridade entre pares de imagens através
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medidas intuitivamente relacionadas com caracteristicas perceptuais que, se preservadas, espera-
se observar uma qualidade visual maior do que caso contrario. Especificamente, essas grandezas
sao denominadas luminancia (I(x,y)), contraste (c¢(z,y)) e estrutura (s(z,y)), para uma imagem

distorcida y e sua referéncia x. Elas sao definidas como

2

(a,y) = Latv T (2.23)

Mz + py + C1

20,0y + C2
c(r,y) = ——F—, 2.24
(@,y) 02+ 02 +c2 (2.24)

Ozy +C3

JY) = ———, 2.25
s(oy) = T (225)

em que fig, fly, o2, 05, Ogy Sa0, respectivamente, o valor médio dos valores na imagem x, o valor
médio dos valores na imagem y, a varidncia dos valores da imagem x, a varidncia dos valores da
imagem y e a covariancia entre os valores das imagem z e y. Além disso, ¢; = (k1L)?, co = (koL)?
e c3 = c2/2, trés coeficientes que estabilizam a divisdo em casos em que o denominador é muito
pequeno, e L é o intervalo dindmico de valores possiveis nas imagens. Em imagens de 8 bits,

L = 255. Em geral k; e ko sao escolhidos como 0.01 e 0.03, respectivamente.

O SSIM é proporcional & média geométrica ponderada das medidas obtidas de luminancia,

contraste e estrutura. Assim,
SSIM(z,y) = U(x,y)* x c(x,y)" x s(z,y)7, (2.26)

com «, 3 e v arbitrarios. Caso sejam escolhidos todos como iguais a 1,

(2papty + €1)(202y + C2)

SSIM(x,y) = )
%) = G2 2+ e (o2 + 02 + )

(2.27)

O SSIM costuma ser calculado nao sobre a imagem como um todo, mas aplicado a janelas que
cobrem subregioes da imagem completa. Podem-se escolher janelas de qualquer tamanho, que
podem ser tomadas através de deslocamentos sucessivos de um ou mais pixels, até que toda a
imagem seja coberta. O SSIM pode ser calculado para apenas um dos canais presentes na imagem,
normalmente o canal de luma, ou para mais canais. Nesse caso, o SSIM é calculado separadamente
para cada canal, e a métrica total da imagem ¢é obtida através de uma média entre os indices de

cada canal.

2.8.3.3 VIF e VIFP

O indice de fidelidade de informacao visual (VIF), e sua realizacao baseada em pizels, o VIFP,
sao métricas de referéncia completa para a avaliagao de qualidade em imagens. O VIF é baseado
nas chamadas estatisticas de cena natural (NSS) e na nogao de como o sistema visual humano
extrai informacio de imagens. E adotado um critério de fidelidade que quantifica a informacio de

Shannon [36] compartilhada entre as imagens distorcida e de referéncia, relativamente & informagao
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contida na imagem em si. Dessa maneira, sao adotados trés modelos em conjunto para a obtencao
do VIF: um modelo de NSS, um modelo de degradacao de imagem e um modelo do sistema visual
humano [37].

Cenas naturais se referem ao conjunto de informagoes presentes em um ambiente fisico que
sao percebidas por agentes através de seus sentidos, especificamente aqueles que seres humanos
estao acostumados a observar no modo natural de operacao de seus 6rgaos sensoriais [38]. Esse
conjunto de cenas pode incluir ambientes como ruas em uma cidade, o interior de uma casa ou
plantas em um jardim, por exemplo. Tem-se interesse principalmente nos aspectos visuais de uma
cena. Apesar de serem uma fragdo pequena dos sinais visuais possiveis, cenas naturais formam
uma grande parte da midia consumida, e modelos estatisticos robustos ja foram desenvolvidos para

modelar essa classe de sinais.

A maior parte dos processos de distor¢cao observados em sistemas reais modifica essas esta-
tisticas e torna as cenas nao naturais. Medir esse desvio estatistico, através da quantidade da
informacgao compartilhada entre o sinal distorcido e o sinal de referéncia, portanto, pode indicar a
qualidade observada em contetidos que se encaixem nesse modelo. Além disso, é possivel determi-
nar a quantidade de informacao total presente na imagem de referéncia. Dessa maneira, pode-se

calcular a perda de informacao relativa & quantidade de informacgao originalmente presente.

No contexto do indice VIF, imagens de cenas naturais perfeitas (sem qualquer distor¢ao ou
ruido) sdo modeladas como uma fonte estocéstica, especificamente o modelo de mistura de escala
gaussiana (GSM) no dominio da transformada Wavelet, que entdo é distorcida por um canal

(operador de distor¢ao), fornecendo as imagens a serem avaliadas.

Campos aleatorios (RFs) sao generalizagoes de processos estocéasticos que, em vez de serem
parametrizados por um indice unidimensional (seja discreto ou continuo), sdo parametrizados por
vetores multidimensionais, ou pontos em uma superficie multidimensional [39]. Um GSM é um RF
que pode ser expressado como o produto de dois RFs independentes [40]. Ou seja, um GSM C tal

que C = {C; : i € I'} pode ser escrito como
C=8S-U=1{S;-U,:iell, (2.28)

em que I denota um conjunto de indices espaciais para o RF. § = {S; : i € I} ¢ um RF de escalares
positivos, enquanto que U = {a :1 € I} ¢ um RF de vetores com distribuigao gaussiana de média

zero e covaridncia igual a Cy. a e ﬁz sao vetores M dimensionais.

A distor¢ao na cena natural é modelada como um ganho de sinal acompanhado de ruido aditivo

no dominio Wavelet, tal que
D=GC+V={gCi+ V. :iell, (2.29)

emqueCéoRFdosinaldereferénciaeD:{Ii:iEI},g:{gi:ie[}eV:{vi:iEI} sao,
respectivamente, o RF do sinal distorcido, um campo deterministico de ganho escalar e um RF
estacionério de ruido aditivo gaussiano, de média zero e variancia Cy = 021, em que I é a matriz
identidade.

O RF V é branco (poténcia uniforme para todas as frequéncias) e independente de S e de U.
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Isso significa que o modelo, apesar de simples, captura dois tipos importantes de ruidos, ruido
branco, devido a presenca do RF V), e suavizagao (blur), devido ao campo escalar de atenuagao G.

Uma motivagao mais detalhada desse modelo pode ser encontrada em [41].

O modelo de sistema visual humano é dual ao modelo de NSS, com muitos aspectos dele ja
sendo incluidos na descrigao do modelo NSS. Dentre os aspectos nao incluidos no modelo NSS, ha
a funcdo de espalhamento oOtico, a funcao de sensitividade ao contraste e o ruido neural interno,
entre outros. Uma comparacao de desempenho mais detalhada entre diferentes modelos de NSS e

visd@o humana se encontra em [41].

O modelo de visao humana incluido na implementacao padrao do VIF leva em conta apenas o
ruido neural interno, o que ja é suficiente para aumentar consideravelmente o desempenho preditivo

da métrica. Ele pode ser modelado como ruido aditivo gaussiano branco:
E=C+N, (2.30)

F=D+N, (2.31)

em que &£ e F sao os sinais visuais dos quais o cérebro humano extrai informacoes cognitivas acerca
da imagem de referéncia e da imagem imagem distorcida, respectivamente. N = {Nz ciel}é
um RF, com vetores gaussianos multivariados descorrelacionados ﬁz , de média zero e covariancia
Cy =021

Cada um desses modelos considera apenas uma das sub-bandas da decomposicao wavelet de
escala-espago-orientacdo como um GSM. Por exemplo, para a imagem de referéncia, cada sub-
banda é particionada em blocos de M coeficientes cada, sem sobreposicao. Assume-se que cada
bloco é independente dos outros. Cada bloco é entao modelado como o vetor a Assim, se observa
que C segue uma distribuicdo normal condicionada a S, e que os vetores C; sdo condicionalmente

independentes entre si, dado S [40].

Para se obter o valor final do VIF, basta entao se considerar a informagao para cada uma das

sub-bandas presentes. Portanto, para o conjunto de todas as sub-bandas J, tem-se

e 1 B

VIF =

T (2.32)

em que BN J representa N elementos da RF C; (RF C da sub-banda j), com defini¢es similares
para FNi ¢ ENG. Na formula 2.32, I(ﬁN’j; ?N’j\sN’j) ¢ a informagao mutua de Shannon [36]
entre BN J e ?N 7 dada uma realizacio s™¥/ de SV (N elementos do RF S) na banda j. A mesma
relagdo se mantém para ﬁN J, no denominador. Em termos gerais, a informacio miitua entre duas

variaveis aleatérias X e Y se dé por

0600) - 5 5 o (J21 ) o

iz p(x)p(y)

em que p(x,y) ¢ a funcdo de probabilidade conjunta entre X e Y, enquanto que p(x) e p(y) sdo as

respectivas fungoes de probabilidade marginal.
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Vale notar que a informagao mitua sé pode ser calculada diretamente entre RFs com parametros
que se assumem conhecidos, e ndo entre realiagoes dessas RFs (i.e. uma imagem contendo uma
cena natural). No entanto, é possivel estimar os pardmetros relevantes de cada RF, dada uma
realizagao e respeitando-se as devidas condigoes. Por exemplo, em [42| é demonstrada uma série

de métodos para estimar os pardmetros s? e Cy do modelo de fonte do sinal quando as RFs sao
2

ergodicas. Em [43] também se propoe obter G e o7,

respectivos ao modelo de distorcao, através
regressao linear entre a entrada do modelo (a imagem de referéncia) e a saida (imagem de teste).

Se considera que ambos os parametros sao constantes entre todos os blocos espago-temporais que

2

~, empiricamente,

dividem cada canal do sinal. Também em [43] se propoe estimar o parametro o

variando-o até se obter o melhor desempenho para os dados disponiveis.

2.9 Testes subjetivos de qualidade

Como foi mencionado na Secao 2.8, a qualidade visual de midias é avaliada principalmente
através de métricas objetivas. De fato, avaliagOes subjetivas costumam apresentar mais custos
associados. Entretanto, em casos em que a avaliacdo objetiva nao é um problema resolvido, ou
pelo menos caso se deseje validar alguma métrica objetiva nova, é necesséario validar o poder
preditivo de métricas propostas, levando em consideragao principalmente como o desempenho da
métrica proposta se compara com outras alternativas existentes. Isso é feito com a realizagao de

testes subjetivos de qualidade.

Existem duas classes de avaliagGes subjetivas. A primeira classe, denominada avaliacdo de
qualidade, estabelece o desempenho de sistemas de midia sob condigbes 6timas. A segunda classe,
denominada avaliagdo de degradagao, estabelece a capacidade de sistemas de manter a qualidade
sob condigdes sub-6timas (e.g. canais de transmissao ruidosa, codecs que introduzem artefatos de

compressao).

Testes subjetivos procedem com participantes sendo informados sobre o tipo de avaliagdo que
deverao desempenhar. E necessario fornecer aos participantes informacoes acerca do tipo de con-
tetdo que sera analisado, no que o participante deve focar ao avaliar o contetido, o funcionamento
da escala de avaliagao, e como o experimento deve ocorrer (por exemplo, quantas sequéncias de
conteiido devem ser observadas, tempo permitido para a avaliagao, se o participante deve realizar

alguma tarefa de maneira especifica ou permanecer passivo durante a avaliagao).

A maior organizagao responséavel por propor e padronizar testes subjetivos de contetdos de
telecomunicacao é a I'TU-T. A ITU-T recomenda que exemplos praticos do tipo de contetdo a ser
avaliado, que nao devem ser usados nos testes em si, sejam mostrados aos participantes antes do
inicio da aquisicao real de avaliagbes. Isso pode ser feito através de uma rodada de avaliagoes de
treinamento cujos dados nao serao considerados. Também é recomendado que avaliagoes, em vez
de adotar uma escala puramente numérica, sejam baseadas em ideias subjetivas relacionadas com

os termos linguisticos usados para descrever qualidade.

Além de definir condigbes ambientes ideais para a realizacao de testes, a I'TU-T também propoe

esquemas experimentais especificos desenvolvidos para medir aspectos de qualidade especificos.
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Alguns deles sdo discutidos a seguir.

2.9.1 Absolute Category Rating

Contelido Ai Cinza Contelido Bj Cinza Contetido Ck
~10s =105 ~10s =105 ~10s
Avaliacio Avaliacéo

(a) Variante I

Al Aj, Ak, Al Ak, .. Bi, Bj, ...

Voto Voto
(b) Variante II

Figura 2.7: Diagramas de realizacoes tipicas de duas variantes de testes de qualidade subjetiva do
tipo ACR.

O método de avaliacao de categoria absoluta (ACR), também chamado de método de estimulo
dnico, é um teste subjetivo de qualidade em que os contetidos a serem avaliados sao mostrados aos
participantes e entao avaliados de maneira independente, um por vez, em uma escala categoérica.

A avaliagao indica a qualidade observada no conteiido que acabou de ser mostrado. Para cada

conteudo, é calculada a nota de opinido média (MOS) através das médias das notas fornecidas

pelos participantes.

As notas escolhidas pelos participantes devem ser uma escala de 5 categorias. Cada categoria
representa um nivel subjetivo de qualidade, e tem um valor numérico associado para calculo do
MOS. A escala é indicada por:

5. Excelente

4. Boa

3. Razoével

2. Pobre

1. Ruim

E possivel incluir na sequéncia de contetidos mostrados uma versao nao distorcida do contetido

de referéncia, porém nao identificada ao avaliador. Nessa variante, denominada ACR, com referéncia
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oculta (ACR-HR), a nota de cada contetdo ¢é calculada de maneira relativa a sua respectiva
referéncia. Em vez do MOS, se obtém o DMOS, a média das notas diferenciais de cada avaliador

(DV), tal que, para algum contetido distorcido k e para algum participante n,
DV, (k) = PS, (k) — RS, (k) + 5, (2.34)

em que PS, (k) é a nota ACR dada pelo participante n ao conteiudo k e RS, (k) é a nota dada pelo
mesmo participante & versao de referéncia do contetido distorcido em questao. O DMOS daquele

conteiido é entao a média de DV, entre todos os participantes:

_ Xaa DValk).

DMOS(k) >

(2.35)

Seguindo a Equagao 2.34, uma nota diferencial igual a 5 indica uma qualidade excelente, enquanto
que uma nota igual a 1 indica qualidade ruim. Em geral, valores acima de 5 (casos em que algum
contetudo distorcido foi considerado como tendo uma qualidade maior do que sua referéncia) nao

sao descartados, sendo incluidos normalmente no céalculo do DMOS.

A sequéncia de contetidos apresentada na sessao de testes deve ser aleatoria, de preferéncia de
maneira que dois avaliadores ndo observem a mesma sequéncia. Antes e depois da visualizagao
de cada contetido, sao mostradas telas em um tom de cinza intermediario. Isso tem o objetivo de
evitar que possiveis efeitos de fadiga alterem de maneira indesejada a avaliagao dos participantes.
H& duas variantes quanto & estrutura de apresentagoes. O processo de ambas as variantes se

encontra representado na Figura 2.7.

Na primeira variante, cada contetido é mostrado uma tnica vez. Uma sequéncia tipica inclui
uma visualizagao inicial em um tom intermediario de cinza por algum tempo determinado, a
visualizagdo do contetido a ser analisado, e novamente uma visualizagao de cinza, apés a qual o
participante registra sua avaliagdo. Apods o periodo de avaliagao, o préximo contetido é mostrado

da mesma maneira, e o ciclo de visualizacoes se repete, até que todos os contetdos sejam avaliados.

Na segunda variante, contetidos sao mostrados da mesma maneira que na primeira variante.
Apos o fim do primeiro ciclo, é anunciado ao participante que outro ciclo se iniciard. Novamente
os contetdos sao mostrados e o participante deve avalid-los. Esse processo se repete mais uma
vez e a sessao de testes termina. O primeiro ciclo tem o objetivo de estabilizar as avaliagoes do
participante, e dados coletados nessa etapa nao devem ser levados em consideracao. As avaliagoes
finais sdo calculadas com as médias das avaliagOes realizadas no segundo e no terceiro ciclo de
visualizacdes. E importante que em nenhuma das sequéncias geradas em cada ciclo um mesmo
conteiido esteja localizado na mesma posicao que em outro ciclo. Os mesmos dois contetidos

também nao podem ocorrer seguidos um do outro em mais de um ciclo.

2.9.2 Double Stimulus Impairment Scale

O método de escala de distor¢ao de estimulo duplo (DSIS) é um teste subjetivo de degradacao
baseado na comparagao direta entre um contetdo distorcido e uma versao de referéncia do mesmo

conteudo, livre de distorcoes. Sessoes de avaliagao tem duracao de aproximadamente 30 minutos
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Contelido Ai Cinza Conteldo Aj Cinza Contelido Bi Cinza Contelido Bj Cinza

10s 3s 10s 511s 10s 3s 10s 5-11s
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A

Avaliacdo Avaliacdo

Figura 2.8: Diagrama de uma realizacao tipica de testes de qualidade subjetiva do tipo DSIS.

e contam com um participante no papel de avaliador por vez. O método DSIS é caracterizado
por periodos alternados de observacao e votacao, que se repetem de maneira ciclica até que todos
os contetdos sob analise sejam avaliados pelo participante. E comum a inclusdo do proprio con-
teido de referéncia na sequéncia de contetdos que devem ser avaliados pelos participantes, sem
a sua identificacao para os mesmos. Esse tipo de variante experimental é identificado pelo termo
“referéncia oculta” (DSIS-HR).

A sequéncia de contetdos mostrada deve ser escolhida de modo cobrir todos os niveis de degra-
dagoes dispostos na escala adotada no experimento, pelo menos para a maioria dos participantes.
Ao final da aquisi¢do de dados, a nota média obtida entre todos os conteudos e todos os parti-
cipantes seja aproximadamente 3. Indica que a faixa de distor¢des mostrada no experimento foi

adequada.

A sequéncia deve ter ordem aleatoéria evitando que participantes diferentes observem os con-
tetdos na mesma sequéncia ou, pelo menos, de maneira que um mesmo participante nao observe o
mesmo contetdo duas vezes seguidas, seja com o mesmo nivel de degradagao ou com degradagoes
diferentes. Isso pode ser obtido arranjando as sequéncias, por exemplo, através de um quadrado
latino [44, 45]. Quadrados latinos sao arranjos de simbolos em uma matriz quadrada de lado n,
de tal maneira que cada simbolo ocorre exatamente uma vez em cada coluna e cada linha [46].
Uma maneira de aplicar o quadrado latino a sequéncias de um experimento é tratar cada eixo
como um passo da realizagdo do experimento (usuario versus conteuido de referéncia, por exemplo)
e cada simbolo como outra variavel de interesse (uma permutacao da sequéncia de degradagoes).
Isso permite projetar experimentos reduzindo a ocorréncia de combinacoes repetidas de variaveis

independentes (controladas) entre realizagdes do experimento.

Evitar repeti¢oes na ordens de observagoes de diferentes participantes diminui a influéncia que
a relacao de proximidade entre diferentes distor¢oes possa ter nos resultados, e reduz a chance de
possiveis vieses ocorrerem. Um exemplo de realizacao de um teste DSIS se encontra diagramado

na Figura 2.8.

Ao final da série de sessoes de avaliagoes, as notas atribuidas pelos participantes a cada conteido

tém suas médias calculadas. As notas variam em uma escala de distor¢do com as seguintes opgoes

5. Imperceptivel
4. Perceptivel, mas nao incomoda

3. Incomoda levemente
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2. Incomoda

1. Incomoda muito

Esse tipo de escala costuma apresentar resultados mais estaveis para pequenas distor¢oes do
que para grandes distor¢des. E possivel realizar o método DSIS com uma escala reduzida a apenas
uma faixa da escala completa (e.g. de “incomoda levemente” a “imperceptivel”), apesar de que se
recomenda o uso da escala toda. Em casos em que uma resolucao maior das avaliagao subjetiva
dos participantes, é possivel ainda estender, sem muita alteracao do design experimental, a escala

de avaliagao de 5 pontos para 9 pontos, da seguinte maneira:

9. Imperceptivel

8.

7. Perceptivel, mas nao incomoda
6.

5. Incomoda levemente

3. Incomoda

1. Incomoda muito

Existem duas variantes quanto ao formato das apresentagoes no método DSIS. Na variante I,
o contetido analisado e sua respectiva versao de referéncia sao mostrados apenas uma vez cada, e
em seguida o participante registra sua nota. Na variante II, o par de contetidos é mostrado duas
(ou multiplas) vezes para cada participante, que entao registra sua nota. A variante I requer mais
tempo para sua realizagdo, e normalmente é utilizada quando o objeto de anélise envolve distorgoes

com detalhes muito sutis.

2.10 Trabalhos prévios

Uma investigagao preliminar 9] tentou estudar a relevancia de artefatos de formato e de cor
para a qualidade geral, porém sem um estudo estatistico aprofundado. A questdo de como ava-
liar distor¢oes de geometria em contetdo tridimensional foi previamente discutida em um estudo
sobre avaliagao de qualidade em videos estéreo [47], que sugeriu que avaliagoes de qualidade sao
dependentes da estrutura e do contetido da cena, e propds que apenas alguns niveis de qualidade

geométrica poderiam ser distinguidos.

Em trabalhos recentes [10, 11], foi proposta uma metodologia realista para se avaliar a qualidade

do atributo geométrico de nuvens de pontos. Avaliacoes subjetivas foram feitas sobre contetidos
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sujeitos a distorcoes de ruido gaussiano e de compressao baseada em octrees, que afetam apenas a
geometria. Os modelos distorcidos foram visualizados como nuvens de pontos, sem conversao para
representagoes baseadas em malhas (meshes), e avaliados usando um protocolo interativo, através
de um arranjo composto por um desktop mais um monitor, no primeiro artigo [10], e depois através
um dispositivo de realidade aumentada (AR), no segundo artigo [11]. Outro estudo |7] realizou
avaliacoes subjetivas de contetdos codificados através de octrees e através de grafos, mantendo
os atributos de cor dos modelos originais inalterados. As nuvens de pontos foram visualizadas
representando pontos individuais como cubos, cujo tamanho era ajustado automaticamente em
funcdo dos pontos vizinhos mais proximos. A visualizagao foi realizada de maneira passiva durante
a avaliagao. O efeito de artefatos nao-sintéticos também ¢é discutido em outro estudo [48], apesar
de que restrito a métricas ponto-a-ponto. Métricas baseadas na distancia de ponto-a-plano [4, 10]

se mostram mais robustas para avaliar defeitos no formato.

Também foi feita uma avaliagao de qualidade de algoritmos de remocao de ruido em nuvens de
pontos [6]. Participantes visualizavam os conteudos processados por um processo Screened Poisson
de reconstrugao de superficie [49]. Outro estudo [12] adotou um procedimento similar. Nuvens de
pontos sem cor foram codificadas através de poda de octrees e visualizadas como malhas poligonais,

criadas através do mesmo algoritmo de reconstrugao de superficies (Screened Poisson).

Avaliacao da qualidade de cor foi inicialmente discutida em um estudo [9] dentro de um escopo
limitado e de maneira mais extensa em outro estudo [48]. O primeiro sinteticamente adiciona
ruido ao sinal de cor e nao propoe uma métrica objetiva, enquanto o segundo considera apenas

uma métrica SNR ponto-a-ponto para medir a qualidade de cor.

Em face das questoes levantadas pelos estudos mencionados, o presente trabalho foca em um
novo método combinado de avaliagao de qualidade de cor e de geometria em nuvens de pontos
voxelizadas. Para validar esse novo framework proposto, foi realizada uma série de experimentos
para determinar a correlagao entre as métricas obtidas e a percepcao humana subjetiva de qualidade
visual em contetido tridimensional, comparando com o desempenho de outras métricas atualmente
empregadas para medir a qualidade visual desse tipo de contetido. Nos proximos Capitulos sao

descritos os experimentos realizados e os resultados obtidos sao analisados.

29



Capitulo 3

Desenvolvimento

3.1 Introdugao

Neste capitulo o processo de elaboracao do framework de métricas objetivas proposto é descrito
em detalhe. Em seguida, sdo descritos os experimentos realizados para verificar a correlagao entre
as métricas obtidas através do framework e a percepcgao subjetiva de qualidade visual de nuvens

de pontos.

3.2 Representagao de nuvens de pontos

O primeiro passo do método proposto de avaliagdo de qualidade visual de nuvens de pontos é
gerar miltiplas projecoes ortograficas, de diferentes pontos de vista, do contetido voxelizado sob
analise. A escolha do namero e posi¢oes dos pontos de vista deve garantir a extracao eficiente da

maior quantidade de informacao possivel acerca do contetido original.

Sem conhecimento a priori da geometria e da importancia de diferentes partes do objeto, ide-
almente deve-se obter uma amostragem uniforme dos vozels presentes no conteiido. Em outras
palavras, projegoes devem ser tomadas de dire¢oes uniformemente espacadas entre si ao redor do
objeto. Isso é equivalente a amostrar uniformemente a superficie de uma esfera ou, em termos de
coordenadas esféricas, o plano composto pelas coordenadas 6 (angulo polar) e ¢ (angulo azimutal).
Isso s6 é garantido de maneira exata para uma quantidade limitada de niimeros de amostras. Espe-
cificamente, os tinicos arranjos de amostras que se distribuem uniformemente através da superficie
de uma esfera sao aqueles que coincidem com os vértices de um so6lido platénico inscrito em tal
esfera. Consequentemente, apenas proje¢oes tomadas desses pontos de vista amostram uniforme-
mente as diregoes possiveis ao redor de objetos [50]. Para numeros diferentes de amostragens, a
configuragao otima é dependente da tarefa em questao [51, 52, 53, 54]. No presente caso, se con-
sidera que quanto menor a variacao da area da esfera associada com cada ponto de amostragem,

melhor a distribuicao.

Na Figura 3.1, encontra-se um exemplo de projegoes de um modelo tridimensional de uma
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Figura 3.1: Seis projecoes ortograficas igualmente espagadas ao redor de um modelo humano.

pessoa, tomadas a partir dos 6 vértices de um octaedro virtual circunscrevendo o volume repre-
sentado. Outro exemplo de projecoes do mesmo modelo se encontra na Figura 3.9, porém a partir
de 4, 8, 14 e 40 pontos de vista. Nos dois tultimos casos, o espacamento entre os pontos de vista é
aproximadamente uniforme. Além disso, nos 4 casos os pontos de vista nao se alinham mais com
a grade de vozels. Assim, para rasterizar a imagem é preciso interpolar os vozxels que se encontram

em posi¢oes nao inteiras, efetivamente tendo que se voxelizar o0 modelo novamente.

Existem maneiras de se aproximar o comportamento uniforme de amostragem da esfera, princi-
palmente quando o néimero de amostras se aproxima do infinito. E possivel, por exemplo, amostrar
as diregoes aleatoriamente, ou amostrar através do algoritmo da espiral de Fibonacci [50]. Um
exemplo de amostragem usando a espiral de Fibonacci estd disposto na Figura 3.2. No entanto,
para a maioria dos casos, um numero pequeno de projecoes se mostra suficiente. Na Figura 3.3
¢ mostrado o percentual de vozrels de uma nuvem de pontos que é visto de alguma projecao (i.e.
nao fica ocluso em pelo menos alguma projegao) em func¢ao do ntumero de pontos de vista utili-
zados para se realizarem as projecoes. Nos casos em que o niimero de pontos de vistas coincidiu
com o numero de vértices de algum dos s6lidos platdnicos, as projegoes foram tomadas de acordo.
Nos demais casos, foi realizada uma amostragem aproximadamente uniforme através da espiral de
Fibonacci. Se observa que a taxa com que o numero de vozels vistos aumenta é cada vez menor
a4 medida que o ntimero de ponto de vistas usados para se obter proje¢oes do modelo aumenta
também. Isso revela que caso haja um custo maior associado a amostrar mais pontos de vista, um

nimero relativamente menor de amostras pode ser mais vantajoso.
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Amostras Fibonacci da esfera sobre o plano 6-¢

e of

7

Figura 3.2: Pontos de amostragem distribuidos ao redor das esfera de acordo com o algoritmo da

espiral de Fibonacci e projetados no plano 8 x ¢.

Especialmente, o uso de 6 projecoes se revelou conveniente. Nesse caso, os pontos de vista
coincidem com os vértices de um tetraedro regular. Isso ainda implica que os planos de projegoes
formam exatamente um cubo ao redor do objeto avaliado, o que permite que as projegoes se
alinhem paralelamente com as faces dos vozels que compoem o contetido em questao, mantendo
uma relagao direta entre vozels do objeto e pizels de suas projegoes, sem a necessidade de qualquer
interpolagao ou outro tipo de pré-processamento. Isso pode explicar o comportamento da PSNR
média das projegoes & medida que o numero de pontos de vista utilizados varia, demonstrado na
Figura 3.4. Além da eventual convergéncia do valor de PSNR a partir de 15 projegGes, se observa
um pico da PSNR para certos numeros de pontos de vista no inicio do gréafico. Principalmente

para 6 e 12 projegoes, o valor de PSNR é mais alto.

Valores maiores de PSNR indicam um erro relativamente menor entre a imagem sob anélise
e sua referéncia. De maneira anéloga, quando o ntmero de pontos de vista nao permite que
as projegoes tomadas se alinhem com os vértices de um octaedro (6 vértices) ou um icosaedro
(12 vértices), o erro medido entre as versoes de teste e de referéncia aumenta. Pode se observar
que dos soélidos regulares, o octaedro e o icosaedro sao os que apresentam o maior nimero de
vértices alinhados com as faces de um cubo, assumindo orientagoes compativeis. Isso indica que a
interpolagao necessaria para a projecao de conteudos voxelizados fora dos eixos ortogonais de seu
sistema de coordenadas introduz erro nas imagens geradas, pelo menos quando a métrica adotada
é a PSNR. Assim, o uso de 6 pontos de vista garante a maior fidelidade entre o contetido de teste
e sua versao de referéncia. Portanto, escolheu-se fixar em 6 o niimero de projegoes no calculo das

métricas usadas nos experimentos subjetivos realizados neste estudo.
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Figura 3.3: Proporgao de wozels vistos para um determinado modelo em fung¢ao no ntmero de

pontos de vista projetados.
3.3 Meétrica objetiva das projecoes

De posse de um conjunto de projecoes de um objeto tridimensional de referéncia e outro
conjunto de projegoes a partir dos mesmos pontos de vista da versao distorcida desse objeto, é
possivel realizar uma comparagao entre os dois conjuntos de imagens através de qualquer métrica
objetiva existente para a qualidade de imagens bidimensionais. Foram exploradas 6 métricas

diferentes, entre elas PSNR e SSIM (e variagoes delas) e VIFP.

Para cada par de projecOes, respectivas ao conteudo de referéncia e o conteudo distorcido,
obtém-se uma medida do nivel de distor¢ao. A métrica final para o contetdo tridimensional é
calculada a partir da média da métrica entre todos os pares. Caso haja informacao acerca da

relevancia de cada proje¢ao, uma média ponderada pode ser empregada.

3.4 Validagao experimental

Foram realizados dois experimentos independentes para validar a correlagdo da métrica pro-
posta com a percep¢ao humana de qualidade visual em contetidos tridimensionais estaticos. O
primeiro experimento consistiu de participantes voluntarios interagindo com modelos tridimensi-
onais de pessoas através de um visualizador e atribuindo notas para diversas caracteristicas de
versoes diferentes de cada contetido. O segundo experimento contou com modelos tanto de pessoas

como objetos. Assim como no primeiro, cada participante interagia com o conteido disponibili-
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Figura 3.4: PSNR médio entre diferentes projecoes em fungdo do nimero de pontos de vista

utilizados.

zado. No entanto, apenas uma tinica nota era atribuida a pares de contetdos, referente a diferenca

de qualidade geral observada entre cada contetido do par.

3.4.1 Experimento ACR

Este experimento foi desenvolvido como uma modificagdo do método de avaliagao subjetiva
ACR-HR [55]. Cada participante observava em uma janela quadrada uma proje¢ao ortografica
de uma sequéncia com duas nuvens de pontos. Cada nuvem de pontos apresentava cinco versoes

diferentes, uma de referéncia oculta e outras 4 versoes degradadas através de diferentes processos.

A visualizagdo era interativa, e os participantes podiam, para uma determinada nuvem de
pontos, alternar livremente e sem limite de tempo entre suas versées disponiveis, escolher o ponto
de vista (rotacionando e transladando o conteido) e o nivel de ampliagao da projecao. Cada versao
era disponibilizada em uma ordem aleatéria e sem identificacdo para o participante. A interface

grafica do programa utilizado para a visualizagdo é mostrada na Figura 3.5.

A partir do momento que se sentisse confortavel com sua afericdo, o participante selecionava,
através da interface grafica, uma nota para a qualidade observada em cada versdao do conteido.

Foi considerada a escala ACR de 5 categorias:
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Figura 3.5: Interface grafica do visualizador utilizado nos experimentos preliminares.

5. Excelente
4. Boa
3. Razoével
2. Pobre
1. Ruim
Apos confirmar suas avaliagoes, as notas dadas pelo participantes para todas as versdes da nuvem

de pontos avaliada eram registradas simultaneamente, e o proximo conteido era mostrado para

ele.

Foram utilizados dois conteudos diferentes, cada um com 4 niveis de distor¢do e mais um
de referéncia, somando 10 avaliagoes por participante. No total, 12 voluntarios participaram do

experimento.
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Figura 3.6: Interface grafica do visualizador utilizado nos experimentos com estimulo duplo.

3.4.1.1 Conteudos utilizados

Como contetdos a serem avaliados no experimento, foram usadas duas nuvens de pontos. Am-
bas as nuvens de pontos foram obtidas extraindo um tnico quadro de uma sequéncia de video
tridimensional (nuvem de pontos dindmicas). O primeiro contetdo, denominado de Ricardo, apre-
senta um modelo tridimensional da metade anterior do torso de uma pessoa. O segundo conteido,

denominado de Loot, apresenta um modelo completo do corpo de uma pessoa.

As versoes sob avaliagdo da nuvem de pontos Ricardo foram geradas usando um algoritmo de
compressao com compensagao de movimento [56] seguindo quatro niveis diferentes de quantizagao,

que degradavam tanto cor como geometria.

A sequéncia Loot foi avaliada sob quatro degradacées diferentes:

e Alta qualidade, que sofreu apenas uma leve distorgao de cor [56].
e Baixa qualidade, que sofreu uma distorgao consideravel de cor.

e Alta qualidade passa-baixas, que sofreu distor¢oes de cor e de geometria leves. A distorgao
de geometria foi obtida por um processo de filtragem passa-baixas composto por uma sub-

amostragem seguida de uma super-amostragem de mesmo nivel.

e Baixa qualidade passa-baixas, que sofreu uma distor¢ao consideravel de cor e a mesma dis-

torcao de geometria descrita na versao anterior.
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3.4.2 Experimento DSIS

Este experimento consistiu de sessoes de avaliacao subjetiva de maneira similar ao experimento
anterior. Neste caso, em vez de observar um contetido de cada vez, participantes viam pares de
projecoes do mesmo ponto de vista, lado a lado. Em um dos lados, havia uma projecao do
contetido original. Do outro lado, a projecao de uma versao distorcida do conteiido. Era usado
apenas um nivel de distor¢ao por vez. O lado em que a imagem de referéncia era mostrada era
aleatorio, permanecendo o mesmo até o final da secdo de cada participante. Ambos os lados eram

devidamente identificados para o usuario através da interface.

O participante podia entao interagir com os pares de conteiido, novamente podendo rotacionar,
transladar e ampliar eles livremente e sem limite de tempo. Toda interagao era aplicada igualmente
a cada uma das duas projegoes, resultando sempre em imagens equivalentes, exceto pela presenca

de distor¢ao em um delas. Uma representacao da interface se encontra disposta na Figura 3.6.

Apéds o periodo de observacao, o participante selecionava uma nota, de 1 (ruim) a 5 (bom),
para o grau de distorcao observado entre a imagem de referéncia e a imagem distorcida. O usuario
entdo confirmava o envio de sua avaliagdo e o proximo contetido era mostrado para ele, em uma
ordem aleatoria. Cada participante observou 8 niveis de distor¢ao para 10 contetidos diferentes
(incluindo tanto pessoas como objetos), totalizando 80 pares por participante, com 20 pessoas

tendo participado do experimento.

3.4.2.1 Conteudos utilizados

No total, 7 contetidos diferentes foram utilizados no decorrer do experimento. Projegoes de-
monstrativas das nuvens de pontos estao dispostas na Figura 3.7. Projegoes vistas de 6 pontos de
vista diferentes (formando um cubo ao redor do objeto) dos mesmos contetudos estao dispostas nas
Figuras 3.10, 3.11, 3.12, 3.13, 3.14 e 3.15. Os contetudos foram escolhidos de forma a apresentar
uma ampla gama de caracteristicas diferentes. Tanto objetos inanimados e corpos humanos foram
incluidos, ambas as classes contendo variagdes de niveis de detalhes geométricos e de cor. Os
contetudos longdress vox10 1300 (longdress), loot _vox10 1200 (loot) redandblack vox10 1550
(redandblack) e statue Klimt foram obtidos do repositorio MPEG e apresentam modelos huma-
nos. Jéa os conteidos romanoillamp11 e biplane foram obtidos do repositério JPEG enquanto o
contetdo amphoriskos12 foi obtido da plataforma Sketchfab!, sendo esses tltimos modelos de ob-
jetos inanimados. A aquisi¢do desses modelos pode se dar de diversas maneiras. Por exemplo,
os modelos longdress, loot e redandblack foram gerados filmando-se pessoas realizando acoes em
tempo real no interior de uma estrutura com cadmeras arranjadas em uma esfera ao redor do volume
sendo modelado. Para este experimento, foram utilizados apenas um dos quadros de cada uma

das sequéncias de video.

O passo seguinte da preparagao dos contetdos foi processar as nuvens de pontos dos modelos
de forma a reduzir os possiveis fatores de influéncia dos resultados. Principalmente o niimero

de pontos precisou ser padronizado em algumas das nuvens de pontos utilizadas. Nem todos os

"https://sketchfab.com/
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(a) amphoriskos (b) biplane (c) longdress (d) loot

(e) redandblack (f) romanoillamp (g) statue_ Klimt

Figura 3.7: Nuvens de pontos de referéncia usadas no experimento DSIS. O contetdo "sta-

tue_ Klimt" (g) foi utilizado apenas para o treinamento dos participantes.

Fedimensionamento

Fre-processamento —» Voxelizacdo —» .
P s e franslacao

— Codificacdo

Referéncia Distorcida

Figura 3.8: Etapas do processamento dos contetidos visualizados no experimento.

conteiidos precisaram passar por todos os processos empregados. Na figura 3.8 sao demonstradas as
etapas de processamento. Em verde sao mostradas etapas pelas quais apenas alguns dos contetidos

passaram, enquanto que em azul estao os processos pelos quais todos os contetidos passaram.

A etapa de pré-processamento serviu para garantir que o niimero de pontos nao variasse dema-
siadamente entre conteiidos. O conteido biplane, principalmente, precisou passar por essa etapa.
Ele esta disponivel em miltiplas versoes correspondentes a capturas de diferentes partes do objeto
representado (um avido biplano). Para o experimento, um modelo completo foi reconstruido a
partir das diferentes varreduras. Isso resultou em uma nuvem de pontos com cerca 106 milhoes
de pontos, muito acima da média dos outros contetidos e acima das capacidades de desempenho
aceitavel do visualizador. Para reduzir o ntimero de pontos a um limite aceitavel, o programa

CloudComparel3? foi utilizado. Foi feita uma subamostragem uniforme da nuvem de pontos ori-

2 Aplicacio disponivel em http://www.cloudcompare.org/
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Tabela 3.1: Descrigdo geométrica de cada contetido de referéncia. Além do nimero total de pontos
em cada modelo, sao especificadas as distancias minimas e maximas entre todos os pares de vizinhos
mais proximos do modelo. Sao também especificadas as dimensoes (ap6s normaliza¢ao) em cada

uma das diregdes ortogonais do sistema de coordenadas cartesiano.

Contetidos: | amphoriskos biplane longdress loot redandblack  romanoillamp  statue  Klimt

Pontos: | 828,820 773,447 857,966 805,285 757,691 636,097 482,941

Min NN: |0.000977501 0.000977516  0.00101107  0.00101936  0.00103515  0.000977516 0.000977516

Max NN: |0.00239442 0.0470835  0.00226096  0.00203872  0.00253568 0.0693761 0.0100166

X/Y/Z: |0.60/1/0.68 0.65/0.23/1 0.40/1/0.20 0.35/1/0.41 0.44/1/0.30  1/0.45/0.51  0.30/1/0.29

ginal, com uma distancia maxima permitida entre amostragens mais proximas igual a 0.009 (na
escala interna da prépria nuvem de pontos, j4 que nao é assumida nenhuma unidade de distancia
na representac¢ao do modelo). Outro contetdo que sofreu altera¢oes em seu ntumero de pontos foi o
modelo amphoriskos. Neste caso, foi preciso aumentar o niimero de pontos presente. Isso foi feito
utilizando um processo de reconstrugao de superficie de Poisson, também através do programa
CloudCompare. Foi utilizada uma amostra por no, mantendo-se os valores padrao das outras con-
figuracoes. Foram utilizados os vetores normais originais da nuvem de pontos. De posse da malha
reconstruida, 1 milhao de pontos foram aleatoriamente amostrados através do mesmo programa.

Nenhum dos outros contetidos passou por esta etapa de pré-processamento.

A etapa de voxelizag@o garante que todas as nuvens de pontos fiquem restritas a uma geometria
com pontos regularmente espagados. Isso evita que o visualizador utilizado ou que a compressao
aplicada nas nuvens de pontos introduzam vieses. Especificamente, como todos os modelos hu-
manos do conjunto de dados utilizado ja era originalmente voxelizado, os modelos de objetos
inanimados foram convertidos a grades de vozels quantizadas com precisao de 10 bits para que a

representacao geométrica continua desses contetidos nao afetasse as avaliagoes.

Em seguida, ocorre a etapa de redimensionamento e translagao das nuvens de pontos. Isso
garante que todas as nuvens de pontos se encontrem na mesma faixa dindmica de posi¢oes. O
codec utilizado para a introducao de distorcoes retorna nuvens de pontos na faixa de posi¢oes que
vai de -0.5 a 0.5 em cada dire¢ao, enquanto que os contetidos originais ocupam uma faixa de 0
a 1023. Como o experimento requer a visualizacao simultanea dos dois contetidos, é preciso que
eles estejam em posicoes e escalas equivalentes quando mostrados. Como padronizacao, todos os
conteudos foram redimensionados de acordo e transladados para a origem, antes da codificagao. Os
conteudos de referéncia sao obtidos diretamente desta etapa de redimensionamento e translagao.

Informacao sobre as caracteristicas geométricas desses contetidos esta disposta na Tabela 3.1.

A etapa de codificacao é responsével por produzir as versoes distorcidas dos contetidos a serem
usadas no teste subjetivo. A codificagdo aplicada nas nuvens de pontos de referéncia foi feita
através do software opensource disponibilizado como &ncora em uma das chamadas de propostas

para compressao de nuvens de pontos emitida pelo MPEG3. Essa codificacdo segue um esquema

3Disponivel em https://github.com/cwi-dis/cwi-pcl-codec
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Tabela 3.2: Pontos remanescentes e taxa (bpp) de geometria e color para cada conteido de teste

codificado.

Cor (b
Conteudo | Profundidade de octree pongzrsggf;nae]asggntes Geometria (bpp) oP—10 QP (: I;E) 0P = 90
OD = 08 16.61% 0.400 0.078 0.234 0.652
amphoriskos OD = 09 53.92% 1.561 0.188 0.612 1.764
OD = 10 100% 5.006 0.301 1.004 2.889
OD = 08 8.04% 0.142 0.069 0.191 0.430
biplane OD = 09 32.69% 0.618 0.209 0.686 1.623
OD = 10 100% 2.890 0.589 2.101 4.926
OD = 08 7.76% 0.169 0.047 0.134 0.358
longdress OD = 09 29.63% 0.649 0.125 0.414 1.178
OD = 10 100% 2.520 0.347 1.169 3.423
OD = 08 7.84% 0.173 0.034 0.078 0.210
loot OD = 09 29.99% 0.662 0.073 0.213 0.636
OD = 10 100% 2.556 0.182 0.561 1.716
OD = 08 8.13% 0.182 0.039 0.093 0.258
redandblack OD = 09 31.09% 0.699 0.084 0.249 0.773
OD = 10 100% 2.694 0.199 0.632 2.037
OD = 08 12.14% 0.282 0.055 0.159 0.447
romanoillamp oD = 09 42.47% 1.059 0.136 0.491 1.488
OD = 10 100% 3.827 0.289 1.124 3.492
OD = 08 15.00% 0.324 0.098 0.286 0.722
statue_ Klimt OD = 09 50.56% 1.384 0.240 0.792 2.147
OD = 10 100% 4.552 0.413 1.392 3.889

de compressao através de octrees. Cores sao codificadas utilizando o algoritmo JPEG apos serem
mapeadas a uma grade bidimensional, percorrendo a octree em ordem de profundidade. Para se
obter uma ampla faixa de distor¢oes, foram aplicadas codificagoes em 3 niveis de qualidade de
geometria e 3 niveis de qualidade de cor: geometrias com octree de 8-bits, 9-bits e 10-bits, e cores
com parametro de qualidade JPEG (QP) igual a 10, 50 e 90. Tanto para a geometria como para
a cor, quanto maior o pardmetro utilizado, se espera obter uma qualidade visual maior. Foram
feitas todas as combinagoes entre os niveis de degradagado utilizados, fornecendo 9 degradagoes
diferentes para cada contetido de referéncia. Qutros parametros de degradagao presentes no codec
utilizado nao foram explorados, com todas as outras configuragbes mantendo seus valores padrao.
Esta etapa resulta nos contetidos distorcidos a serem avaliados. Todos os 9 niveis de distor¢ao dos
contetidos de referéncia foram observados e avaliados por cada participante. Na Tabela 3.2 estao
listados o ntmero de bits por pontos de cada modelo degradado e a porcentagem correspondente
de pontos remanescentes. Em alinhamento com o esperado, se observa que a distribuicao de bits,
tanto em termos de geometria e de cor, varia consideravelmente dados a profundidade na octree e

o valor de QP, dependendo do contetdo.

Para se calcularem as notas objetivas das métricas ponto a ponto, ponto a plano e baseadas em
cor, foi usado o programa de avaliacdo de compressao de nuvens de pontos adotado pelo MPEG
em sua versao 0.12 [57, 58]. No caso da métrica baseada em cor, o programa fornece os valores

PSNRy, PSNRyj, and PSNRy;, que sao entao combinados através da Equagao 2.13, resultando na
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degradacao de cor total do conteiido. Para as métricas ponto a ponto e ponto a plano, os valores
totais de degradagao de geometria foram baseados no erro quadratico médio (MSE) e na distancia

de Hausdorfl dos erros individuais.

As métricas plano a plano foram calculadas através do software proposto em [59], em usa
versao 1.0%. Como tanto as nuvens de ponto distorcidas como suas versdes de referéncia continham
vetores normais previamente associados a suas coordenadas, a metodologia proposta por Hoppe et
al. [60] foi utilizada para estimar as normais. Este método se baseia no ajuste de planos através
de minimos quadrados para o conjunto dos 12 pontos mais proximos na vizinhancga de cada ponto

de interesse ajustado pelo plano. Foi utilizada a implementacao realizada na Point Cloud Library
(PCL) [61].

3.4.2.2 Equipamentos e ambiente

Os experimentos se realizaram em dois laboratorios durante aproximadamente o mesmo pe-
riodo: na Universidade de Brasilia (UnB), em Brasilia, Brasil, e na Ecole Polytechnique Fédérale de
Lausanne (MMSPG - EPFL), em Lausanne, Suiga. Nos dois laboratorios, foi utilizado um arranjo
com computador pessoal e um monitor Apple Cinema Display de 27 polegadas e resolugao de 2560
pizels na horizontal por 1440 pizels na vertical, de modelo A1316. Participantes observavam os
conteudos através do visualizador descrito na Secao 3.4.2, e eram capazes de rotacionar, transladar
e redimensionar os contetidos usando um mouse. Para avaliar os contetidos observados, botoes de

radio presentes na interface grafica do visualizador eram selecionados, também com uso do mouse.

No MMSPG, experimentos se deram em uma sala que cumpre os requisitos para avaliagao de
representacao visual de dados da recomendacao ITU-R BT.500-1316. A sala foi equipada com
luzes neon com temperatura de cor de 6500 K. A cor das paredes e das cortinas era de tom cinza
médio. A luminosidade da tela foi regulada para 120 c¢d/m2 seguindo o perfil CIE D65, e a luz
ambiente foi ajustada para o nivel de 15 lux incidentes de maneira perpendicular a tela, medidos
de acordo com a recomendagao ITU-R BT.2022. Na UnB, a sala de testes se encontrou isolada de
luz natural, sem acesso a janelas para o exterior. A iluminagao foi composta por luzes fluorescentes

de temperatura de cor de 4000 K, e a cor das parede era branca.

“https://github.com/mmspg/point-cloud-angular-similarity-metric
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(a) 4 vistas (b) 8 vistas

(c) 14 vistas

(d) 40 vistas

Figura 3.9: Projegoes ortograficas igualmente espagadas ao redor de um modelo humano.
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) vista superior ) vista posterior ) vista direita
) vista anterior ) vista esquerda ) vista inferior

Figura 3.10: Projegoes ao redor da nuvem de pontos de referéncia do contetido amphoriskos.

(b) vista posterior (c) vista direita

(d) vista anterior (e) vista esquerda (f) vista inferior

Figura 3.11: Projecoes ao redor da nuvem de pontos de referéncia do contetado biplane.
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(a) vista superior (b) vista posterior (c) vista direita

(d) vista anterior (e) vista esquerda (f) vista inferior

Figura 3.12: Projecoes ao redor da nuvem de pontos de referéncia do contetdo longdress.

) vista superior ) vista posterior ) vista direita
) vista anterior ) vista esquerda ) vista inferior

Figura 3.13: Projegoes ao redor da nuvem de pontos de referéncia do contetdo loot.
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) vista superior ) vista posterior ) vista direita
) vista anterior ) vista esquerda ) vista inferior

Figura 3.14: Projegoes ao redor da nuvem de pontos de referéncia do contetido redandblack.

(a) vista superior (b) vista posterior (c) vista direita

(d) vista anterior (e) vista esquerda (f) vista inferior

Figura 3.15: Projecoes ao redor da nuvem de pontos de referéncia do contetdo romanoillamp.
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Capitulo 4

Resultados Experimentais

4.1 Introducao

Neste Capitulo sdo apresentados os resultados obtidos através dos experimentos subjetivos
realizados ao longo deste estudo. Sao discutidos tanto os comportamentos dos dados respectivos

as notas subjetivas em si, quanto as relagoes entre as notas e as métricas objetivas exploradas.

Especialmente sao investigadas as relagoes com as métricas objetivas obtidas através do fra-
mework proposto (métricas projetivas). Como as métricas projetivas exploradas sdo baseadas na
aplicacao de métricas bidimensionais ja estabelecidas para a avaliacao de imagens, as métricas
projetivas sao denominadas pelo nome da respectiva métrica bidimensional acrescido do prefixo

“P” (e.g. a versao projetiva da métrica PSNR é denominada P-PSNR).

A seguir, na Secao 4.2, sdo mostrados os resultados do experimento baseado no método Absolute
Category Rating with Hidden Reference (ACR-HR). Logo apos, sdo mostrados os resultados acerca

do experimento baseado no método Double Stimulus Impairment Scale, na Secao 4.3.

4.2 Experimento ACR-HR

Uma analise inicial da Figura 4.1 demonstra que a P-PSNR consegue discriminar um sinal
de alta qualidade dentre outros. Os resultados também demonstram uma correlacdo positiva
entre DMOS e P-PSNR com respeito ao sinal original. As avaliagoes de qualidade aparentaram ser
altamente dependentes do contetido presente na cena observada, e niveis de qualidade intermediaria

sao correlacionados de maneira menos consistente com a P-PSNR [10].

A sequéncia Loot revelou um comportamento inesperado quando usudarios tenderam a preferir
a versao “alta qualidade passa baixas” em vez da versao “alta qualidade”, mesmo a primeira in-
troduzindo mais distor¢ao e apresentando uma P-PSNR inferior. Isso pode ser justificado por um
viés causado pelo contetdo da cena [10]|. Todas as outras relagoes entre as notas mantiveram o

comportamento esperado de correlacao com a P-PSNR.

Os resultados foram realizados com um ntimero relativamente pequeno de participantes. Por
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Figura 4.1: Comparacao entre a PSNR projetada em 6 vistas e as notas subjetivas dos participantes

obtidas no experimento baseado em ACR-HR.

consequéncia foi encontrada uma variancia significativa nos dados obtidos. Apesar de os resultados
nao serem estatisticamente fortes, eles indicam o potencial da métrica proposta e justificam um

estudo mais extenso.

4.3 Experimento DSIS

Nesta secao, apresentam-se e discutem-se as notas subjetivas coletadas durantes os experi-
mentos com esquema DSIS e os resultados de desempenho de métricas objetivas de qualidade
no estado da arte baseadas em projecao e baseadas em pontos. Para se referir as métricas pré-
existentes baseadas em pontos, nas tabelas e figuras desta secao se usam as abreviaturas po2point,
po2plane e pl2plane para indicar se a métrica em questao é baseada nas distancias ponto-a-ponto,
ponto-a-plano e plano-a-plano, respectivamente. A métrica de cor baseada em pontos explorada,
denominada PSNRv/y, € calculada através da formula definida na Equagao 2.13. Para se refe-
rir as métricas baseadas em projecoes, propostas neste estudo, o prefixo P é omitido nas tabelas
e figuras em funcao de clareza visual, e a métrica é identificada pela métrica 2D aplicada nas

projecoes.

4.3.1 Analise das notas subjetivas

Notas subjetivas obtidas dos dois laboratérios se mostraram estatisticamente distintas. Por isso,
a analise comparativa entre as métricas foi feita de maneira separada entre os dois conjuntos de
dados. Além disso, as notas também se mostraram estatisticamente distintas entre tipos diferentes

de contetidos. Assim, a anélise foi separada também em trés conjuntos de dados, para os conjuntos
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Figura 4.2: Avaliagoes subjetivas de cada conteido, separadas por degradagao.
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(a) OD10_ QP90 (b) OD09_ QP90 (c) OD08_QP90

(d) OD10_QP50 (e) OD09_ QP50 (f) OD08_ QP50

(g) OD10_QP10 (h) OD09 QP10 (i) OD08_ QP10

Figura 4.3: Diferentes niveis de distorg¢ao aplicados ao contetido longdress.

de dados de cada laboratério: o conjunto de dados completo (i), dados referentes a conteudos

mostrando corpos humanos (ii) e dados referentes a contetidos mostrando objetos inanimados (iii).

Os resultados acerca das notas subjetivas referentes as 6 nuvens de pontos descritas na Se-
¢ao 3.4.2.1 sao mostrados na Figura 4.2. Cada subfigura indica o local de onde os dados foram
obtidos. Sao mostrados os histogramas das notas de opinido médias (MOS) de cada contetdo

e cada tipo de degradagao, com seus respectivos intervalos de confianca. Foi adotada a seguinte
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convengao de nomenclatura: dada uma profundidade de octree (OD) igual a XX € {08,009, 10}, que
determina nivel de qualidade da geometria da nuvem de pontos, e dada um parametro de qualidade
JPEG (QP) igual a YY € {10, 50,90}, que denota o nivel de qualidade de cor da nuvem de pontos,
o conteido é denominado ODXX QPYY. Exmplos das diferentes combinagoes de distorgao do

conteiido longdress se encontram na Figura 4.3.

Baseado nos resultados indicados na Figura 4.2, as notas subjetivas variam entre os tipos
de degradagao, mesmo para um mesmo conteido. Em particular, se nota que para as versoes
de geometria mais esparsa dos conteados (OD = 08), independentemente do conteido em si,
melhorias na qualidade de cor (aumento do QP) causam um aumento relativamente mais lento da
nota subjetiva média. As avaliagoes aumentam mais rapidamente quando a resolugao da geometria
¢ maior. Isso indica que quando a geometria do contetido tem uma resolugao muito baixa, como
na Figura 4.3f, a percepgao de qualidade é consideravelmente limitada, independentemente de
melhorias na cor. Esse é o caso pelo menos quando uma geometria pouco densa se traduz na falta

de espagos preenchidos pelo modelo (i.e. buracos entre os pontos).

Neste estudo nao se exploraram efeitos que diferentes métodos de visualizagdo podem ter na
percepcao subjetiva dos avaliadores, como quando geometrias mais esparsas sao interpoladas de
modo a preencher espagos vazios entre os pixels. No visualizador utilizado, o tamanho maximo
dos voxels/pixels renderizados foi mantido em um tamanho reduzido de modo a evitar efeitos
de borramento (blurring) do conteudo de referéncia. Assim, se observaram lacunas nos modelos
principalmente para uma profundidade de octree igual a 08. Para nuvens de pontos de octree de
profundidade igual a 09, tais artefatos s6 se tornavam visiveis quando o avaliador inspecionava os

modelos com um nivel de amplia¢do (zoom) consideréavel.

Outra razao que explica os comportamentos das avaliagoes de contetidos com os menores niveis
de qualidade de geometria é o uso da estrutura de octree como base para a compressdao. A medida
que se reduz a resolucao de geometria de uma octree, um ntimero cada vez maior de pontos da
nuvem de pontos original se encontra em noés folha da érvore. Considerando que a cor de um ponto
ap6s compressao é determinada pela combinagao dos pontos que se encontravam em um mesmo nd
folha antes da compressao, inerentemente os detalhes de cor de uma nuvem de pontos sao limitados

pela resolugao (e consequentemente, pela degradagao) de sua geometria.

Outra informacgao que pode ser deduzida da Figura 4.2 é que, para um dado tipo de degradagao,
o perfil de variacao da qualidade percebida varia consideravelmente dependendo do tipo de contetddo
em questao. Especificamente, avaliadores tenderam a ser mais criticos em relacao a contetdos que
representavam humanos do que aos contetidos representando objetos inanimados. Também se
observam desvios menores nas notas de contetidos que pertencem ao mesmo tipo, indicando que

comportamentos de avaliagoes similares ocorrem dentro de cada um dos grupos.

Ao se analisar as taxas de bits dos contetidos codificados, como estdo descritas na Tabela 3.2,
e comparar com as notas registradas na Figura 4.2, é possivel concluir que taxas de bits mais altas
nao necessariamente resultam em uma maior qualidade visual percebida. Por exemplo, em todos
os contetidos participantes de ambos os locais de teste demonstraram uma preferéncia significativa

pela combinagao entre melhor qualidade de cor (QP = 90) com uma qualidade média de geometria

50



oD08_QP10

ODo08_QP50

oDo08_QPS0

0D09_QP10

0OD09_QP50

oDo09_QP20

oD10_QP10

OoD10_QPS50

oD10_QPS0

OoDO08_QP10

6

oD08_QP50
5

OoDO08_QPg0
-4

0OD09_QP10
0DO09_QP50 -3

OD09_QPg0

]

oD10_QP10

[y

OD10_QPSs0

o

OD10_QP$g0

Figura 4.4: Matriz de diferenca de significancia com nivel de confianca de 5% das preferéncias

subjetivas dos participantes nos testes, comparadas com cada outra combinacao de distorcoes.
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(OD = 09), em vez da melhor qualidade de geometria (OD = 10) combinada com a pior qualidade
de cor (QP = 10), mesmo a primeira combinagao apresentando uma taxa de bits menor do que a

segunda para todos os contetidos avaliados.

Apesar dos valores de taxa de bits por ponto (bpp) serem dependentes do codec utilizado,
as observagoes feitas sugerem que uma melhor relacao entre qualidade visual e recursos exigidos
(tanto para espago de armazenamento como transmissdo) pode ser atingida com a apropriada
alocagao de bits para a representagdo de geometria e cor. Para corroborar as observagoes, foi
realizado um teste-t unicaudal com nivel de confianga de 5%. O teste foi aplicado separadamente
aos dados obtidos em cada laboratorio. A hipdtese nula assumiu que uma nota média, obtida
através da média das avaliagoes de todos os contetidos dadas um determinado nivel de geometria e
de cor, é a mesma para qualquer outra combinagdo de niveis de geometria e de cor. Os resultados
estao dispostos na Figura 4.4. Em cada uma das sub-figuras, a cor do ladrilho de posigao (X,Y)
representa quantas vezes, de 6 comparagoes no total, a combinacao ODYY QPYY foi preferida
contra a combinagao ODXX QPXX.

Considerando os dados obtidos na EPFL, as combinagoes OD09 QP50 e OD09 QP90, em 6
comparagoes com a combinagao OD10 QP10, foram preferidas respectivamente 1 e 5 vezes. Um
padrao similar é observado com os dados obtidos na UnB, com as combinag¢bes mencionadas sendo
preferidas 2 e 5 vezes contra a combinagao OD10_ QP10, respectivamente. De maneira menos
pronunciada, ainda considerando os dados provenientes da UnB, uma preferéncia por taxas de bits
menores foi observado até mesmo em para niveis mais baixos de geometria, com as combinagoes
ODO08 QP50 e OD08 QP90 sendo preferidas em vez da combinagao OD09 QP10 1 e 3 vezes,

respectivamente.

E importante constatar que houve diferencas entre as notas obtidas em cada laboratério. Por
exemplo, observando a Figura 4.2, participantes na EPFL demonstraram uma rejeicao maior a
degradagOes mais intensas de cor (QP = 10) do que participantes na UnB, especialmente com
nuvens de pontos contendo corpos humanos. Um teste t unicaudal com nivel de confianca de
5% foi realizado para determinar se os comportamentos dos participantes diferiram de maneira
significante, estatisticamente. Resultados estdo dispostos na Figura 4.5. A hipdtese nula nesse
caso considerou que a MOS calculada para cada conteido degradado era a mesma entre os dois
laboratorios. De acordo com os resultados do teste, em casos que a hipotese nula foi rejeitada
participantes na EPFL apresentaram avaliagoes com notas menores do que participantes na UnB.
Essa diferenca é observada principalmente para niveis de qualidade de cor intermediarios ou meno-
res, com a unica excecao sendo o contetudo amphoriskos com qualidade de cor média e qualidade de
geometria inferior, que foi avaliado com uma nota mais baixa na UnB. E interessante notar que o
conteido redandblack recebeu notas maiores na UnB do que na EPFL na maioria das combinagoes

de distorgoes.

Também foi realizado um teste ANOVA multivariado para corroborar as observagoes feitas.
Resultados estao presentes na Tabela 4.1. Os valores p obtidos sugerem que tanto o laboratério
onde o experimento foi realizado (UnB versus EPFL), como o tipo de contetdo (corpos humanos

versus objetos inanimados) e os niveis de geometria e de cor levaram a conjuntos de dados que sao
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Figura 4.5: Matrizes de diferenca de significAncia com nivel de confianca de 5% indicando se
participantes do experimento em um laboratoério avaliaram a qualidade visual, acerca de uma dada
degradacao de um contetdo em particular, de maneira significativamente mais alta ou mais baixa

em relagdo a participantes do teste no outro laboratorio.
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estatisticamente distintos entre si, com um intervalo de confianca de 5%.

4.3.2 Comparagao entre métricas objetivas

Para a comparacao das métricas objetivas investigadas, se considerou que os dados obtidos
nos testes realizados nos dois laboratérios eram estatisticamente distintos entre si, como foi de-
monstrado na Segao 4.3.1. Sendo assim, o benchmarking foi realizado nos dois conjuntos de dados
separadamente. Além disso, dado que as notas subjetivas se mostraram estatisticamente distin-
tas também para cada tipo de contetido, a analise também foi feita de maneira separada para 3

conjuntos de dados:

1. O conjunto de dados completo, incluindo todos os contetidos
2. Dados respectivos somente a contetidos contento objetos inanimados

3. Dados respectivos somente a contetidos contendo corpos humanos

Na Tabela 4.2, estao dispostos os indices de desempenho para cada métrica objetiva de quali-
dade comparada com as notas subjetivas obtidas na EPFL, consideradas como valores de referéncia.
Para cada par de métrica e conjunto de dados, foram comparados o coeficiente de correlagao de
Pearson [62] (PCC), o coeficiente de correlagao de postos de Spearman [63] (SROCC), a raiz do erro
quadratico médio (RMSE) e a propor¢ao de outliers (OR), este ultimo definido como a propor¢ao
de dados que se encontram fora do intervalo de confianca da curva ajustada. De maneira geral, as
métricas baseadas em proje¢ao demonstram um desempenho melhor que as métricas baseadas em
pontos. A métrica de melhor desempenho para o conjunto de dados completo foi a baseada em

VIFP, apesar de que com uma baixa correlagao entre métrica objetiva e notas subjetivas.

A correlacdo melhora drasticamente quando se comparam as métricas referentes apenas para
os determinados tipos de contetdos separadamente. Particularmente, tanto o MSSIM como o
VIFP demonstram alto poder preditivo, em ambos os conjuntos de dados. Especialmente, o MS-
SIM apresenta um resultado relativamente maior para objetos inanimados e o VIFP para corpos

humanos.

Na Figura 4.6, sdo apresentados graficos da distribui¢ao de notas objetivas da métrica baseada
em projecoes e baseada em pontos de melhor desempenho versus notas subjetivas de todos os
conteudos, junto com um ajuste de curvas ciubico, para cada métrica. Também sao apresentados
graficos das distribui¢des de notas objetivas versus notas subjetivas para os conteidos contendo

objetos inanimados na Figura 4.7 e versus contetdos contendo corpos humanos na Figura 4.8.

Meétricas baseadas em pontos se demonstram limitadas por nao conseguirem examinar simul-
taneamente degradagoes de cor e de geometria. Nas Figuras 4.6b, 4.7b, 4.8b, 4.9b e 4.10b, cada
conteido esté associado com uma nota determinada inteiramente pela profundidade da octree. No
entanto, & medida que a qualidade de cor é elevada e as notas subjetivas aumentam, a métrica
é incapaz de discriminar entre as versoes, atribuindo a mesma nota objetiva para conteidos de

qualidades perceptivelmente distintas. Em contraposicao, as métricas baseadas em proje¢oes nao
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Figura 4.10: Métricas de maior correlagado com notas subjetivas respectivas a contetidos contendo

objetos inanimados provenientes da UnB.
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demonstram dificuldade em diferenciar entre esses conteidos e prever com uma boa correlacao a

qualidade subjetiva dos contetidos.

A correlag@o entre as métricas objetivas e os dados de notas subjetivas obtidos na UnB estéao
dispostos na Tabela 4.3. Foram usados as mesmas relagoes estatisticas empregadas na Tabela 4.2.
Graficos da distribui¢do de notas objetivas em fungao de notas subjetivas de todos os contetdos
se encontram na Figuras 4.9, enquanto que na Figura 4.10 se encontra a distribuicao apenas
para conteudos contendo objetos inanimados, e na Figura 4.11 a distribuigéo é feita considerando
apenas contetdos com corpos humanos. Ocorre um comportamento similar ao observado para o
conjunto de dados obtidos na EPFL. A correlacdo para todas as métricas é mais forte quando
dados referentes a objetos e a modelos humanos sdo analisados separadamente, e em ambos os
casos as duas métricas com maior correlagao com as notas subjetivas sao novamente o MSSIM e o
VIFP.

O RMSE e 0 OR observados para os dados obtidos na UnB se mantiveram menores com respeito
aos valores respectivos aos dados obtidos na EPFL. Uma explicagao para esse comportamento sao
os intervalos de confianga relativamente maiores encontrados nos dados obtidos na UnB, com o

intervalo de confianga médio dos mesmos sendo 26,95% maior que os dos dados EPFL.

Outra caracteristica observada é que uma acuracia maior é encontrada para contetdos repre-
sentando objetos inanimados. Observadores humanos tendem a avaliar contetidos que contém seres
humanos de maneira mais fina do que outros tipos de contetdo. Assim, pequenas degradagoes afe-
tam relativamente mais a qualidade percebida de contetidos contendo pessoas do que os de outros
tipos. Nenhuma das métricas leva essa diferenca em consideragao, resultando em comportamen-
tos e relagoes diferentes entre a qualidade prevista através das métricas e a qualidade subjetiva
percebida. Isso é confirmado pelos resultados de um teste ANOVA, presentes na Tabela 4.1, que

demonstram que as notas nao sao estatisticamente equivalentes.

E interessante notar que as observacoes sobre o desempenho relativo das métricas projetivas
comparadas se mantém para dados obtidos em ambos os locais de realizagao dos experimentos.
Mesmo com diferencas estatisticas entre as notas subjetivas em funcao do local do experimento, a
melhor métrica encontrada era a mesma entre os dois locais. Isso é evidéncia de que a correlagao

entre métricas projetivas e qualidade visual percebida pode ser robusta entre diferentes populagoes.

Ressalta-se que, apesar de durante a avaliagao subjetiva os participantes terem tido um acesso
interativo ao contetido, com escolha livre de ponto de vista, apenas 6 pontos de vista distintos e
especificos foram usados para calcular a métrica objetiva. Ainda assim, isso foi o suficiente para
prever a qualidade visual dos contetidos. E possivel que uma correlacao maior seja observada para
uma escolha diferente de pontos de vista para as projecoes, tanto em maior niimero ou em arranjos

diferentes entre si.

Outro fator que pode ter influenciado os resultados obtidos é a presenca do plano de fundo
cinza nas projecoes. Como ele é incluido no calculo das métricas objetivas, é possivel que essa seja
a causa das diferencas observadas em métricas objetivas de contetidos de notas subjetivas préximas

(i.e., amphoriskos e romanoillamp).
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Por fim, uma outra extensao possivel do arcabouco proposto é o calculo continuo e em tempo
real da métrica objetiva enquanto um observador interage com o objeto sendo avaliado, a partir

da mesma visualizag@o fornecida para o observador.

Tabela 4.1: ANOVA multivariado.

Fonte | ss DF MS F p
Laboratoério de teste 8.82 1 8.817 13.92 0.0002
Tipo de contetdo 249.42 1 249.424  393.81 0
Degradagao de geometria || 1460.84 2 730.422  1153.24 0
Degradagao de cor 618.86 2 309.429  488.55 0
Erro 1363.64 2153 0.633

Total | 3701.58 2159

Tabela 4.2: Benchmarking das métricas objetivas considerando os dados obtidos na EPFL como
valores de referéncia. As métricas comparadas encontram-se separadas entre baseadas em projecoes
(tal qual no framework proposto) e baseadas em pontos (ja previamente estabelecidas). Os indices
de correlagao entre cada métrica e as notas subjetivas sao calculados para 3 conjuntos de dados

(todos os contetdos, contetdos de objetos e conteidos de pessoas).

Métrica | Conjunto completo | Objetos inanimados | Corpos humanos
| Pcc srocc RMSE  OR | PCC SROCC RMSE OR | PCC SROCC RMSE OR
’% PSNR 0.520 0.497 0.981  0.741 | 0.797 0.786 0.735  0.630 | 0.744 0.739 0.633  0.704
'% PSNR-HVS 0.570 0.564 0.943 0.741 | 0.845 0.841 0.650  0.630 | 0.797 0.773 0.572  0.667
; PSNR-HVS-M 0.601 0.585 0.918 0.741 | 0.866 0.851 0.609  0.593 | 0.822 0.795 0.539  0.667
g SSIM 0.494 0.497 0.998  0.778 | 0.873 0.838 0.593  0.704 | 0.847 0.815 0.503  0.630
?‘g MSSIM 0.677 0.682 0.845 0.685 | 0.929 0.934 0.451 0.556 | 0.814 0.861 0.550  0.667
é VIFP 0.754 0.717 0.754 0.648 | 0.906 0.932 0.516  0.593 | 0.905 0.861 0.402 0.519
«» PoZpointyigp 0.672 0.597 0.850  0.667 | 0.795  0.822 0.738 0.630 | 0.651 0.702 0.719  0.704
£ po2pointiuuedor | 0-683 0725 0.839 0.648 | 0793 0.824 0741 0.630 | 0651 0707 0719  0.704
8‘ po2planey g 0.656 0.598 0.866  0.704 | 0.763 0.755 0.786  0.741 | 0.637 0.689 0.730  0.741
% po2planef,edor | 0-683  0.686  0.839 0.648 [ 0.792  0.778  0.743  0.667 | 0.652  0.686  0.718  0.741
?‘f pl2planeryg 0.679 0.676 0.843  0.759 | 0.707 0.702 0.861  0.778 | 0.756  0.653 0.620 0.630
0
Dg pl2planey R 0.675 0.676 0.847  0.759 | 0.662 0.753 0.912  0.852 | 0.701 0.715 0.676  0.593
Color - PSNRyyy | 0.539 0.491 0.967  0.833 | 0.669 0.753 0.904  0.852 | 0.702 0.715 0.675 0.593
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Tabela 4.3: Benchmarking das métricas objetivas considerando os dados obtidos na UnB como

valores de referéncia. O mesmo esquema de organizagao da Tabela 4.2 é seguido.

Métrica | Conjunto completo | Objetos inanimados | Corpos humanos
| PCC SROCC RMSE OR | PCC SROCC RMSE OR | PCC SROCC RMSE OR

'% PSNR 0.582 0.545 0.874  0.667 | 0.799 0.794 0.683  0.481 | 0.756 0.747 0.616  0.444
ﬂé PSNR-HVS 0.623 0.608 0.840  0.648 | 0.835 0.850 0.625 0.519 | 0.805 0.783 0.558  0.407
; PSNR-HVS-M 0.652 0.629 0.814  0.630 | 0.853 0.862 0.592  0.444 | 0.830 0.806 0.524  0.444
2 SSIM 0.566 0.570 0.886  0.667 | 0.880 0.893 0.539  0.593 | 0.865 0.831 0471  0.370
—g MSSIM 0.739 0.738 0.724  0.537 | 0.940 0.961 0.389 0.222 | 0.859 0.886 0.482  0.370
;‘g VIFP 0.784 0.740 0.667 0.519 | 0.877  0.884 0.545 0.444 | 0.919 0.890 0.370 0.296
» Do2pointyem 0.747  0.652 0.714  0.556 | 0.843 0.792 0.610 0.481 | 0.728 0.758 0.645  0.519
£ po2pointyyudot | 0757 0775 0702 0537 | 0.844  0.839  0.609 0.481 | 0728 0757 0645 0519
é‘ po2planey (g 0.736 0.670 0.727  0.500 | 0.824  0.798 0.643 0.519 | 0.713 0.740 0.659  0.556
©  po2plane . 0.758 0.749  0.701 0.537 | 0.844  0.806 0.610  0.481 | 0.730 0.762 0.643  0.519
-";: plQplancl;I:;l;SdOIH 0.520 0.461 0.918 0.815 | 0.654 0.596 0.859  0.741 | 0.685 0.607 0.685  0.593
g '
;g pl2planey[gp 0.666 0.664 0.801  0.704 | 0.629 0.678 0.882 0.778 | 0.771  0.781 0.599 0.444

Color - PSNRyyy | 0.672 0.664 0.795 0.704 | 0.629 0.678 0.883 0.778 | 0.773 0.781  0.597 0.444
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Capitulo 5

Conclusoes

Uma métrica objetiva para avaliagao de qualidade que inerentemente leva em consideragao
distor¢oes de cor e de geometria foi proposta. Experimentos de avaliagao subjetiva verificaram

uma forte correlagao entre o framework proposto e a qualidade subjetiva percebida.

Outras métricas propostas na literatura, além de nao incorporar os aspectos de cor e de geo-
metria simultaneamente, apresentam correlacao menor com avaliagoes subjetivas. Isso evidencia
a superioridade do sistema proposto em relacao a métodos existentes no campo de processamento

de nuvens de pontos.

Também foram feitas observacoes interessantes acerca do comportamento dos avaliadores du-
rante os testes subjetivos. O principal artefato que prejudicou a percepcao da qualidade dos
conteidos analisados para os participantes no experimento foi o surgimento de lacunas entre os
pizels das imagens projetadas. Também se percebe que participantes tendem a ser mais criticos

quando o contetido em questao representa pessoas.

Se revela a possibilidade de se explorar a percepcao humana sob mais fatores. Especialmente,
em trabalhos futuros deseja-se determinar a relagao entre qualidade percebida, distor¢oes de cor e
distor¢oes geométricas que nao introduzam lacunas na superficie dos modelos ou que diminuam a

densidade de pontos/vozels da nuvem de pontos.

Esforcos ja estao sendo realizados para a elaboragao de experimentos subsequentes com um fra-
mework de visualizagdo com melhor desempenho, em uma plataforma web com aceleragao grafica.
Isso permitira a aquisicao de dados com mais participantes, aumentando a significAncia estatistica

dos padroes de comportamento observados e o uso de contetdos mais variados.

Também deseja-se incluir em futuros estudos novas metodologias de compressao no estado da
arte, propostas ao longo do desenvolvimento deste trabalho. Além de uma validagao subsequente
da métrica proposta, poderao se tragar consideragoes acerca dos desempenhos relativos de cada

codec, em termos de suas relagoes de rate-distortion.
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