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Abstract

Neural-based data compression has not yet reached its full potential. Context modeling for
arithmetic coding is usually done through frequency counting and look-up tables (LUTs).
These models are usually continuously updated as new samples are seen. All neural-
based context models which have been proposed so far make use of previous training. We
propose a neural-based method of context modeling for arithmetic coding in which the
neural networks are trained on-the-fly. The model essentially begins as a uniform distri-
bution, and gradually approaches the true probability distribution of the data, instead of
the training data distribution. The method performs better than the simple frequency
counting technique, and allows the increase of the context size to levels not possible with
LUT-based methods. Black-box multi-objective hyperparameter optimization (MOHPO)
methods exist which can be used in neural-based data compression. However, in data
compression, the complexity of the compressor is generally as important, or more, than
its compression performance. We propose a method of multi-objective hyperparameter
optimization which naturally constructs the set of optimal solutions, or the lower-convex
hull, in increasing order of complexity. This allows the algorithm to be stopped once the
desireable value of compression performance, or the maximal value of acceptable com-
plexity, is achieved. We compared this algorithm with state-of-the-art methods present

in a popular MOHPO platform, with the proposed method showing competitive results.

Keywords: Arithmetic coding, context modeling, neural networks, hyperparameter op-

timization
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Resumo

A compressao de dados baseada em redes neurais ainda nao atingiu todo o seu poten-
cial. A modelagem de contexto para codificagdo aritmética geralmente é feita por meio
de contagem de frequéncia e tabelas de consulta (LUTSs, do inglés, “look-up tables”). Es-
ses modelos geralmente sao atualizados continuamente a medida que novas amostras sao
vistas. Todos os modelos de contexto baseados em redes neurais que foram propostos até
o momento fazem uso de pré-treinamento. No6s propomos um método de modelagem de
contexto baseado em redes neurais para codificacdo aritmética em que as redes neurais
sao treinadas dinamicamente. O modelo comeca essencialmente como uma distribuigao
uniforme, e gradualmente se aproxima da verdadeira distribui¢do de probabilidade dos da-
dos, em vez da distribuicao dos dados de treinamento. O método tem melhor desempenho
do que a simples contagem de frequéncias, e permite o aumento do tamanho do contexto
para niveis nao possiveis com métodos baseados em LUT. Existem métodos caixa-preta
de otimizagao de hiperpardmetros multiobjetivo (MOHPO, do inglés, “multi-objective
hyperparameter optimization”) que podem ser usados na compressao de dados baseada
em redes neurais. Porém, em compressao de dados, a complexidade do compressor é
geralmente tao importante, ou mais, do que seu desempenho de compressao. Propomos
um método de otimizacao de hiperparametros multiobjetivo que constréi naturalmente
o conjunto de solugoes 6timas, ou o casco convexo inferior, em ordem crescente de com-
plexidade. Isso permite que o algoritmo seja interrompido ao se atingir o desempenho
de compressao desejado, ou o valor de complexidade maximo aceitavel. Comparamos

este algoritmo com métodos do estado-da-arte presentes em uma popular plataforma de



MOHPO, com o método proposto apresentando resultados competitivos.

Palavras-chave: Codificacao aritmética, modelagem de contextos, redes neurais, otimi-

zacao de hiperparametros
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Chapter 1

Introduction

1.1 Contextualization

Although not evident to everyone, data compression is one of the enablers of the modern
world. Without data compression, communication would be much slower and much more
expensive, web pages containing images or videos would take much longer to load with a
much lower quality and the average computer would only be able to store a tiny portion of
the data it stores today. We may also assume there would have been critical technological
development delay due to the absence of data compression.

To put things into perspective, an uncompressed image file is, in general, three to five
times larger than a JPEG file [1]. The gains of video compression, however, are much
more striking: in general, an uncompressed video file may be 20 to 200 times larger than
an H.264 compressed file [2], but these numbers could be much larger depending on the
quality level. Figure 1.1 shows a comparison between an image in PNG format, which
preserves the original quality, and the same image converted to JPEG with a quality
factor of 75. The former is 558kB while the latter is only 41kB. The difference can only
be noticed with a closer look.

Data compression simply provides much more efficiency in a variety of ways. It is

able to reduce the costs associated with storage, transmission, streaming, data access,



Figure 1.1: To the left, a portion of an image in PNG format and, to the right, the same
portion with the image converted to JPEG with a quality factor of 75. The PNG file was
downloaded from [3] and has 558kB. The image converted to JPEG has 41kB.

and many others, bringing considerable savings to everyone involved with these activities,
from the large companies which develop new technologies, to the end users which consume
them.

Therefore, it comes to no surprise that, in the recent years, with the newfound success
of artificial neural networks in many areas of application, the data compression community
has started making use of them. It is undeniable how neural networks increased the power
of newly developed experimental data compressors. For example, in the Challenge on
Learned Image Compression [4], for many years now, neural networks have surpassed the
traditional coders in image compression. Also, in the Large Text Compression Benchmark
[5], the main reference method uses neural networks for text prediction. And this is just
to mention a few relevant data compression conferences.

However, the use of neural networks in data compression poses some additional chal-
lenges compared to other areas of application. Data compression, in general, is subject
to much more stringent conditions than other areas. Neural networks owe its increasing
success in several areas of application mainly to two reasons: the increase in availability
of data which can be used for training; and the increase in model size and computa-
tional resources which can support these large sized models. Take the large-language

models (LLMs) for example. Their success in text generation is largely due to a huge
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Figure 1.2: Evolution of the LLM model sizes over the years, with the model size measured
in number of parameters. Based on data from [8].

increase in the model size, as the name implies, but it is also due to training models on
a huge amount of content. That is why LLMs have primarily been developed by billion-
aire companies with outstanding computational resources. Figure 1.2 shows an evolution
of the LLM model sizes over the years. It is clear that the model size has sharply in-
creased. Nevertheless, one cannot put a huge model into a cellphone. Recent studies on
learned video compression [6] have shown that most learned video codecs currently have a
kilo-multiply-accumulate-operations per pixel (kMAC/pixel) between 1000 and 2000, as
depicted in Figure 1.3 (a). A few codecs can reach the order of magnitude of hundreds
of kMAC /pixel. However, the capabilities of a modern cellphone are closer to the order
of 1 kMAC /pixel [7].

Other factor is peak memory usage. These learned codecs need to hold the equivalent
of several frames in memory while running. This has implications for memory bandwidth
requirements when they are stored in an external memory. Figure 1.3 (b) shows the peak
memory for the same codecs of Figure 1.3 (a).

Matters such as these have made the consolidation of neural networks in data com-
pression much harder than it has been in other areas. To this day, neural networks in
data compression have mostly been present in the realm of academic research, and left
out of commercial products and international standards, with only a few exceptions, for
example [9],[10],[11]. Although they have shown great potential, there are still many as-
pects that require further development. Beyond the already mentioned reasons why they

are not yet consolidated, other mentionable reasons are: the long time needed to develop
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Figure 1.3: Rate savings versus kMAC /pixel and versus peak memory for several learned
video codecs. Better compression is generally achieved with more arithmetic operations.
Source: [6]. See the source for more details on the measures and labels.

new standards, and the time required for disseminating a new technology [12].

1.2 The problems we address

In this work, we address two main problems in neural-based data compression, namely
online coding and architecture optimization. Both of these topics are currently active
areas of research.

In order to be used in practical systems, in smartphones, in embedded devices, or in
data streaming, there must be efficient and effective ways of achieving architecture designs
that can fit the system time, power and computational resource restrictions, without
having to resort too much on trial and error.

The traditional way of performing neural network design is by trial and error. This has
traditionally been made through individual publications competing to improve the state-
of-the-art. However, both for scientific and practical reasons, it is desireable to automate
the design process. This can accelerate both the development of new architectures and
the understanding of the problem.

Much more than simplifying the selection of an architecture that can fit into the

constraints of a system, which would probably be done only once for that given system,



what is intended is to find the best selection of architectures. However, there is an infinite
number of possible architectures, and we cannot test all of them.

Figure 1.4 (a) shows the training costs of several learned codecs. To obtain these
training costs, we combine kKMAC/pixel data from [6], with estimation methods from
[13]. We obtain the total training cost of a codec in number of floating-point operations
(FLOPs) by assuming that: one MAC amounts to two FLOPs; the training set consists
of 91701 videos, having 7 frames, each (Vimeo-90k septuplet dataset [14]); each frame
is cropped to 256 x 256 pixels; one must train four networks, to operate in four quality
settings; each network is trained during 50 epochs; the cost for training is twice the cost for
inference (because of the forward and backward passes). By multiplying all those numbers
(2% 91701 x 7 x 256 x 256 x 4 x 50 x 2) with the codec’s kMAC /pixel metric, we obtain our
estimate of the codec’s total training cost in FLOPs. Next, we estimate the codec’s total
training cost in US dollars by first estimating the value of FLOPs - second ™" - dollar ™' in
the year that the associated paper was published. This is done assuming that: the value
of GPU FLOPs-second " - dollar™! is multiplied by 10 every 8.17 years, and that its value
in the year 2000 was 66 MFLOPs-second ' -dollar'. This is based on analyzes from [15],
using data from [16] and [17]. The data used to infer this trend went up to 2020 and was
adjusted for inflation, therefore the units are in 2020 US dollars. As in [13], we multiply
the initially estimated value in FLOPs - second™" - dollar™ by 0.35, because we assume
that the actual value of FLOPs - second ' achieved during model training is 35% of the
theoretical peak for the hardware. We multiply the value of FLOPs-second ™" -dollar ™" by
the estimated hardware replacement time in seconds, which we assume is the equivalent
of two years. This gives an estimate of the amount of FLOPs per dollar. Finally, we
divide the total training cost in FLOPs by the estimated value of FLOPs per dollar, to
obtain the total training cost in dollars.

Figure 1.4 (b) also shows the time taken to train each codec, according to the authors
of the codecs themselves. As can be seen from Figure 1.4, there is not only financial

costs associated with the training of a neural network but also time investment. The
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Figure 1.4: Training costs of several learned codecs in 2020 US dollars and in days of
training. The training costs in dollars were obtained based on kMAC /pixel data from [6]
and estimation methods from [13]. The training times were provided by the authors
themselves on their papers. We use the same labels for the codecs as [6].

costs associated with a single network may not be too large, but they accumulate when
training many networks.

To further demonstrate the importance of reducing the complexity of the neural net-
works used for data compression, Figure 1.5 shows the energy consumption of several
learned codecs. Figure 1.5 (a) was obtained assuming that the energy cost of training is
about 20% of the hardware cost [13]. That is, the energy cost is 20% of the cost shown in
Figure 1.4 (a). We divide this number by the amount of pixels processed during training,
which is 91701 x 7 x 256 x 256, and the number of network passes during training, which
is 4 x 50 x 2 (the number of different networks, times the number of epochs, times the
number of forward and backward passes for one network update). Dividing the result by
the average US energy price in 2020, which was approximately 13 cents per kWh [13],
gives the value of kWh/pixel during execution of the network. Finally, considering that
1 kWh corresponds to 3.6 - 108, this can be converted to the uJ/pixel value shown in
Figure 1.5 (a). Figure 1.5 (b) was obtained by further assuming that videos of 256 x 256
pixels are displayed during 1 minute at 60 frames per second, and converting the units
from pJ to Wh. The average energy consumption of these codecs is about 2 Wh per

minute of video. Considering that a top Samsung cellphone has a battery capacity of
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Figure 1.5: Energy consumption of several learned codecs in p.J/pixel and in Wh per 1
minute of video. We use the same labels for the codecs as [6].

about 5000 mAh, and that a lithium battery has a nominal voltage of 3.7V, the amount
of energy this cellphone’s battery is able to produce before recharging is 18.5 Wh. Such
a cellphone running a modern learned codec would last only about 9 minutes without
recharging. This shows how important it is to reduce as much as possible the complexity
of the learned codecs.

Meanwhile, an often overlooked issue with modern neural-based data compression
systems is that the models are mostly trained offline. Online models have been used in
data compression for years for a variety of reasons. Among them is practicality. In general,
training a model beforehand requires the gathering of a huge amount of data which is
representative of the type of data being compressed. In some situations, however, this
is not very practical or desirable. Take, for example, the case when a new type of data
is just emerging. It may seem a little difficult to think of new types of data emerging
nowadays, but it just happened recently. Point clouds is a type of data which has been
popularized and only gained more attention in the recent years, prompting the creation of
new compression standards specific to this type of data. You can predict that, gathering a
huge amount of examples of this type of data initially was not very easy. Online models, on
the other hand, can learn the statistics of the data while coding, and can adapt themselves

to local changes in the signal statistics.



Other factor is that coding and decoding must be reproducible. Compression algo-
rithms must be described in international norms and standards. In this way, coding and
decoding can be run on different platforms, created by different companies. If one is going
to create a standard based on pre-trained neural networks, how the neural network is to
be described in the standard? Are the network weights to be included in the standard?
This is not to say it can’t be done, and there are standards being developed right now
which will have to deal with these issues [10],[11]. If the model is trained online, it is not
necessary to describe the weights in the standard, since they are learned from the data
being encoded. Only a pseudo random number generator algorithm and a random seed
used to initialize the network weights have to be described.

Of course, other issues may emerge from the use of online training, for example, the
decoding time may considerably increase. With further technological development, or
dedicated hardware, it may become feasible to use online-trained neural networks in data
compression. In the long run, it may be possible to have fully automated and universal

compression systems, which could learn to encode any type of data on the fly.

1.3 Overview of relevant literature

Neural networks have been investigated for both lossless and lossy data compression [18]—
[30]. Most of these networks have been pre-trained, that is, trained offline on represen-
tative datasets. In this section we will analyze some of the previous literature on neural
based data compression.

In lossless neural-based compression, a neural network is typically used as a probability
model, often called a context model or entropy model, to drive an arithmetic coding (AC)
system. Pre-trained neural networks have been used for context modeling to drive AC in
various settings (e.g., [18]-[25]). In both [20] and [21], the authors replaced the original
context models in H.265/HEVC, which were adaptive, with pre-trained neural networks.

In [22] and [23], the authors proposed methods to progressively transmit voxelized point



cloud geometries using AC, neural networks and octree. The idea is, given the occupied
voxels in one level of the octree, transmit the occupancy of the children of those voxels in
the next level. The probabilities of occupancy of the voxels were estimated by pre-trained
neural networks and used to drive AC. In [18] and [19] the authors built language models
using recurrent neural networks (RNNs) and used those language models to feed the AC
for text compression.

In lossy neural-based compression, many works have followed the seminal work of [26],
for example [27]-[30]. In this method, two neural networks jointly learn how to encode
and decode a latent space representation which is quantized and transmitted using con-
text modeling and AC, in a very similar way to how it is done in lossless neural-based
compression. The method is an adaptation of the variational autoencoder [31], proposed
in the field of variational inference, to the task of lossy data compression. It is a form
of transform coding using neural networks. The subsequent works have mainly focused
on improving the entropy model, for example, by: learning and transmitting priors on
the parameters of the entropy model [27]; generalizing the entropy model to a Gaussian
mixture model and including an autoregressive component [28]; and leveraging discretized
Gaussian mixture likelihoods [29]. Other works have focused on extending the methods
for video-compression [30].

Adaptive context modeling has previously been covered in part in [24] and [25], mostly
for text compression. In [24], it was hinted that the off-line methods they proposed
could be adapted by blocking the data and continuously retraining the model. In [25],
a hybrid on-off-line method, DZip, was specifically proposed for sequential data such as
text. Outside of the data compression literature, in the context of language modeling,
[32] and [33] proposed methods to continuously adapt RNN pre-trained weights during
evaluation.

There is a couple of recent works that tackle the problem of jointly optimizing rate,
complexity, and distortion in neural compression [34], [35]. Both aim at controlling com-

plexity through specific network hyperparameters. Works on neural network compression



are also closely related, for example [36]-[39], because they intend to reduce the model
size in bits, while keeping as much as possible the original performance of the network.
Energy-constrained data compression also intend to reduce the complexity in Joules of
the coder, be it neural or not, while keeping its original performance and has previously
been studied in [40]-[44]. There is also a vast literature on rate-distortion optimization
[45]-[49]. In a more recent work [12], instead of specifying fixed weights for rate and
distortion in the loss function during the training of the neural network, a fixed rate is
specified, allowing the more effective tracing of the lower convex hull of the rate-distortion
points. In [50]-[52], the authors optimize rate and distortion in tree structured domains
with pruning algorithms, but they are applied to non-neural coders.

There are also general methods for single-objective hyperparameter optimization
(SOHPO) and multi-objective hyperparameter optimization (MOHPO) that can be used
to search for optimum architectures in neural-based data compression [53]-[55]. SOHPO
methods optimize a single objective, or a combination of multiple objectives reduced to a
single objective, for example by a weighted sum. MOHPO methods look for the set of op-
timal solutions for all tradeoffs between objectives. MOHPO is in general a much harder
problem and has been investigated to a much lesser extent than SOHPO. MOHPO has re-
cently been reviewed in [53]. SOHPO has been reviewed for example in [54], [55]. Popular
SOHPO methods include grid-search [56], random-search [56] and Bayesian Optimization
[55], all of which have adaptations for MOHPO [53].

1.4 Objectives and dissertation layout

The main objective of this work is to investigate neural-based adaptive context modeling,
while also tackling the problem of neural architecture search. Our main contribution is
the proposal of a lossless binary coding scheme, coupled with the proposal of a MOHPO
method which can be used in the neural network design.

Traditionally, adaptive context modeling uses a frequency counting method based on
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look-up tables (LUTs). In part, this work investigates the replacement of the LUTs by
neural networks in adaptive context modeling. LUTs are used to count the frequencies
of occurrence of all symbols given all contexts. The counts are usually updated after
every new observed sample. By developing a neural-based drop-in replacement for LUTS,
we provide a method of compression that, at the same time, combines the advantages of
neural networks and adaptive context modeling. In order to achieve this goal, we first
develop the method that can replace the LUT and then evaluate it on representative data.
We measure the method’s performance and compare it with other alternatives to properly
assess its effectiveness.

This research also investigates how to design neural networks for data compression.
There exists general methods for multi-objective optimization that can be used in data
compression as well. However, there are particularities specific to data compression that
could be explored to develop methods more effective for this area of application. In order
to achieve this, we need to develop such methods, evaluate them objectively, and compare
them with other available generic methods.

This work is organized as follows. In Chapter 2, we review the fundamentals of adap-
tive context modeling, which is necessary for the discussions on the next chapters. In
Chapter 3, we review the basics of neural networks and hyperparameter selection. We
formally introduce MOHPO, and present some state-of-the-art methods which are used
to tackle this problem. Chapters 4 and 5 are devoted to our research problem. We divide
our discussion into two parts. First, in Chapter 4, we present our neural-based method,
which is able to replace the LUT in traditional adaptive context modeling, without delving
into the neural network design process. We call our proposed method adaptive percep-
tron coding (APC). Then, in Chapter 5, we describe our algorithm for MOHPO in data
compression, which we call greedy lower convex hull (GLCH). This work is concluded in

Chapter 6, with a review of our contributions, and possible topics for future research.
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Chapter 2

Data Compression Fundamentals

2.1 Preliminaries

Data compression is the science of shrinking data to a more compact form [57]. It falls into
the area of information theory which is “the mathematical field dealing with the transfer
of information from one location to another and with the storage of information for later
retrieval and use” [58]. Data compression can be classified into two broad categories:
lossless compression, in which the original data can be perfectly reconstructed , and lossy
compression, in which the data goes through higher compression but is also distorted.

In information theory, a general communication system is subdivided into five parts:
a source, which generates a message; a transmitter, which turns the message into a signal
for transmission; a channel, which conveys the signal; a receiver, which reconstructs the
message; and a destination, which acquires the message [58]. The source outputs symbols,
or letters. The conjunction of several letters forms messages. The set of possible letters
of the source is called its alphabet. Letters are also often called samples.

Information theory answers two major problems in communication: how to efficiently
represent messages, and how to reliably transmit messages over a noisy channel. Although
the second problem is also very important in its own right, we will not be covering it in

this work. In the first front, information theory provides a lower limit for the expected
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number of bits per symbol when transmitting messages without loss of information, which
is the entropy.

Because of the way digital systems work, information is usually measured in bits. The
process of assigning binary sequences, or codewords, to elements of an alphabet is called
coding, and a code is a set of codewords associated with an alphabet [57]. Encoding is the
conversion of symbols to their codewords, and decoding is the inverse of encoding. We
want the original sequence to be recovered with certainty, therefore we are only interested
in uniquely decodable codes, that is, each sequence of codewords can only be decoded in
one way. Source coding is the type of coding done at the source level with the purpose of
removing redundancy and achieving compression [58].

Entropy is a measure of uncertainty. For example, the entropy of the toss of a fair coin
is larger than the entropy of the toss of an unfair coin, because the uncertainty about the
outcome of the fair coin is larger. Information, in its turn, is a reduction in uncertainty.
In a sequence of 10 coin tosses, knowing the outcomes of the first 3 tosses reduces the
uncertainty about the final outcome of the 10 tosses, unless one of the sides of the coin
was never possible in the first place. One of the important aspects about information in
information theory is that it has nothing to do with semantics.

The amount of information gained with the occurrence of an event A is called its
self-information. If its probability is P(A), then its self-information can be measured in
bits by

logy(1/P(A)) = —logy(P(A)). (2.1)

The choice of this expression is not arbitrary, and it can be derived from a set of properties
expected from a measure of information [57]. This definition is intuitive as well. The
information gained by the occurrence of an event with probability P(A) = 1, or in other
words log,(1/1) = 0, is lower than the information gained by the occurrence of an event
with probability P(A) = 0.5, or in other words log,(1/0.5) = 1.

The definition of entropy relies on the concepts of self-information and random process.

A source in a communication system can be seen as a random experiment & with sample
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space X. The sample space is the set of all possible individual outcomes from the random
experiment. Therefore, the sample space is also the alphabet. The random experiment
observed over time forms a random process {X,},en+, which is a sequence of indexed
random variables. In this case we assume, without loss of generality, that the index n
is a positive, integer-valued, time instant. A stochastic process is stationary when the
joint distribution of any subset of the random variables is invariant with respect to shifts
in the time index [59] and it is independent and identically distributed (iid) when any
subset of the random variables are independent and the marginal distributions are the
same [60]. If the process is iid, the entropy of the source can be characterized by a single
random variable from the random process { X, },en+, for example, X;. More specifically,

the entropy of the iid source & can be obtained by the expected self-information of X;:

H(X) =~ Y Plar)logy(Play)). (2:2)

r1EX

However, this is only if the samples are iid. More generally, the entropy of a stationary
source can be defined as the average self-information per sample of longer and longer
sequences generated by the source [57]. We represent the sequence of the first n random
variables of the random process as X™ = {X, X, ..., X,,}, one possible realization of

(n

such sequence as x™ = {z, s, ..., 7, }, and all possible realizations as X™. The average

self-information of the sequences of length n is

Go=— 3 Px")log(P(x™)) (2.3)

M ex ™

and the average self-information per sample is
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The entropy of the stationary source is

H(S) = lim H,, (2.5)

n—oo

where stationarity is a sufficient condition for the limit to exist [59]. The entropy of the
source represents a lower bound for the number of bits per sample, also called the average
codeword length, of lossless compression schemes. Coding algorithms that aim at this

lower bound are referred to as entropy coding algorithms.

2.2 Arithmetic Coding

We now turn our focus to source coding and how we can achieve a coding such that there
is no loss of information and the average codeword length is close to the entropy of the
source.

A code is said to be nonsingular if every symbol is mapped into a different codeword.
It is called uniquely decodable if all sequences of symbols are mapped to different code
strings, and it is called a prefix code if no codeword is a prefix of any other codeword.
A prefix code is also called an instantaneous code because the end of a codeword is
immediately recognizable and therefore a codeword can be decoded without reference to
future codewords. Data compression can be achieved by assigning short codewords to the
most frequent symbols, and longer codewords to the less frequent symbols. It is possible
to show that the broader class of uniquely decodable codes does not offer better choices
of codeword lengths than the narrower class of prefix codes [59].

It is intuitive that we cannot assign short codewords to all source symbols. Consider
a source with set of possible outcomes composed of S elements. The codeword lengths

Uy, 05, ..., s of a prefix code must satisfy the Kraft inequality [59]:

ZQ—&' <1. (2.6)
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Also, given a set of codeword lengths that satisfy this inequality, there exists a prefix code
with these word lengths.

Let p; be the probability associated with the i-th possible symbol. We want to find
the prefix code with the minimum expected length that satisfies the Kraft inequality. In

other words, we want to minimize:

ming, ¢, oo > Dili
(2.7)

st.3,276 <1

whose solution according to calculus is given by ¢ = —log, p;. But since the ¢; must be
integers, we will not always be able to set these codeword lengths. We can do this only
when p; = 27% for integer ¢;, that is, when the distribution is dyadic. The optimal code
under these restrictions can be obtained by finding the dyadic distribution that is closest
to the distribution of the symbols [59]. However, a good approximation can be easily

obtained by rounding up the fractional optimal lengths:

(= [1% H | (2.8)

[

This approximation satisfies the Kraft inequality because

ZQ—flogg ol < Z o~ log; T Zpi =1 (2.9)

and is within 1 bit from the expected self-information because

1 1
log, — < {; <log, — +1, (2.10)
i Di
therefore
=Y pilogypi <Y pili < =) pilogypi + 1. (2.11)

A practical algorithm which has similar codeword lengths is the Shannon-Fano-Elias
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Figure 2.1: Cumulative distribution function of a discrete random variable X with sample
space {0,1,2,3,4}. F(z) is the midpoint of the step corresponding to z. Based on figure
5.5 of [59].

coding algorithm. Assume that the alphabet is {0, 1,...,m}, where m = S — 1. The cu-

mulative distribution function of a discrete random variable X representing one sample is

F(z)=)_ P(w). (2.12)

a<x

The cumulative distribution function of X looks like a staircase whose sizes of the steps are
P(z), as shown in Figure 2.1. The following modification of the cumulative distribution
function

F(z) =Y P(a)+ ;P(x) (2.13)

a<a
gives the midpoint of the step corresponding to z. If all P(x) are greater than zero, then
F(z) can be used as a code for z, since F(w) # F(6) if @ # 6. More interestingly, it can
be shown that F(x) truncated to £(z) = {log2 %W + 1 bits, represented by | F(z) |4(), is
also guaranteed to be within the step corresponding to x [59]. Therefore | F (%) | ye) can
also be used as a code for x. However, because of the additional 1 bit per symbol, the
Shannon-Fano-Elias coding expected codeword length is within 2 bits from the entropy,

instead of only 1.

17



So far we have seen that, when encoding a symbol, the codeword lengths ¢; = [log2 p%w
give an expected codeword length at most 1 bit from the expected self-information. The
overhead per symbol can be reduced by encoding sequences of symbols instead of individ-
ual symbols. This way the extra bit is spread out over many symbols. Then, assuming
the set of possible symbols is X", taking the inequality in (2.11), replacing p; and ¢; with
P(x™) and [log,(1/P(x))], and dividing by n we get:

1 1 1
_ (n) (n) - (n)
n (n)z: (n) P(X ) 10g2 P(X ) S n (n)z: (n) P<X ) ’Vlog? <P(X(n))>-‘
x\"eXx x\"eXx
1 1
<—= > Px")log, P(x™)+ = (2.14)
T ) epm n

Therefore by using large block lengths n we can achieve an expected codeword length per
symbol arbitrarily close to the entropy.

Consider an infinite sequence of random variables X, X», ... with alphabet {0, ...,m}.
For any outcome z7,xs,... we can place 0 and a dot in front of the sequence and
consider it as a real number of base m + 1 between 0 and 1. We can treat this se-
quence as representing an interval [0.x1xs...2,000...,0.2125...z,mmm...), or equivalently,
[0.2129...2, 0.2 29... 7, + (m%rl)") This is the set of infinite sequences that start with
0.x1x5...x,. It is possible to show that the cumulative distribution function forms an
invertible mapping from infinite source sequences to incompressible infinite binary se-
quences [59]. Under this transform, this interval gets mapped into another interval,
[Fx(0.2129...2,), Fx (0.2129...2,, + (m%rl)")), whose length is equal to P(x1,x, ..., x,), the
integral of the probability densities of all infinite sequences that start with 0.xyxs...2,, .
Similarly to Shannon-Fano-Elias coding, the binary representation of the midpoint of the

interval can be truncated to {log2 = W + 1 bits, and the resulting number is still

1
T1,2,..,Tn)
guaranteed to be within the limits of the interval. Therefore it can be used as a code for
the sequence z12s...7,,.

It is not necessary to transmit the whole sequence all at once. As more and more

symbols are seen, the interval goes from [0,1), to [Fx(0.x1), Fx(0.zq + ﬁ)), then to
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[Fx(0.x129), Fx(0.2129 + (m%rl)Q)) and so on. At first sight, it may seem that this would
require infinite precision arithmetic, since the number of digits in the top and bottom
ends of the interval keep increasing. But arithmetic coding provides a way to do this with
finite precision. As more symbols are seen, more leading digits from the top and bottom
ends of the interval become equal. As soon as the two ends of the interval agree about
some bits, we can output these bits and shift them out of the calculation. This way all
calculations can be made with finite precision.

Figure 2.2 illustrates through an example how arithmetic coding may work in practice,
assuming that the sequence of symbols is independent and identically distributed. From a
practical point of view, the basic idea of arithmetic coding is to start with an interval from
0 to 1, allocate portions of the interval to the symbols according to their probabilities,
restrict the interval based on the symbol seen and repeat the process with the restricted
interval. The compressed representation of the sequence is a binary fractional number in
the middle of the final interval, truncated to the minimum amount of bits such that the
number is still guaranteed to be in the interval. This number is also called the tag for
the sequence. It is not necessary to wait until the end of the process to start transmitting
the tag. For example, in the example of Figure 2.2, after encoding AB, the bits 0.01 can
already be transmitted, because the top and bottom ends of the interval already agree on
those bits.

The decoding process basically mimics the encoding process. At the decoder, the
symbols are reconstructed basically by retracing the steps done by the encoder with the
help of the tag. Starting with the 0 to 1 interval, the decoder subdivides the interval
between the symbols according to their probabilities the same way as the encoder, iden-
tifies the symbol based on which range the tag falls in, and repeats the process with the
new interval until the last symbol has been reconstructed. This process is illustrated in
Figure 2.3.

We have showed how arithmetic coding works when the samples are iid. However,

when the samples are not iid, the process is basically the same. The only difference is
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Figure 2.2: Illustration of the arithmetic coder encoding process. Numbers are rep-
resented in base 2. In this example, the symbols are A,B and C with probabilities
P(A)=0.5=(0.1) and P(B) = P(C) = 0.25 = (0.01);. The encoded sequence is
ABC, and the tag is (0.010111)s. The fractional part of the tag is already truncated
to the correct amount of bits since the length of the final interval is (0.00001); and
[—1og,((0.00001)3)] + 1 = 6 bits. Based on Fig. 2 of [18].
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Figure 2.3: Illustration of the arithmetic coder decoding process. Numbers are rep-
resented in base 2. In this example, the symbols are A,.B and C with probabilities
P(A)=0.5=(0.1)2 and P(B) = P(C) = 0.25 = (0.01);. The value of the tag is
(0.010111) = 0.359375 and the decoded sequence is ABC. Based on Fig. 2 of [18].

that the portions of the intervals assigned to the different symbols keep changing in size.
Figure 2.4 illustrates the arithmetic encoding process when the samples are not iid.

The decoder must reproduce the same sequence of partitions produced by the encoder,
reconstructing the symbols and restricting the interval based on the portion of the interval
that the tag falls in *. Figure 2.5 illustrates the arithmetic decoder when the samples are

not iid.

INote that to correctly decode the sequence, it is essential that the decoder has access not only to the
bitstream generated by the encoder, but also to the exact probabilities used during encoding, and in the
same order.
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Figure 2.4: Illustration of the arithmetic coder encoding process when the samples are
not iid. In this example, the probabilities of the symbols A,B,C change from 0.5,0.25,0.25
to 0.25,0.25,0.5 to 0.25,0.5,0.25, the encoded sequence is ACB and the tag is (0.0110)s.
The fractional part of the tag is already truncated to the correct amount of bits since the
length of the final interval is (0.001)y and [—1log,((0.001)2)] + 1 = 4 bits. Based on Fig.
2 of [18].
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Figure 2.5: Illustration of the arithmetic coder decoding process when the samples are
not iid. In this example the probabilities of the symbols A,B,C change from 0.5,0.25,0.25
to 0.25,0.25,0.5 to 0.25,0.5,0.25, the tag is (0.0110), = 0.375 and the decoded sequence is
ACB. Based on Fig. 2 of [18].

In summary, the arithmetic encoder can be seen as a black-box in which you enter
data in raw format and the probabilities of the symbols at each instant, and receive in
return the compressed sequence, as illustrated in Figure 2.6. Similarly, the arithmetic
decoder can be seen as a black-box in which you enter data in compressed format and
the probabilities of the symbols at each instant, and receive in return the uncompressed

sequemnce.
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Figure 2.6: Schematic representation of the arithmetic encoder and the arithmetic de-
coder. Given a stream of symbols in uncompressed /compressed format and their proba-
bilities, the arithmetic encoder/decoder returns the compressed /uncompressed sequence.
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Figure 2.7: A more complete representation of a compressor and of a decompressor based
on arithmetic coding. A probability estimation step is required to obtain the probabilities
used with arithmetic coding.

2.3 Probability Estimation

In our previous discussion, we have intentionally left out a major component which is
part of any data compressor based on arithmetic coding. The piece that is missing, as
depicted in Figure 2.7, is a probability model of the source. A probability model is a map-
ping from events to probabilities. Models are mathematically represented as probability
distributions. However, the distributions used in probability models have a distinguish-
ing property. They are particularly made to approximate an unknown distribution and
typically have a parametric form with parameters fitted to the data. A model whose
probabilities do not change with the position in the sequence is called a static model,
while a model whose probabilities do change is called an adaptive model [57].

The whole construction of arithmetic coding is based on the availability of the symbol
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probabilities. In general, it is not possible to precisely know them. Therefore, they must
be estimated somehow. In theory, they could even be obtained by human intuition [61].
However, in practice probability models are built based on empirical observations. If
the model is built prior to encoding, using the data that will be encoded, or any other
data, this is called forward estimation or coding. If the model is built during encoding
or decoding using the previously encoded or decoded samples, this is called backward
estimation or coding. A model built with backward estimation is necessarily an adaptive
model, while a model built with forward estimation may be static or adaptive, depending,
for instance, if context-modeling is used (Section 2.4).

From Section 2.2 we know that arithmetic coding is capable of getting arbitrarily close
to the entropy as the number of coded samples increases. Let py) denote a model for
the joint probability distribution of n samples from the source. Assume that this is the
correct model. If this model is used with arithmetic coding, the average codeword length

approaches

. 1 " .
lim —— > pxoo (x™) logy(pyn (x)). (2.15)

TN () e
However, what happens in the most common case where the correct model is not known?
If a wrong model gy is used instead of pym), then the average codeword length actually

gets closer to

o . )
lim —— 37 pyen (xM) logy (gxm (x1™)). (2.16)

TN () g
The expression — Y plogq, where p and ¢ are arbitrary probability distributions, is re-
ferred to as the cross-entropy of the distribution ¢ relative to the distribution p, and is
compactly represented as H(p, q). With straightforward manipulation, the cross-entropy

can be rewritten as

H(p,q) Z—Zplong—ZPIngJrZPIOgZ, (2.17)

where 3" plog(p/q) is referred to as the Kullback-Leibler divergence (KLD) from ¢ to p,
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and is also represented as Dgr(p|lq). The expression — 3 plogp is the entropy for the
probability distribution p and is sometimes denoted as H(p). With this in mind, the
expression in (2.16) can be rewritten as

1
lim — (H(pxem) + Drr(pxmllaxm)) - (2.18)

n—oo n,

That is, the cost of compressing the data using a wrong model gy instead of pye) is
determined by the KLD from gy to pxe . The minimum of the expression in (2.18) is
the entropy and it is achieved when gy ) is equal to py ) or, equivalently, when the KLD
is zero.

When talking of probability estimation, a very common method is maximum likelihood
estimation (MLE). Let x™) = {1, 15, ..., x5} be observed data from the joint probability
distribution of N random variables. Assume that we do not know the distribution, but
we know that it is from a specific class of probability distributions, for example, that
it is a multivariate normal distribution. Let the distribution parameters be represented
by a random vector ©, and a particular realization by 6. The likelihood function is the
joint probability of the observed data given the distribution parameters 8, or £(8|x®)) =
pX<N)|@(x(N )|6). The maximum likelihood estimate is the argument € that maximize the
likelihood function.

Assume a family of probability distributions in which the model parameters @ are
the probabilities of the outcomes themselves. This family of distributions is capable of
representing any discrete probability distribution. In this case, the relative frequencies
form the maximum likelihood estimate for the observed data. Without loss of generality,
assume that the samples are iid. If they are not, and the probabilities depend on a few
previous samples, or the context, as we will discuss more in Section 2.4, the same conclu-
sions are valid for each context individually. Assuming iid samples, the joint probability
of the data is pX<N)|®(x(N)|0) = [I’_, pxj@(x,|0). This expression is maximized when

px|e(2,]0) = k(x,)/N, where k(z,) = [{i : 1 < ¢ < N and x; = x,}| is the absolute
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frequency of the symbol z,,. This is the case because any distribution with different prob-
abilities than the relative frequencies would have lower chances of having generated that
data.

Other way of verifying this is by realizing that there is an equivalence between max-
imizing the likelihood function and minimizing the average codeword length of an ideal
arithmetic coder driven by a matching probability distribution [62]. Since the average
codeword length would be — log, (pX(N)|®(X(N) |0))/N and the likelihood is px(v) ‘@(X(N) 19),
the average codeword length would be minimized when the likelihood is maximized. The

average codeword length is given by

1

N
~ log T pxjo(ra/6) =

n=1

1 N
- N10g2px<N)|@(X( )|9) =

K(x)

—z;mmmmMF—gNkmew>mw

where X is the set of all possible outcomes and x is one possible outcome from the random
variable X. This expression is the cross-entropy between s(x)/N and px|e(x|@), which we
know is minimized when their KLD is zero, or in other words when px|e(x|0) = x(x)/N.

This is also true even when there is dependence among samples. Consider, for sim-
plicity, that each sample depends only on the sample immediately before it. The joint
probability of the data is pyov e(x"0) = TI3_, px|x/.@(#n|z,-1,0) ?, which is maxi-
mized when px|x/.e(Tn|Tn-1,0) = K(Ty, ¥n—1)/N(2n-1), where @ represents the probabil-
ity model parameters, N(z,_1) is the number of occurrences of z,,_; or [{i : 0 <i < N
and x; = x,_1}| and K(z,,z,_1) is the number of occurrences of the pair z,,x, 1, or

{i:0<i< N and x;,x;_1 = xp, T,_1}| or the absolute frequency of x,, given z,,_;. The

2Tt simplifies the notation and the calculations if we extrapolate the data and assume it equal to a
specific symbol sy outside of the observed support, so for example g = sg. This may be a new symbol
added to the set of possible symbols or an already existing symbol.
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Figure 2.8: Example of overfitting. The data is linear with added noise. A polynomial of
degree 7 perfectly fits the observed data, but performs poorly on unobserved data.

average codeword length of an ideal arithmetic coder would be given by

N

1 1
AT 1Og2 pX(N)|@(X(N)|9) = T Xt Z 1Og2pX|X’,®(xn|xn—la 0)
N N n=1
N(z') < K(z, o) :
= - logy px|xe@(zla’,0) | (2.20)
z’'eXx N a:%;( N<I/> 2 |

The expression in parenthesis is the cross-entropy of x(z,2’)/N(2') and pxxs e(z|2’,0),
which is minimized when pxx’ e(z|2’,0) = k(x,2") /N (2').

When performing MLE, care must be taken to avoid overfitting [63]. Overfitting is
a common problem encountered in mathematical models in general which is when the
model performs well on observed data, but poorly on unobserved data. An example of
overfitting is shown in Figure 2.8 in the setting of polynomial fitting. The larger the order
of the polynomial, the lower is the error on the observed data, also called the bias or the
approximation error, but the larger is the error on the unobserved data, also called the
variance or the generalization error. This is known as the bias-variance tradeoff [64].

Back to the MLE problem, we would like to have a good estimate of the true probability
distribution. Except in particular situations, we do not want a model which explains the

data perfectly, we want a model with a good generalization performance.
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2.4 Context-based Probability Estimation

As we have seen in previous sections, entropy coding is based on assigning shorter code-
words to the most frequent symbols, or the symbols with the highest probabilities, and
longer codewords to the least frequent symbols, or the symbols with the lowest probabil-
ities. This suggests that higher data compression can be achieved the more unbalanced
is the set of probabilities.

In fact, the entropy is smaller when there are only a few symbols with high proba-
bilities, and all others have low probabilities, compared to when all symbols have similar
probabilities. Consider for example the tosses of a fair and an unfair coins. The outcomes
have equal probabilities with the fair coin, while one has 75% probability and the other
has 25% probability with the unfair coin. The entropy in the first case is 0.51log,(1/0.5) +
0.5log,(1/0.5) = 1, and in the second case is 0.7510g,(1/0.75) + 0.25log,(1/0.25) ~ 0.81.

Therefore, if it were possible to make the probabilities of the symbols more unbalanced,
we would be able to achieve better compression. The actual entropy of the source is a
fixed and, in general, unknown quantity, and therefore cannot be changed. However, the
minimum possible entropy assuming our model can be changed. For example, when we
develop a static model, we are essentially assuming that the samples are iid, and that the
entropy follows the Equation (2.2). The iid assumption limits how low the entropy of the
source can be.

One way of making the probability distribution more unbalanced is to condition the
probabilities on previous samples. For example, in english, the probability of a vowel is
larger if we know that the previous letter was a consonant. Therefore, by conditioning
the probability of a symbol on the value of the previous symbol, we are able to make
the probability distribution more unbalanced. In general, the condition may be much
more complex than only the previous sample. Such a condition is called the context.
Let the context be represented by a random vector E and let one possible context be
represented by the vector £ Our assumption is that P(z|€) is more unbalanced than

P(z), and therefore H(X|) is lower than H(X). The final entropy is the average value
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Figure 2.9: Portion of the binary image used to compute the entropies of Table 2.1. It
corresponds to the third page of the article [65] converted to binary following the process
described in Section 4.5.

of the entropy given each condition, or in other words [57]:

H(X|E) = %:P(ﬁ)H(Xlé), (2.21)

but since every H(X|€) is lower than H(X), then this expression can only be lower than
H(X). Therefore, by using contexts, we are able to reduce the entropy of the source given
our model.

Table 2.1 shows the values of entropies calculated for the binary image of Figure 2.9
assuming the different context definitions of Figure 2.10. It is assumed that the image
pixels are scanned in a row by row basis, from the left to the right and from the top
to the bottom. The first option (a) actually corresponds to no-context. In the second
option (b), the context is made of the causal values of the left and the upper pixel. In the
third option (c), the context is made of the values of the left pixel, the upper pixel, and
the pixels to the left and to the right of the upper pixel. The other context definitions,
(d) and (e), can be interpreted in a similar way. The calculated entropy continuously
drops as we increase the number of previous samples that make up the context. It is
reduced to almost one fifth when the number of previous samples increases from 0 to 26
pixels.

Questions may be raised about how to choose contexts, what are the best contexts
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Figure 2.10: Five alternative context definitions to use with a binary image, correspond-
ing to different amounts of pixels surrounding the current pixel. The current pixel is
represented by a cross, while the pixels that make up the context are numbered from
closest to farthest, respecting the rule that two pixels cannot have the same number.

Table 2.1: Values of entropies calculated for the binary image of Figure 2.9 assuming the
different context definitions of Figure 2.10. The calculated entropy reduces to almost one
fifth when the number of previous samples used increases from 0 to 26 pixels.

(a) [ 0.318
(b) | 0.198
(c) | 0.168
(d) | 0.141
(e) | 0.067

to use, what is the best context size, or the size of the vector & These are the types
of questions that are addressed by context modeling. Context modeling is the action of
defining contexts, and assigning context patterns to probability estimates. The context
model is the rule that maps the patterns to the estimates.

There is a close relationship between context modeling and discrete-time Markov
chains. A discrete-time Markov chain can be thought of as a finite state machine with
probabilities attached to each arc [66]. They are very useful when representing depen-

dencies among samples and when developing dynamic probability models. A common
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P(1]1) P(0/0)
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Figure 2.11: State machine corresponding to a first order discrete-time Markov chain
which could be used to model the dependencies in a binary source. Ey and E; are the
states, which could mean, for example, that the current symbol is 0 and 1, respectively.
P(0[0), P(0]1), P(1]0), P(1|1) are the transition probabilities. Based on Fig. 2.3 of [57].

example of a discrete-time Markov chain is a random process with the property that

P(zp|len_1, .oy Tnopty ) = P(xp|Tn_1, oo Tnonr). (2.22)

That is, the probability of the n-th sample only depends on the M samples immediately
preceding it. The value M is said to be the memory of the random process. Many
random processes are not strict Markov chains of this kind, but can be well approximated
by one with sufficiently large M, since the influence of previous samples fades away with
distance. In this particular example, each state is a combination of values taken by the
set {Zp_1,...,xn_ar}. Let S be the size of the sample space, or the number of possible
symbols in the jargon of data compression, then the number of states is given by (S)M.
Figure 2.11 shows one example for M =1 and S = 2. This Markov chain could be used
to model a binary source. In this example, there are only two states, Fy and E;. The
probabilities of transitioning from one state to the other, or staying in the same state, are
represented by the conditional probabilities P(0|0), P(0|1), P(1]|0) and P(1]1).

The state of the Markov chain corresponds to the context in context modeling. It is

important to note that the state is not restricted to be the M samples immediately before
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the n-th sample. Any set of previous samples, or any information available at the time
the n-th sample is processed, can be used to compose the context. Of importance is the
fact that we can represent the process as a Markov process, in which the next state can
be predicted solely based on the present state [66]. For example, in the case of a binary
image, the context could be any of the contexts depicted in Figure 2.10. In any case, in
this work, we will use M to denote the size of the context, regardless of the context being

or not the M previous samples.

2.5 Context Modeling

The traditional way of performing context modeling is by counting symbol occurrences
for each context and by using a look-up table (LUT) to store the relative or absolute
frequencies. The relative frequencies can be easily obtained from the absolute frequencies
for a given context. As discussed in Section 2.3, the relative frequencies are the maximum-
likelihood estimates of the conditional probabilities.

LUTs can be used in both forward and backward coding. In forward coding, they
are either built on the data being encoded or on some other data. If built on the data
being encoded, the LUT must be transmitted to the decoder in the compressed file. In
backward coding, the LUT is built on-the-fly by both the encoder and the decoder using
the previously encoded or decoded samples, and it is continuously updated as new samples
are seen.

Figure 2.12 shows one example of a LUT created from a binary image. Note that we
adopt the common convention that black corresponds to 0 and white corresponds to 1.
For simplicity, we have assumed that the values of the pixels outside of the image are 1.
The context definition is the one shown in Figure 2.10 (b). The LUT stores how many
times the bits 0 and 1 are seen immediately after each context, or the absolute frequencies
of the bits 0 and 1. The relative frequencies for a context can be easily obtained from

the absolute frequencies for that context. For example, the relative frequency of the bit
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Figure 2.12: Example of LUT created from a binary image. The context definition is
the one shown in Figure 2.10 (b). This LUT stores how many times each symbol is seen
immediately after each context.

1 for the first context is 6 out of 6, or 100%, and the relative frequency of the bit 0 for
the second context is 6 out of 20, or 30%.

Despite its simplicity and often effectiveness, there are some caveats to be aware of
when using LUTs. Firstly, the number of contexts grows exponentially with the context
size. For example, in the case of a binary source, the number of contexts is given by 2,
where M is the context size. For M = 20, the number of contexts has already reached
1 million. This limits the maximum value of context size M that can be used with
LUTs, because of the increasing memory requirements. Secondly, except when the LUT
is built prior to encoding on the data that will be encoded, or on other sufficiently large
amount of data, the larger the context size, the more often we will encounter unexpected
situations. For example: contexts that never occurred in the original data; symbols that
never occurred after a particular context. This is known as the zero frequency problem

[57] or context dilution [67]. If no countermeasure is taken, the associated symbols are
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Table 2.2: Number of unseen contexts and total number of contexts for the context
definitions of Figure 2.10 on the binary image of Figure 2.9. This illustrates that the
number of unseen contexts grows quickly with the context size.

Unseen Total
(a) 0 1
(b) 0 4
(c) 0 16
(d) 188 1024
(e) | 67080469 | 67108864

encoded using many bits, which considerably increases the final bitrate in bits per sample.
Context dilution also happens when the context occurrences are so infrequent that the
probability estimates are inaccurate.

Table 2.2 shows the number of unseen contexts, for the context definitions in Fig-
ure 2.10, on the binary image of Figure 2.9. When M = 10 (context (d)) the number of
unseen contexts amounts for 18.36% of the total number of contexts, while when M = 26
(context (e)) the number of unseen contexts amounts for 99.96% of the total number of
contexts. Because the LUT cannot extrapolate the conditional probabilities for unseen
contexts, even when it has seen very similar ones, this can be a big problem. Exception
is made when the LUT is used to encode the same data that was used to build it.

In backward adaptive coding, the corresponding entry of the LUT is updated every
time a symbol is seen after a context. The probabilities of the symbols are estimated from
their absolute frequencies. Initially, the symbols can be assumed to be equiprobable, or
the initial counts of all symbols can be assumed to be equal to 1, for example. This
would solve the problem of not having previous samples to estimate the probabilities and
would avoid the zero-frequency problem right at the beginning of coding. In Section 2.6,
we discuss in more detail adaptive relative-frequency-based probability estimation in the

particular case of binary sources.
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2.6 Context-Adaptive Binary Arithmetic Coding

Context-adaptive binary arithmetic coding (CABAC) is the entropy coder behind the
video coding standards H.265, H.266 and one of the entropy coders available in H.264.
The basic H.26X video coder consists of: a prediction step, including intra-frame and
inter-frame prediction, a transformation step, a quantization step, and an entropy coding
step. Figure 2.13 illustrates the inner workings of the H.26X standards. In summary, the
video frames are divided into blocks, each block is subtracted by an intra or inter-frame
prediction, transformed using the Discrete Cosine Transform, quantized, and entropy
coded along with other relevant information, such as the prediction method [68]. Upon
receiving the bitstream, the decoder reconstructs the frames by undoing the steps per-
formed by the encoder. Because of the quantization step, the reconstruction process is
lossy.

Figure 2.14 illustrates in more detail what happens inside the CABAC module. In
order to simplify context modeling, all values that are to be entropy coded are converted
to binary strings first. In this way, context modeling can be performed on a subsymbol
level, instead of the original domain, which permits the use of higher order conditional
probabilities without suffering from context dilution [67]. The way binarization is per-
formed depends on the syntax element [57]. Syntax elements describe how the video
signal can be reproduced at the decoder. It is important to note that the H.26X coding
standards are very complex and contain many different syntax elements. For example:
quantizer labels, position of the last nonzero label, the prediction mode, and many other
indicators and flags [68]. CABAC relies on hundreds of context models. The context
modeling performed in H.26X, that is, the decision of which probability model to use for
a given symbol, is not done based solely on the values of a few previous symbols. It is
done based on several factors, such as the quantizer state, if it is chroma or luma, the
position of the coefficient inside the transform block, and also on spatially neighboring
quantization labels. Certain syntax elements with a more random nature are not coded

using arithmetic coding and bypass the arithmetic coder.
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Figure 2.13: Block diagram of the H.26X video coders. The frames are divided into
blocks. Each block is processed first by subtracting a prediction, which can be intra
or inter-frame, then by transforming the residual, in general using the Discrete Cosine
Transform. The transform coefficients are quantized and, together with other relevant
information, entropy coded using CABAC. After decoding the quantization labels, the
decoder recovers the residual transform coefficients, converts them to pixel values, and
adds them to the prediction. Finally, the recovered blocks are grouped to form the frames
and filtered to remove blocking artifacts, for example. This figure was adapted from
Figure 1 of [69].

Figure 2.15 (a) shows the context template used in H.266/VVC. The quantizer labels
of the elements in the shaded area are used to determine the context model, together with
other information such as the quantizer state and the position inside the transformation
block [68]. The context is made of elements in the lower right because the coefficients are
scanned in the reverse diagonal order of the block in Figure 2.15 (b). This template is
also present in H.265/HEVC [70]. As another example, when the H.264/AVC standard
uses spatially neighboring syntax elements to determine the context, it generally uses the

context template illustrated in Figure 2.15 (c), made of the elements to the left and above

the current element in the scanning order [67]. This template is also used in a particular

mode of H.266/VVC [68].
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Figure 2.14: Block diagram of CABAC. First, the syntax elements are converted to binary
strings. Some syntax elements, with a more random nature, bypass the arithmetic coder.
The others are coded using arithmetic coding with one of several context models. The
previously coded sample is used to update the context models and is stored to form the
context for the next samples. This figure was adapted from Fig. 1 of [70].
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Figure 2.15: (a) Context template and (b) reverse diagonal scan coding order used in the
regular residual coding mode of H.266/VVC. (c¢) Context template and (d) forward scan
order used in the transform skip residual coding mode of H.266/VVC. This figure was
adapted from Figures 3 and 5 of [68], and Figure 1 of [71].

In CABAC, the probability of the next symbol being 1 is estimated, as expected, from
the values of the previous symbols coded using the same context. However, instead of
doing this by simply computing the cumulative average, which would correspond to the

relative frequency, the H.26X standards use an exponential decay window [68]. Consider
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a sequence of symbols, {x,},en+, associated with a given context. Instead of estimating

the probability of the next symbol being 1 from the cumulative average

+ ...+

ppyr = X (2.23)

n

or, in recursive form, from
Xn+(—1)p

e = X 1= Do, (2.24)

n

CABAC estimates the probability from [68] [72]
Pt = alxn + (1 —a)xy_1 + (1 — )2 + ... + (1 — )" x4, (2.25)

where « is a constant between 0 and 1. Note that 1+ (1—a)+ (1 —a)*+ ...+ (1 —a)?!
is equal to (1 — (1 — «)")/a, which, for large 7, tends to 1/a. That is, Equation (2.25) is
essentially a weighted average with exponentially decaying weights, such that closer values

have larger weights. Equation (2.25) can also be written in recursive form as [68] [72]

Pre1 = Xy + (L= a)py. (2.26)

The constant a controls the rate of adaptation. A lower « results in slower adaptation,

while a larger « results in faster adaptation. In H.264 and H.265, the value of « is [67] [70]

(2.27)

(0.01875)1/63
a=1-— .
0.5

In other words, o =~ 0.05. In H.266, two estimates for two rates of adaptation, ag and ay,
are maintained for each context, with the final probability estimate being the average of
the two estimates, and the values of oy and a; were optimized for each context, together
with the initial probabilities, using a training algorithm [68].

In H.264 and H.265 this exponential smoothing estimator is implemented using a

finite state machine with 128 states. What is tracked is a value between 0 and 0.5 which
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represents the probability of the least probable symbol (LPS), and the value of the most
probable symbol (MPS). The probability of the LPS changes from one state to the other,
being increased if the LPS occurs and decreased if the MPS occurs. If the probability
reaches 0.5 and the LPS occurs, the probability is kept the same but the value of the MPS
is toggled [67] [70]. The H.266 standard does not use this state machine, and derives the

probability estimates using directly the recursive function in Equation (2.26) [68].
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Chapter 3

Neural Networks and

Hyperparameter Optimization

3.1 Feedforward Neural Networks

An artificial neural network can be defined as “a massively parallel distributed processor
made up of simple processing units that has a natural propensity for storing experiential
knowledge and making it available for use.” [73]. The artificial neurons are the basic
processing units that make up the artificial neural network. Each of them is a combination
of an affine function of the form z(1) = wl1p + b, followed by a nonlinear function g,
also called an activation function. The output of the neuron, also called activation, then
is a = g(z). ' The values in w are called its weights, and the value b is called its bias.
Figure 3.1 (a) shows a schematic representation of a neuron.

Many neurons can be stacked together in parallel, forming a layer. Let J be the
number of neurons being stacked in parallel, let w; and b; be the weight vector and
the bias of the j-th neuron, then the activation of the j-th neuron is a; = g(2;), where
Zj = WJT?/J + b;. The outputs of the J neurons can be represented in a single equation
T

by a = g(z) = g(W4 + b), where a = [ay,...,a5]", z = [21,...,25]T, W = [wi..wy

Y

'We have purposely left out the dependence of a and z on ), and will continue to do so, in order to
simplify the notation.
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Figure 3.1: Illustrations of: (a) a neuron; (b) a layer of neurons; (c¢) a neural network.

b = [by,...,b;]" and g(z) = [g(21), ..., 9(2;)]T. Figure 3.1 (b) shows an illustration of a
layer.

A neural network can be obtained by sequentially stacking many layers. Let a series of
layers in a neural network be indexed by d € {1, ..., dyax }, such that the lower the index,
the closer the layer is to the input. Then, the output of an arbitrary layer in the network
can be represented by al® = g(@(z(@) = g (W Dald=) 1 b@) with the input of the
network corresponding to al®) = ). The output of the network may be al@max) or z(@max)
depending on the application, that is, it may contain or not the activation function. The
j-th row in W@ ig the transposed weight vector (ng))T of the j-th neuron in the d-th
layer, while the j-th element in b(® or bg-d), is the bias. We will use J@ to indicate the
number of outputs of the d-th layer, which is equal to the number of neurons in the layer,
and K@ to indicate the number of inputs of the d-th layer. For convenience, we define
J© as the number of elements in 1. Then, K@ = J@=1 for all d. Furthermore, each

(d) (d)

vector w; ' has K (@) elements, represented by Wy
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Figure 3.1 (c) illustrates a neural network constructed this way. By convention, the set
of inputs is called the input layer. It is different from the other layers because it does not
contain any neurons. The last layer is called the output layer. The layers in between the
input and output layers are called the hidden layers. The networks of this type are called
feedforward neural networks, because they do not have any loops, and can be represented
by directed acyclic graphs, in contrast with other broad class of neural networks called
recurrent neural networks, which is characterized by the presence of loops, feedbacks or
cycles [73]. A network like the one in Figure 3.1 (¢) is also called a multi-layer perceptron
(MLP) for historical reasons. A perceptron is a particular type of artificial neuron, which
preceded the general definition we gave in the beginning of this section. In a perceptron,
the inputs and outputs are either 0 or 1, and the activation function is the heaviside step
function [74]. Initially, a MLP was a network formed by combining perceptrons, but the
community continued using the term to describe more general networks, with inputs other
than 0 and 1, and activation functions other than the heaviside step function.

It can be shown that MLPs are universal approximators [74] [75]. That is, they can
approximate any continuous function ¢ : R7” — R7“™ of JO inputs and J(@ms)
outputs with arbitrary precision, even if the neural network has a single hidden layer,
as long as there are enough neurons in that layer, or even if the neural network has a
limited number of neurons in each layer, as long as there are enough layers. These results
are known as universal approximation theorems, particularly the arbitrary width and the
arbitrary depth cases. The nonlinear functions in the hidden layers are essential. Without
them, the neural network could only approximate linear functions. The approximation
can be proved for different nonlinear functions. The most common nonlinear functions are
the sigmoid function and the ReLU function (Figure 3.2). With respect to the neurons
in the last layer, the theorems usually assume that there is no activation function. In
this way, the range of values in an output is unlimited. However, if the outputs are
supposed to be probabilities, then the neurons in the output layer may contain a sigmoid

activation function, if the probabilities are supposed to be independent. Alternatively,
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Figure 3.2: Sigmoid (left) and ReLU (right) activation functions.

they may contain a softmax activation function, if the probabilities are supposed to be
from the same probability distribution. For example, consider a single layer of neurons.
The softmax activation function receives the vector z as input, and outputs a vector with
the same size as the input, Softmax(z). The j-th element of the output of the softmax
has the form e* / Z;f,zl e“’. Not only the softmax transforms the inputs into probabilities
from the same distribution (fits the numbers into the range (0,1) and makes them add

up to 1), but it also emphasizes the largest number (except when all z; are small) [75].

3.2 Neural Network Training

Neural network training is usually based on two algorithms: mini-batch stochastic gradient
descent and backpropagation. The first one provides a way to minimize a particular loss
function, which is based on the gradients of the loss function, and the second one provides
an efficient way to obtain the gradients of the loss function with respect to the parameters
of the network.

A loss function, or cost function, is a function that we intend to minimize. For example,
we may wish to minimize the mean squared error between the outputs of the network and

the expected outputs for particular inputs. The set of inputs and their corresponding
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expected outputs form the training dataset. This loss function can be represented as:

(,y)eD ’D‘

where (1,y) is one pair of input and expected output from the dataset D, the vector 6
represents the network parameters, and f(1,0) is the output of the network for the
input .

In order to minimize such a loss function, we assume the unlikely case that the loss
function in (3.1) is convex with respect to the network parameters. The partial derivative
of the loss function with respect to a generic network parameter 6, when this is at a

oL

particular value 6y, or %2

56 ’9 , gives the direction of change in L for a positive change in 6.
0

If the partial derivative is positive, then an increase in 6 causes an increase in L. If the
partial derivative is negative, then an increase in 6 causes a decrease in L. If we want
to minimize L, then it makes sense to change # in the opposite direction of the partial
derivative. If a positive change in 6 causes a positive change in L, then we should reduce 6.
If a positive change in 6 causes a negative change in L, then we should increase 6. This

can be achieved by the following equation:

oL

old — € =5
90|,
old

— (3.2)

where the constant € is called the learning rate. Let @ denote all network parameters.
Instead of updating only 6, we could approach the minimum much quicker if we did similar

updates to all parameters in 8 . This could be compactly represented by:

Opew = 001 — €(VoL)g,,, (3.3)

where VgL is the gradient of L with respect to 8. Naturally, a single update of all network
parameters using this update rule would most likely not minimize L with respect to the

network parameters. However, if, on the other hand, this update rule is sequentially
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applied, then the function L can in fact be minimized, provided that the value of € is low
enough [76]. This is the gradient descent (GD) algorithm.

We have assumed that L is convex with respect to the network parameters. This
ensures that the loss function has a single minimum which is also a global minimum.
Unfortunately, this does not match the common case. In practice, it is often the case
that L is a function with a very complex shape in a very high-dimensional space, with
many local minima. However, this function can still be considered locally convex in many
places. Therefore, GD can still find a local minimum, and we want this minimum to be
not too far from the global minimum. In order to find a good local minimum, the network
parameters’ initialization values are very important. As a consequence, there exist many
initialization methods.

One update using the loss function in (3.1) considers all training samples at once.
Because of this, the algorithm we just described is also called batch gradient descent.
However, this algorithm is not very practical when the training samples are very high-
dimensional. This is the case, for example, with images. It would require a computer with
a very large volatile memory to hold all such data at once. One alternative is to replace
the single update for the whole dataset with several updates, each considering a portion
of the data at a time. Consider, for example, that one update is made for every sample.
Let 7 indicate a set composed of a single element from D. Then, the loss function for one

sample would be

Lz = |y — f(¥,0)|” (3.4)
The update for one training sample would be

0Lz

Qnew = 90 N .
Id — € 90 , (3.5)
old
The update for all network parameters at once would be
Hnew = Oold — 6(V9L1>901d. (36)
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Surprisingly, the algorithm with one update per sample would still approach the minimum
of (3.1), assuming there is only one, with respect to the network parameters [64],[77],[76].
This is so because 0Lz/d0|,

is an unbiased estimator to dL/00|y,,,. However, for a

old old *

constant ¢, there is a bias term separating the minimum found by the algorithm and the
true minimum. This bias term can be made to disappear if the learning rate is reduced
as the number of iterations increases [64],[77],[76]. This is the stochastic gradient descent
algorithm.

Similar statements can be made if more samples are taken at a time. For example, for
loss function L = 3y y)es ||y — (20, 0)]?/|B] and partial derivatives dLg/08, where B
is a subset of the data containing |B| < |D| samples. This is called mini-batch stochastic
gradient descent. It is normally used over the other alternatives when training neural
networks because it is more memory efficient than GD and more time efficient than SGD.
The parameter B = |B| is the “batch size”. One pass over all training samples, be it
on GD, SGD or Mini-batch SGD, is called one “epoch”. One GD update corresponds to
one epoch, while several SGD or Mini-batch SGD updates are necessary to conclude one
epoch.

The difference between machine learning and normal optimization is that the function
one minimizes is not exactly the function one wants to minimize. You want to minimize
the loss function for the test data, or more specifically, for the true distribution of the
data, but instead the loss function for the training data is minimized [64].

As mentioned at the beginning of this section, the backpropagation algorithm can
be used to find the partial derivatives of the loss function with respect to the network
parameters in an efficient way. We will not be covering it in detail, as this is out of the
scope of this work. However, the interested reader is referred to the excellent description

of the backpropagation algorithm present in [74].
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3.3 Recurrent Neural Networks

(N) = {x),29,...,2x}. When discussing

Consider again a sequence of data elements x
recurrent neural networks (RNNs), the elements of the sequence are often words in a
language, for example English, or letters from an alphabet, for example the English al-
phabet, and are generally called tokens. In order to treat the tokens numerically, they
are converted to a suitable numerical representation. Associating each token to an in-
teger is known as ordinal encoding. Associating each token to a binary vector with a
single nonzero entry, with the index of the nonzero entry encoding the token, is known as
one-hot-encoding. In the following, assume that each token is represented by its one-hot-
encoding. Let us compare a couple of network architectures when processing this input
sequence one input at a time.

Let the sequence of tokens in one-hot-encoding representation be denoted by
t1,to,...,tx. The following equations describe a MLP with one hidden layer, acting on

one input at a time:

al) = gM(Whg, +pM) (3.7)
a® = g?(W2al) 4 p) (3.8)

where W@ is the weight matrix, b(? is the bias vector, g(¥ are the activation functions
and a(i) is the output of the d-th layer at the n-th time instant.

Since the network has no knowledge of the previous input when computing the output
for the current input, the most this network can do is compute a mapping from the
one-hot-encoding representation of the inputs to another representation, possibly with
less numbers. In other words, it can, at most, be used as an embedding layer [64].
Note that this is different from coding for data compression. The output vectors are
continuous-valued, with a fixed size, and there is no guarantee that different inputs would
not be mapped to equal or similar outputs. In fact, the purpose of an embedding layer is
usually to approximate the representations of similar inputs, for example, words that have

similar meanings. These representations are often called word embeddings. In practice
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an embedding layer often corresponds to a single linear layer.
A recurrent neural network, on the other hand, can take previous inputs into account
when computing the output for the current input. The following equations describe a

basic (Elman) RNN [73], [78]:

5(711) — g |wo |T" ! +bM |, (3.9)
tn
a® = gD W®al) 1 p@), (3.10)

where the symbols have similar meanings to what they had in the MLP equations. The
only difference here is that the input of the network is the concatenation of t, with
5(13,1 , the output of the hidden layer for the previous input, and therefore W) has more
columns. In this way, information about the previous network state can be passed to the

calculation of the current network state. For initialization purposes, é%)

may be all zeros,
for example.

For the sake of illustration, consider the common task of predicting the next token
in a sequence using a RNN. Assume that the output of the network approximates the
one-hot-encoding of the next token in the sequence as a real-valued vector. This could be
achieved with a Softmax activation function in the output layer and appropriate training.
After training, during utilization of the model, the actual prediction of the network for the
next token could be obtained, in ordinal encoding, by taking the argmax of the output.

The RNN can be trained for this task as follows. Let f(x™~,8) be the output of
the RNN. Let the loss function for one sequence position n be d(t,,, f(x"~Y,0)), where

d is some distance measure. Then the loss function for the entire sequence would be:

N

Leeq = >_d(t,, fF(x"1,0)), (3.11)

n=1

where x(©) = {} is the empty set and f({}, 8) represent the output of the RNN for the first

element of the sequence. During training with stochastic gradient descent, the batch is
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composed of several sequences of a given length. The network goes through each sequence
computing outputs. The loss for the outputs are computed, first for each token, then for
one entire sequence, then for all sequences. The total loss is used to calculate the partial
derivatives of the loss function with respect to the network parameters. Then, the network
parameters are updated using the partial derivatives. Since there is parameter-sharing
across time steps, the partial derivatives of the loss function with respect to the shared
network parameters contain terms for different time steps. For this reason, the algorithm
used to compute the partial derivatives of the loss function with respect to the parameters
of a RNN is called backpropagation through time (BPTT) [79]. Sometimes the number
of past samples considered is truncated and the resulting algorithm is called truncated
backpropagation through time (TBPTT) [79].

In order to use a MLP for the same task of predicting the next token from the pre-
vious tokens, the input to the network needs to include M — 1 more previous samples
besides only t,_;. Hence, the network would have M one-hot-encoded vectors as input
to—1,tn_o,t,_3,...,t,_ and the output of the network would be the network prediction
for t,,. The number of input nodes would be M -S. This could be a problem depending
on the vocabulary size S, because the number of parameters could quickly become very
large. Omne could try using ordinal encoding for the inputs instead of one-hot-encoding,
in which case the number of input nodes would simply be M. However, since the neural
network inputs are usually normalized to the [0, 1] range for numerical reasons, this would
mean fitting many numbers into a small range, except, for example, in the special case of
binary data. In any case, the MLP would only be capable of taking a limited amount of
previous samples (M) into account, while, in theory, a RNN is capable of considering an
unlimited amount of previous samples.

Note that naive RNNs as described here are known to have short memory, that is,
the influence of previous samples on the current output tend to vanish quickly, due to
the vanishing gradient problem [64]. This has motivated the proposal of more sophisti-

cated RNNs, mainly long-short-term-memory (LSTM) networks and gated recurrent units
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(GRU) [64]. Although their inner workings may considerably change, as black boxes they
are actually quite similar to the naive RNNs. They are all based on the same idea of

having a hidden state being passed from the previous time step to the next.

3.4 Cross-Validation

As mentioned in Section 3.2, one of the main differences between machine learning and
regular optimization is that, in machine learning, the models are optimized on a different
setting from the one in which we are primarily interested. The phase in which the model is
optimized is known as the training phase, while the phase in which the model is effectively
utilized is known as the inference phase, or the prediction phase.

However, since the model is intended to be utilized on data different from the one it was
trained on, it is essential to estimate the generalization performance of the model before
utilizing it. Furthermore, since there are so many different machine learning algorithms,
each of which may have multiple variations, it is also very common to compare multiple
algorithms, and algorithm configurations, before deciding on a specific one. These two
steps are part of a third phase of machine learning which is known as the cross-validation
phase [80]. The specific part in which different models are compared is also known as the
model selection phase, and the part in which the generalization performance is estimated
is known as the test phase.

The different machine learning algorithms often have parameters which are not learned
during training, and have to be decided on by other means. Think of the number of layers
in a multi-layer perceptron, the number of neurons in each layer, or the type of activation
function used in the hidden neurons, for example. These parameters are referred to, in
the machine learning literature, as the model hyperparameters. When the model selection
phase is focused on selecting hyperparameters for a specific algorithm, this phase can also

be called the hyperparameter selection phase, or hyperparameter optimization.
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There are two main types of cross-validation: holdout cross-validation and k-fold cross-
validation [80]. In proper holdout cross-validation with model selection, the available
data is split into three datasets: a training dataset, a validation dataset, and a test
dataset. As mentioned in Section 3.2, the training dataset is used to optimize the model.
The validation dataset, in its turn, is used to estimate the generalization performance
of the different models during model selection. However, since we use the results on the
validation set to select a specific model, it may now have been overfitted to the validation
set. In order to properly estimate its generalization performance, we must evaluate it
again on a third dataset. This is the purpose of the test set.

In k-fold cross-validation, the training and validation datasets are normally combined
together and subdivided into k folds. During model selection, each of the different models
is trained and evaluated k times. In each time, k£ — 1 folds are used for training, and the
other 1 fold is used for evaluation. After evaluating each model on all folds, their final gen-
eralization performances are estimated by their average performances on all folds. Then,
the selected model is retrained on all folds and tested on the third, and independent, test
set [80]. k-fold cross-validation is therefore more reliable than holdout cross-validation,

but it is also more costly.

3.5 Hyperparameter Optimization

The problem of selecting the hyperparameters of a model is also an optimization problem,
as is the model training. However, the main difference is that we do not know the
derivatives of the cost function with respect to the hyperparameters. Therefore we cannot
use backpropagation and stochastic gradient descent to learn those parameters. Another
difference is that the models are evaluated on the validation set, instead of the training
set.

There are two main types of hyperparameter optimization: single-objective hyper-

parameter optimization (SOHPO) and multiple-objective hyperparameter optimization
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(MOHPO). Consider first SOHPO. Let the hyperparameters of a model be represented

by a vector h € H, where H is the set of possible hyperparameter vectors, and the

single-objective function by ¢ : H — R. SOHPO methods seek to solve 2

h* = argmin ¢(h), (3.12)
heH

where the value of the objective function is taken on the validation set. Note that, in
general, the space of hyperparameter vectors, H, is too large. Therefore it is not possible to
train and evaluate the models for all possible h. Then, the optimal hyperparameter vector
must be estimated based on a subset of H. SOHPO methods differ on how this subset is
obtained. The most basic SOHPO methods are grid-search and random-search. In grid-
search, it is previously decided on a set of values to be tested for each hyperparameter.
Then all possible combinations of those hyperparameter values are tested. In random-
search, on the other hand, instead of testing all possible combinations, only a handful
of randomly selected combinations are tested. This allows for considering a larger set of
possible values for each hyperparameter.

In contrast to SOHPO, when optimizing multiple objectives there is not one sin-
gle best solution, but rather a set of incomparable non-dominated solutions, or Pareto-
optimal solutions. Let the multiple objectives be represented by a vector-valued function
c:H — R”. A hyperparameter configuration h is said to Pareto-dominate another h’,

writen as h < h'| if and only if [53]:

Vied{l,..,v}:c(h) <) A
(3.13)
Jj5e{l,...,v}:¢j(h) <ci(h).
A configuration is said to be non-dominated, or Pareto-optimal, if and only if there is no

other configuration that dominates it. Different from SOHPO, two configurations can be

incomparable, when there exist ¢, j € {1, ..., v} such that ¢;(h) < ¢;(h’) and ¢;(h’) < ¢;(h).

2In this work, we assume, without loss of generality, that all objectives that should be maximized have
been converted to ones that should be minimized, for example, by multiplying them by —1.
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The set of incomparable non-dominated solutions is called the Pareto set, and is defined

as

P:={heH|Ph eHst h<h}. (3.14)

These solutions have different trade-offs. It is not possible to improve one objective
without degrading another objective. The image of P under ¢, c(P), is called the Pareto
front.

MOHPO algorithms seek to approximate the set of Pareto-optimal solutions. This
can be expressed as [53]:

{1I1617r_[1 c(h) = {lnei%(cl(h), ey ¢y(h)). (3.15)

Or [81]:
min ¢y (h), ..., min ¢, (h), ( )
3.16
h e H.

Again, it is not possible to test all hyperparameter configurations in H. Therefore, a few
hyperparameter vectors must be selected somehow. Grid-search and random-search can
also be used in MOHPO. They have to be combined with some algorithm to find the Pareto
set of a known set of points. One such algorithm is the Best algorithm described in [82].
This algorithm starts with any point, and iterates through the list of hyperparameter
vectors, removing the ones dominated by the given point, until it finds a point which
dominates it. It then removes any dominated points that may have remained in the list.

It repeats this process until the list is empty.

3.6 Lower Convex Hull

A related concept to the Pareto front is the concept of lower convex hull (LCH). Being on
the LCH is actually a stronger requirement than being on the Pareto frontier. The points

on the LCH are a subset of the points that are on the Pareto frontier. Points on the
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Figure 3.3: The Pareto frontier versus the LCH of a set of points. The points on the
Pareto frontier are those represented by the red squares, while the points on the LCH are
those touching the blue dashed lines.

Pareto frontier are those with no points on the lower left quadrant. The Pareto frontier
includes some “interior” points, which the LCH does not.
Assume, without loss of generality, that there are only two objectives, ¢; and cs.

Consider the minimization problem:
min c1(h) + Aca(h). (3.17)

Minimizing it for a specific A corresponds to sliding a line with a specific inclination,
starting from the origin, until it hits a point (¢;(h), c(h)). The first point that is touched
by the line is the minimum. When A = 0, the line is vertical. When A — oo, the line is
nearly horizontal. For 0 < A\ < oo, the orientation of the line is something in between.
Doing so with various choices of A € [0, 00) allow us to sweep out the lower left convex
hull of the points. This process excludes some of the points on the pareto frontier. The
difference between the LCH and the Pareto frontier is exemplified in Figure 3.3.

Instead of always saying “the lower left convex hull” of the cloud of points, it is common

to refer to it simply as “the lower convex hull”. Some might even simply say “the convex
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Figure 3.4: Hlustration of an algorithm which can be used to find the LCH based on the
Gift Wrapping algorithm. The algorithm starts with the leftmost point, and subsequently
selects the point with lowest polar angle, with respect to the last found convex-hull side.

hull” when referring to it.

The LCH can be defined in higher dimensions in a similar way. For example, for
objectives ¢y, ¢ and c3, in which case the minimization problems would have the form
miny, ¢1(h) + Aca(h) + yes(h), with A € [0,00) and v € [0, 00).

The LCH in 2D can be found in various ways. One of them is by a modified version
of the gift wrapping algorithm [83]. We begin with the leftmost point. This is the
point found by minimizing the expression in (3.17) for A = 0, or, in other words, the
first point touched when sliding a vertical line along the horizontal axis. Consider the
line with A going through the most recently selected point. The point which gives the
smallest anticlockwise angle with respect to this line, with the most recently selected
point as vertex, is the next point of the LCH. The algorithm then repeats this procedure,
keeping track of the inclination of the last convex-hull side chosen, and selecting the
next LCH point which gives the smallest polar angle with respect to this line-segment.
The algorithm stops when the line becomes horizontal or increasing. This procedure is

illustrated in Figure 3.4.
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Figure 3.5: Illustration of the Hypervolume of Pareto set P with reference point r. The
hypervolume is the volume of the space dominated by P and bounded from above by r.

3.7 Dominated Hypervolume

Given a reference point r € R”, the dominated hypervolume (HV) of a Pareto set P is the
volume of the space dominated by P and bounded from above by r [53]. The coordinate
values of the reference point should be set to slightly worse than the values a decision
maker would tolerate. Figure 3.5 illustrates the hypervolume in a two-objective problem.

The dominated hypervolume is also known as the hypervolume indicator.

3.8 Bayesian Optimization

Bayesian optimization [84] [85] is an optimization procedure which is basically composed
of three main elements: an objective function; a surrogate function; and an acquisition
function. The objective function is the unknown function we wish to optimize. Since it
is unknown, that is, it does not have a closed form, we cannot estimate its derivatives, in
order to use methods such as gradient descent. To further complicate things, it is usually
a noisy function, and, in general, very expensive to evaluate. The surrogate function is a

probabilistic model of the objective function that we build based on previously observed
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samples. It is very common to use a Gaussian Process model as surrogate function.
The Gaussian Process model returns not only the estimated value of the function at a
given domain point (the mean) but also a level of uncertainty (the variance). Finally,
the acquisition function is a function of the mean and variance values returned by the
Gaussian Process Model which is used to determine which point of the domain should be
evaluated next using the costly objective function. Once a new point has been evaluated
using the expensive-to-compute function, the Gaussian Process Model is updated, and
a new point from the domain is selected using the acquisition function. This process is
continued as long as the user desires.

There are many acquisition functions that can be used with Bayesian optimization.

One of the most common is the expected improvement (EI) [81]. Let improvement be

defined as

0, if ¢ > ¢min
I(c) = , (3.18)

min

™" — ¢, otherwise

where ¢ is an arbitrary objective value, and ¢™" is the best estimate of the objective

minimum so far. Then the EI can be written as:

min
(&

El(h) = / [(c)PDFy(c)de, (3.19)

—00

where PDF}, denotes the estimated probability density function of the objective for domain
point h. The EI can be extended to noisy settings by treating the current best objective
value as a random variable as well, and obtaining the corresponding expected value of
expression (3.19) [86]. The resulting integral does not have a closed form, but can be
handled with Monte-Carlo integration [86] [87].

The simplest, and also the most limited, approach to tackle multiple objectives is
Scalarization. Scalarization turns a multi-objective optimization problem into a single-
objective one, which can be handled with single-objective Bayesian optimization, for ex-

ample. One of the most common scalarization methods is the weighted sum approach [53].
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The main drawback of scalarization is that it is not truly multi-objective optimization. It
does not approximate the Pareto frontier. It creates a new objective, which is a function
of the multiple-objectives, and optimizes it instead.

The EI acquisition function can be extended to multi-objective optimization by defin-
ing the improvement in terms of the hypervolumes of two estimates of the Pareto front.
Let E; be the current set of non-dominated solutions. Then we can define the multi-

objective improvement as [81]

HV(E:; U{c(h)}) — HV(E}:), if E; non-dominates c(h)
I(c(h)) = : (3.20)

0, otherwise

The expected hypervolume improvement (EHVI) can be defined as:

EHVI(h) = / I(c)PDFy(c)dc, (3.21)

ceVg

where c is the vector of multiple objectives, and V,,4 := {c : ¢ is non-dominated by F;}.
The EHVI can also be extended to noisy settings in a similar way to EI, by integrating
over the uncertainty in the function values at the observed points [88].

ParEGO is a multi-objective Bayesian Optimization method which relies on scalariza-
tion to approximate the whole Pareto front [89]. It is based on the assumption that the
Pareto front can be approximated by using a different scalarization with the acquisition
function at each iteration. Each time, with a different weight vector. With this approach,
an approximation to the whole Pareto front can be gradually built up [89]. ParEGO can

be easily extended to the noisy setting by using the noisy version of the EI [90].

3.9 Variational Image Compression

Variational image compression [26] [27] is a form of transform coding using neural net-

works. In traditional transform coding of images, the input image 1) is transformed from
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pixel domain to another more suitable domain, in which loss of information due to quan-
tization is more tolerated. The transformed data is then quantized and entropy coded,
using arithmetic coding, for example. The transformation maps a point in the original
pixel domain, 9 (with number of dimensions equal to the number of pixels), to a point
in the transformed domain, w (with number of dimensions depending on the transform).

Neural networks operate in continuous domains. They require differentiable operations
in order to be trained using gradient descent. Quantization is a real problem for neural
networks, because the derivative of the quantization function is zero almost everywhere.
Variational image compression is able to circumvent this problem, by essentially replacing
quantization with the addition of uniform noise, in the range [—1/2,1/2], during training.

Let & (with associated random variable ) denote the quantized version of the data
in transformed domain, and let & (with associated random variable ) denote the noisy
version. Initially, the input image 1) is transformed by a neural network, which out-
puts w. Then, uniform noise in the range [—1/2,1/2] is added, giving @ with distribution
ayw(@|). During training, the noisy version of the transformed data is used, but during
inference, actual quantization is performed.

A model for the unconditional prior probability distribution of the quantized rep-
resentation is also required in order to encode it using entropy coding. An important
consequence of replacing quantization with the addition of uniform noise, with the same
width as the quantization bins, is that the probability density function of the noisy data
pa(@) is a continuous function that interpolates the probability mass function of the
quantized data pg (@) at integer positions [26]. This is a consequence of the fact that
the probability distribution of the sum of two random variables is the convolution of
the distributions of the two random variables [91], therefore pg (@) = §j11//22 Pa(w)dw.
Furthermore, the probability mass function pg (@) for a given @ is the integral of pa(w)
over the corresponding quantization bin [26] [27], or pg (W) = fgjll//; pa(w)dw. Then
Pe (i) = pg (i), for integer 1.

The unconditional prior probability distribution of € is modeled by a non-parametric
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fully factorized density model pg (@), and is learned during training [26] [27]. By fully
factorized we mean that the components of Q are independent from each other. By
non-parametric we mean that no assumption is made about the shape of the distribu-
tion of each component of €. This model is trained to minimize the negative expected
likelihood [26]:

~Eq " [pa, (@ 0] (3.22)

Where pg is the probability distribution of one );, which is one component of €, and
@9 represents the parameter vector for model Pa,- The encoder portion of the variational
autoencoder is illustrated in the top part of Figure 3.6.

Decoding is also performed with an uncertainty. Given some vector @ in transformed
domain, the probability of the original image being 1 is assumed to be pgq(P|w) =
N (3; 4, (20)7'T), where ) is the output of a synthesis transform (a neural network)
and N (ap; 1), (22) 1) denote a multivariate normal distribution with mean vector ¢ and
covariance matrix (2\) I, where I is the identity matrix and ) is a constant. Again this

specific choice of normal distribution is not arbitrary. It is chosen so that

—In(pga (@) = —In (const. X exp (—;(7/; — ) TS (ap — %)))

= )Y — 9|> + const., (3.23)

where 3 = (2)\)"'T is the covariance matrix. This term appears in the loss function of the
variational autoencoder. The decoder portion of the variational autoencoder is illustrated
in the bottom part of Figure 3.6.

In variational inference terms [92], the encoder is linked to the inference model, while
the decoder is linked to the generative model. The objective of the generative model is
to generate the image from the latent representation, and the objective of the inference
model is to infer the latent representation from the image. The true posterior distribution
payw(@[1) of the latent representation is assumed intractable. Therefore, it is approxi-

mated by the parametric variational density gg g (@|%). The variational autoencoder is
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trained to minimize the Kullback-Leibler divergence between qg g (@|9) and pg g (@|t))

for every 1) in the training set, where 1 has distribution pg (1)) :

B ps [Dxil90w[Paw]] = Evnpe [Egy, , [0 4o (@]4) — Inpay (@)]] =

B ps [Egrgq o, [0 40w (@]9) = Inpy)a(P|w) — Inpg(w)]] + const.  (3.24)

The first term of expression (3.24) is zero, because the probability density function
dayw(@|1p) is the product of several uniform distributions with width 1, and therefore
is equal to 1 for every @ with non-zero density [27]. The second term is the weighted
distortion (Equation (3.23)). Finally, the third term Eg.,, [EQN%\‘I’[_ In(pg(@))]] is the
differential (continuous) cross-entropy between the marginal Eg ., [¢qe(@|)] and the
prior pg(w). Both the distortion and cross-entropy terms in expression (3.24) closely
approximate the quantization error and the average codeword length of the variational

autoencoder [26] [27].
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Figure 3.6: Block diagram of the variational autoencoder. The input image ) is initially
transformed by an analysis neural network. The output of the analysis network w is
then quantized during inference, which is represented by the “Q)” block, or is added with
uniform noise during training, which is represented by the “U” block. The noisy version
of the transformed image is represented by w, while the quantized version is represented
by w. The quantized data is arithmetically encoded and then decoded using an also
learned probability mass function pg. Then, a synthesis network converts the data back

to pixel domain. The output is either 'z/) or d) depending if the input was w or w.
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Chapter 4

Perceptron Coding

4.1 Motivation

Our objective is to propose a neural-based replacement for the LUT, which is used in
many data compression standards. We explained the LUT in detail in Section 2.5. In
data compression, LUTs are often used as context models for arithmetic coding. Broadly
speaking, a context model can be seen as a function f : RM — R, where M is the number
of values that make up the context, and S is the number of symbols. The context model
returns the estimates of the conditional probabilities of the symbols given the context.
The LUT is optimal when applied to the observed data. It gives the MLE of the con-
ditional probabilities, which also translates to achieving the minimum average codeword
length. However, the LUT is also maximally overfit. It has a huge number of parameters,
one for each combination of symbol and context. The number of parameters of the LUT
is (SM)S = SM+1 where S is the number of possible symbols and M is the context size.
It suffers from the zero-frequency problem or context dilution [57], which happens when a
symbol to be encoded has not been encountered before for a given context. In such a case,
the conditional probability of the symbol is zero, and, in theory, it would take an infinite
number of bits to encode it, unless any precaution has been taken, such as starting with

a count of 1 for every symbol. This is a clear case of overfitting, and it happens more
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frequently for larger numbers of LUT parameters, or larger context size M.

In theory, neural networks can serve as drop-in replacements for LUTs. Neural net-
works, such as MLPs, are universal approximators, and can therefore approximate any
continuous function. Although convolutional neural networks are also universal approx-
imators [75], they are more stringent in their assumptions about the input data. MLPs
are more general and flexible for different types of data. Besides universal approximation,
with neural networks it is possible to control the number of parameters, trading off gen-
eralization error (or variance, or error in unobserved data) for approximation error (or
bias, or error in observed data).

Let the context be represented by a vector £€ € R™. We represent the context as
a vector of real numbers, even though the symbols are generally integers, because the
context is the input of the neural network, and the neural network accepts any real
number as input. Let the neural network without activation function be represented
by the function f (€,0), where 0 represents the network parameters. Then, the neural
network output with activation can be represented as f(£, ) = Softmax(f(£&,0)). These
are the conditional probability estimates of the symbols given the context £&. In order to
train the neural network, we need a way to tell if it is doing a good job or not. In other
words, we need a cost function.

In Section 2.2 we have seen that an ideal arithmetic coder compresses a sequence

T, Tay...,xy with —logy(P(x1,xe, ..., xx)) bits. This can be expanded as

—logy(P(x1, 2, ...,xN)) = —logy(P(x1)) —logy(P(za|z1)) — ... —logy(P(zN|TN_1, ..., T1))-

(4.1)
That is, each symbol in the sequence is compressed with a number of bits equal to the
negative log of its conditional probability. Then, we can train the neural network to

minimize the negative log of the symbol probabilities output by the network. This can
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be mathematically expressed as

L=- Z logy(t,, f (€. 0)). (4.2)

where t,, and &, are the one-hot-encoding and the context for the n-th symbol in the
sequence, x,, and f(&,,0) are the estimated symbol probabilities given the context &,.
Note that, by the definition of one-hot-encoding, t,, is a binary vector with only a single
nonzero entry, which is associated with a particular value of x,. Therefore, t f(&,,8)
selects the component of f(&,,0) associated with the symbol z,,.

Note that this is also equivalent to seeking to maximize the probabilities that are
output by the network for the observed symbols. It is also equivalent to seeking the
MLE of the conditional probabilities, which, as we know from Section 2.5, are the relative
frequencies stored by the LUT. If there are enough parameters in the network, it could
learn to exactly reproduce the LUT. For example, a single layer of neurons, with one
neuron per conditional probability, could simply learn to store the relative frequencies,
one per neuron. However, by limiting the number of parameters of the network, we force
it to make more interesting extrapolations about the underlying structure of the data,
which can better generalize in the case of unobserved data.

The loss function in (4.2) is the cross-entropy loss. If we group the terms in (4.2)
for which the values of z,, are the same, expression (4.2) is then the sum of the negative
log of the probability estimates of the possible symbols, multiplied by their absolute
frequencies. This is equivalent to the cross-entropy we have seen in Section 2.3 when
discussing probability estimation, except for a normalization factor. By minimizing it
we minimize the KLD between the observed and estimated probability distributions. It
approaches the entropy of the source according to the observed distribution. The cross-
entropy loss is also extensively used in machine learning to train classification models.
However, the main objective there is not to minimize the average codeword length, but

to find a good estimate of the membership probabilities in a more practical way [62].
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4.2 Perceptron Coding

We call the neural based method we developed to replace the LUT as perceptron coding
(PC). We transform any input data into binary data beforehand. This is so for the same
reason as CABAC: in order to simplify context modeling. The simplification comes into
two forms: first, with fewer possible symbols, there are fewer possible contexts for the
same context size M. This means that the same contexts occur more frequently, and the
possibility of coming across unseen contexts is lower. Second, for each context, there are
fewer conditional probabilities. These two factors simplify the neural network training
and learning.

As neural network architecture, we use MLPs, two hidden layers, and ReLU activation
in the hidden neurons. MLPs are universal approximators, and can therefore approximate
any continuous function, provided there are enough neurons. CNNs are also universal
approximators [75], but MLPs make fewer assumptions about the input data. CNNs were
developed for computer vision tasks, and they learn filters which are capable of extracting
interesting visual features in the input data. With MLPs, each input may have a different
meaning, they do not have to be all neighboring pixels from the same image for example.

We use two hidden layers because, although even one hidden layer would be sufficient,
if there were enough neurons in that layer, with two hidden layers we increase the number
of ways the neural network can learn the same function [74]. We could further increase
the number of layers. However, the training becomes harder the larger the number of
layers, because of the vanishing gradient problem [74]. Therefore, we keep the number of
hidden layers equal to two as a middle-ground compromise.

In regards to the number of neurons in each layer, in theory, we should define the
number of neurons in each layer according to the amount of approximation error that we
consider acceptable. However, recall that we do not only want the network to approximate
the function on the training set, but we also want it to generalize well to other unseen
data. For that, it is important that the number of parameters is not too high to avoid

overfitting. In any case, it is expected that the complexity of the underlying function
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increases with the context size M, and, as a consequence, it is also necessary to increase
the number of neurons in each layer to keep the approximation error low. For this reason,
we use a number of hidden neurons per hidden layer which is proportional to the context
size M.

We use 64 M units in the first hidden layer and 32M units in the second hidden layer.
It is important to note that these numbers are somewhat arbitrary. These are numbers
which we assume to yield good approximation and generalization errors. Later results
confirm this to some extent. Note that, in this section, our focus is not on the neural
network design process. We explore the problem of hyperparameter selection in more
depth in Section 5.8. Note that we use more neurons in the first hidden layer compared
to the second hidden layer. This pyramid structure is based on a common design strategy
present in many works that use MLPs, for example [22], [93]. In Section 5.8, we also
present some results that corroborate this common design strategy.

Since the data is converted to binary form, the network may go through some sim-
plifications compared to what we have previously discussed. The network only needs to
output the probability of the bit 1, since the probability of the bit 0 is its complement.
Therefore, the network without activation may be represented by a function f (&, 0) and its
output with activation by f(&,8) = o(f(£,8)), where o represents the sigmoid activation

function. The cost function may be simplified to:

L=73 —x,108,y(f(£n,0)) — (1 — x5)logy(1 — f(£:,0)), (4.3)

n=1

which is known in the machine learning literature as the binary cross entropy loss.

Since the hidden layers have 64M and 32M neurons, the total number of parameters
of the network is 2112M? + 128M + 1. This comes from the sizes of the weight matrices
and bias vectors representing each layer. The growth in M sharply contrasts with the
growth of parameters in the LUT. For binary symbols, it suffices to store the conditional

probabilities of the bit 1. Then, the number of parameters in the LUT is 2 instead
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of 2M+1 Note that, for M > 19, there are more LUT entries than parameters in the

network!

4.3 Adaptive Perceptron Coding

So far, we have described how the MLP can be used in place of the LUT in forward
coding. In our description, we have assumed that the networks would be trained using
batch gradient descent with a dataset of size N, and either the loss function in (4.2) or
(4.3). However, this overlooks a major advantage of the LUT as used in many applications:
the LUT is usually adaptive. It is continuously updated after each new sample is coded,
it does not require previous training, and it can track changes in source statistics, in the
case of non-stationary processes.

It is important to remember that, in the context of this work, the networks are intended
to drive arithmetic coding engines. This means that the networks in the encoder and the
decoder must estimate the same probabilities, otherwise reconstruction is not possible.
Therefore, in order to use the MLP in place of the LUT in online coding, the networks in
the encoder and the decoder must go through the same sequence of states. For that, they
must be initialized the same way in both the encoder and the decoder, and the network
updates must also be the same at each corresponding encoding/decoding step. Next, we
describe a method that is able to achieve this. We call our proposed method adaptive
perceptron coding (APC).

We have seen in Section 3.2 that training is often carried one batch at a time, instead
of one update for the whole data all at once. The loss function in (4.2) may be broken

into portions attributed to different batches of data as
L= Lg, (4.4)

Lg, = — Z 10g2(tgf(€n79))7 (45)

neBb;
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where {B;} is a partition of the set {1,2,..., N} such that all B; have the same size B,
except maybe for one 7, in case N is not divisible by B. Also, the elements that compose
each batch are consecutive to each other.

In an online coding setting, data coding and stochastic gradient descent can occur
in parallel using the following procedure. The neural network is randomly initialized,
with care taken to initialize it the same way in both the encoder and the decoder, using
the same random seed and the same pseudo random number generator. The first B
samples are coded using the randomly initialized model. Since the neural network has
been randomly initialized, the initial probability distribution is close to uniform, as can
be experimentally verified. After B samples have been coded, one update of the network
parameters is performed using the B previously coded samples. The next B samples are
coded using the updated model, and, after that, a new update on the network parameters
is made. This goes on until there is no more data to be coded.

One characteristic of this approach is that the network does not go through the same
data twice. Therefore, every new sample is a different sample from the distribution, and
the network continuously learns to approach the true probability distribution, instead of
the training set distribution [64]. Even if the distribution changes its characteristics, in
the case of a non-stationary process, the network tries to converge to the new statistics.

The important is that the process statistics do not change quicker than the neural
network can converge. In fact, we want the neural network to converge faster than the
process would change its statistics. In practice, however, there are many factors into play.
The learning rate, the neural network size and architecture, the optimization algorithm,
the learning rate schedule, if present, all can affect how quickly the network can converge,
and how large the generalization error will be. There is also the nature of the data itself to
take into account and how quickly it changes its statistics. All this can affect the overall
coder performance.

In theory, this method could be used with any S-ary data. However, as before, we

assume that any input data has been converted to binary to simplify context modeling.
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In this case, the network may have only a single output, the probability of bit 1, and we
can use the binary-cross-entropy loss (Equation (4.3)). Also, although the batch size B
can be freely chosen, we use it fixed at B = 1 in order to maximize adaptivity. The value
of B is associated with the tradeoff between running time and adaptivity. It controls the
frequency of updates, which affects positively the adaptivity, but negatively the running
time. The frequency of updates affect the running time in two ways. Firstly, inference
requires only one forward pass in the network, but a training update also requires a
backward pass of backpropagation. Therefore, one update requires roughly twice the time
of a single inference. Secondly, using multiple samples at once (for inference or training) is
more efficient than processing a single sample at a time, because of parallelism. Another
factor which affects the running time is the network architecture, since the larger the
network architecture, the longer it takes to complete a forward or backward pass.

The method with S = 2 and B = 1 may be described as follows. Let the neural
network without activation function at instant n be represented by f (&€,0). The output
with activation function may be represented by f(&,,0) = o( f (&, 0)) where £, represents

the context at instant n. Since the data has been converted to binary, the contribution

of the current sample to the loss function may be represented by

Ly = —w,1085(f(€n, 0)) — (1 = n)logy(1 = f(&n, 0)). (4.6)

The network parameters 6,, may be updated after coding this sample by

0n+1 = Hn - G(VgLn)gn (47)

where € is the learning rate.

In APC, we use the same context-size-dependent network architecture that was de-
scribed in Section 4.2. The initial network is obtained by randomly initializing the network
parameters. We guarantee that the initial parameters are the same in both the encoder

and the decoder by using the same random number generator seed, and the same pseudo
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random number generator algorithm. A common initialization method of network param-
eters is Xavier initialization [94]. We use a slightly modified version of Xavier initialization
based on the fact that more diverse initial values in a layer is often better [64]. Let J(®
denote the number of nodes in the d’th layer of a MLP. J© = M is the number of
inputs and J(@max) = 1 is the number of outputs. Instead of initializing the weights or

biases of the d’th layer, except the input layer, by sampling a uniform distribution in

the interval (—1/vJ@-1 1/v/J@-1) we take their values from a random permutation
of equally spaced values in this interval. We have experimentally confirmed that this
modification leads to consistently better results. The encoding results for the APC are

shown in Section 4.7.

4.4 Adaptive Coding with Recurrent Neural Net-
works

Adaptive context modeling with neural networks has previously been tackled to some
extent in a few previous works ([25], [32], [33]), for the particular case of textual data.
Because of the sequential nature of this type of data, in general, these methods consisted
in predicting next word or character using RNNs. The RNN weights are usually updated
after processing each sample.

In [32] and [33], RNN’s pre-trained weights are continuously updated during evalua-
tion, in the context of language modeling. The RNN method in [32], consists of training an
Elman network with SGD updates at every time step, with fully truncated backpropaga-
tion through time (TBPTT). The method in [33], improves the method in [32] essentially
by using: LSTMs, updates for slightly larger chunks of sequence (5-20), backpropagation
over more time steps, and regularization. In [25], a hybrid model, composed of one pre-
trained bootstrap model, and a continuously updated supporter model, is used to drive
arithmetic coding in text compression. The context is composed of a fixed number of

previous samples. The input sequence is divided into 64 equally sized parts, and predic-
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tions are generated for each part in a single batch. Weight updates are performed after
encoding/decoding blocks of 20 symbols (per part).

Inspired by these previous works, we developed a compression method based on RNNs
to compare with APC. We call the RNN method we developed adaptive RNN (ARNN). In
this method the RNN architecture consists of two GRU layers with 650 hidden units each.
This architecture is similar to the one used in [33]. Let the output of the RNN without
activation be represented by either f (x("=1,9) or f (x("=1, @), and the output with ac-
tivation by either f(x™ 1 0) = o(f(x™ 1 0)) or f(x™ 1V, 0) = Softmax(f(x"1,0)),
depending if the data is binary or S-ary. In the case of S-ary data, the RNN outputs
correspond to the probabilities of the next element in the sequence, z,,, being each sym-
bol. In the case of binary data, the output corresponds to the probability of the next
element in the sequence being 1. The probability of 0 can be obtained by the output’s
complement, in this case.

The network is updated during coding using SGD and BPTT in the following man-
ner. The initial network weights are randomly obtained, with the random seed shared
between the encoder and the decoder. The initial prediction for the first N' < N samples
is obtained either using the randomly-initialized network or by assuming a uniform dis-
tribution. We opted to use the randomly-initialized network. Since it has been randomly
initialized, there is no special trend for the output probabilities to favor one symbol or the
other. The initial output probability distribution is close to uniform, which was experi-
mentally verified. Then, after N’ samples have been encoded/decoded, the sequence of
length N’ is used to update the neural network weights using BPTT. The next N’ samples
are predicted using the newly updated model, and so on. This is continued until there
are no more samples to encode/decode. The network parameters are updated following
the rule:

min{iN’ ,N}

0i1 <0, — €V ( > d(ty, £, 9)))

n=(i—1)N'+1

, (4.8)

0=0;

where the partial derivatives are obtained with BPTT, i € {1,..,[N/N’]} and
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d(t,, FxP1.0)) = —log,(tT f(x"~V 0)). In Equation (4.8), we have assumed S-ary
data. The update rule for binary data can be obtained by replacing the cross-entropy loss
with the binary cross-entropy loss.

The RNN is fed the same data that goes through the arithmetic coder, in the same
order. This means that, in theory, all previous samples can be taken under consideration.
In other words, it means that the context size is unbounded. In practice, however, the

context size is not unbounded due to numerical reasons, and depends on the capabilities

of the RNN, with LSTMs and GRUs having longer memories than naive RNNs.

4.5 Binary Image Datasets

This section is devoted to describing the datasets used in the perceptron coding exper-
iments. All datasets here described consist of binary document images, extracted and
processed from scientific journals. We defined six datasets, with different pages selected
for training, validation and testing.

The pages from the Datasets 1, 2 and 3, were obtained from the paper [65] which
appeared in the 26th volume of the IEEE Transactions on Image Processing (IEEE TIP).
The pages were converted from portable document format (PDF) to portable network
graphics (PNG) with a value of dots per inch of 93, resulting in images with dimensions
of 791 x 1024 pixels. When converting to greyscale, we used the ITU-R 601-2 luma
transform, and when converting to bi-level, all values above 40% the maximum value
were set to 1, and all values below or equal were set to 0.

In the experiments using these datasets, we discarded the pixels around the borders
for which the context was not complete. Restricting ourselves to these smaller images has
no impact on the conclusions taken from the experiments. It corresponds to reducing the
margins of the documents, since the pixels discarded correspond to only a small portion

of the width and height of the image.
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The pages from the Datasets 4, 5 and 6 were extracted from the IEEE Signal Processing
Letters (IEEE SPL). The extracted pages were converted to binary following a pipeline
similar to that of Datasets 1, 2 and 3. However, the resulting images have dimensions
of 768 x 1024 pixels, and the threshold was separately determined for each image, using
Otsu’s method [95]. Table 4.1 summarizes the pages used in each dataset and for what
purpose (training, validation or testing). Sample pages from the datasets can be viewed
in Annex I.

In the experiments using Datasets 4, 5 and 6, we considered the pixels outside of the
borders of the image to be equal to 1. This permits encoding all image pixels. Recall that
we use the common convention that 1 corresponds to white.

The pages from datasets 4 and 5 were selected at random. Their training and validation
sets are the same, but the test set from Dataset 4 has all pages from the test set of

Dataset 5 and 90 other pages.

Table 4.1: Datasets used in the perceptron coding experiments, all consisting of binary
document images, extracted from scientific journals.

Dataset Journal | Volume | papers Training Validation Test
pages pages pages
Dataset 1 | IEEE TIP | 26 [65] D. 3 . 5 pp. 1,2,4,6-11
Dataset 2 | IEEE TIP 26 [65] pp. 1-4,6-11 p. 5 -
Dataset 3 | IEEE TIP 26 [65] - - pp. 1-11
Dataset 4 | IEEE SPL | 27, 28 | multiple | 10 (Vol. 27) | 5 (Vol. 27) | 100 (Vol. 28)
Dataset 5 | IEEE SPL | 27, 28 | multiple | 10 (Vol. 27) | 5 (Vol. 27) | 10 (Vol. 28)
Dataset 6 | IEEE SPL | 27,28 | [96], [97] - p. 2 ([96]) | pp. 1-5 ([97])

4.6 Forward Coding of Binary Images

This section deals with perceptron coding with pre-trained neural networks.

That is,

as described in Sections 4.1 and 4.2. More specifically, in the settings discussed in this
section, the neural networks are trained beforehand on a training set, and then used to

code other data, be it validation or simply test data.
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Figure 4.1: To the left: patch of a binary image. To the right: context of size M = 67 for
the pixel at (187,459).

In order to train, validate and test our method, we need suitable binary data. It is
desirable to use long-memory signals, such as binary images, since we want to test the
effects of different context sizes. We opted for binary document images because they are
rich in detail and easily accessible. We introduced our binary image datasets in Section 4.5.

We assume that the image pixels are encoded following a forward non-diagonal lex-
icographical scan order, that is, in a row by row basis, from left to right and from top
to bottom. With respect to the context, we selected the M closest pixels in the causal
neighborhood to make up the context. These pixels were selected because they have the
highest correlation with the current pixel, based on proximity, among the pixels which
are available to the decoder. Figure 4.1 shows an illustration of the context used for a
specific value of M. Other examples, for other values of M, are depicted in Figure 2.10.

The neural network trainings were done in Pytorch, during 420 epochs, using a learning
rate of 1077, stochastic gradient descent, and a batch size of 2048 *. A large number of
epochs and small learning rate were selected so the networks converged slowly but steadily.
The training and validation losses were monitored to verify convergence. Multiple training
and validation trials were performed in order to select the training parameters.

In the first experiment, our intention is to obtain an initial comparison between the

MLP and the LUT for different values of context size M. In this section, the LUTs are

LAll programs used in this work can be accessed at https://github.com/lucassilvalopes/
perceptronac.
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also built prior to encoding, on the same data used to train the neural networks. We use
Dataset 1 for this experiment. Figure 4.2 shows the values of bits/sample for exponentially
increasing values of context size M, for both the perceptron coding and LUT methods.
Both methods use the same context. The results for the LUT method were limited to
M = 26, because, above this number, the memory requirements become too high. When
M = 0, the operation corresponds to static AC.

In order to have a reference, we also include values in bits/sample for the pages encoded
with JBIG [57]. JBIG is a well-established bi-level image compression standard. It also
makes use of context models for binary arithmetic coding, in a similar way to the H.26X
standards. In the particular implementation of JBIG that we use [98], the encoder uses
10 neighbor pixels to estimate the probability of the next pixel being zero or one. One
out of these 10 pixels is allowed to move up to 8 pixels away horizontally. JBIG also uses
other artifices to further enhance its compression capability.

The z-axis in Figure 4.2 is in one of a set of modified logarithmic scales capable of
representing values near zero [99]. In this case, the z-axis is linear for values between
0 and 1, and logarithmic for values above 1. This adaptation is necessary because the
regular logarithmic scale is not capable of representing values near zero ( log(x) — —o0
asx — 01 ).

Note how the MLPs approximate the LUT on the training set (Figure 4.2 (c¢)). The
LUT is optimal for the training set and better than the MLP, as expected. For M = 10,
the MLP lags with respect to the LUT. However, the behavior of the LUT for M > 10 is a
clear indication of overfitting (or context dilution). As M increases, the average codeword
length decreases in the training set, but sharply increases in the validation and test sets.
The MLPs, on the other hand, only begins overfitting much later, at about M = 67. At
M = 67, the overfitting is still not too noticeable. It is at M = 170 that it becomes
evident.

The overfitting of the MLP is probably due to a combination of factors. First, one

could argue that for large values of M, the heuristic for the number of hidden units in the
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Figure 4.2: ((a) - (f)) Values of bits/sample for the different pages of [65]. Page 3 was
used for training and page 5 was used for validation. All other pages were used for testing.
The value at zero is the average code length for static binary arithmetic coding (AC). The
z-axis is in a modified logarithmic scale capable of representing values near zero [99].
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Figure 4.2: ((g) - (k)) Values of bits/sample for the different pages of [65]. Page 3 was
used for training and page 5 was used for validation. All other pages were used for testing.
The value at zero is the average code length for static binary arithmetic coding (AC). The
z-axis is in a modified logarithmic scale capable of representing values near zero [99].
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first and second hidden layers leads to too many parameters. This is a valid observation.
However, fixing the number of hidden units in the first layer to 2048, and the number of
hidden units in the second layer to 1024 for M > 26, changes the validation average code
lengths only by approximately 10%, and the values of bits per pixel are greater instead
of lower. Limiting these values to 1024 and 512, respectively, also has similar effects.
Therefore, the number of parameters is not by itself the only reason for this overfitting.

Another factor, which is likely the most significant in this case, is the number of pos-
sibilities. This value is a 52-digit number (2!7) for M = 170, and a 21-digit number (2°7)
for M = 67. There are simply too many possibilities in these two cases. No feasible
dataset size would lead to enough significant training examples to prevent the network
from overfitting. Considering that one page of 791 x 1024 pixels leads to 809984 training
examples, about 182 trillion pages would be necessary to reach a training set in the order
of magnitude of 257. On the other hand, 22° is only an 8-digit number and, with less than
100 pages, the training set size reaches the order of magnitude of 226. It is not necessary
that all possible contexts are present in the training set, only the ones that are reason-
able for the data distribution under consideration need to be present. Nevertheless, their
number is also expected to grow exponentially.

We also experimented with more training and test data to verify if the results still
hold, for Dataset 4. Figure 4.3 shows the results on the training and test data. The
overall appearance of the curves are similar to the observed in the previous experiments,
and the relations among the different methods are also similar.

It is well known in the literature that the likelihood of correct generalization depends
on the number of networks being considered, the number of networks that give good
generalization and the number of training examples [100]. If the size of the network
is too large and/or the number of training examples is too small, there will be a vast
number of networks consistent with the training data, but only a small portion provides
good generalization. In this case, the experiments indicate that the main cause for the

observed overfitting is the training set size, which is likely too small for M > 67.
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Figure 4.3: (a) Average code lengths on the 10 randomly selected pages from the 27th
Volume of the IEEE Signal Processing Letters used for training. (b) Average code lengths
on the 100 randomly selected pages from the 28th Volume of the IEEE Signal Processing
Letters used for testing.

In order to study the effect of the training set size on the average code lengths, we
progressively increased the number of pages used for training with the neighborhood size
fixed at M = 67 and verified the average code length on the validation set. We chose
M = 67 because it was associated with the best results from the previous experiments.
The data used was Dataset 2. The results are presented in Figure 4.4. As it can be seen in
Figure 4.4, increasing the number of training examples considerably improves the results,
until about 7 pages.

What this data is showing is that it becomes increasingly harder to find good examples
to use as training data. More and more pages become necessary for the same reduction
in bits/sample. Ideally, the number of diverse training samples would be infinite. In this
case, the network would continuously learn and would approach the true source probability
distribution, instead of the training set distribution [64]. However there are increasing
costs in order to keep reducing the average codeword length. A compromise must be
made between generalization performance and the investment applied into training and

dataset selection.
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Figure 4.4: Impact of progressively using more pages in order to train the MLP, on the
validation average code length . In this figure, the neighborhood size is fixed at 67.

4.7 Backward Adaptive Coding of Binary Images

The previous section showed that the pre-trained MLP can be successfully used in place
of the LUT in a forward coding setting. In this section, we compare our proposed method
for online coding, APC, with the use of a LUT which is continuously updated based on
previously coded samples. We addressed online trained LUTs in Sections 2.5 and 2.6, and
the APC method in Section 4.3.

In our particular implementation of the LUT-based method, the probabilities are
updated following Equation (2.24), starting the count of every symbol as 1, and therefore
with p; equal to 0.5. Note that the value of a used in H.264 and H.265 in the exponential
decay window is very small which leads to very slow adaptation, making it close to the
cumulative average of Equation (2.24). Therefore, our method is similar to the one used
in H.264 and H.265 in this respect. These standards use specific side information available
at the encoder and the decoder to determine the initial probabilities [67] [70], which are
not available in our specific application, therefore the best we can do is to assume that the
symbols are initially equiprobable. In the following discussion, we call our implementation

of the LUT-based method as adaptive LUT, or ALUT, for short.
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As before, we opted to test our method on binary document images because of their
long-memory, richness in detail and widespreadness. The datasets used in the experiments
are described in Section 4.5. Again, the contexts used, in both APC and ALUT, are the
M closest pixels in the causal neighborhood. Exemplary contexts are shown in Figures
2.10 and 4.1.

Figure 4.5 shows how APC and ALUT compare to each other, for a particular selection
of hyperparameters, when coding the different pages from Dataset 3. The results are for
context size M = 26 and learning rate e = 0.01. The first pixel of each page has no priors
from where to infer probabilities and is encoded with 1 bit. The borders of a page are
all white, so that all methods quickly learn to encode whites and the rate drops to nearly
0. As a page progresses, and the encoders encounter text and graphics, they slowly build
context models and stabilize after about 200K pixels.

Note how APC outperforms ALUT in the results of Figure 4.5, specially at the begin-
ning of coding. As coding procedes, their average codeword lengths become approximately
the same. It is possible to see that, although the LUT is optimal when used on the same
data that was used to build it, it is not optimal in online coding. The ALUT has a worse
generalization performance than APC, and this is reflected in the results. An important
point to be made is that results like these indicate that APC can successfully be used in
place of the ALUT for the same context size M. This means that, if one wishes to reduce
the average codeword length by means of increasing the context size M, one can use APC
instead of ALUT when the context size becomes too large to use the LUT-based method.

In order to define the learning rate for APC, we compressed the validation page of
Dataset 6 with different values of learning rate e. Figure 4.6 shows the evolution of the
average codeword length as the page of nearly 787K samples is encoded, with € equal to
1071,1072,1072 and 10~*. As can be seen from the figure, for € = 10~ the adaptation is
too slow, which makes the average codeword length lag compared to the other values of
€. For e = 107!, on the other hand, the adaptation is too fast, and the method overshoots

the target, making it hard to recover later. However, for e = 1072, the adaptation seems
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Figure 4.5: ((a) - (f)) Evolution of the bitrate in bits/symbol of APC and ALUT when
coding the different pages from the article [65].
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coding the different pages from the article [65].
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Figure 4.6: Cumulative rate (bits/symbol) when coding page 2 of the article [96] with
APC, M = 26 and different values of learning rate.

just about right, reaching the optimal value of average codeword length compared to the
other values of e. We also tested these different learning rates for M equal to 4,10,26 and
67, with € = 0.01 leading to the best results for every M, therefore we fixed that value of
¢ in other runs of APC.

For completeness, in this section, we also compare APC with an online trained RNN,
which we call ARNN. The ARNN method also requires tuning the learning rate. Therefore
we also experimented compressing the validation page of Dataset 6 using ARNN with
different values of learning rate. We found that the best results were obtained for e = 0.01
and updates after every 64 samples. We also tested e equal to 0.05, 0.005 and 0.001, and
updates every 1 and 96 samples. Therefore we fixed those values in subsequent runs
of ARNN. Figure 4.7 shows how different learning rates affect the cumulative bitrate of
ARNN with updates every 64 samples.

With the hyperparameter tuning process explained, we proceed with more comparisons
among methods. We compared APC, ALUT and ARNN to encode the complete 5-page
article from the test set of Dataset 6. The results are shown in Figure 4.8. The Figure
shows the bitrate at different instants for APC and ALUT with M = 26. Note that the

cumulative rate keeps decreasing as the methods learn more context patterns.
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Figure 4.7: Cumulative rate (bits/symbol) when coding page 2 of the article [96] with
ARNN, updates every 64 samples, and different values of learning rate.
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Figure 4.8: Cumulative rate in bits/symbol as APC and ALUT progress to encode a given
5-page paper in the test set of Dataset 6, with M = 26. We also included results using
ARNN for comparison.

APC also outperforms ARNN. The reason why ARNN performs poorly even though
its context size is unbounded is because the effect of previous samples on the RNN fades
away with distance. LSTMs and GRUs can capture longer data dependencies, but it is
hard to capture very long data dependencies. Samples closest in the path are given more
importance, and the ARNN follows the same traversal order as the arithmetic coder,

that is, row by row. This means that distant samples from the same row are given more
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importance than closer ones from a different row. Other orders of traversal would face
similar problems. The MLP, on the other hand, is more flexible. Even though its context
size is limited, we can design the context size so that it focuses on the samples that matter
the most. One way to make the RNN also focus on the samples that matter would be
through the use of attention [101].

Tables 4.2 and 4.3 show the results of APC, ALUT, JBIG and the offline methods
of Section 4.6 on the 10 test pages from the Dataset 5, and the 100 test pages from the
Dataset 4, for different context sizes M. As before, we only include the values of the
LUT-based methods up to M = 26. For M > 26, they become too memory-consuming
and impractical. Besides all the advantages of the online-trained methods, due to them
not requiring previous training, another advantage, that we mentioned in Section 4.3, is
that they approach the true probability distribution, instead of the training data distri-
bution. Therefore, it is our expectation that the online-trained methods should surpass
the offline-trained methods, in terms of compression performance. As can be seen from
Tables 4.2 and 4.3, this still does not happen for all M for only the 10 test pages from
the Dataset 5. However, when the number of test pages is increased to the 100 test pages
from the Dataset 4, the online-trained methods are finally able to surpass the offline-
trained methods for all values of M. Recall that the training sets of Datasets 5 and 4
are the same. This was the training set used to train the offline methods. The results
for the offline methods (and JBIG) on the Table 4.3 are the same as the ones present in
Figure 4.3 (b).

As mentioned in Section 4.3, we use a slightly modified version of Xavier initializa-
tion with APC. In order to demonstrate that our modifications truly improve the re-
sults, we made repeated experiments using the validation page of Dataset 6, € equal to
107%,1072,1072 and 107%, and M equal to 4, 10, 26 and 67. The result is that the initial-
ization method described in Section 4.3 always yields slightly better results than Xavier
initialization. Figure 4.9 shows an example of the evolution of the cumulative bit-rate for

the two initializations. The example in Figure 4.9 is for M = 26 and € = 0.01.
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Table 4.2: Coding rates (bits/symbol) attained for different context sizes M with the

offline-trained PC and LUT methods, APC (with A = 0.01), ALUT, and JBIG, on the 10
test pages from the Dataset 5.

Offline

M PC LUT | APC ALUT JBIG
0 0.442 0.441

2 10.262 0.263 | 0.253 0.260

4 10.236 0.236 | 0.228 0.233

10 | 0.204 0.204 | 0.197 0.201 0.188
26 | 0.132 0.242 | 0.140 0.152

67 | 0.106 0.127
170 | 0.105 0.139

Table 4.3: Coding rates (bits/symbol) attained for different context sizes M with the
offline-trained PC and LUT methods, APC (with A = 0.01), ALUT, and JBIG, on the
100 test pages from the Dataset 4.

Offline
M | PC LUT | APC ALUT JBIG
0 0.469 0.469
2 10.265 0.265 | 0.259 0.264

4 10.235 0.235 | 0.227 0.235
10 1 0.201 0.201 | 0.194 0.200 0.185
26 | 0.131 0.250 | 0.121  0.126

67 | 0.107 0.098
170 | 0.104 0.103
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Figure 4.9: Evolution of cumulative rate in bits/symbol for Xavier initialization and our
initialization, for M = 26 and € = 0.01.
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Figure 4.10: Comparison of APC with our custom initialization and with the network
initialized with pre-trained weights, for M = 10 and ¢ = 0.0001.

We also compared the initialization described in Section 4.3 with pre-training. We
used the pre-trained weights and biases obtained in Section 4.6. The test data were the
100 pages from the dataset 4. However, in this case, we removed the margins of the pages.
We used a learning rate close to the one used during pre-training, e = 0.0001. Larger
learning rates sometimes caused abrupt changes in the network parameters, which were
accompanied by large increases in the average codeword length. The result is shown in
Figure 4.10. The curves are for M = 10.

As can be seen, the effects of initialization are long lasting. Even after 100 pages,
the average codeword length of the pre-trained network is still better than the randomly
initialized network. However, the average codeword lengths are close to each other. Al-
though both networks are learning the same distribution, the networks are most likely
at all times at very different positions in the graph of the loss function. This explains
why the average codeword lengths of two differently initialized online-trained networks

get close to each other, but may still be different, even after coding many pages.
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Chapter 5

Greedy Lower Convex Hull

5.1 Motivation

Machine learning and deep learning have often been associated to a form of art, rather than
to a form of science [102]-[104]. One of the reasons for this is that many of the design
choices behind the neural network architectures, that feature in research papers, seem
arbitrary. They give the impression that the authors have guessed the hyperparameters
at random.

That is not too far from the truth, since random-search is one of the most popular
algorithms used for hyperparameter selection [56]. However, random search, and other
hyperparameter selection algorithms, for that matter, do not solely rely on the generation
of neural network architectures. They can actually be seen as a two step process. In
the first step, tentative network architectures are obtained. These architectures can be
randomly generated, such as in random search, or they can be generated in a smarter
way, for example, as in Bayesian optimization. In the second step, the best architecture,
or the set of optimal architectures, is obtained, either by picking the one that optimizes
the objective, or by using an algorithm to find the Pareto frontier (on the validation set).
In other words, the first step may indeed be arbitrary, depending on the case, but the

second step actually gives the best options among the ones that were generated.
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Therefore, depending on how it is done, hyperparameter selection is not as obscure as
it may seem. There is actually objective reasoning behind it. We intend to further develop
this aspect of hyperparameter selection, by making the process more direct. Especially
in the case of neural-based data compression.

In the case of data compression, contrary to other applications of deep learning, the
more complex is not always the better. In many applications, one is only interested in
a single objective. This objective may be, for example, image classification accuracy.
In these cases, it is often the case that better results can be obtained by increasing
the complexity of the network. For example, by increasing the number of layers, or the
number of filters in the convolutional layers, of the network. In data compression, however,
minimizing the complexity of the coder is almost as important as reducing the average
codeword length (the rate). This is so because the coder might often be run in mobile
phones or other devices of the sort.

Bearing in mind that increasing a hyperparameter often increases complexity but
reduces the rate, we propose an algorithm that traces the LCH, or the Pareto frontier,
at the same time that it proposes new architectures. Figure 5.1 illustrates the basic idea
of the algorithm. Assume we want to operate at a complexity C, or rate R,. The idea
behind the algorithm is to build a tree starting from a point with high rate and low
complexity, for example the simplest architecture. At each step, we have one node, which
we call the parent node, from which we obtain new architectures, which we call the child
nodes. We separately increase the values of K hyperparameters from the parent node (in
the example of the figure, K = 3). with this we expect the complexity to increase and the
rate to decrease, but this is not guaranteed, specially for situations where the complexity
measurement is noisy. This gives K new options to choose as the next parent node. Then,
we pick the child node with the best performance and set it as the new parent node. We
recur this procedure until reaching R, or C, and the resulting set of all parent nodes is
our estimate of the LCH.

We call this algorithm greedy LCH (GLCH) because of the greedy choice of child node
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Complexity

Figure 5.1: Illustration of our algorithm, aiming to track the lower convex hull of a cloud
of rate-complexity operating points. Circled dots, or dots at one extreme of an arrow, are
visited, or trained, networks. The other dots are all unvisited by the algorithm, that is,
the corresponding neural networks did not have to be trained.

made at each step. This algorithm distinguishes itself from Bayesian optimization and
other algorithms in that it introduces an ordering to the architectures. It begins with the
simplest architecture, and subsequently increases its complexity, allowing one to stop the

algorithm as soon as the desired maximum complexity, or a satisfactory rate is achieved.

5.2 The Architecture Graph

The GLCH algorithm assumes a predefined set of architectures connected in a particular
way, which we represent by a graph. Consider a family of network architectures which
differ only on the values of K hyperparameters. Let the hyperparameters of one archi-
tecture be represented by a vector h = (hy,...,hg). Assume that hyperparameter hy
takes values in U%k), e ,U(TIZ) or, without loss of generality, in 1,...,7;. Then, the number
of possible architectures is T = [[%_, T, which exponentially grows with the number of
hyperparameters K.

Let G = (V,€) be a directed graph with vertex set V and edge set £, such that
each element of the vertex set corresponds to one of the possible hyperparameter vectors

hoin, - . ., hag. Assume that there is one directed edge from every node h to every other

node h' such that hj, = hy + 1 for exactly one k, and hj, = hy, for the other k. Thus, the
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graph G corresponds to a K-dimensional, T} x --- X Tk rectangular grid, with links from

every node to its immediate next neighbor along each axis. Figure 5.2 (a) illustrates one

such rectangular grid for K =3, Ty = T3 =4 and T, = 3.

The following can be said about the graph G:

It is a directed acyclic graph.

The out-degree of each node is at most K.

There is a unique “minimal” node with in-degree 0, namely h,;, = (1,1,...,1),
which we call the root of the graph.

There is a unique “maximal” node with out-degree 0, namely hy.. = (11, ..., Tk).
It is weakly connected.

There exists a path from the root to any node.

All paths from the root to a node have the same length, which we call the depth of
the node.

A node’s depth is given by the Manhattan distance between the hyperparameter
vectors of the root and the node.

The longest path in the graph is from the minimal node to the maximal node.
The length of the longest path (i.e., the diameter) of the graph is 6 = S0 (T}, — 1),

which is the depth of the maximal node.

5.3 The Basic GLCH Algorithm

In Algorithm 1 we show the basic GLCH algorithm. This algorithm essentially operates

on a graph G, with the properties described in Section 5.2, and iteratively builds a tree,

which is a subgraph of G, starting from the minimal node h,,;,. At every step, the set of

nodes V is partitioned into three sets: the set of open nodes O, the set of closed nodes C,

and the set of unvisited nodes. Initially, only the root node h,,;, is in the open set. At

every step, we select one node from the open set, move it to the closed set, and add the

children of the selected node to the open set. The children of a node are the targets of
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Figure 5.2: (a) Example of architecture graph for three hyperparameters, hq, ho, hs, with
number of possible values equal to 4,3 and 4, respectively. (b) Example of path (in green)
from the minimum to the maximal node, and example of a tree (green and red) that a
constrained GLCH algorithm can generate.

the directed edges which originate from it. We terminate when the maximal node hy,,, is
reached or an early termination condition is satisfied. Only the architectures in the open
and closed sets need to be trained. The nodes that compose the tree are those who are

present in the open and closed sets.

Algorithm 1 GLCH Algorithm
Input: the graph G of all possible hyperparameter vectors

1: Set the open and closed sets to the empty set: O < 0, C < ()

2: Train/evaluate the minimal node hy,j,, make it the parent node, and add it to the open set:
h «+ hpi,, O < OU{h}

3: repeat

4: Train/evaluate all children (i.e., out-neighbors) of the parent node h and add to O

5: Move the parent node to the closed set: C <~ CU {h}, O <- O\ {h}

6: Select a new parent node from the open set: h < select(O,C,h)

7: until h is the maximal node hp,,x, or satisfies an early termination condition

Output: the set O UC of visited nodes, and the history of all past parent nodes h

At the heart of Algorithm 1 is the select function in line 6, used to choose the node
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that is to be moved to the closed set and whose children are to be added to the open
set. Different select functions yield different variants of the algorithm. In particular, we
propose two broad classes of GLCH algorithms.

In the first class, the select function is constrained to choose a node h from O only if
it is among the deepest open nodes @' C O. Then the GLCH algorithm keeps extending
the longest path and terminates having visited not more than J K nodes, that is, trained
not more than 6K network architectures, where o is the diameter of the graph. Since
0K grows quadratically in K, whereas the total number of possible architectures, T,
grows exponentially in K, there is considerable savings compared to training all the
networks. Figure 5.2 (b) illustrates one possible tree that a constrained GLCH algorithm
can generate.

In the second class, the select function is unconstrained, that is, it is allowed to choose
any node h from O. This allows the algorithm to extend other leaves of the tree besides
the deepest leaves. This often results in a better LCH approximation, with the cost of
more trained networks. In fact, in the worst case scenario, the number of trained networks

may even reach T, although in practice the algorithm usually terminates much earlier.

5.4 Select Functions

In order to choose one among several alternative network architectures, it is necessary to
evaluate the performances of the network architectures on the multiple objectives. The
multiple objectives are loss and complexity. We use the term loss instead of rate because
the GLCH algorithm may be used with any loss other than rate. Rate is only the loss
function in lossless compression.

One immediate approach, for choosing the best architectures, is to rely on other ex-
isting algorithms that can find the LCH of a set of known points. Note that the GLCH
algorithm aims at finding an approzximate LCH, of a set of initially unknown points, with-

out having to reveal all of them. Algorithms to find the LCH of a set of known points,
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such as the one described in Section 3.6, assume that the input points are all there is, and
ignore the existence of any others, differently from the GLCH algorithm

In Algorithms 2 and 3 we propose two alternative select functions, one constrained and
another unconstrained. They both depend on other algorithms in order to find the LCH
of a subset of points. Let L and C}, be the loss and complexity of the neural network
associated with the node with hyperparameter vector h. In both select functions, we
choose the node that has the least complexity Cp, among the nodes that are in O or O
and that are in the LCH (calculated following the procedure described in Section 3.6)
of OUC. The set O UC consists of all visited networks so far. We pick the node with
least complexity, ignoring the nodes with higher complexity but lower loss, because, in
subsequent iterations, the algorithm is expected to explore points with increasingly higher
complexity and lower loss.

In the event that there are no nodes to choose from on the LCH of O UC, then the
functions fall back to choosing among nodes in O or O with performance on the LCH
of O or @'. In this case, the point with most complexity among the available options is
selected. Note that none of the available options are on the LCH of all trained networks
so far. However, if no node is selected, the algorithm cannot continue. In this case, the
point with least complexity is generally not an option because a point with high rate and
low complexity, close to the initial point h,,;,, may be selected, bringing the algorithm

back to where it started.

Algorithm 2 Unconstrained Select Function 1
Input: O,C

1: Find node h* € O with least complexity Cp+ s.t. (Cp=, Lp+) is on LCH of {(Cy, Ly) : h €
O UC} if exists, else with most complexity on LCH of {(Cy, L) : h € O}

Output: h*
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Algorithm 3 Constrained Select Function 1
Input: O,C

1: Let O’ C O be the subset of O whose distance from the root (i.e., depth) is largest
2: Find node h* € O’ with least complexity Cp+ s.t. (Cpx, Lp+) is on LCH of {(Ch, Ly) : h €
O UC} if exists, else with most complexity on LCH of {(Cy, Ly) : h € O’}

Output: h*

We experimentally observed that, in the constrained case, when there is more than one
node, or no node, on the LCH of O UC, selecting the point closest to the origin, generally
gives better results. Even on par with the unconstrained case. We measure the distance

to the origin with C' + pL where p controls the importance given to the distance in L

_Ch

compared to the distance in C. We use p = (1/p/)(|Ch /| Lhyay — Ly |), where

|Chimax — Ch

max min

and ’Lhmax — Lh

in ...| are the distances between the minimal and maximal
nodes in the C' and L axes, and p’ is a constant. That is, we define u based on the ranges
of values in the C' and L axes. In our experiments, we found that giving slightly more

importance to C' yields better results. Therefore, we use y' = 6.

Algorithm 4 Constrained Select Function 2
Input: O,C

1: Let O’ C O be the subset of O whose distance from the root (i.e., depth) is largest
2: Find node h* € O’ with least Cy« + puLy+ s.t. (Cp+, Ly+) is on LCH of {(Cy, Ly,) : h € OUC}
if exists, else with least Cy+ + Ly« 8.t. (Cpx, Lp+) is on LCH of {(Cy, Ly,) :h € O’}

Output: h*

5.5 Simplifying the Select Functions

The dependence on a third-party routine, to compute the LCH of a subset of nodes, is
not really necessary. We can specify a set of rules, to use in every possible configuration
of the child nodes relative to the parent node, and we can create select functions based

on these rules.
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The LCH of an arbitrary set of known points in 2D can be obtained by starting from
the leftmost point and always picking the point that gives the smallest polar angle, with
respect to the previously chosen convex hull side, as depicted in Figure 3.4. This algorithm
is described in Section 3.6, and works to obtain the LCH of a known set of points. When
the set of points is initially unknown, but is gradually revealed, there is no guarantee that
the remaining points are not to the left and below the lastly selected point. The newly
revealed points could be everywhere relative to the lastly selected point.

In the case of the GLCH algorithm, when we increase one hyperparameter of a node h,
we expect the complexity to increase and the loss to decrease. However, this is not always
the case. Sometimes, the complexity might slightly decrease or the loss might increase.
The loss can increase, for example, because of overfitting. The complexity measure, in its
turn, can decrease in the case of a noisy complexity measure, such as energy consumption.
This creates unexpected situations, that traditional algorithms are not prepared to deal
with. Furthermore, differently from traditional algorithms, we do not want to stop when
all points are above the lastly selected point. Since the points are gradually revealed, and
since the loss and complexity can oscillate, it is perfectly possible that future points fall
below the lastly selected point.

Figure 5.3 shows three relevant situations. By dealing with these situations, we can
create standalone select functions, that do not depend on third-party routines to compute
the LCH of known points. Firstly, if no option has lower loss than h, we do not update
h and we find other node from where to branch off newer nodes '. For this purpose,
we choose the node with the lowest loss in O or (0, and if there is more than one node
that satisfies this requirement, we choose the one with largest complexity among them.
This is a similar rule to the fall-back rule used in Algorithms 2 and 3. Secondly, if
one or more nodes are better than h in both loss and complexity, we pick the one with

lowest complexity to replace h, and if there is more than one such node, we pick the one

with lowest loss among them. This is natural, since this would be the first point on the

'The node h may be called the “real parent”, while the node used to branch off newer nodes may be
called the “surrogate parent”
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LCH of the points in @ or O’ that is below h. We ignore points above h to avoid the
algorithm from going backwards. Thirdly, if all nodes h’ in O or ', that have lower
loss than h, also have higher complexity than h, then a node h’ with best performance
is one that maximizes —ALy//ACy, where ALy = Ly — Ly and ACy = Cy — Cy,. If

there is more than one node that satisfies such condition, we pick the node with largest

\/ (ALw)? 4+ (ACy)? among them. The reason for this is because if we did not pick this
point, the unconstrained algorithm could pick it in a subsequent run, but the constrained
algorithm would not be able to do so. This third case is essentially the standard rule used
by the algorithm described in Section 3.6.

In Algorithms 5 and 6 we show how Algorithms 2 and 3 can be adapted to use these
rules. Later we show that the results using Algorithms 5 and 6 are nearly identical to the

results using Algorithms 2 and 3.

Algorithm 5 Unconstrained Select Function 2
Input: O,C,h

1: if all points in O have larger loss than h then make h* < h, find the node in O with lowest
loss then largest complexity, move it from O to C and add its children to O

2: else if there is any point in O with lower or equal loss and lower or equal complexity than
h then find the node h* among them with lowest complexity then lowest loss

3: else find the node h* € O, with lower or equal loss than h, such that —ALp«/ACHy~ is
maximum

4: end if

Output: h*
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(a) Case 1 (b) Case 2

L & .

AC
T—> C (c) Case 3

Figure 5.3: The three different configurations of relevance of child nodes relative to the
parent node. In each case, the parent node is the node labeled with an h. All other nodes
are candidates for next parent node. The circled node is the one selected to be the next
parent node (cases 2 and 3), or to just branch off newer nodes (case 1).

99



Algorithm 6 Constrained Select Function 3
Input: O,C,h

1: Let O’ C O be the subset of O whose distance from the root (i.e., depth) is largest

2: if all points in O’ have larger loss than h then make h* < h, find the node in O’ with
lowest loss then largest complexity, move it from O to C and add its children to O

3: else if there is any point in @’ with lower or equal loss and lower or equal complexity than
h then find the node h* among them with lowest complexity then lowest loss

4: else find the node h* € O’ with lower or equal loss than h, such that —ALp«/ACh« is
maximum

5: end if

Output: h*

5.6 Reasoning behind the Select Functions

The different select functions presented reflect the thought process we went through when
designing the GLCH algorithm. We first envisioned the Algorithms 2 and 3, but they rely
on subroutines to compute the LCH of a known set of points. Therefore, we proposed
Algorithms 5 and 6 to replace them.

Algorithm 4 is an alternative version of the Algorithm 3, which gave better results
in our set of examples. However, since this algorithm was based on a heuristic, and has
a parameter which was set based on our particular set of experiments, this algorithm is
likely overfitted to our examples.

In practice, one would only need Algorithms 5 or 6, depending if one desires the
constrained or the unconstrained version of the algorithm. The constrained version of the
algorithm always terminates after evaluating a known number of networks. If one wishes
a better LCH approximation at the cost of a higher (and unknown) number of trained

networks, one may use the unconstrained version of the algorithm.
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Algorithm 7 Unconstrained Select Function 3
Input: O,C

1: Find node h* € O such that Rp+ + AgDn+ + YCh+ is minimum
Output: h*

5.7 Rate-Distortion-Complexity Optimization with

the GLCH Algorithm

Neural networks for lossy compression are usually trained to minimize a loss L = R+ AD,
where R is the rate using the network, and D is the distortion. In cross-validation, one
would train several networks to minimize this loss for a fixed A, and would later select
the one with minimum L on the validation set. Assuming that R is the horizontal axis,
and that D is the vertical axis, this corresponds to finding the first point that touches a
line with inclination —1/\, or normal vector [1, A], emanating from the origin. The LCH
is the set of points that minimize L for all different A in the interval (0, c0).

We would also want to take complexity under consideration. In this case, the metric
is R4+ AD + ~C', and the LCH is the set of points that minimize it for every A and 7 in
the interval (0, 00). Each pair of A and ~y defines a set of parallel planes in 3D, the planes
with normal vector [1, A, ], and the minimum for a specific A and ~ is the first point that
touches one such plane emanating from the origin.

The GLCH algorithm can be used in all the following three cases: (i) to approximate a
specific optimal point, for a specific A and a specific 7; (ii) to approximate sets of optimal
points for slices of data; and (iii) to approximate the LCH of the cloud of points. We

explore each of these cases in the following:

(i) In the simplest case, one is interested in only the minimum for one A and one ~.
In this case, one can use the GLCH algorithm with the select function shown in
Algorithm 7. We would like to find the tracked point as quickly as possible, and
then interrupt execution. Constraining the algorithm would not be advantageous,

because this could prevent it from exploring leaves, that could more quickly lead
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(iii)

closer to the optimal point. For early termination, a condition, such as a maximum

number of iterations, can be used.

By slice of data, we mean the points trained for a specific A. In this case what
matters is to minimize L = R+ AD, irrespective of the values of R and D. Therefore,
we can run the GLCH algorithm on the L-C-plane, using any of the select functions

in Algs. 2-6.

When we consider only C' and L, and ignore the particular values of R and D, we
project the points on the plane formed by the vectors [0, 0, 1] and [1, A, 0], as depicted
in Figure 5.4. The inner product of a point [R, D, C| with the vector [0, 0, 1] gives
the complexity, [0,0,1] - [R, D,C] = C, and the inner product of a point [R, D, C]
with the vector [1, A, 0] gives the loss, [1, \,0]-[R, D,C] = R+AD = L. Interestingly,
points on the LCH of the projected points, are also on the LCH of the original cloud
of points. This is so because, consider the minimum for a fixed A and ~, that is
argminy, Ry, + ADyp + vCh. When ) is fixed, the specific values of Ry, and Dy do
not matter. What matters is the value of Ly, = Ry + ADy. Therefore, this same
minimum can be found by arg min,, Ly +vC}y. Therefore, when we minimize L +~C'
in the projected space for a specific v (and \), we are also minimizing R+ AD +~C'
in the original space for a particular A and ~. In this process, we ignore the networks
not trained for this A\, because it is unlikely that they have a lower L for this given
A. What all this means is that the LCH of the cloud of points can be approximated

by running the GLCH algorithm for the slices corresponding to several \.
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Figure 5.4: Illustration of what happens when we ignore the particular values of R and
D, and compute the LCH of only C' and L = R + AD, in a rate-distortion-complexity
optimization problem. We find the LCH of the projected points on the C-L(\) plane,
where L()) is the axis with the same direction as the vector [1, A, 0].

5.8 Rate-Complexity Optimization in Lossless Image
Compression

The GLCH algorithm can be used to select neural network architectures, from a set of
possible architectures, without having to evaluate the performances of all network archi-
tectures. We particularly developed the GLCH algorithm in order to take complexity into
account when selecting neural networks, instead of only accounting for the performance
metric it was trained to minimize. The optimal network architectures are the ones that
lie on the LCH of the cloud of points. The GLCH algorithm visits neural network archi-
tectures, and therefore builds the LCH, in increasing order of complexity. In this way, the
algorithm can be stopped once the highest level of acceptable complexity, or the superior
level of desired network loss, is achieved.

In this section, we use the GLCH algorithm to select networks for lossless compression

of binary images. We assume that the images are to be compressed using a method of
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forward coding with context modeling for arithmetic coding, similar to the PC method
we described in Section 4.2. The context is composed of the M = 32 closest causal pixels,
which gives a context similar to the ones shown in Figures 2.10 and 4.1 for other values
of M.

We assume that the set of possible architectures consists of MLPs with two hidden
layers, having either 10, 20, 40, 80, 160, 320, or 640 hidden units, each. Thus, in this
case, the number of hyperparameters is K = 2, and the number of possible values per
hyperparameter is T, = 7 for k = 1,2. The total number of architectures is T = 49.

For the purpose of evaluating the GLCH algorithm, we train all possible networks.
The networks are trained on an NVidia GTX 1080Ti GPU to minimize the binary cross
entropy loss on the training set of Dataset 5 (described in Section 4.5). We use stochastic
gradient descent, 100 epochs, a learning rate of 0.0001, and a batch size of 1024 samples.

We assume one is interested in two forms of forward coding. One is the more traditional
forward coding scheme, in which the networks are trained on data from one set and used
to compress data from another set. We use the validation set of Dataset 5 to select
networks for this form of coding. Therefore, when selecting the networks for this form of
coding, the performances reported are measured while encoding the validation set. The
complexity is measured in either Joules/pixel or MAC /pixel.

The other form of forward coding, that we assume one is interested in, is based on
algorithmic information theory [57]. The basic idea of compression based on algorithmic
information theory is to describe a program which can be used to regenerate the data.
One approach views the construction of such program as data modeling [57]. For example,
the data could be exactly represented by some model and the residual between the model
and the data. Optimality is achieved when the sum of the size of the model and the size
of the residual is minimized. This is the minimum description length [57]. In one possible
adaptation of this form of coding, the network takes the place of the model, and the
compressed data takes the place of the residual, and both are included in the compressed

file. In this case, the network is trained and evaluated on the data to be compressed.
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It does not have to generalize to other data. There is no need for three separate sets
(training, validation and test sets). Only one set is necessary. We assume that this set
is the training set of Dataset 5. When we select networks for this form of coding, we
measure complexity in number of encoded model bits.

Note that, in this case, all that matters is the minimum description length, or R+ AC,
with A = 1, where C' and R are the model bits and the data bits divided by the number
of samples. However, since the rate-complexity points are initially unknown, finding the
LCH is still beneficial. The minimum description length operating point lies on the LCH,
and can be searched using the GLCH algorithm. The algorithm can be stopped once
A =1 is reached.

The networks are initially trained using 32-bit floating point arithmetic. Therefore, the
size of the network in bits is, initially, its number of parameters times 32 bits. To create
more network alternatives for the second form of coding, we also quantize the network
parameters to 8 and 16 bits. This corresponds to including a third hyperparameter hs,
with 73 = 3 possible values (8, 16 and 32), increasing the total number of network
alternatives to Y = 1115715 = 147.

We do not include points for different quantization levels when selecting networks for
the first form of coding (traditional forward coding), because we assume that the number
of Joules/pixel and the number of MAC/pixel do not change with quantization. Since
the network is trained using 32 bits, then quantized, we also assume that the bitrate does
not improve, but actually gets worse, with quantization. Therefore, in these cases, we do
not expect the quantized networks to be on the LCH.

In order to summarize, we measure complexity in three different ways: (1) MAC per
pixel, (2) Joules per pixel, and (3) model bits. It is important to describe how we obtain

the values for each of these three metrics. We explain this in the following three sections.
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5.8.1 Multiply-accumulate operations per pixel

The values of MAC/pixel and the number of parameters of an MLP are essentially the
same. First of all, the network is run once per pixel, therefore the values of MAC /pixel
and MAC are the same. Second of all, at each neuron, the input values are multiplied
by the weights then added (together with the bias), which amounts to a number of MAC
equal to the number of weights. If we count the number of weights in all neurons, the
total number of weights is an estimate of the number of MAC. The number of parameters
of the MLP also includes the biases, and the activation functions also amount to some
operations, but these numbers are generally negligible compared to the number of weights.
Therefore, we can generally consider the values of MAC /pixel and network parameters as

almost equivalent.

5.8.2 Joules per pixel

We estimate Joules by measuring the power consumption in watts every second, using
the Nvidia-smi Toolkit®, then adding up all values. The samples are 1 second apart.
Therefore, it approximately corresponds to the integral of the power consumption during
the period of the evaluation. Since the energy consumption taken this way is very noisy,
we repeat this process 200 times. We average the results to obtain the final energy
consumption estimate, and divide by the total number of pixels in the validation set to

obtain the value of Joules per pixel.

5.8.3 Encoded model bits

The size of the network in bits is its number of parameters times the number of quanti-
zation bits. As we said, we consider network architectures for numbers of quantization
bits hz equal to 8, 16 and 32. We determine the quantization step A from the range of
values of all parameters in the network, that is A = (fmax — Omin) /2", Where Oy is the

maximum and 6, is the minimum of all network parameters. Then we use midtread
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uniform quantization after subtracting the parameter value by 6 + A/2 or, in other

words,

6, = round (6 - sz_ A/2> , (5.1)

where 0, represents a quantized parameter. We make sure that the extremes 0, and
Omax are rounded to 0 and 2" — 1, respectively. We do not retrain the networks after
quantization. For hy = 32, nothing needs to be done, since the networks are already
trained using 32-bit floating point numbers.

It is important to note that we are assuming a 32-bit platform and that, regardless of
the data width (if it is either 8,16 or 32) we are assuming that it will be processed with a
32-bit MAC. This is also why we assume that the number of Joules/pixel and the number

of MAC /pixel do not change with quantization.

5.8.4 Results

Figure 5.5 shows the final states of the GLCH algorithm with the select functions 5 and 6
for complexity measured in MAC /pixel, uJoules per pixel, and model bits. The other
select functions find trees only slightly different from the ones shown in Figure 5.5 (see
Annex II for the trees found by the other select functions). Table 5.1 summarizes the
number of visited networks for all variants of the GLCH algorithm. The select function
in Algorithm 4 was the one which, in general, visited the least number of networks.

If we consider that the networks with same h; and ho, but different hs, that is, with
same numbers of hidden units, but different quantization bits, share the same training,
then the numbers of trained networks, when complexity is measured in model bits, are
reduced to the numbers shown in Table 5.2. Note that, in this work, we did not retrain the
neural networks for different numbers of quantization bits. However, in other works, the

networks could be separately trained using 8-, 16- and 32-bit-floating-point arithmetic.
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Figure 5.5: Clouds of rate-complexity points and final trees for the GLCH algorithm
with the select functions 5 (left column) and 6 (right column), and with complexity mea-
sured in multiply /add operations per pixel (top row), pJoules per pixel (middle row), and
encoded model bits (bottom row). Dots are rate-complexity performance of hyperparam-
eters/nodes. At termination, blue nodes are never visited, red nodes have been visited
(moved to the open set O) but never selected, green and yellow nodes have been visited
and selected (moved to the closed set C). Arrows show parent-child relationships from
green or yellow parents to red, green, or yellow children, and take the child color. A green
arrow and child indicate that the child is selected in the step immediately following its
parent’s selection, while yellow indicates a gap between the parent’s and child’s selection.
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Table 5.1: Numbers of visited networks for all variants of the GLCH algorithm and for
complexity measured in: (a) MAC/pixel; (b) pJ/pixel and (¢) model bits.

complexity measure
variant | (a) (b) (c)
Alg. 2 25 26 40
Alg. 3 22 24 37
Alg. 4 21 24 33
Alg. 5 25 26 40
Alg. 6 22 24 37

Table 5.2: Actual numbers of trained networks for all variants of the GLCH algorithm,
complexity measured in MAC/pixel (a), uJ/pixel (b) and model bits (c), if we consider
that the networks with same numbers of hidden units (hq, hs), but different numbers of
quantization bits (h3), share the same training.

complexity measure
variant | (a) (b) (c)
Alg. 2 25 26 23
Alg. 3 22 24 23
Alg. 4 21 24 19
Alg. 5 25 26 23
Alg. 6 22 24 23

The constrained select functions find sets of points close to the LCH while only visiting
a fraction of the T networks. However, Figure 5.6 demonstrates the potential shortcomings
of the constrained algorithms. Since they are constrained to only select nodes from the
subset @' C O of deepest open nodes, they cannot select previously visited nodes that
are not in ', even if they are better options. The unconstrained algorithms, on the other
hand, do not have this problem, and can find sets of points that more closely approximate
the set of optimal points. However, this comes at the cost of a higher number of trained
networks.

By analyzing the networks that make up the LCH approximations, we find ground-
ing for a popular MLP design strategy. The GLCH tree nodes, for the different select
functions, are present in the tables of Annex II. The nodes that make up the LCH approx-

imations are marked in boldface. The set of all possible network architectures included
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Figure 5.6: Zoomed portions of the bottom right plot of Figure 5.5, which demonstrate the
shortcomings of a constrained select function. Because of the constraint of only selecting
nodes among the current deepest open nodes, when they find more than one point that
make part of the LCH, they must select one, and the other cannot be selected later in a
future iteration. The unconstrained select functions do not suffer from this issue.

examples of pyramid, inverted pyramid, and rectangular structure. Nevertheless, the net-
works on the LCH approximations ended up having a pyramid structure. This seems
to confirm the common pyramid design strategy many practitioners use when designing
MLPs. We have also used such strategy in Section 4.2.

Regarding the feasibility of including the neural network along with the data in the
compressed file: note that the number of pixels in the training set is 10 x 768 x 1024 =
7864320, while the number of model bits is in the range from 103 to 107. In general, the
number of model bits per data sample is much lower than the number of data bits per
sample. This means that, in many cases, it is feasible to include the network along with
the data in the compressed file. In some cases, it may even be beneficial, if compared to
other compression alternatives.

So far, we have only qualitatively evaluated the GLCH algorithm. We can evaluate
it quantitatively by computing the hypervolume of the visited points, and comparing it
with the hypervolume considering all T architectures. We defined the hypervolume in
Section 3.7. To recapitulate, the hypervolume of a set of points is the volume of the space
Pareto-dominated by those points. A point Pareto-dominates another when it is better

or equal in all objectives, and strictly better in at least one objective. Note that, in this

110



work, we assume that an objective is better when it is lower. If this is not the case for one
objective, we can make it the case, by multiplying the objective by —1. When computing
the hypervolume, it is necessary to specify a reference point, otherwise the dominated
hypervolume would always be infinite. We set each coordinate of the reference point to a
value 10% higher than the highest value in that coordinate. When obtaining the highest
value in each coordinate, we include all the points involved in the hypervolume calculations
with respect to that reference point. The dominated hypervolume is then computed as the
volume of the dominated space, bounded from above by this reference point (as depicted in
Figure 3.5). The maximum possible hypervolume is only achieved by sets which contain
the Pareto set, that is, the set of pareto optimal solutions. Evidently, the set of all
possible T network architectures contains the Pareto set, therefore the hypervolume for
the T network architectures is the maximum. The LCH and the Pareto set are almost
equivalent (as discussed in Section 3.6, and depicted in Figure 3.3). Therefore, sets that
contain the LCH have close to maximum dominated hypervolume. In other words, a
method to compute the LCH is good when the distance from its hypervolume to the
maximum possible hypervolume is small. We refer to this quantity as the hypervolume
difference.

A common way to compare multi-objective hyperparameter optimization methods,
when the maximum possible hypervolume is known, is to compare their hypervolume
differences, as the number of visited networks increases. The best method, for a given
number of visited networks, is the one which gives the lowest value of hypervolume dif-
ference. The number of points that can be visited depends of the amount of budget that
is available. The method that gives the best LCH approximation might differ from one
number of visited networks to another.

Figure 5.7 shows the log hypervolume difference of several methods, relative to the
hypervolume of the T architectures, as the number of visited networks increases. Be-
sides the five variants of the GLCH algorithm, we also included results for three other

methods, obtained using a popular platform for multiobjective optimization [105]. The
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three methods are Sobol, qNEHVI and gNParEGO. The first one essentially corresponds
to the random search method described in Section 3.5. However, it specifically selects
points based on the Sobol sequence [106], which provides a more uniform coverage of the
sample space. The qQNEHVI and qNParEGO are noisy parallel versions of the EHVI and
ParEGO methods mentioned in Section 3.8.

We run these methods for a number of iterations equal to the maximal number of
iterations of the GLCH methods. However, note that the Bayesian Optimization methods
operate in continuous domains. The suggested hyperparameters in a given iteration are
continuous. After rounding the hyperparameters, the suggested architecture in a given
iteration may be one already suggested in a previous iteration. In the plots of Figure 5.7,
the horizontal axis is the number of distinct networks that have been visited. This applies
to all methods. Note that a child node at a given iteration of the GLCH algorithm,
with an unconstrained select function, may also correspond to a node that has already
been explored before. This is because a node can be reached from different paths in the
architecture graph. In that case, the repeated node is ignored, and is not counted as a
newly explored network. In the plots of Figure 5.7, we have already accounted for this,
and removed duplicates when counting the number of visited networks reported in the
horizontal axis.

We run each of the Sobol, gNEHVI and ¢NParEGO methods 25 times, each time with
a different set of initialization points. The first six points in each run are initialization
points, and are shared between these three methods. The maximum number of visited
networks is different in each run of each method. For each method, we take the average
of the HV curves over the different runs. When computing the average HV for a given
number of visited networks, it is evident that we can only consider the runs in which the
number of visited networks have reached that particular value. We only keep the averages
computed using at least 10 runs. That is one of the reasons why the curves in the plots
of Figure 5.7 do not go up to the same number of visited networks. Other reason is that

the GLCH methods naturally terminate with different numbers of visited networks.
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Figure 5.7: Comparison between the different versions of the GLCH algorithm and other
MOHPO methods. The methods are compared in terms of log hypervolume difference

with respect to the maximal hypervolume, which is obtained considering all combinations
of hyperparameters.

Analyzing Figure 5.7 we can see that, for low numbers of visited networks, Sobol,
gNEHVI and qNParEGO provide a better approximation of the overall pareto front.
However, when the GLCH methods are close to terminate execution, they surpass the
other methods for the same number of visited networks. This is a consequence of the fact
that the GLCH methods build the LCH in increasing order of complexity.

If, instead of considering all points, we only consider the points up to the complexity
level already achieved by the GLCH method, the advantages of the GLCH method become
clear. In Figure 5.8, we show the results for the select function in Algorithm 5. Similar

results hold for the other select functions. To obtain the plots of Figure 5.8, we consider

113



the history of visited networks by the methods. The GLCH method visits the networks
in increasing order of complexity. When the GLCH method reaches a given level of
complexity, we compare its suggested networks with the suggested networks by the other
methods, for the same number of visited networks. We calculate the hypervolume of the
points with complexity lower than the GLCH complexity level. Then we take its log
difference with respect to the maximum hypervolume. A lower value indicates a better
LCH approximation for the region up to that complexity level. As before, the curves of
Sobol, gNEHVT and qNParEGO are averages over multiple runs. We use the same runs
used to generate the plots of Figure 5.7. Again, we only keep curve points which are
computed by averaging results from at least 10 runs.

Therefore, if one is only interested on the LCH up to a given level of complexity one
can largely benefit from the GLCH algorithm. It visits networks in increasing order
of complexity, giving a better LCH approximation than the other methods up to the
currently explored complexity level. Even if one is interested on the LCH for all levels of
complexity, the GLCH can still give better LCH approximations for specific numbers of

visited networks.
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5.9 Rate-Distortion-Complexity Optimization in
Lossy Image Compression

In Section 5.8, we have shown that the GLCH method can effectively be used to select
neural networks for lossless compression. However, the applicability of the GLCH method
actually extends to more than simply lossless compression. It can also be used in lossy
compression with much effectiveness.

This section is devoted to testing the GLCH method in lossy compression. More
specifically, we use the GLCH algorithm to optimize complexity in lossy image compres-
sion. This problem is already inherently a multi-objective optimization problem of rate
and distortion. We also want to take complexity into account.

We assume that the compromise between rate and distortion is already included in
the loss function of the neural network, but the complexity is not. Specific network
architectures may lead to overfitting, or may be excessively complex, therefore it is of
interest to consider multiple architectures. After considering several architectures, the
best one, or the best ones, must be selected. The GLCH algorithm tackles both of the
problems of finding the best architectures among the available options, and of deciding
which architectures to train. In this way, it finds a good approximation of the overall
LCH, even if we include the points which were not visited by the GLCH algorithm. It
returns an approximate set of the optimal architectures for the different tradeoffs between
rate, distortion and complexity.

In order to evaluate the GLCH method in a lossy setting, we consider the compression
of colored images with the VAE compression approach of Section 3.9. For the purpose
of the experiments of this section, we use, as training data, a small sub-set, composed
of 240 frames, of the Vimeo-90K dataset [14], and, as validation data, the entire Kodak
dataset [3], composed of 24 images.

We consider variants of the bmshj2018-factorized model from [107], which is based

on [27]. Figure 5.9 illustrates the model template, and the hyperparameters we vary.
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Figure 5.9: Template of the considered VAE architectures. GDN and IGDN indicate
the activation functions in the encoder and the decoder [27]. Conv hoxbx5/2| indicate
a convolutional layer of hy kernels (filters) with width and height equal to 5 pixels, and
a stride of 2. Deconv hyx5x5/21 indicate a transposed convolutional layer of hs kernels
(filters) with width and height equal to 5 pixels, and a stride of 2. See [108] for an

introduction on the convolutional and the transposed convolutional layers. Based on
Figure 4 from [27].

Those are: the number of layers of the encoder and the decoder (hy), the number of
filters of all convolutional layers of the encoder and the decoder, except for the last
convolutional layers (hsy), and the number of filters of the last convolutional layer of the
encoder (h3). The values considered for h; are 3 and 4, while hy varies from 32 to 224
in steps of 32, and hg varies from 32 to 320 in steps of 32. In other words, in this case
the number of hyperparameters is K = 3, the numbers of hyperparameter values are
Ty = 2,15 = 7,713 = 10, and the total number of architectures is T = 17171573 = 140.

The networks are trained for 10000 epochs, with a learning rate of 0.0004 and a batch

size of 16. We consider values of A\ = 2552)\, for X = 0.005, 0.01 and 0.02, with rate
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measured in bits per pixel, and distortion measured in mean squared error (MSE), with
the pixel values normalized between 0 and 1. Therefore, if we also consider the X\ as a
hyperparameter (h4), we have K = 4 hyperparameters, Ty = 2,7, = 7,73 = 10, T, = 3,
and T = T\ 13T, = 420 possible networks. However, we do not consider A\ as an
hyperparameter in the GLCH algorithm for lossy compression, and treat each A separately.
It is only after finding the LCH approximations on the LC-planes for the different A\ that
the results are combined to obtain the overall LCH approximation on the RDC-space.
We measure complexity either as the number of parameters of the network, or in number
of floating-point operations (FLOPs). The numbers of FLOPs are obtained using the
ptflops tool [109].

Figure 5.10 shows the clouds of loss-complexity points for the different A, and the LCH
approximations found by the GLCH algorithm, using the select function in Algorithm 6.
We only show the parent nodes, which can be seen as the approximation of the LCH.
The graphs for the other variants of the GLCH algorithm are shown in Annex III. The
plots are arranged as follows. The top row corresponds to A’ = 0.005, the middle row
corresponds to A = 0.01 and the bottom row to A’ = 0.02. The left column corresponds
to complexity measured in number of parameters, and the right column corresponds to
complexity measured in number of FLOPs.

Combining the points found for the different A\, we obtain an estimate of the LCH
for the rate-distortion-complexity cloud of points. Figure 5.11 shows the parent nodes
found by the GLCH algorithm for the different A, whose combination can be seen as an
approximation of the LCH on the RDC-space. The results are for the select function in
Algorithm 6.

Figure 5.12 shows the hypervolume differences of the GLCH methods as the number of
trained networks increases. In Figure 5.12, the reference hypervolume is the hypervolume
in the RDC-space of the 420 networks, for the different hq, ho, hg and the different A\. We
include results for Sobol, QNEHVI and qNParEGO as well. The plots in Figure 5.12 are

similar to the plots in Figure 5.7.
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Figure 5.10: Clouds of loss-complexity points, with emphasis on the parent nodes found

by the GLCH algorithm, using the select function in Algorithm 6. The loss is equal
to R+ AD, where X is equal to 2552 x 0.005 (top row), 2552 x 0.01 (middle row) and
2552 x 0.02 (bottom row), R is the rate in bits per pixel, and D is the distortion in mean
squared error, with the pixel values normalized between 0 and 1. Complexity is given in
number of parameters (left column), and in number of FLOPs (right column).

The GLCH methods present competitive results, particularly for a number of trained

networks lower than 60, in which case they dominate the other methods. For more than 60
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Figure 5.11: Animation of the rate-distortion-complexity cloud of points, and an LCH
approximation, found by the GLCH algorithm, using the select function in Algorithm 6.
In this figure, we only highlight the nodes which were parent nodes during the execution
of the GLCH algorithm. These points are represented as green cubes. The other points
are represented as blue spheres. To view this animation, open this PDF file in Acrobat

Reader.

trained networks, qQNEHVTI catches up with the GLCH methods, for complexity measured
in number of parameters. It seems that it would show better results for larger numbers

of trained networks. The qNEHVI curve stops at around 60 trained networks. This is
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Figure 5.12: Performances of the different versions of the GLCH algorithm, and other
MOHPO methods, on the rate-distortion-complexity optimization problem. The meth-
ods are compared in terms of log hypervolume difference with respect to the maximal
hypervolume, which is obtained considering all of the 420 networks, for the different
h1, ha, hs and the different .

so, because in the 25 times we ran this method and for a number of iterations matching
the number of iterations of the GLCH methods, it only reached 60 trained networks less
than 10 times. Note that we only keep averages computed with more than 10 samples.
However, if we do include the remainder of the curve, with values computed using less
than 10 samples, the qQNEHVI method does indeed surpass the GLCH methods for more
than 60 trained networks. However, it is important to note that the results for gNEHVI
are averages. The results for a specific run may be better or worse. In the GLCH case, if
the rate-complexity-distortion performance of the points are pre-defined, the result is the

same at every run.
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Chapter 6

Conclusion

In this work, our focus was to investigate neural-based adaptive context modeling, while
also considering the neural network design process. In order to achieve this goal, we broke
down this main objective into two more specific secondary objectives: 1) to propose and
investigate a neural-based replacement for the look-up table (LUT) and 2) to propose and
investigate a method of MOHPO more specific to data compression.

We tackled the first objective with the proposal of the adaptive perceptron coding
(APC) method. Differently from the other currently available alternatives, the APC
method does not require pre-training and continuously adapts to the signal statistics.
Continuous adaptation is an attractive quality of most context modeling approaches us-
ing LUTs, and it is of interest to have a neural-based method with this characteristic.
Such a method combines the approximation power of neural networks with the adaptivity
of most LUT-based methods. Since every new sample is different, it continuously learns
the signal statistics, and approaches the true probability distribution of the data, instead
of the training data probability distribution. We compared the APC method to alterna-
tives using LUTs and RNNs, and showed that the APC method is able to overcome the
shortcomings of the LUT-based methods. Since, in principle, a LUT requires a separate
storage space for every conditional probability estimate for every context size, and the

growth of the number of possible contexts is exponential with respect to the context size,
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memory consumption is a real issue with LUT-based methods. With APC, we are able to
increase the context size much further, and to consequently decrease the average codeword
length.

We tackled the second objective with the proposal of the greedy lower convex hull
(GLCH) method. We developed the GLCH method to minimize rate, or rate and dis-
tortion, while also minimizing complexity. However, it could also be used to minimize
other objectives, even outside of the data compression field. The output of the GLCH
method is an approximation of the LCH, or the Pareto front, for the multiple objectives
considered. An attractive quality of the GLCH method is that it progressively builds
this approximation. It first builds the approximation up to a given value of one objec-
tive, in the case of our applications, up to a complexity value, then to a higher value,
and so on. In MOHPO, it is generally the case that the degradation of one objective is
associated with the improvement of other objective, and vice versa [53]. For example,
an increase in complexity generally causes a reduction in average codeword length. The
progressive construction of the LCH by the GLCH algorithm allows one to stop execution
once the maximum, or the minimum, acceptable value of one objective is achieved. As
our comparison results demonstrate, other MOHPO methods build the entire LCH for
the entire domain from the very beginning, and do not have this advantage. This means
that the LCH approximation with the GLCH method is generally better, up to a given
value of complexity. In data compression, we are often interested in solutions only up to
a certain level of complexity, and the GLCH method permits focusing on those solutions.
The GLCH method also showed competitive overall results compared to state-of-the-art
methods present in a popular MOHPO platform.

Other minor contributions of our work include a brief analysis of the neural networks
that compose the LCH, which gave more groundings to the pyramid design strategy
commonly used when designing MLPs. That is, designs with more hidden units in the
initial hidden layers, compared to the final hidden layers. We also proposed a variant of

the Xavier initialization method, which consistently gave better results, and embedded it
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into APC.

6.1 Future work

The online-trained neural-based methods are still much slower than the LUT-based meth-
ods. However, we did not investigate how faster it can become with dedicated hardware,
which could be tested with, for example, Field-Programmable Gate Arrays (FPGAs).
Furthermore, it is expected that, in the long run, with the advancement of hardware
speed and processing power, online-trained neural-based methods will eventually become
more appealing.

The APC can also be tested for the task of encoding any type of data on the fly.
Since in APC, just like in CABAC, all data is converted to binary, and then encoded
using context modeling and arithmetic coding, in principle it can be used to encode any
type of data. Adjustments would have to be made to make the context as agnostic as
possible. Since the context modeling in APC is adaptive, it can continuously approach
the statistics of the different sources, as the data type changes from one type to another.
The fact that the APC can be used with larger context sizes, compared to LUT-based
methods, can make it better for this task as well.

The GLCH method can be explored in different areas of application other than data
compression. Our application of the GLCH method to rate-distortion-complexity opti-
mization explored the fact that a network for lossy compression is generally trained to
minimize a loss of the form L = R + AD. Therefore it was natural to apply GLCH to
the LC-planes for different A, and then combine the results to obtain an estimate of the
LCH of the RDC-space. However, the question remains if this approach would also be

effective in other areas of application.
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1016

smooth. This is because in real applications. for example recon-
struction of the blood vessels and organs, the shapes are usually
smooth.

The modified Cahn-Hilliard equation based method for sur-
face reconstsuction aims to solve the following PDE (4] to obiain
the reconstructed volume 1« in the domain €2:

'% -A (*:AH + lc'[u)) +MQD)(f - ) i (D
T surface S is taken to be the
the volume . In equation (1), (1) — u*{u — 1)? is a double-
well potential function. D < (2is the region to be reconstructed.
7152 given binary image in 2 — D which is related to the skices
contours and it does not matter for  on D since we assume

A(9.D) — {‘ xen-o o)

0. xeD

The PDE (1) can be solved by minimiziog the energy functional
E(1z) of the volume i, which is given by

Etw) = Eyu) + Ex(u)

Jr—

According (o the result from calculus of variations |15). min-
imizing  functional (/) is equivalent o finding the steady
state solution of the gradient flow equation % — — 47 which
is 2 PDE. This is how we derive the proposed PDE in this letter.
However, we should note here that the (wo texms in the PDE (1)
we the gradient flows of the two energy functional E, (v) and
Ex(1) with respect to £~ -norm and £* n. Therefore, the
equation (1) s neither a gradient flow in the sense of £
nor a gradient flow in the sense of L? norm

The madified Caho-Hilliard equation (1) provides a way to
control the ability of the reconstructed surfaces to satisty the
slices constraint. We can increase the value of the parameter
A t0 achieve the goal. However, as mentioned in the previous
section, increasing A may lead to the non-smoothness of the re-

Totbis letter,

(- fitdx

-norm

this issue.

1. THE ProPOSED PDE MODEL

In this work, we propose to use another energy functional
Ey(12) 50 that the reconstucted surfice § drawn from the zero-
isosurface of the volume u will be smooth. Based on the result
from level set methods [16]-[18)]. this can be done when we
have an energy functional £ (1) and it Jets v satisfy the property
|Vu]| = 1. For the external energy functional £5(u). it depends
on the parallel slices so we will use the same one as above.
Motivated by [18]. we define

E,(u)—/r F(IVw (1. @
where ¢ = defined
i i e 1o st e condiins |ruu — 1. Since this
term can force the magnitude of Viz to be 1, we call it the
magnitude penalization term in the enexgy functional EX1c). We
i i

the condition [T | = 1 in Section [V. Now we would like to

(EEE SIGNAL FROCESSING LETTERS, VOL. X

discuss about the gradient flow of the magoitude penalization
term £y(1) 5o that we can obtain the desired reconstruction
PDE model

We use the notation ¥ » F o represent the divergence of the
function F. The symbol T F s used to denote the gradient of
F. Then the Giteau derivative of £, (1) is

OE; _ F'{| Vul|)
Eraa ( I
By which we have that the Giteaux derivative of the energy
functional E(v) is
O _ FY{|Vul ) QE;
i ( Rz AT

Combining the fact that E3(1) —
tain Wt the gradieat flow of E{ic} &5

F OE _ . (FUINu)
Y ( vu ] T")

3B,
e

o PV ) .
v ( oo V) A - w ma
‘This is a second order PDE that we derived from the magnitude
penalization term for reconstructing the volume 1 and hence
the 3D surface S using the image slices. We will use a finite
difference method o numerically solve the PDE model. The
detailed process will be discussed in Section V.

IV. A SINGLE-WELL POTENTIAL FUNCTION

As we discussed above, we want to have a potential function
such that we have the propenty | V| — 1. The reason why a
potential function can force ||V | — 1 is as follows. Note that

L(\22))

the gradieat flow of £ is
Vu) -V (, )vu],
) [ IVl

F( V)
11Vu|

which can be viewed as a diffusion equation with diffusion
sate ¢ (||Vu |). where ¢f| Vull) — ShTEL Since we are
required tohave | V| — 1. This condition can be well-satisfied
if we have 2 potential function #(z) with minima at 2 — 1
When | V| = 1,weneedto have the dittusionrate ¢ - (||V4]|)
and hence (] Vi||) being positive so that we have a forward
diffusion and therefore ||V | will decay. When [Tu[| < 1. we
should have ¢ - ¢(||V4]|) and hence g(||Vv]|) being negative
so that we have a backward diffusion. which will lead to the
increase of [Vt

One of the common choices for such a potential tunction
is P} — (2 = 1)%. This function satisfies all the conditions
above. However. we find that when |Vu| — (, this potential
Function will give us ¢{ [Vul|) = — . This propenty will lead
to some undenrahle side effects if we use the potential function
F(x) = (« = 1)" in applications. So. to avoid the side etects,
we need to have a single-well potential function F{z) with
glx) — 22 bounded

In this Jeter, we provide a specific single-well potential func-
tion which satisfes all the conditions above. For 2 & [i xc),
define

arctan(a = 1022 = In(2? = 22 +2) = 2 + 1
™

Fa) -
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Global Semantic Consistency Network for Image

Manipulation Detection
Zenan $hi @, Xuanjing Shea ©, Haipeng Chea ©, and Yingda Lyo ©

 Abstruct—This Jtter foctscs on Ioage manlpulation deteetion

o et nnrom.nnn. Existing approaches usially overlook

o directly fuse (6
teetion. Tn this Jetter, w

Addiion, or et thom tor e
rue hat the semanthe wap s the maio
o io

Under
wide range of computer vision tsks [S|-I8].recent wocks Tosed
on Convolutional Neural Networks (CNNs) are continually
used to detect image manipulations [9]. The existing methods
can be manly civided into the following two categories: 1)

based, which is only used to determine

reason for the
predictions.
Consisteocy
which is based o0 an encoder-deeoder structure. Specifcally, to
make GSCNet Inelude more global texture information which has

et “oput image has been manipalaed or not 10,111
Although this category of methods can achieve satistactory
results, they cannol recognize where the manipulated regions
are. such tha they might no be pracical i rea applications.

9
b STM:

and based, which can be used to localize
the specific gions (12). However, th of

h that

methods can achieve the desired results undu the help of some

of the same level bave semantie consisteocs results

tea-

o0 NISTH6, wnd CASIA VL0 declare that rwm«

locate the ared to the

[13].
e 14],a0d 1151 Inaddiion.

regions.
emlna mm, TS CNet can achleve oew sateof Ot art vl

ety comsnens e deep et

1. INTRODUCTION

MAGE manipulation detection is ove of the most funda-
I mental research topics in the domain of computer vision.
Which plays an important role in many practical applications.
e.g.. fake news recognition [1). bogus certificate detection [2).
and malicious rumors monitor (3], In particular, image content
manipulation is the most common type which causes pixels
of any positions in an image can be modified via various
techniques including splicing. copy-move, and removal. such
that the manipulated images and the original ones are almost
i o this end. i ion d

become  tricky problem [4].

Mamcritseeivd W 13 2020 evhed Sepener 5, 200 acepted

‘Seplembec 19. 2020, Dolc of publication Septeather 25. 2020 dune of wrrent

eom Ocber 13,2020, Ths weck et pored 1 i by e Moot
INSFC)

SN0, inp by the Moo ey Recach sad Dvciopmco Pogrse of
‘China under Gram 2018 YFRORM: 1 by she Regional Joint Fund of the.
NSFC under Graot UIDA20S7. and i pan b he 1k Provinee Scicnce

Technology Developrment Plao Project uader Grant 20190303 | MSF 1nd Grant

o eprckg 4 o ook wok D, Robeo QUL oo
(uv!lmv Haiper
i S s Shen,and Haipeg Chen e with e Key Labatoy
of :,.-Mk Camputation. and Knewkedge Eginceriog of Minisury of Educa-
ion. Wi Unienty, Chmun mmz Chi md Ly he College af
omputct Science, and Technology wn 1300)2, Clivg
T o b el o
Vingds Lyu bs wilh she Center for Compuicr Fundamental Education. Nlin
ity, Chamgubun 13001 2. Chin (e-mash. yly @l cdu.
ital Obiect Ideontier 10,1 J09VLSP2070.3026954

"
features and the abstiact semanic information of hi gh-lc\'el tea-
twres in CNNs, models based on the encoder-decoder structure
and long short term network segment manipulated regions with

posed| 16].[17). Within these models. manual features [18].119)
are usually used as an auiliary 1o deep featuses. Akhough the
classic encoder-decoder structure and its revisions can improve
the performance to 2 certain extent, they usually overlook the
semantic discrepancy between ditterent levels of featuse maps
In his leter. we argue hat the semanic gap among dierert
levels of

5 i Net,
which simultaneously take advontages of traditional manual
operator (k... gram matcix in this work) and the low-/high-level
NN features

Our contributions are summarized as follows: 1) We first use

ineachlevel ?

0 make the encoding feotre maps of GSCNet include mare
global texture i 2) The bi-d
LSTM is further implemented on the decndmg stage of each
layer, such that feature maps in the expansive path of the same
level have semantic consistency: 3) We achieve state-of-the-ait
results on two standard datasets with Fi score of 0.837 on
NIST16 and 0.471 on CASIA v1.0.

1. MeTHOD

Asshow in Fig. 1, the proposed GSCNet consists of two main
parts: encoding network. and decoding network. The encoding
network is based on a hackbone network. in which the Gram
Block (GB) (1] is used to extract the global and long-range
contextual information in each level of feature maps. Besides.

10709908 D 2020 [EEE. Pessonl use is permitied. but repablicationredistribution roquices (EEE pecmission,
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WUt ot DOUBLE ATTENTIVE PRINCIFLE COMPONERT ANALYSIS

11 METHODOLOGY
Suppase 2™ 28 Yand {2122} as the nor-
‘mal images and outliers respectively, an ideal PCA model can
be wrten s ollows:

-
win Z lz™ -UU 2™ |} s UTU -1 (3
where |z, - UU’:, [3 (1< < 2) is an effective distance
‘metric for normal images. However, it is hard to obiain the prior-
Knowledges for outliers in practice. In this letter, we follow that
the images with /(-lugest reconstruction error ae outlers, then
problem (3) can be waitten as follows:

e
wjin 3 iz - UU a5 52 UTU [
=

which seems suange and hard to optimize due 10 the sort oper-
ator. But inuwitively, problenn (4) is equivalent to

i e - VU i[5
33,‘..;“. llzy - UU 2,5

SCUTU-L Y w -
=
where w; i the bool variable to detect outliers. Furthermote,
problem (5) can be written as a double-attentive formulation
according to the following theorem
Theorens 1: When 1, is ubl:lined. we denote the ¢-th se-
lected normal images (g — NY) 2 {i). then
problem (5} neqnal o falow ot e oo o U1

Ko ey 5

g v
Jin Zl ajiy Plleg - UU 2y 13

P
SLUTU-L Y o —1ag 20 )
=

wwhece a7 is the leamt weight for the {{)-th selected normal
image and 1 — § is the smooth paiameter:

250} I8 2 set of non-negative
a5 the weight of z; in

Lewna 1: Suppose {ry. 3.
values,

rlwemvl—

oot Tn ):wblem (6), we have Y3 gy = Loy
0. Based o0 $°13% iy — 1 and Cauchy-Schwarz inequal-
ity [27], we have the following derivations:

Dl - UU 2

oK
|2y - UU zie \ﬁ} ( > "4-)
=t

2

(add |:(',—UU'zc.\I1) . s
{
where the equality-(1) will hold when
as x By = UU 2yl ®

¥ agy = Loy, 2 0and Lemma | we have
- VU2,
Tyl - Ul g |3
Intuitively. Eq. (9) is the optimal solution of problem (6) ...
;. Combining Eq. (9) with problem (6). we have

wew [
; UU el Y —
usn(z |z}, - UU’ zm\b) st UTU=1 (10)

which s equivalent to problem (4) w.-t. U
According to Theorem 1, Broblem () performs a double-
ciple component analysis (DA-PCA) model. and
‘plotted into Fig. |. Formally, the first layer of
DA-PCA performs a hardibinary) attention-based mechanism.
i, problem (9) 1w.r.t. wy. where u, detects K outliers and
severs the connections with outliers. The second layer of DA-
PCA performs a soft(smooth) attention-based mechanism, Le..
problem (6) w.r.t. a,, we find that o assigns the weight for
each normal images adaptively according to Eq. (9). Above all.
the final projection mauix via DA-PCA model is determined
by the normal images with effective metsic. which s an ideal
tformulation of PCA.

[

[ OPTIMIZATION

In this letter, we propose an iterative algorithm 1o solve
problem (5) and present some useful conclusions based o the
proposed algarithm.

When U is fixed. problem (5) becomes:

«

winy ", - o, - U0zl

Kow, € (0.1} )

For convenience, we denote fi(U) as |2, — UU” 2| § and
fi5{U}is the j-th smallest value of all f;(U). ¢ € 1 — N. Then

12 can be calculated as

i = Bool (fAU) < fix-w{UN )
where Bool{z € y) — Lif » < y. else Bool{z £ ) — 0.
‘When 1 is fixed, problem {4) becomes:
win Y wicflz - U0 25 st U0 -1 13)

The Lagrangian function of problem (13) can be written as:

»
=3 ez - UU x|+ Te(ET U7 U - 1))
=

<14)
where H is the Lagrangian multiplier for constraint UTU — 1,
then the Kaush-kuhn-tucker(KKT) conditions condition [28] of

problens (13) 1er-2. U can be written as:

Z Mz - UU 2|3 _ ATH{H'(U"U - T))
28]

=1

(5)

Ausharized icensad use imed (6: UNIVERSIDADE DE BRASILIA. Dovloaded an ?

additions and bit shift operations, which simplity the compu-
tation of the transtorm matrices. Similarly, in [16] the DCT ap-
proximation matrices employed in the H.265 (HEVC) standard
e presented. The H.265 standard employs 4 fixed-size matrices:
to compute 4 x 4, 8 x 5, 16 x 16, and 32 x 82 tiansforms.
These matiices are {nteger approximations of the DCT. however
since they are not perfectly reversible they cannot be employed

inlossl di present low distonti
In order to obtain pioper approximation of the DCT trans-
form, which can be used in lossless coding applications, some
eoquiesones ot bo fullld [17]: e ot ead oot ofche
transfoim must be integer, thal is nieger-to-integer mapping.
the transform must be uvemble that 55 bl]e:lwe In addition
10 those requirements ected thal the transform matoix
ention e ol bary.valued. which meat Uy can be repre-
sented 25 dy, o 27, with & € 27ty € Z. and 2. being
the indexes of the Uanstorm matrix entries A popular method to
obtain integer DCT approximations (for matrices whose sizes
we 2%,k € Z+)is the bfting scheme | 18], which produces direct
it such

as the Fast Fourier Transform (FFT).

p

lifting scheme for any N x ' tull-rank transform matsix. This

approach, decomposes the original transform matcix into three

wiangulay matrices, which are approximated into binary-valued

matrices. resulling in a binary-valued appioximation of the
. o

the first one related with the conditioning of the iniermediate
matrices that can cause the method to diverge: and the second
celated t0 the large approximation errors induced by uuncation
that reduce the matrices transform coding gain
This
DCT matrices based onthe iangolarmatrx scheme |12] forany
A x N dimension, wih simplications ocused oa the DCTIL
10 handle the der-
cors and the matrix conditioning, increasing the mlmbxhly inthe
generation of the transform matrices. The proposed algorithm
features a trade-ofY between transform coding gain and bit depth
of the fixed-point representation.

1. PROPOSED METHOD

This section describes the method hexein proposed to deter-
mine the integer reversible DCT and its inverse matrices based
on triangular mauix scheme (available as a Madab function
in the supplemental material). As this work focus on providing
matrices 1o be used in transtorm-based coding. the proposed
method is limited to square uanstorm matrices. If transforms
of non-square image blocks (N x A7) me required (as in some
partitions of VVC (5]}, it is possible to perform a composition
of two DCT approximation matrices (N x N and 3/ x ).
pre iy the image block by the N x N and past. iy
by the A x 3/ matrix, resulling in an N x A/ block.

A, Square DCT Matrix Adapration

The conversion is performed by starting with a ¥ x N DCT-
1 matrix G and decomposing this matsix as G — DT, T, T,
where D is a diagonal N x N matrix, T, and T; are N x N
upper tiangular matrices. and T is an N x ¥ lower Uiangular
matrix

(EEE SIGNAL PROCESSING LETTERS, VOL. 2. 2030

Matrix D is similar to an N x N identity matrix, however,
the frst entry of D, may be ~1 depending on the size N, thus
Dy, — = where + — (1)1 After determining the matiix
D the following step is to find an upper riangular matcix
such that E — GLy. with

Gz oy [EESTRNEY
1 0 o 0
oy 1 - o
E- . .
0
1
m
and
@
o o0 1 T
o 0 0 0 1

To find the columns 1, of L, and thus all the entses of the
matcix, we can use the identity S,.b, + &, — % where

24
I
8, - : )
utned
Gunnr
and
Yzn 0
asn 0
[ zn = | “)

o

Fiom these definitions it is possible to detemine 1, —
8;'(2, — &) Then, the expression can be rewritten such that
G = ET,. where T, = L;". Since L, is an upper triangular
matix there are many efficient and simple ways to calculate its
inverse, which will also be upper triangular

Now, E is decomposed as B — F'Ts. where

1 v (U o0

21 1 (U ]

G a2 1 . ]
)

CN-LL €N-12 ENala 1 0

N N2 faa et 1

and Fis an & x N identity matsix whase first line is replaced
by [fui fux fua rom that, we get

[frafizfis .

Suw = ez el T3 6)

DE BRASILIA

Figure 1.3: Four pages from the validation set of Dataset 5, which is also the validation
set of Dataset 4. The first page is also the only page from the validation set of Dataset 6.
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Adaptive Detection of Dim Maneuvering Targets in
Adjacent Range Cells

Sheng Yon©®, Mentber, IEEE, Pia Addabbo ©, Senior Menber, IEEE, Chengpeng Hao O, Senior Member, 1EEE.
and Dacilo Otlando @, Senior Member, IEEE

Abstract—This letter addresses the deteetion problem of dim
i

fcally, it s assumed that the moving targel can appear fo wore
than one range cell withio tbe transmitted pulse train. Theo, the

va
test design procedure are joindy explotied (© conoe up with X
adapive d ble of estimatiog the tung
reluted 10 the target migration. The computational complexity
o the pro tors s also studied and suitably reduced.
Simulation results show the effectveness of the newly proposed
solutloos lso for a Vimited set of (raining data and in comparison
with suitable counterparts.

Index Terms—Aduptive detection, dim maneuvering targets,
radar,

seminal paper [9). the suthors propose a detection architecture
that jointly processes adjacent range cells to lake advantage of
the spillover limiting the aforementioned degradation

The third situation arises from the need of increasing the
signal-to-inteference-plus-noise ratio (SINR) in the case
of dim targets to guaantee reliable detection performance
and high-quality trger parameter estimates. To this end.
radar systems tansmit long bursts of pulses and integrate
the comesponding backscattered energy. However, dim
‘maneuvering targets can move through more than one range cell
within the inegration time interval |10, As a consequence, i
prevents schemes from exploiting all the

‘range cell migration, sonar.
1. INTRODUCTION

DABTIVE detection is a task of primary concern in radar
A and sonar systems (1), 12]. As a matter of fact, in the ast
decades. 5 lauge number of architectures have been developed
for the detection of target echoes competing against noise and
clutter interference by means of asray of sensors. The common
aspect for most of these contiibutions is the assumption that the
target is point-like and located in the cell under test (CUT) only
ata given range.

However, there exist at least three cases where the above as-
sumption may be na longer valid. Specifically. the first situation
concerns high-resolution radars (3] and somars [4] which can
resolve a Guget into several scattering centers occupying several
consecutive range cells. In fact, a large amount of detection
algorithms for range-spread target can be found in the open
lterature (see |31-{7) and refesences therein).

The second case is rekated to the spillover of taget energy
between consecutive matched fller samples which makes a
point-like target extended in range (8] yielding a detection per-
tormance degradation when ouly one sample is processed. In the

Mamsriptseeivd ey 18. 01 ocoepicd Febaary 19, 2021 Doe
of publication Murch 5. 2021; dote of cuurent version Apnl 16. 2021, This
ork was supponed by the Nkt out S v Foion o Ctnt s
Gront 61971412

backscattered enerey. since they are fed by the range bin under
test only and. hence. do not account for the trget migeation (o
ee bin Therefore, with cange

cell migration (RCM) become of primary importance. A widely
used tool for RCM compensation is the Keystone transiorm
which has been applied in several fields as. for instance, radar
detection | 10] to mitigate target RCM due to radial velocity and
acceleration, synthetic apecture radar imaging [11). 12] whete
the RCM is caused by linear range walk and range curvature.
In [13]. 3n alemative method relying on adjacent correlation
d todetect

in[14].nnovative
one-step and two-step detection aichitectures e conceiv
for dim maneuvering targets with and without estimating the
slow-time index of the target signal in the CUT and bosed
wpon the genexalized information coterion [15). Remarkably.
such architectores can avercome conventional detectors as the
generalized adaptive matched fiker (GAME) [10] af the price
of an increased computational complexity.

In this letier, we focus on the detection of dim maneuver-
ing targets in the presence of RCM and further improve the
results of [14] by devising innovative robust (with respect (o
the amount of training samples) architectures. To this end.
we do not consider any possible phase/amplitude relationships
hetween consecuive pulses snd explot, at the design siage.

ud approviig i fov publicution was D& Guang Hus. (Curresponding sathor
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the Bayesian (BIC) rule [15]. which is an

asymptotic approximation of the optimal maximum 3 posteriori

rule, to identify the pulse echoes containing target components

over two consecutive range cells. Then, we conceive two-step
TSA)and.

GLRT-based designcriteria. where GLRT stands for generalized

summarized as follows: 1) unlike [14), all the samples from two

10709908 D 2021 [EEE. Pessonl use is permitied. bt epabliation/redistrbution roquices (EEE pecmission,
See )

2020 EEE Xploe.

AN et ol ADAPTIVE DETECTION OF DIM MANEUERING TARGETS IN ADIACENT RANGE CELLS =

1L DESIGN ISSUES

o this section, we devise two classes of architectures for
problem (3). The first class pursues a natural approach which
consists in estimating the pulse indices conesponding to the
sange transition (Section LA} and then in applying decision
schemes based upon such estimates (Section 11LE). It follows
that such aschitectures consist of two stages (TSA): the first
stage solves the RCM problem whereas the second stage is
sesponsible for target detection. The second approach (OSA}
jointly performs the above operations using a penalized GLRT-
based decision scheme (18] (Section I1.C). Even though from
a conceptual point of view these approaches share the same
operations. from an operating point of view they can lead to
different performance as showa in Section 1V.

A. First Stage of TSA: RCM Estination

The preliminary stage of the TSAs is aimed at estimating
parameters ¢ and /i using two BIC-based selection rules. More
precisely. the first ule is devised according to the two-step de-
sign paradigen that consists in applying well-established design
criteria assuming that some parameters are known (first step)
and then ceplcing them with suitable estmates second siep)

adaptive radar detection. Thus, lollowmg s ine of reasoning,
we first assume that M is known and derive the BIC rule as
follows
win (=210 f14(Z5Guan M)+l a0y . (4
wih,

where Z — lz‘ zﬂ € QX
Ml ) : "
B AR R B (MLE) of a-
[0 o afLO a2 t=1) . a2+ 1) o known
M (161, fi(Z: . M) is the probability density fonction
(PDF} of Z undec Hy. and pu(t. ) — 20 + h) AN, N,)
is the penalty tem accounting for the number of vnknown
pasameters (o) and the volume of data. Finally, replacing A

with §/K — RR' /& 1o achieve adaptivity and neglecting the
irmelevant constants, the final optimization problern 1s
i {- 2KAulZ. ) + il l-)}. 5
wihLN,

where Ay(Z.8) — T4, g 2 e Y
The second selection rule consists in appiyiug the BIC crle
rion over Z and R to obtain

win{ =20l (R VL) (21, Myl alE 1)

N,

©
whete  Sip— RR!+ 5 A Deei T,
e 2tk Mu = SLaJEN, + K0+ T,

(15 = Gun g (DUNE0 = s, [9) (2N, + K) —
T 2 — Gy, ()0} (E2 = Guas, , (0)0)'/

(2N, + K} is the MLE of M based upon Z and R under
Hen. FUR: M) is the PDF of R computed at N, ;. and
pall.h) = {2+ 20 + N2) (4N, N, + 2N, K) is the penaley
term. i possible (o show that (6} is equivalent to

{(4. Vo — 2K) I dot{ M n) + pa(l m}, @

Notice that the above equation requires the computation of
s, and. hence, the inversion of S, , for each admissible
pair (. ). To reduce the computational load of (7). we replace
5, with S, which does not 1equire to be updated. The reduced-
complexity BIC rule is given by

(AN, + 20 ndet (M) ) + pull 1)) (8)

min
oy
nitm

wheie M, — rgute —

Bl il s b

I is worth
noticing that the pnu fobe paid o the reduced compuiational
load ion especially when

are limited as shown in Section 1V.

B TSA Anchirectures

The second (de(u:lmn) stage of TSAs exploits the estimates
of tand I denoted by { and J, respectively. provided by the fust
stage and the following GAMF-like [16] decision rule

Hip
A28y 2 g ©

whese 1 s the Wresbold” set according 10 the value of the
probability of Prayand Ars{ Z.

after (5). Thus, we can obtain two nmhne:mm\ by r:xc:ldmg
(9) with (5) (TSA-1) and (9) with (7) (TSA-2). In addition,
the lett-hand side of (9} can be suitably modified to make it
Jess sensitive 0 the amount of secondary data by replacing S
with S}, (see the de atter (6)). which

data drawn from those associated (o the range cells under test
Theretore. the modified decision rule is

Hy

Ail(Z-Si3) 2 0
The above decision rule can be coupled with (5) and (8) o
obtain the modified TSA-1 (M-TSA-1) and modified TSA-2
(M-TSA-2), respectively.

)

©. OSA Anchirectures

The one-stage detection wchitectures 1ely on a “penalized

generalized likelihood ratio est” | 18], whose penalty term is
BIC rul it

RCM estimation without intermediate steps. Again, we develop

1wo OSAs that differ in the way secondary data are incorporated

into the decision statistic. This first architecture (OSA-1) relies

Mereafler. we denote by 5 the genceic detection treshold.

DE BRASILA

Figure

2020t EEE Xplore.

consecutive rauge cels occupied by the targe are processed (0

signal
components are exploited for the estimation of the ntererence
covariance matrix (ICM) lending new architectures a robustness
tothe secsi

10 avoid a continuous computation of inverse matrices saving
compatational resources

11 SYSTEM MODEL AND PROBLEM STATEMENT

Let' us consider a (radar or sonar) system equipped with a
linear array of N, identical and uniformly distributed sensors
(the inter-element spacing d is half of the operating wavelength,
X say, to avoid spanal aliasing). Moreover, denote by N, pulses
belonging (0 the transmitied pulse train. Then, for a point-like
target, the signal received by the mth antenna element can be
written as [14]

Ny-1

) = R{n D] (r -nT -+
=0
X A fait 2L, } ®

where o € C accounts for target and channel effects, T > 0 is
the pulse repetition time (FRT). p{f) is an unit-energy pulse
wavetorm, 7, is the round-trip delay of the targel, v, is the
target radial velocity, ¢ s the waveform velocity of propagation,
.. is the carier trequency, £ s the target Doppler frequency,
and v, — =% is the spatial frequency with v the nominal
targetangle of arvival (AOA). After matched filtering and digital
sampling. for the qth range cell (fast time) which s the target
location at £ — 1 we obtain the data sequence as (9]

Yl g} — eIy (m —{q-1)T,

vl /‘) T 8 oy gt ()
where & Q= (L Ny} ioderes the slow i
43-1) accounts for the range migration, X,(-.-)
he guity fooction of plt). T, is

<ded ‘mailobe widh of the zer0-Doppler cut of ,\'
and (g g) = aed2r BN X (g, — (g =T, +

1}22T. f,). Equation (2) h\ghhym that, in the case n!
maneuvering targets and for Jarge values of g (and, hence, of
Ny). target response (ambiguity function value) associated with

e
of the ambiguity function has migrated to the next contiguous
cange bin, namely the RCM has occurmed. [n what follows.

" Watation: Tn whas follows. veetors and mairices we denoncd by holdface
Lo cuscundupper-ae s, pectcly. -1 - and () dene e
e
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S Cell. s

bz

s

Fig ). Datu trces n the presence of ROM
for simplicity and without loss of generality, we set g — 1
and, hence, the next contiguous range bin is indexed by ¢ — 2
Now, let us define by Z: = [zi1 zi2... ..z, € €57 %
¢ = 1.2, the data matrix corresponding to the ith range bin
whose columns contain the rewrns from the N, spatial
channels. Then, if we assume that the gt echo from range
bin 1 contains target components and that the same echo from
range bin 2 is representative of intecierence only, we can wite
m—[ml @ (L = 2 a(lgv +
B R Ny ,,:m,.x,.uv
b g i spatial steering vector depending on
4 and the ni,s are the interference components. When
the RCM occurs for some pulse index §. previous situation
changes. namely 2, ; — 1 ; is representative of interterence
only whereas 225 — a(2.4)u +n2 also contains target
components. A pictorial description of the RCM is shown
in Fig 1. where the blue squaces dencte daa with targec
and white o

echoes. In the first ¢ pulses. the target s in the first cell, then, it
moves to the second range cell

‘Therefore, in order to account for possible range migration. it
is reasonable to process the returns associaled with (at Least) two
consecutive range cells. Summarizing, the detection problem
at hand can be formulated in terms of the following multiple
hypothesis test

B M 2y~ M,
221" Ny L YAl O30
220404l T R2iphe) -
228, T M2N,
Hipt 42—l o dny,.
g —a{l. v+ ng
221 — a2 L+ Lo+ gy @
z; = {2 I+In)v+ Naten
k=L
B mu i, R,
Hy N2,

where R — [ry ... 7| are the training data, 1 € { <
1€ h < Np—1(or L~ Ny and & —0 when the RCM dons
ot oceur) are unknown [ntegecs indexing which vectors con-

s he st of complcx nwmices, 4ad C e el puceal (1« ,\/1
A= indicucs
the ceal part of » complcx. puenber, uad the mw £ denoles 4 definiion. The
ik eny o 3 vecor s it by 2 and  dencs the mul vt whose
Aize depends the context. Finully, we wrle 2 ~ CAy (. M i 2 b
4 complex cireular -dimensional ramal seclor with mean m sed pasitive
definie covariance auirix

tain Lz ~ CN, (0. M) are sa-
tistically independent interference vectars. As for a(1,1). i —
T Aand (2 ) i == 1.....0 + h, they ace modeled ac-
cording to the Swerling It model [17]. Finally, note that when
Hy s declared. the nominal target AOA &' can be used as a
prelininary estimate of the actual target AOA.

Aumonzed DE BRASILI

on the GAME [16] and is given by

n,
{Am«z S
o

max

an

The second architecture (OSA-2) is obtained by applying the
logarithm of the GLRT over both primary and secondary data.
namely

Diax
¥

{wm» N fi(Z: 6 )] - M}

P
"

fm,\x{lu[](ﬂ:l\{)ﬁ;(Z‘hl)l} FER)
Y i

where fi(Z: M} is the PDF of Z under Hy. Itis possible to
show that (12) can be recast as

1 “(S—ZZ')
et 5 2
1 pallh)
* "91'“(‘"4"11»1,,,) m) AU

K,

[V, PERFORMANCE ASSESSMENT

In this section. we investigate the behavior of the proposed
architectutes in terms of probability of detection (Py). com-
putational complexity, and mean valve of misclassified pulses
(MVMP) defined as the sum of the number of pulses containing
target components but classitied as noise and the number of
noise-only pulses classified as taget (s meuic is estimated
only for the TSAs since OSAs mheit the ule:nnncapablllnu of

i 142022 00 EEE xplore.
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(6} £y versus SINR without RCM.

Fig. 2. Detection und extimation perormance.

superlor peciormance over the other detectaus. Finally. we com-
pare the considered architectures from 2 computational point of
view using the usual Landau notation. As expected, the GAMF
is the architecture with the lowest computational load since it
does not involve the determinant computation, data-dependent
normalizaion. and disciete seaich: it computational load is
givenby O(NY! = NZK + 2N, ,,). The GASD with complex-
ity O(ND + NHK = 2N,)) is slightly more time demanding
han the GAMF due 0 the data-dependent nomalization and

BIC) likelihood ratio test

lge of . #.and M (clai detcton), e GAMF
and the generalized adaptive subspace detector (GASD) [16]
both over data from two range cells. and the best detector of [ 14]
defined by (10) and (1) (25-GIC) and fed by data from the
first range bin. Notice that the clairvoyant detector represents an
upper bound fo e performance.

i the high-resolution radar

target are: f, — 10,0 GHz, bandwidth 500 MHz range resolu-
tion 0.3 m. PRT = 1 ms. M, = 16, N, — & and v, — 30 mis.
In Wis scenasio, the point-like target will occupy mote than
one range cell during a pulse integration interval. The related
curves of Py versus SINR (defined as in | 14]) for Pr, — 1077,
K = 12 < 2N, are shown in Fig. 2(a). [t wrs out that M-TSA-
overcomes the other competitors with a gain of more than
9 dB over the GAMF at P, > 15, The TSA-2. OSA-2, and
M-TSA-2 follow the M-TSA-1 and with P, values contained
in an interval of about | dB. The 25-GIC experiences a loss
of 4 dBs with respect 1o M-TSA-2. The MVMP curves versus
SINR are shown in Fig. 2(b). Inspection of the figure highlights
that for SINR values lower than 10 dB. architectures based oo
(5) retuin better estimation results than TSA-2 {rule (7)) and
M-TSA-2 (rule (8)). When SINR > 10 dB values, (7) and (8)

shares a i ith OSA-1 and TSA- 1, that.in tum.
are O(N) + NZK + 2N, N, + L N2). Proceeding in order of
increasing mmpl:my we obiain ot M- TSA-1

2 e O N2(K + 2,)) and O(IN:!

TSA-2 which are O(NING + 2NN} +

i+ 3N N) As

matter of fact, they require the computation of A7, and its

determinant foreach ¢ & €, a0d /i = £+ 1l < N, Summasizing.

the analysis singles out the M-TSA-I as the architecture that
" i Comonti

periormance and computational load.

V. CancLusion

‘This letter focused on the adaptive detection of dim maneu-
vering tasget in the presence of range migration. In this context.
data containing the returns from two adjacent range cells have
been exploited to conceive six different decision schemes with
different computational requirements that incorporate the BIC
1ule to estimate the range migration indices. The performance
TSAl 1l

trade off be d

slightly outperiom (). The detection when the
RCM does not occur are shown in Fig. 2(c} for Pp = 107,
K =12, = N,,. and © — . The M-TSA-1 stll ‘guasantees

alsofor low ks may
include the design of architectures accounting for the spillover

of target energy or heterogeneous environments.

data i

Aumonzed DE BRASILIA

i 142022t EEE xplore.

[.5: First four pages from the test set of Dataset 6.
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GLCH Complementary Results

(Lossless)
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Figure II.1: Clouds of rate-complexity points with execution and final state of the GLCH
algorithm for the select functions: Alg. 2 (left column) and Alg. 3 (right column). Bitrate
is in bits per pixel and complexity is in multiply/add operations per pixel (top row),
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algorithm for the select functions in Alg. 5 (left column) and Alg. 6 (right column).
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Table I1.1: Final trees of the GLCH algorithm with the select functions Alg. 2 (a,c,e) and
Alg. 3 (b,d,f) for the different complexity measures: MAC /pixel (a,b), uJ/pixel (c,d) and
encoded model bits (e,f). Each node is represented by its hyperparameters in the order:
units in the first hidden layer, units in the second hidden layer and quantization bits, if
applicable (continued on the next pages).

(a)
parent | child 1 | child 2
10,10 20,10 10,20 (b)
20,10 40,10 20,20
’ ’ parent | child 1 | child 2
40,10 80,10 40,20
10,10 20,10 10,20
40,20 80,20 40,40
20,10 40,10 20,20
40,40 80,40 40,80
40,10 80,10 40,20
80,10 160,10 80,20
40,20 80,20 40,40
80,20 160,20 80,40
40,40 80,40 40,80
80,40 160,40 80,80
80,40 | 160,40 | 80,80
160,10 | 320,10 | 160,20
160,40 | 320,40 | 160,80
160,20 | 320,20 | 160,40
160,80 | 320,80 | 160,160
160,40 | 320,40 | 160,80
320,80 | 640,80 | 320,160
320,20 | 640,20 | 320,40
640,80 640,160
640,20 640,40
640,160 640,320
640,40 640,80
640,320 640,640
640,80 640,160
640,160 640,320
640,320 640,640
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(c)

parent | child 1 child 2 (d)
10,10 20,10 10,20 parent | child 1 child 2
20,10 40,10 20,20 10,10 20,10 10,20
20,20 40,20 20,40 20,10 40,10 20,20
40,20 80,20 40,40 20,20 40,20 20,40
40,40 80,40 40,80 40,20 80,20 40,40
80,40 160,40 80,80 40,40 80,40 40,80
80,80 160,80 80,160 80,40 160,40 80,80
160,40 | 320,40 160,80 80,80 160,80 80,160
160,80 | 320,80 | 160,160 160,80 | 320,80 | 160,160
160,160 | 320,160 | 160,320 160,160 | 320,160 | 160,320
320,80 | 640,80 | 320,160 160,320 | 320,320 | 160,640
160,320 | 320,320 | 160,640 320,320 | 640,320 | 320,640
320,320 | 640,320 | 320,640 640,320 640,640
640,320 640,640

148




(e)

parent child 1 child 2 child 3
10,10,8 20,10,8 10,20,8 10,10,16
10,20,8 20,20,8 10,40,8 10,20,16
20,10,8 40,10,8 20,20,8 20,10,16
40,10,8 80,10,8 40,20,8 40,10,16
40,20,8 80,20,8 40,40,8 40,20,16
40,40,8 80,40,8 40,80,8 40,40,16
80,20,8 160,20,8 80,40,8 80,20,16
80,40,8 160,40,8 80,80,8 80,40,16
160,20,8 | 320,20,8 | 160,40,8 160,20,16
320,20,8 | 640,20,8 | 320,40,8 320,20,16
640,20,8 640,40,8 640,20,16
640,40,8 640,80,8 640,40,16
640,80,8 640,160,8 | 640,80,16
640,160,8 640,320,8 | 640,160,16
640,320,8 640,640,8 | 640,320,16
640,640,8 640,640,16
640,640,16 640,640,32
(f)
parent child 1 child 2 child 3
10,10,8 20,10,8 10,20,8 10,10,16
10,20,8 20,20,8 10,40,8 10,20,16
20,20,8 40,20,8 20,40,8 20,20,16
40,20,8 80,20,8 40,40,8 40,20,16
40,40,8 80,40,8 40,80,8 40,40,16
80,40,8 160,40,8 80,80,8 80,40,16
80,80,8 160,80,8 80,160,8 80,80,16
160,80,8 320,80,8 | 160,160,8 160,80,16
320,80,8 640,80,8 | 320,160,8 | 320,80,16
320,160,8 | 640,160,8 | 320,320,8 | 320,160,16
640,160,8 640,320,8 | 640,160,16
640,320,8 640,640,8 | 640,320,16
640,640,8 640,640,16
640,640,16 640,640,32
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Table 11.2: Final trees of the GLCH algorithm with the select function Alg. 4 for the
different complexity measures: (a) MAC/pixel, (b) uJ/pixel and (c) encoded model bits.
Each node is represented by its hyperparameters in the order: units in the first hidden
layer, units in the second hidden layer and quantization bits, if applicable.

(a) (b)
parent | child 1 | child 2 parent | child 1 child 2
10,10 20,10 10,20 10,10 20,10 10,20
20,10 40,10 20,20 20,10 40,10 20,20
40,10 80,10 40,20 20,20 40,20 20,40
80,10 | 160,10 | 80,20 40,20 80,20 40,40
160,10 | 320,10 | 160,20 40,40 80,40 40,80
160,20 | 320,20 | 160,40 80,40 160,40 80,80
160,40 | 320,40 | 160,80 80,80 160,80 80,160
320,40 | 640,40 | 320,80 160,80 | 320,80 | 160,160
640,40 640,80 160,160 | 320,160 | 160,320
640,80 640,160 160,320 | 320,320 | 160,640
640,160 640,320 320,320 | 640,320 | 320,640
640,320 640,640 640,320 640,640
(©)
parent child 1 child 2 child 3
10,10,8 20,10,8 10,20,8 10,10,16
20,10,8 40,10,8 20,20,8 20,10,16
40,10,8 80,10,8 40,20,8 40,10,16
80,10,8 160,10,8 80,20,8 80,10,16
160,10,8 | 320,10,8 | 160,20,8 160,10,16
320,10,8 | 640,10,8 | 320,20,8 320,10,16
640,10,8 640,20,8 640,10,16
640,20,8 640,40,8 640,20,16
640,40,8 640,80,8 640,40,16
640,80,8 640,160,8 | 640,80,16
640,160,8 640,320,8 | 640,160,16
640,320,8 640,640,8 | 640,320,16
640,640,8 640,640,16
640,640,16 640,640,32
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Table I1.3: Final trees of the GLCH algorithm with the select functions Alg. 5 (a,c,e) and
Alg. 6 (b,d,f) for the different complexity measures: MAC /pixel (a,b), uJ/pixel (c,d) and
encoded model bits (e,f). Each node is represented by its hyperparameters in the order:
units in the first hidden layer, units in the second hidden layer and quantization bits, if
applicable (continued on the next pages).

(a)
parent | child 1 | child 2
10,10 20,10 10,20 (b)
20,10 40,10 20,20
’ ’ parent | child 1 | child 2
40,10 80,10 40,20
10,10 20,10 10,20
40,20 80,20 40,40
20,10 40,10 20,20
40,40 80,40 40,80
40,10 80,10 40,20
80,10 160,10 80,20
40,20 80,20 40,40
80,20 160,20 80,40
40,40 80,40 40,80
80,40 160,40 80,80
80,40 | 160,40 | 80,80
160,10 | 320,10 | 160,20
160,40 | 320,40 | 160,80
160,20 | 320,20 | 160,40
160,80 | 320,80 | 160,160
160,40 | 320,40 | 160,80
320,80 | 640,80 | 320,160
320,20 | 640,20 | 320,40
640,80 640,160
640,20 640,40
640,160 640,320
640,40 640,80
640,320 640,640
640,80 640,160
640,160 640,320
640,320 640,640
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(c)

parent | child 1 child 2 (d)
10,10 20,10 10,20 parent | child 1 child 2
20,10 40,10 20,20 10,10 20,10 10,20
20,20 40,20 20,40 20,10 40,10 20,20
40,20 80,20 40,40 20,20 40,20 20,40
40,40 80,40 40,80 40,20 80,20 40,40
80,40 160,40 80,80 40,40 80,40 40,80
80,80 160,80 80,160 80,40 160,40 80,80
160,40 | 320,40 160,80 80,80 160,80 80,160
160,80 | 320,80 | 160,160 160,80 | 320,80 | 160,160
160,160 | 320,160 | 160,320 160,160 | 320,160 | 160,320
320,80 | 640,80 | 320,160 160,320 | 320,320 | 160,640
160,320 | 320,320 | 160,640 320,320 | 640,320 | 320,640
320,320 | 640,320 | 320,640 640,320 640,640
640,320 640,640
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(e)

parent child 1 child 2 child 3
10,10,8 20,10,8 10,20,8 10,10,16
10,20,8 20,20,8 10,40,8 10,20,16
20,10,8 40,10,8 20,20,8 20,10,16
40,10,8 80,10,8 40,20,8 40,10,16
40,20,8 80,20,8 40,40,8 40,20,16
40,40,8 80,40,8 40,80,8 40,40,16
80,20,8 160,20,8 80,40,8 80,20,16
80,40,8 160,40,8 80,80,8 80,40,16
160,20,8 | 320,20,8 | 160,40,8 160,20,16
320,20,8 | 640,20,8 | 320,40,8 320,20,16
640,20,8 640,40,8 640,20,16
640,40,8 640,80,8 640,40,16
640,80,8 640,160,8 | 640,80,16
640,160,8 640,320,8 | 640,160,16
640,320,8 640,640,8 | 640,320,16
640,640,8 640,640,16
640,640,16 640,640,32
(f)
parent child 1 child 2 child 3
10,10,8 20,10,8 10,20,8 10,10,16
10,20,8 20,20,8 10,40,8 10,20,16
10,40,8 20,40,8 10,80,8 10,40,16
20,40,8 40,40,8 20,80,8 20,40,16
40,40,8 80,40,8 40,80,8 40,40,16
80,40,8 160,40,8 80,80,8 80,40,16
80,80,8 160,80,8 80,160,8 80,80,16
160,80,8 320,80,8 | 160,160,8 160,80,16
320,80,8 640,80,8 | 320,160,8 | 320,80,16
320,160,8 | 640,160,8 | 320,320,8 | 320,160,16
640,160,8 640,320,8 | 640,160,16
640,320,8 640,640,8 | 640,320,16
640,640,8 640,640,16
640,640,16 640,640,32
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Annex III

GLCH Complementary Results
(Lossy)
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Figure II1.1: Clouds of loss-complexity points, with emphasis on the parent nodes found
by the GLCH algorithm, using the select function in Algorithm 2. The loss is equal
to R+ AD, where X is equal to 2552 x 0.005 (top row), 2552 x 0.01 (middle row) and
2552 x 0.02 (bottom row), R is the rate in bits per pixel, and D is the distortion in mean
squared error, with the pixel values normalized between 0 and 1. Complexity is given in
number of parameters (left column), and in number of FLOPs (right column).
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Figure I11.2: Clouds of loss-complexity points, with emphasis on the parent nodes found
by the GLCH algorithm, using the select function in Algorithm 3. The loss is equal
to R+ AD, where X is equal to 2552 x 0.005 (top row), 2552 x 0.01 (middle row) and
2552 x 0.02 (bottom row), R is the rate in bits per pixel, and D is the distortion in mean
squared error, with the pixel values normalized between 0 and 1. Complexity is given in
number of parameters (left column), and in number of FLOPs (right column).
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Figure II1.3: Clouds of loss-complexity points, with emphasis on the parent nodes found
by the GLCH algorithm, using the select function in Algorithm 4. The loss is equal
to R+ AD, where X is equal to 2552 x 0.005 (top row), 2552 x 0.01 (middle row) and
2552 x 0.02 (bottom row), R is the rate in bits per pixel, and D is the distortion in mean
squared error, with the pixel values normalized between 0 and 1. Complexity is given in
number of parameters (left column), and in number of FLOPs (right column).
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Figure I11.4: Clouds of loss-complexity points, with emphasis on the parent nodes found
by the GLCH algorithm, using the select function in Algorithm 5. The loss is equal
to R+ AD, where X is equal to 2552 x 0.005 (top row), 2552 x 0.01 (middle row) and
2552 x 0.02 (bottom row), R is the rate in bits per pixel, and D is the distortion in mean
squared error, with the pixel values normalized between 0 and 1. Complexity is given in
number of parameters (left column), and in number of FLOPs (right column).
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Figure II1.5: Clouds of loss-complexity points, with emphasis on the parent nodes found
by the GLCH algorithm, using the select function in Algorithm 6. The loss is equal
to R+ AD, where X is equal to 2552 x 0.005 (top row), 2552 x 0.01 (middle row) and
2552 x 0.02 (bottom row), R is the rate in bits per pixel, and D is the distortion in mean
squared error, with the pixel values normalized between 0 and 1. Complexity is given in
number of parameters (left column), and in number of FLOPs (right column).
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Table III.1: Points of the loss-complexity clouds that were parent nodes during the exe-
cution of the GLCH algorithm with the select function Alg. 2 for X = 0.005 (top row),
0.01 (middle row) and 0.02 (bottom row) and for complexity measured as number of pa-
rameters (left column), and number of FLOPs (right column). Each node is represented
by its hyperparameters in the order: number of layers of the encoder and the decoder,
number of filters of all layers except the last of the encoder, and number of filters of the
last layer of the encoder.

(a) (b)
node | 10° parameters loss node | 10'° FLOPs loss
3,32,32 0.114 1.254 3,32,32 0.171 1.254
3,96,32 0.668 1.241 3,96,32 1.141 1.241
3,128,32 1.112 1.226 3,128,32 1.941 1.226
3,128,64 1.319 1.185 3,128,64 2.046 1.185
3,160,32 1.666 1.168 3,160,32 2.950 1.168
3,192,32 2.330 1.157 3,192,32 4.170 1.157
3,224,32 3.105 1.131 3,224,32 5.599 1.131

(c) (d)
node | 10° parameters loss node | 10 FLOPs loss
3,32,32 0.114 2.274 3,32,32 0.171 2.274
3,32,64 0.167 1.953 3,32,64 0.197 1.953
3,64,32 0.336 1.855 3,64,32 0.551 1.855
3,96,32 0.668 1.842 3,96,32 1.141 1.842
3,96,64 0.824 1.838 3,96,64 1.220 1.838
3,128,64 1.319 1.825 3,128,64 2.046 1.825
3,160,64 1.924 1.803 3,160,64 3.082 1.803
3,192,64 2.639 1.742 3,192.64 4.327 1.742
3,224.,64 3.466 1.709 3,224,64 5.782 1.709

(e) (f)
node | 10° parameters loss node | 10 FLOPs loss
3,32,32 0.114 3.186 3,32,32 0.171 3.186
3,64,32 0.336 3.094 3,64,32 0.551 3.094
3,96,32 0.668 2.851 3,96,32 1.141 2.851
3,160,32 1.666 2.520 3,160,32 2.950 2.520
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Table II1.2: Points of the loss-complexity clouds that were parent nodes during the exe-
cution of the GLCH algorithm with the select function Alg. 3 for X = 0.005 (top row),
0.01 (middle row) and 0.02 (bottom row) and for complexity measured as number of pa-
rameters (left column), and number of FLOPs (right column). Each node is represented
by its hyperparameters in the order: number of layers of the encoder and the decoder,
number of filters of all layers except the last of the encoder, and number of filters of the
last layer of the encoder.

@ (b)
node | 10° parameters loss node | 10'° FLOPs loss
3,32,32 0.114 1.254 3,32,32 0.171 1.254
3,96,32 0.668 1.241 3,96,32 1.141 1.241
3,128,32 1.112 1.226 3,128,32 1.941 1.226
3,128,64 1.319 1.185 3,128,64 2.046 1.185

(c) (d)
node | 10° parameters loss node | 10'° FLOPs loss
3,32,32 0.114 2.274 3,32,32 0.171 2.274
3,32,64 0.167 1.953 3,32,64 0.197 1.953
3,96,64 0.824 1.838 3,96,64 1.220 1.838
3,128,64 1.319 1.825 3,128,64 2.046 1.825
3,160,64 1.924 1.803 3,160,64 3.082 1.803
3,192,64 2.639 1.742 3,192,64 4.327 1.742
3,224.64 3.466 1.709 3,224.64 5.782 1.709

(e) (f)
node 10°% parameters  loss node 101 FLOPs loss
3,32,32 0.114 3.186 3,32,32 0.171 3.186
3,64,32 0.336 3.094 3,64,32 0.551 3.094
3,96,32 0.668 2.851 3,96,32 1.141 2.851
3,160,32 1.666 2.520 3,160,32 2.950 2.520
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Table II1.3: Points of the loss-complexity clouds that were parent nodes during the exe-
cution of the GLCH algorithm with the select function Alg. 4 for X = 0.005 (top row),
0.01 (middle row) and 0.02 (bottom row) and for complexity measured as number of pa-
rameters (left column), and number of FLOPs (right column). Each node is represented
by its hyperparameters in the order: number of layers of the encoder and the decoder,
number of filters of all layers except the last of the encoder, and number of filters of the
last layer of the encoder (continued on the next pages).

@) (b)

node 10% parameters  loss node 10 FLOPs  loss
3,32,32 0.114 1.254 3,32,32 0.171 1.254
3,64,32 0.336 1.318 3,64,32 0.551 1.318
3,96,32 0.668 1.241 3,96,32 1.141 1.241
3,128,32 1.112 1.226 3,128,32 1.941 1.226
3,160,32 1.666 1.168 3,128,64 2.046 1.185
3,192,32 2.330 1.157 3,128,96 2.151 1.208
3,224,32 3.105 1.131 3,128,128 2.256 1.206
3,224.,64 3.466 1.184 4,128,128 2.360 1.247
3,224,96 3.826 1.215 4,160,128 3.606 1.241
3,224,128 4.186 1.213 4,160,160 3.639 1.241
4,224,128 6.796 1.204 4,192,160 5.153 1.221
4,224,160 7.157 1.202 4,192,192 5.192 1.240
4,224,192 7.517 1.190 4,224,192 6.975 1.190
4,224,224 7.878 1242 | | 4224224 | 7.021  1.242
4,224,256 8.238 1.283 4,224,256 7.067 1.283
4,224,288 8.598 1.355 4,224,288 7.113 1.355
4,224,320 8.959 1.288 4,224,320 7.159 1.288
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(c) (d)

node 105 parameters loss node 10'° FLOPs  loss
3,32,32 0.114 2.274 3,32,32 0.171 2.274
3,64,32 0.336 1.855 3,64,32 0.551 1.855
3,96,32 0.668 1.842 3,96,32 1.141 1.842
3,96,64 0.824 1.838 3.06,64 1220 1.83%
3,128,64 1.319 1.825 3,128,64 2.046 1.825
3,160,64 1.924 1.803 3,160,64 3.082 1.803
3,192.64 2.639 1.742 3,192.64 4.327 1.742
3,224,64 3.466 1.709 3,224,64 5.782 1.709
3,224,96 3.826 1.735 3,224,96 5.966 1.735
3,224,128 4.186 1.780 3,224,128 6.149 1.780
3,224,160 4.547 1.812 3,224,160 6.333 1.812
3,224,192 4.907 1.847 3,224,192 6.516 1.847
3,224,224 5.268 1.860 3,224,224 6.700 1.860
3,224,256 0.628 1.881 3,224,256 6.883 1.881
3,224,288 5.988 1.947 4,224,256 7.067 1.927
3,224,320 6.349 1825 | | 4224288 | 7113 1.946
4,224,320 8.959 2.150 4,224,320 7.159 2.150
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© G
node 105 parameters loss node 10'° FLOPs  loss
3,32,32 0.114 3.186 3,32,32 0.171 3.186
3,64,32 0.336 3.094 3,64,32 0.551 3.094
3,96,32 0.668 2.851 3,96,32 1.141 2.851
3,128,32 1.112 2.862 3,96,64 1.220 2.951
3,160,32 1.666 2.520 3,128,64 2.046 2.780
3,192,32 2.330 2.691 3,160,64 3.082 2.749
3,192.64 2.639 2.568 3,192.64 4.327 2.568
3,192,96 2.949 2.582 3,192,96 4.484 2.582
3,224,96 3.826 2.636 3,192,128 4.642 2.736
3,224,128 4.186 2.699 3,192,160 4.799 2.821
3,224,160 4.547 2.696 3,192,192 4.956 2.859
3,224,192 4.907 2.764 3,224,192 6.516 2.764
3,224,224 5.268 2.941 3,224,224 6.700 2.941
3,224,256 0.628 2.847 3,224,256 6.883 2.847
3,224,288 5.988 2.829 3,224,288 7.067 2.829
3,224,320 6.349 2.960 3,224,320 7.250 2.960
4,224,320 8.959 3.343 4,224,320 7.159 3.343
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Table I11.4: Points of the loss-complexity clouds that were parent nodes during the exe-
cution of the GLCH algorithm with the select function Alg. 5 for X = 0.005 (top row),
0.01 (middle row) and 0.02 (bottom row) and for complexity measured as number of pa-
rameters (left column), and number of FLOPs (right column). Each node is represented
by its hyperparameters in the order: number of layers of the encoder and the decoder,
number of filters of all layers except the last of the encoder, and number of filters of the
last layer of the encoder.

(a) (b)
node | 10° parameters loss node | 10'° FLOPs loss
3,32,32 0.114 1.254 3,32,32 0.171 1.254
3,96,32 0.668 1.241 3,96,32 1.141 1.241
3,128,32 1.112 1.226 3,128,32 1.941 1.226
3,128,64 1.319 1.185 3,128,64 2.046 1.185
3,160,32 1.666 1.168 3,160,32 2.950 1.168
3,192,32 2.330 1.157 3,192,32 4.170 1.157
3,224,32 3.105 1.131 3,224,32 5.599 1.131

(c) (d)
node | 10° parameters loss node | 10 FLOPs loss
3,32,32 0.114 2.274 3,32,32 0.171 2.274
3,32,64 0.167 1.953 3,32,64 0.197 1.953
3,64,32 0.336 1.855 3,64,32 0.551 1.855
3,96,32 0.668 1.842 3,96,32 1.141 1.842
3,96,64 0.824 1.838 3,96,64 1.220 1.838
3,128,64 1.319 1.825 3,128,64 2.046 1.825
3,160,64 1.924 1.803 3,160,64 3.082 1.803
3,192,64 2.639 1.742 3,192.64 4.327 1.742
3,224.,64 3.466 1.709 3,224,64 5.782 1.709

(e) (f)
node | 10° parameters loss node | 10 FLOPs loss
3,32,32 0.114 3.186 3,32,32 0.171 3.186
3,64,32 0.336 3.094 3,64,32 0.551 3.094
3,96,32 0.668 2.851 3,96,32 1.141 2.851
3,160,32 1.666 2.520 3,160,32 2.950 2.520
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Table II1.5: Points of the loss-complexity clouds that were parent nodes during the exe-
cution of the GLCH algorithm with the select function Alg. 6 for A = 0.005 (top row),
0.01 (middle row) and 0.02 (bottom row) and for complexity measured as number of pa-
rameters (left column), and number of FLOPs (right column). Each node is represented
by its hyperparameters in the order: number of layers of the encoder and the decoder,
number of filters of all layers except the last of the encoder, and number of filters of the
last layer of the encoder.

(a) (b)
node | 10° parameters loss node | 10'° FLOPs loss
3,32,32 0.114 1.254 3,32,32 0.171 1.254
3,96,32 0.668 1.241 3,96,32 1.141 1.241
3,128,32 1.112 1.226 3,128,32 1.941 1.226
3,128,64 1.319 1.185 3,128,64 2.046 1.185
3,192,64 2.639 1.181 3,192.64 4.327 1.181

(c) (d)
node | 10° parameters loss node | 10'° FLOPs loss
3,32,32 0.114 2.274 3,32,32 0.171 2.274
3,32,64 0.167 1.953 3,32,64 0.197 1.953
3,96,64 0.824 1.838 3,96,64 1.220 1.838
3,128,64 1.319 1.825 3,128,64 2.046 1.825
3,160,64 1.924 1.803 3,160,64 3.082 1.803
3,192.64 2.639 1.742 3,192.64 4.327 1.742
3,224.,64 3.466 1.709 3,224,64 5.782 1.709

(e) (f)
node | 10° parameters loss node | 10'° FLOPs loss
3,32,32 0.114 3.186 3,32,32 0.171 3.186
3,64,32 0.336 3.094 3,64,32 0.551 3.094
3,96,32 0.668 2.851 3,96,32 1.141 2.851
3,160,32 1.666 2.520 3,160,32 2.950 2.520
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