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ABSTRACT

As the blood flows through the body of an individual, it changes the way that light is irradiated by
the skin because blood absorbs light differently than the remaining tissues. This subtle variation
can be captured by a camera and be used to monitor the heart activity of a person.

The signal captured by the camera is a wave that represents the changes in skin tone along
time. The frequency of this wave is the same as the frequency by which the heart beats. Therefore,
the signal captured by the camera could be used to estimate a person’s heart rate. This remote
measurement of cardiac pulse provides more comfort as it avoids the use of electrodes or others
devices attached to the body.

In this work we propose two algorithms for non-contact heart rate estimation using conven-
tional cameras under uncontrolled illumination. The first proposed algorithm is a simple approach
that uses a face detector to identify the face of the person being monitored and extract the sig-
nal generated by the changes in the skin tone due to the blood flow. This algorithm employs an
adaptive filter to boost the energy of the interest signal against noise. We show that this algorithm
works very well for videos with little movement.

The second algorithm we propose is an improvement of the first one to make it more robust
to movements. We modify the approach used to define the region of interest. In this algorithm
we employ a skin detector to eliminate pixels from the background, divide the frames in micro-
regions that are tracked using an optical flow algorithm to compensate for movements and we
apply a clustering algorithm to automatically select the best micro-regions to use for heart rate
estimation. We also propose a temporal and spatial filtering scheme to reduce noise introduced
by the optical flow algorithm.

We compared the results of our algorithms to an off-the-shelf fingertip pulse oximeter and
showed that they can work well under challenging situations.



RESUMO

Conforme o sangue flui através do corpo de um indivíduo, ele muda a forma como a luz é irradiada
pela pele pois o sangue absorve luz de forma diferente dos outros tecidos. Esta sutil variação pode
ser capturada por uma câmera e ser usada para monitorar a atividade cardíaca de uma pessoa.

O sinal capturado pela câmera é uma onda que representa as variações de tonalidade da pele ao
longo do tempo. A frequência desta onda é a mesma frequência na qual o coração bate. Portanto,
o sinal capturado pela câmera pode ser usado para estimar a taxa cardíaca de uma pessoa. Medir
o pulso cardíaco remotamente traz mais conforto pois evita o uso de eletrodos.

Neste trabalho nós propomos dois algoritmos para a estimação da taxa cardíaca sem contato
usando câmeras convencionais sob iluminação não controlada. O primeiro algoritmo proposto
é um método simples que emprega um detector de face que identifica a face da pessoa sendo
monitorada e extrai o sinal gerado pelas mudanças no tom da pele devido ao fluxo sanguíneo.
Este algoritmo emprega um filtro adaptativo para aumentar a energia do sinal de interesse em
relação ao ruído. Nós mostramos que este algoritmo funciona muito bem pra vídeos com pouco
movimento.

O segundo algoritmo que propomos é uma melhora do primeiro para torná-lo mais robusto a
movimentos. Nós modificamos o método usado para definir a região de interesse. Neste algoritmo
é utilizado um detector de pele para eliminar píxeis do plano de fundo do vídeo, os frames dos
vídeos são divididos em micro-regiões que são rastreados com um algoritmo de fluxo ótico para
compensar os movimentos e um algoritmo de clusterização é aplicado para selecionar automati-
camente as melhores micro-regiões para efetuar a estimação da taxa cardíaca. Propomos também
um esquema de filtragem temporal e espacial para reduzir o ruído introduzido pelo algoritmo de
fluxo ótico.

Comparamos os resultados dos nossos algoritmos com um oxímetro de dedo comercial e
mostramos que eles funcionam bem para situações desafiadoras.
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1 INTRODUCTION

The heart contracts rhythmically to drive nutrients and oxygen necessary for life to our cells.
The heart rate, that is the frequency by which the heart is beating, is a measure that can be used
to verify a person’s health and emotions.

As the heart beats, several characteristics of the body changes along the beating and can
be employed to detect someones heart rate, such as electrical activity, blood pressure and light
absorption by the skin. Electrocardiography (ECG) is the most precise and traditional method to
detect heart rate and some anomalies [1, 2]. It records the electrical activity due to the heart muscle
depolarization in each heartbeat using electrodes placed on the patient skin. One disadvantage of
this technique is its need to use electrodes and equipment specially build for this purpose, making
it harder for the everyday usage.

An alternative for the ECG is to use photoplethysmography (PPG) [3], a technique that uses
light-based technology to captured the changes in skin light absorption as the blood flows. This
is possible because the blood absorbs light differently than the others tissues of the skin. Hence,
as the density of blood beneath the skin changes, as a result from the heartbeats, the total light
absorption of the skin changes accordingly. Thus, methods for heart rate measurement that em-
ploy light as a signal measures the frequency by which the light emitted by the skin changes and
attribute this frequency as the heart rate.

To capture the PPG signal one can use a photodiode to produce a controlled light, place it near
the skin and capture, with a photoreceptor device, either the light that traversed the skin or the
one that was reflected by it. These devices are commonly called pulse oximeters [4]. In a less
controlled environment, it is possible to avoid the use of a photodiode and employ the ambient
light as a light source. The disadvantage is that, as the ambient light is hard or, sometimes,
impossible to control, we do not know precisely which wavelengths are actually used and their
magnitude. The advantage is that, without the used of a controlled light source, we can perform
a non-contact heart rate estimation using conventional cameras that are widely available. In this
fashion, we trade precision in heart rate estimation for comfort, as we avoid the use of electrodes
and/or sources of lights placed on the skin, and the possibility of non-contact estimation that
enable us to monitor a patient for long time periods or even to monitor someone in a concealed
way.

For heart rate estimation using videos, most methods focus their attention on the face of the
person being monitored because it has been shown that the face is a part of the body where the
changes in skin absorption is sufficiently high to be perceived by a camera, even under natural
light [5]. This is due to the fact that the skin in the face is more vascularized near the surface than
the rest of the body. From a video, a region of interest comprising the face of the person being
monitored is defined and the mean value of red, green and blue inside the region of interest is

1



computed. These mean values are commonly called as red, green and blue traces. The heart rate
is then estimated examining how this traces changes with time.

1.1 GOALS

This work aims to develop an algorithm to estimate the heart rate of human beings based on
videos captured from their face under ambient light of indoors enviroments. The algorithm should
be robust to noise and movements and capable of performing the estimation without supervision.

1.2 CONTRIBUTIONS

A number of algorithms have been proposed to estimate the heart rate using a video camera [6,
7, 8, 9, 10, 5, 11, 12, 13, 14, 15]. Our work builds on top of these algorithms, modifying some
key aspects in order to improve the overall reliability of the system. The main contributions of
this work are as follows:

• Proposed an adaptive filter in order to make the algorithm perform better when facing noise;

• Modified how the red, green and blue traces are combined, aiming to increase the number
of correct estimated heart rate. Most algorithms in the literature employ blind source sepa-
ration [10, 16, 11, 13, 14] or only the green channel [7, 8, 5, 12]. In this work we proposed
a fixed mixture of the three signals avoiding to explicit blind separate them. We justify
why this approach is similar to blind separation of the signals while avoiding artifacts that
could be introduced by the blind source separator when it is not able to correct separate the
sources;

• Proposed a method to compensate for movements while capturing the red, green and blue
traces from the face. We divided the first frame of a time block of the video in micro-regions
and track some points of them to determined how the micro-regions evolved with time. The
information of the tracking points are temporally filtered using a polynomial model and
spatial filtered using an affine transformation;

• Implemented a clustering algorithm to automatically selected the best micro-regions to be
used for heart rate estimation. Thus, the algorithm chooses the region of interest automati-
cally having an arbitrary shape.

We also showed where are the best regions on the human face for heart rate estimation. Also,
the proposed algorithm for point tracking filtering is new and could be used for other purposes.
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1.3 PRESENTATION OF THE MANUSCRIPT

Chapter 2 presents a review of the literature. We explain the Photoplethysmographic signal,
its bases and why we are able to capture it and estimate a person’s heart rate using a conventional
camera. We review skin detection algorithms that we employ in our work to define the region of
interest and we present an overview of other algorithms in the literature that estimated the heart
rate using conventional cameras.

Chapters 3 and 4 disclose the proposed algorithms. In Chapter 3 we describe the first proposed
algorithm, introducing an adaptive and a derivative filter and how the signal from the three color
channels are combined to enhance the SNR. We also present evidences that this algorithm do not
perform very well in presence of movement. Therefore, Chapter 4 describes the second proposed
algorithm, an improvement of the first to make it robust to movements. In this algorithm we divide
the frames in micro-regions and use point tracking and filtering to compensate for movements.
We also present the clustering algorithm used to select micro-regions for heart rate estimation,
automatically defining the region of interest.

Finally, Chapter 5 presents the results obtained with our algorithms, compared to the literature,
for real and synthetic signals and Chapter 6 presents the conclusion of this work.

3



2 LITERATURE REVIEW

This chapter address the main topics found in the literature related to our work. A complete
review is out of the scope of this manuscript, hence, we concentrate our attention to explain the
ideas upon which this work is based. Further literature is also found in subsequent chapters.

Section 2.1 is an introduction to the biological concepts that explain how one can estimate the
heart rate using video cameras. Section 2.2 is dedicated to explain skin detection algorithms that
are commonly used for heart rate detection based on the fact that the interest regions of the videos
is the subject skin. In section 2.3 we present the work of other authors in the domain of heart rate
detection using conventional cameras.

2.1 PHOTOPLETHYSMOGRAPHY

The signal of interest in our work is the wave produced by blood flowing through the body,
known as the photoplethysmographic (PPG) waveform [17]. With each heart beat, a pressure
pulse radiates out to the peripheral circulatory system causing significant change in the arterial
and capillary diameters [18, 3], thus increasing the volume of blood beneath the skin. As pressure
decreases, arteries return to their normal size.

Blood possesses a great amount of red cells, responsible for oxygen transportation. These
cells contain hemoglobin, that absorbs light differently from others structures of epithelial tis-
sue [19]. Skin tissue has a relatively low absorptivity for wavelengths in the visible and near-
infrared light spectrum (400–2000 nm). This characteristic is mainly due to skin pigments (par-
ticularly melanin) and water [20]. On the other hand, the absorption for the hemoglobin varies
depending whether it is loaded or not with oxygen or carbon monoxide [19]. Two of these variants
are of interest in this work: the oxyhemoglobin and de-oxyhemoglobin.

The oxyhemoglobin (Hb02) is formed when oxygen binds to hemoglobin in red blood cells
during physiological respiration, while de-oxyhemoglobin (Hb), or deoxygenated hemoglobin,
is the form of hemoglobin without the bound oxygen [19]. Figure 2.1 shows their absorption
spectra. Oxyhemoglobin has significantly lower absorption for green light at 560 nm and a higher
absorption for blue light at 480 nm.

As blood flows, the density of oxyhemoglobin and de-oxyhemoglobin underneath the skin
changes periodically. The amount of red cells near the surface of skin also changes, which alters
the average distance that light must travel before being reflected. Light, while traveling through
the skin tissue, interacts with it resulting primarily in reflection and absorption, although scat-
tering, transmission and fluorescence may also be present [21]. This affects the way that skin
radiates back the environment light.
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Figure 2.1: Millimilar absorptivity spectra of hemoglobin in the visible range. Adapted from Zijlstra et al. [19]

The most traditional way to measure the photoplethysmographic signal is to use an infrared
light source (usually a photodiode) to illuminate the skin and a photodetector placed either in
the opposite side, to capture the transmitted light, or on the same side, to capture the reflected
light [17] (see Figure 2.2). The main peripheral sites where the PPG can be obtained are fingers’
tissue pads, ears and toes where there is a high degree of superficial vasculature [22].

Light
Emitter

Photodetector Light
Emitter

Photodetector

Transmission Reflectance

Figure 2.2: Measurement of PPG signal using infrared light in contact with finger. Either the transmitted or reflected
light is used, captured by a photodetector.

The changes on the skin absorption due to blood circulation is a phenomenon that has been
known for a long time [4]. It was first described by Alrick Hertzman in 1937 [23]. He believed,
based on his observations, that the origin of the PPG signal was linked to blood volume changes.
Therefore, he named it as "photoelectric plethysmograph". The term “plethysmos” derives from
the Greek word for fullness and expressed his belief that he was measuring the fullness of the
tissue when he measured the amount of light absorption. Later researches demonstrated that he
was not far on his assumption, with results for the PPG being close to the more traditional strain
gauge plethysmograph [24], a method that provides a quantitative measure of the bloodflow.

Electrocardiogram (ECG) and PPG signals share some characteristics, as both of them origi-
nate from the heart beats. For example, they have the same fundamental frequency (the heart rate)
and the systole and diastole are visible on both of them [17]. However, their waveform differs
significantly, as it can be seen in Figure 2.3, which is related to the way how each wave travels
through the body and how it is measured. Also, one can notice a phase difference between them
due to the fact that electric waves travel much faster than pressure waves, originating different
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Figure 2.3: Schematic comparing PPG and ECG signals.

More recently, it has been shown that the PPG signal can be estimated from videos captured
with a commercial camera filming the face of the subject being monitored [13, 25, 26, 27, 8,
11]. Conventional cameras divide the input light into three channels using a color filter [28].
As the PPG signal results in a periodic variation of the reflected light spectrum, this signal can
be appreciated in all three color channels multiplied by a constant that is intrinsic to the light
wavelengths gathered on each channel of the camera. Therefore, each channel will receive an
attenuated version of the PPG signal, added to noise coming from movement artifacts, sensor
temperature (depending on the sensor quality), among other noise sources.

Wu et al. [27] used conventional cameras and Eulerian Video Magnification to make the small
changes in the skin color, due to blood circulation, visible to the naked eye. However, they did not
try to detect the subject pulse, only amplify it, but their works shows the feasibility of contactless
estimate the heart rate using conventional cameras. Later, they presented the Phase-Based Video
Motion Processing [29], a modification of the previous algorithm, dedicated to amplify exclu-
sively the motion. This new algorithm can be employed in the previous algorithm to make it more
robust to subtle movements, resulting in a better outcome. But this approach only works when
the movements are of low to very low amplitudes.

Among the image processing tools, skin detection stands out as it is used by many techniques.
A detailed description of skin detection techniques is presented next, and a more thorough review
of works in heart rate detection using cameras is given in Section 2.3.

2.2 SKIN DETECTION

Skin detection is an important tool in heart rate estimation through videos as it can segment
the skin regions, where the PPG signal is likely to be found, from the rest of the scene. But it is
also applied to a large range of other applications, including face detection [30], content-based
image retrieval [31], and nudity detection [32].

The best performance for skin detection is acquired using the visual and non-visual spectrum
of light, for-instance infrared [33, 34]. However, the majority of researches concentrate their
effort only in visible light, given the fact that non-visible spectrum information is usually not
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available (or too expensive to capture) and the wide use of conventional cameras that only capture
red, green and blue wavelengths.

Therefore, they must cope with problems that arise with this limitation, mainly illumination,
ethnic group and camera characteristics, that influence the skin color [35]. Illumination is a prob-
lem because skin detectors don’t assume a controlled environment and should deal with indoor
and outdoor scenes, shadows, highlights, etc. Skin color varies from white, yellow, reddish to
dark accordingly to the subject ethnicity [36]. Finally, the camera, even under the same illumi-
nation, may present different resulting images depending on sensor sensitivity and color filter.
There are also some other minor factors that may influence the detection, such as makeup, motion
blur, etc.

The simplest skin detector are the pixel-based. They classify each pixel as skin or non-skin
independently from its neighborhood [36]. In this case, the crucial issue is to choose the color
space more suitable to solve the problem. Surprisingly, many papers related to skin detection do
not provide a strict justification of their choice [36]. Just some few works were devoted to do a
comparative analysis of different color spaces used for skin detection [37, 38, 39, 40].

We dedicate Section 2.2.1 to review the most employed color spaces for skin detection. A
summary of the main techniques used for skin detection is presented from Section 2.2.2 to 2.2.5.

2.2.1 Color Spaces

The performance of a given color space for skin detection is related to how well they can
separate the skin pixels from non-skin pixels and is measured by the classification error obtained
on a test data [35]. It has been observed that skin colors vary more in intensity (or luminance)
than in chrominance [41]. Therefore, it has become a common practice to drop the luminance
component in order to add robustness to the classification when facing different illumination and
ethnicity.

We present below the main color spaces exploited for skin detection.

2.2.1.1 RGB

RGB originated from cathode ray tube display applications and it is most commonly used for
storing and representing digital images since the human eye naturally captures the three primary
colors used for image representation (red, green and blue) which gave the name to this color
space [42]. The RGB representation was standardized in 1930 by the Commission Internationale
de l’Eclairage (CIE), using the primary colors of red (700.0 nm), green (546.1 nm) and blue
(435.8 nm) [28].

However, these three channels are highly correlated and its dependencies with illumination
make this space not a favorable choice [36]. Even though, some researchers have successfully
employed this color space for the purpose of skin detection, avoiding the conversion of the colors
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to another space, such as Brand and Mason [43] and Jones and Rehg [44].

To overcome this problem we can perform a simple normalization on the R, G and B compo-
nents, resulting in the normalized RGB (or simply rgb):

r =
R

R +G+B
, g =

G

R +G+B
and b =

B

R +G+B
, (2.1)

where R, G and B are the levels of red, green and blue, respectively. We can reduce the space
dimensionality dropping the third component, as it becomes redundant after the normalization.

It has been reported that the normalized RGB space is more robust to skin color changes
due to lighting and ethinicity and the clusters in rgb space present a lower variance than the
corresponding cluster in the RGB space [41, 45].

The ratio between the colors in the RGB space is also used to detect the presence of skin.
It was observed that skin contains a significant high level of red, independent of ethnicity [46].
Therefore, the R/G ratio has been used for skin detection [46]. Others ratios (R/B and G/B)
were tested for skin detection by Brand and Mason [43].

2.2.1.2 Perceptual Color Spaces (HSI, HSV and HSL)

Developed in the 1970s for computer graphics applications, hue-saturation color spaces were
introduced to numerically represent the artistic idea of tint, saturation and tone [47]. The dominant
color (red, yellow, purple, etc.) is represented by the Hue (or Tint) while saturation represents how
pure the color is, starting with gray when the saturation is zero and going up to pure color when
the saturation is maximum. The third component (Intensity, Value or Lightness) measures how
bright the color is.

They cannot be directly described by the RGB space, but many non-linear transformations
were proposed to relate them with the RGB space, for example [36]:

H = cos−1

(
1

2

(R−G) + (R−B)√
(R−G)2 + (R−B)(G−B)

)
(2.2)

S = 1− 3
min(R,G,B)

R +G+B
(2.3)

V =
R +G+B

3
(2.4)

These transformation are invariant to highlights at white lights, ambient light and orientation
relative to light sources, making it a good choice for skin detection [28]. Another color space
similar to the hue-saturation is the normalized chrominance-luminance TSL space, that is a trans-
formation of the normalized RGB into more intuitive values, close to hue and saturation in their
meaning.
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2.2.1.3 YCbCr

YCbCr is an orthogonal color space, commonly used for image compression, that uses statisti-
cal independent components aiming to reduce the redundancy of RGB [28]. Color is represented
by luma (Y), which is the luminance computed from a weighted sum of RGB values, and two
chrominances: chrominance blue (Cb) and chrominance red (Cr) that are computed by subtract-
ing luma from red and blue components.

Y = 0.299R + 0.587G+ 0.114B (2.5)

Cb = B − Y (2.6)

Cr = R− Y (2.7)

The explicit separation between luminance and chrominance and its simplicity makes YCbCr
one of the most popular choices for skin detection. Other similar color spaces, such as YCgCr,
YIQ, YUV and YES, derived from YCbCr, are also employed.

2.2.1.4 Psychophysical Based Spaces

The RGB space is not a perceptually uniform color space, meaning that the same amount of
variation in the values of red, green and blue, applied at two different levels, will not be perceived
the same way by the human brain. Therefore, the CIE, based on psychophysical experiments,
introduced the CIELAB and CIELUV that try to match the characteristics of human visual sys-
tem [48]. The price for better perceptual uniformity is complex transformation functions from
and to RGB space.

2.2.2 Color Thresholding

Given a color space, the components of skin pixels from different individuals tend to cluster in
a small region [35]. Hence, one simple method to discriminate skin pixels is to explicitly define
the boundaries of the skin cluster. One or more color spaces can be chosen and a pixel is classified
as skin only if its parameters fall within all predetermined ranges.

The obvious simplicity of this method and its easy implementation, that leads to fast compu-
tation, has attracted many researchers [49, 50, 51, 52]. The main difficulty of this approach is the
need to empirically select the decision boundaries that is strongly dependent on the chosen color
space. So, both a good color space and good decision boundaries must be found.

Table 2.1 presents examples of thresholds employed for skin detection as proposed by some
authors.
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Table 2.1: Examples of skin discrimination using explicit thresholding.

Authors Color Space Boundaries

Peer et. al. [49] RGB
R > 90, G > 40, B > 20, R > G+ 15, R > B,
max(R,G,B)−min(R,G,B) > 15

Tsekeridou and Pitas [50] HSV
V ≥ 40, 0.2 < S < 0.6,
0° < H < 25° or 335° < H < 360°

Chai and Ngan [51] YCbCr 77 ≤ Cb ≤ 127, 133 ≤ Cr ≤ 173

Khan et. al. [52] CIELAB 2 ≤ A ≤ 14, 0.7 ≤ B ≤ 18

2.2.3 Histogram Based Approach

This method is used to produce a probabilistic classifier. It employs a database of previously
segmented image pixels into two groups: skin and non-skin; and computes a 3D or 2D color
histogram. In the case of 2D histograms, the brightness component is dropped out. The pixel
components are quantized into a number of histogram bins that stores the number of times the
given bin color occurred in the test data [36].

Two histograms are computed, one for skin pixels and another for non-skin pixels. These
histograms are then normalized by their total sum for producing an estimation of the P (c|skin)

and P (c|skin) (where c is a color column vector) that represent the probability of occurrence of
c, given that it is a skin pixel and a non-skin pixel, respectively.

Finally, with the estimated probabilities, a lookup table is computed assigning that a bin is a
skin pixel whenever its probability of occurrence is higher in the skin class than in the non-skin
class.

For a more complete representation, one can use a Bayes classifier, that classifies a pixel as
skin when

P (skin|c)
P (skin|c)

> Θ, (2.8)

for a given detection threshold Θ. P (skin|c) and P (skin|c) can be computed from P (c|skin)

and P (c|skin), resulting in

P (c|skin)P (skin)

P (c|skin)P (skin)
> Θ, (2.9)

where P (skin) and P (skin) are estimated from the database.
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2.2.4 Gaussian Model

The cluster formed by skin pixels in the chosen color space can be modeled by a multivariate
Gaussian distribution [41], defined as:

P (c|skin) =
1

2π
√
|C|

exp

(
−1

2
(c− µ)TC−1(c− µ)

)
, (2.10)

where µ is the mean value and C the covariance matrix of the cluster. Let ci be the parameters of
i-th skin pixel in the database and N the total number of skin pixels, then:

µ =
1

N

∑
i

ci (2.11)

C =
1

N − 1

∑
i

(ci − µ)(ci − µ)T (2.12)

After estimating the parameters µ and C, P (skin|c) is used to calculate the likelihood of pixel
c to be a skin pixel and the classification is performed by means of thresholding this value.

To represent a more complex-shaped cluster, a weighted sum (also called mixture) of Gaus-
sians can be employed in the form [53]:

P (c|skin) =
∑
j

wj

2π
√
|Cj|

exp

(
−1

2
(c− µj)TC−1

j (c− µj)
)

, (2.13)

where wj is the weight attributed to the j-th Gaussian and µj and Cj are its parameters.

2.2.5 Artificial Neural Networks

Artificial intelligence approaches have been successfully applied to skin detection due to their
ability to represent complex non-linear relationship between inputs and outputs [54]. The two
most used are the Self Organizing Map (SOM), devised by Kohonen, that is based on an unsu-
pervised and competitive algorithm, and the multi layer perceptron (MLP), a simple feed forward
network [36].

In the MLP, the weights in each neuron are updated iteratively using a training set for which
we know the correct outcome (usually human defined). At each iteration during the training
process, all inputs are processed in a feed-forward fashion and the output is compared with the
expected result. Through a gradient descend technique, the error is back-propagated to adjust the
neurons weights.

The SOM, on the other hand, constructs a topological structure that represents high dimen-
sional data in a fashion that allows relative distances to be preserved. During the training phase,
the weights of each neuron are updated to become similar to the input data, and neighboring
neurons will have similar weights, thus creating a clustering.
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Neural networks have been shown a good performance as they can easily generalize complex
structures [55]. However, one disadvantage is its dependence on several factors, such as the
number of hidden nodes and the training. The network must be extensively tuned in order to
obtain an optimal performance.

2.3 PULSE DETECTION

Detection of heart rate using cameras has the advantage of being a non invasive technique.
For example, it enables to monitor, in comfort, a patient for a long time or to monitor a subject
in a concealed manner, where knowing that he is being monitored wouldn’t be desired, like in a
lie detector. However, when dealing with heart rate detection with cameras one must take into
account others sources of errors, like movements, uncontrolled illumination, etc.

There are two main approaches to estimate the heart rate of a subject using conventional
cameras without contact. The first is the pixel based approach where the estimation is based on
how skin pixel change their tone with time [7, 8, 13]. The second one is based on micromovements
of the body due to the heart beats that are detected using a feature tracking [56].

2.3.1 Pixel Based

In the pixel based approaches, a conventional camera films the subject being monitored and
the PPG signal is captured by three color channels, red, green and blue. One or multiple regions
of interest (ROI) are defined and the average value for the red, green and blue, within the ROI,
is computed over time. These three signals are then employed to estimate the heart rate, either
in time or frequency domain. Table 2.2 is a summary of pixel based algorithms employed in the
literature.

ROI

(a) (b) (c)

Figure 2.4: ROI, represented in red, as defined by (a) Poh et al. [13], (b) Li et al. [8] and (c) Yu et al. [10]. Adapted.

Most algorithms, such as those of Poh et al. [13, 14], Kwon et al. [16] and Purshe et al. [11],
uses a cascade classifier to detect the subject face as they have shown that the PPG signal is
relatively easy to detect on the face skin. Capdevila et al. [5] have shown that the forehead,
cheeks and chin are the best regions on the face to measure the PPG signal. The ROI is defined
as a rectangle comprising most of the subjects face (see Figure 2.4).
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Table 2.2: Summary of algorithms employed in the literature for HR detection with video.

Authors ROI Camera Signal employed1

Ufuk Bal [6]
face2 (Viola
Jones + skin
detection)

Webcam; 640x480;
30 FPS

fixed mixture of R, G and
B, denoised and band-
pass filtered

Couderc et al. [7]
face3

(entire frame)
Microsoft LifeCam Cin-
ema; 2MP; 15 or 30 FPS

green channel band-pass
filtered and interpolated

Li et al. [8]
face4

(DRMF)

IPAD (built-in iSight
camera); 640x480;
30 FPS

green channel band-pass
filtered + Welch peri-
odogram

Xu et al. [9]
manual
selection3

Conventional camera and
smartphones (using a der-
matoscope to amplify the
skin 20x)

derivative of log(R/G)

band-pass filtered + DFT

Balakrishnan et al. [56]
face4

(Viola Jones)
Panasonic Lumix GF2;
1280x720; 30 FPS

micro-movements (verti-
cal) band-pass filtered +
PCA

Yu et al. [10] face2 conventional camera;
720x576; 25 FPS

ICA + STFT

Capdevila et al. [5]
face3

(manual)
Canon Ixux 80is;
640x480;

green channel band-pass
filtered and interpolated

Kwon et al. [16]
face2

(Viola Jones)
smartphone (iPhone 4);
640x480; 30 FPS

ICA + DFT

Pursche et al. [11] face webcam; 1.3 MP; 30 FPS ICA + DFT

Bolkhovsky et al. [12]

right index
finger3

(covering the
lens)

smartphones;
30 or 20 FPS

green channel inter-
polated + Welch peri-
odogram

Poh et al. [13, 14]
face2

(Viola Jones)

Macbook Pro (built-in
iSight camera); 640x480;
15 FPS

ICA + DFT

Verkruysse et al. [15]
manual
selection3

Canon Powershot A560;
640x480 or 320x240;
15 or 30 FPS

R, G, and B channels (in-
dividually) + DFT

1Describes how the red, green and blue traces computed on the ROI are used to estimate de HR. Most of them remove the DC
component from the traces. Thus this step was omitted.

2 Reset at each frame
3 Fixed region over time
4 Updated through point tracking
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Li et al. [8] employs Discriminative Response Mat Fitting (DRMF) [57], a more robust face
fitting algorithm, that estimates a set of parameters describing the position of the eyes, mouth,
chin, nose and eyebrows. They define the ROI as the region comprising mainly the cheeks, as
shown in Figure 2.4.

From the averages values computed on the ROI, one for each color channel, the researches
either use only the green channel based on the fact that the PPG wave is more strongly present
in this channel [15] or a combination of the three by means of Independent Component Analysis
(ICA), Principal Component Analysis (PCA) or with fixed weight, linearly mixing them in an
attempt to maximize the Signal to Noise Ratio (SNR) for the PPG signal. ICA is the preferred
approach among researchers. Band-passing the signal to eliminate those frequencies that do not
correspond to the heart rate (HR) is also a common practice.

Xu et al. [9], on the other hand, compute the discrete derivative of the logarithmic ratio be-
tween red and green traces. The use of the logarithmic function is explained making use of the
Lambert-Berr law, where the signal received by each color channel can, approximately, be said
to be proportional to e−(ν(λ)ρ(t)+A0(λ)), where ν(λ) and A0(λ) are the absortivity of hemoglobin
multiplied by the mean path that light travels before being reflected and the absorbance of oth-
ers tissues in the skin, respectively, for a given wavelength λ. The concentration of hemoglobin
is given by ρ(t), and variate with time t. The discrete time derivative is used to eliminate DC
components and to attenuate low frequency noises.

The signal is converted to the frequency domain using Discrete Fourier Transform (DFT) [16,
11, 14, 13, 15], Short Time Fourier Transform (STFT) [10] or Welch periodogram [8, 12] (a
method used to estimate the power spectra [58]), and the frequency corresponding to the peak of
maximum power is attributed as the heart rate (HR) frequency. The search of the HR is limited to
a range of values where they expect the pulse frequency to be.

Some researches also use an approach in the time domain. Couderc et al. [7], for example,
first applies a band-pass filter to the signal to eliminate those frequencies that do not correspond
to the pulse and cubic interpolate the signal. Then, they search for the position of the peaks and
valleys and the HR frequency is computed as the inverse of the signal period. The problem with
this approach is that it degrades rapidly with noise.

2.3.2 Algorithm of Poh

The work we developed here is based on the algorithm of Poh et al.. Many of the related
works in this field follow a similar structure (or are based in Poh algorithm) as can be seen in
Table 2.2. Therefore, we explain it in more detail here. Figure 2.5 presents a schematic of their
algorithm.

Let I[i] be the i-th frame of the input video. For each frame, a cascade of boost classifier that
uses 14 Haar-like features trained with positive and negative examples of frontal faces, based on
the work of Viola and Jones [59] and Lienhart and Maydt [60], is used to detect the position of the
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Figure 2.5: Schematic of the algorithm employed by Poh et al.

face. For each region detected as face, the algorithm returns the x and y coordinates along with
the height and width of a square that describes the position of the face. The ROI is defined as the
rectangle centered on the square found by the algorithm, with 60% of its width and 100% of its
height. Whenever the algorithm is not able to find the ROI for a given frame, the ROI from the
previous frame is employed. The average value of the red, green and blue channel of the pixels
inside the ROI is stored on the signals xr[i], xg[i] and xb[i], respectively.

i

NT NΔT

kjNΔT

Figure 2.6: Signal windowing.

The normalization phase is executed in a window of duration T (T = 30s in their algorithm),
as shown in Figure 2.6. The window moves with ∆T seconds of increment (∆T = 1s). The
normalized traces are computed removing the mean (DC component) from xc[i] (where c denotes
one the three color channels) and adjusting its amplitude in order to obtain a signal with unitary
variance, as follows:

yc[j, k] =
xc[jN∆T + k]− µc[j]

σc[j]
, 0 ≤ k < NT . (2.14)

The integer j ≥ 0 is the window number and defines the window starting point. k is the relative
position inside the window. We define NT and N∆T as the number of frames comprised in T and
∆T seconds, respectively. The mean and variance (µ and σ, respectively) are given by:

µc[j] =
1

M

NT−1∑
k=0

xc[jN∆T + k] (2.15)

and

σc[j]
2 =

1

M

NT−1∑
k=0

(xc[jN∆T + k]− µc[j])2 . (2.16)

For a fixed j, yc[j, k] is a vector of duration T over which we try to determine the subject HR.
As j progresses, the window moves ∆T seconds along the signal, with a overlap of (T −∆T )/T .
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Independent Component Analysis, based on the work of Cardoso [61], is used to separate the
PPG signal from other noise components that are comprised in the yc[j, k] traces. This algorithm
uses fouth-order cumulant tensors to automatically define weights for a linear mixture of the three
channels in order to provide the best SNR, resulting in z[j, k].

Finally, the Discrete Fourier Transform (DFT) is applied over z[j, k] to obtain its spectrum
Z[j, v] and a peak detector determines the component of highest power within the range between
45 to 240 Beats per Minute (BPM), that correspond to the HR they expect to find for an adult
individual. To account for noise, if the absolute difference between the current estimated pulse
rate is above 12 BPM from the last computed value, the algorithm reject the actual estimation and
searches for the next highest power component that meet this constraint. If no frequency peaks
meet this criteria, then the current pulse frequency is retained.

Some works also have shown that arterial oxygen saturation (SpO2) [62] can also be contact-
less estimated using cameras by means of the light reflected by the skin [63, 64]. However, they
require a device capable of capturing light in the infrared spectrum and a controlled illumination
in order to provide a good estimation since SpO2 is computed measuring the amount of light
absorbed by oxyhemoglobin and de-oxyhemoglobin.

2.3.3 Micromovements

Balakrishnan et al. [56] also proposed an approach to estimate HR using videos, but instead
of trying to capture the PPG signal, they focus their attention on the ballistocardiograph (BCG)
signal, that correspond to subtle movements of the body due to the heart beats.

The head is subject to movement in most axis and can be considered, for small amplitude
movements, an inverted pendulum. As the blood enters and leaves the head, propelled by the
heart, micro-movements appears.

The ROI is defined as being the head with the eyes removed (found with Viola Jones face de-
tector). Head movements are estimated using feature tracking and Principal Component Analysis
is used to give more robustness against noise.

This approach is successful for detecting the HR and can be employed even when no skin is
visible on the video (when the subject is using a mask, for example). However, it suffers many
others limitations because respiration, posture changes and voluntary or involuntary movements,
that have higher amplitude, dominate the trajectory of the tracking points. This makes it harder
for the tracker to perceive the BCG signal, negatively affecting the estimation.
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3 HEART RATE ESTIMATION THROUGH FACE
DETECTION

This method is based upon the work of Poh et al. [13, 14]. We contributed to improved the
robustness to noise adding an adaptive and derivative filter to boost the energy of the PPG signal
over noise. We also propose and employ another approach to mix the information from the red,
green and blue channels, avoiding the use of ICA that adaptively determine the weight for each
color channel, in an attempt to enhance the SNR.

In this manuscript, we refer to this proposed method as “video heart rate estimation through
face detection” (HR-FD) because it employs the face of the person being monitored as region of
interest, from where the PPG signal will be extracted.

We present our method in Section 3.1. Some preliminary results are given in Section 3.2.

3.1 METHOD

Figure 3.1 presents a block diagram of the processing employed to estimate the HR from the
video in this approach. This is very similar to the schematic for Poh et al. given in Figure 2.5,
except for those blocks in red that were added or significantly modified.

I[i] represents the i-th frame, that was acquired with a constant sampling rate, and p[j] is
the j-th HR detected. The signals xr, xg and xb are computed from the ROI and normalized to
the signals yr, yg and yb following the same strategy, with a moving window with T = 30s and
∆T = 0.5s. The HR is calculate at each 0.5s and need a sequence of frames to be estimated.

z[j, k]
I[i] p[j]

Z[j, v]
xr[i]

xg[i]

xb[i]

yr[j, k]
yg[j, k]
yb[j, k]

ROI Normalization Mixture DFT
Zf[j, v]

Adaptive
Filter

Peak
Detection

Figure 3.1: Schematic of the signal processing by HR-FD.

For the mixture stage, on the other hand, where yr, yg and yb are linearly combined to provide
a better SNR for the PPG signal, we removed the ICA to blindly separated the sources from the
signal processing. In the ICA approach, three constants, αr, αg and αb, are estimated, used to mix
the signals as:

z[j, k] = αryr[j, k] + αgyg[j, k] + αbyb[j, k]. (3.1)
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However, we noticed in our work that even though the α values varies greatly from one video
to another, or even from one signal site to another, their ratios are relatively constant, being almost
independent from skin tone and scene illumination. Therefore, we normalized the α values,
making them comparable between each other, using the constraints αg > 0 and |αr|+|αg|+|αb| =
1. Figure 3.2 presents the distribution obtained for these values in our database, where we can
observe their tendency to concentrate in a given region.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.50
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10
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14 -0.4897 -0.0244 +0.4956

αr

αgαb

Figure 3.2: Distribution of the αr, αg and αb values estimated using ICA, after normalization, in our database. The
α values are represented by their corresponding colors

Due to this tendency, we decided to assume these values as constants given by their position
of highest concentration, reducing the algorithm complexity as no blind source separation, which
is computationally expensive, must be performed. Also, when the SNR is low or the noise charac-
teristics are similar to the PPG signal, the ICA is not capable to precisely estimate the weights to
employ in order to obtain a good SNR. This can leads to errors and instabilities on the estimation.
As in our algorithm the weight of each channel is a constant, we are not susceptible to such errors.

The values employed are αr = −0.0244, αg = +0.4956 and αb = −0.4897, based on Fig-
ure 3.2. These values are in accordance with the literature because the green channel is the one
presenting the highest energy for the PPG signal [8, 15]. But they are dependent on the camera
parameters, such as sensor sensitivity, color filter, color and gamma correction. Thus, they must
be determined for each camera.

After the mixture, for a fixed j, the signal z[j, k] is zero padded to contain a total ofNFT = 214

elements. The magnitude of its DFT is computed, resulting in Z[j, v], where v represents the fre-
quency. We retain only those frequencies in the range going from 30 to 240 BPM that correspond
to the values that we consider acceptable for a HR measurement for an adult individual. That is,

30
NFT

fs
≤ v ≤ 240

NFT

fs
, (3.2)

where fs is the signal sampling frequency, given in frames per second.
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An adaptive filtering is then applied over Z[j, v], multiplying it by a mask M [j, v], resulting
in the signal

Zf [j, v] = Z[j, v]M [j, v]. (3.3)

The mask aim is to amplify Z[j, v] for those frequencies that have a higher probability of be
the HR frequency and attenuate others, reducing the effect of noise in the estimation. The mask
is defined supposing that the HR varies slowly with time and that within ∆T = 0.5s it should
be almost the same. Therefore, the previous signals, Z[j − 1, v] and Z[j − 2, v], provide a good
estimation of where the HR peak should be.

In order to accommodate small variations of the HR, we first apply a convolution with a low-
pass filter to Z[j − 1, v] and Z[j − 2, v] (the convolution is made in the frequency domain). This
filter will horizontally stretch the peaks and is almost equivalent to apply an apodization function
(or window function) [65] on the time domain. For the low-pass filter we chose T2[v], a triangular
function with a bandwidth of 2 BPM, as shown in in Figure 3.3, that roughly allow a ±1 BPM
variation.

As Z[j−2, v] is further away in time to the j-th signal than Z[j−1, v], we apply again the same
low-pass filter to it to accommodate highers HR variations. The mask is given by a combination
of them as

M [j, v] = (T2[v] ∗ Z[j − 1, v]) (T2[v] ∗ T2[v] ∗ Z[j − 2, v]) , (3.4)

where ∗ denotes convolution.

-2 2

T2[v]

Frequency [BPM]

Figure 3.3: Low-pass filter employed to compute the adaptive filter mask.

Also, it was depicted by Xu et. al. [9] that use the derivative of the traces improve the HR
detection performance as the noise tends to be more intense for low frequencies. Compute the
derivative of a signal is equivalent to make it pass by a high-pass filter that amplify the signal
proportional to its frequency. Hence, we decided to include a high-pass filter on the definition of
the mask. The filter employed is shown in Figure 3.4. It apply a gain of 0.2 for frequencies inferior
to 20 BPM and a gain of 1 for frequencies superior to 150 BPM. Between 20 and 150 BPM it
applies a gain that varies linearly with frequency. This filter has a behavior similar to a derivative
filter, but we restricted its actuation between 20 and 150 BPM to avoid over-attenuation of low
frequencies, that could destroy useful information, and over-amplification of high frequencies,
that could boost high frequency noise.
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Figure 3.4: Derivative filter.

For simplification, we refer to this filter as derivative filter (Fd[v]). It is applied in cooperation
with the adaptive filter to further improve the mask, that is now expressed as:

M [j, v] = Fd[v] (T2[v] ∗ Z[j − 1, v]) (T2[v] ∗ T2[v] ∗ Z[j − 2, v]) . (3.5)

Figure 3.5 shows the application of the mask on a real signal. Note that the HR peak becomes
more prominent on the filtered signal. This can be explained by two effects: (i) the peaks cor-
responding to the HR usually have a high amplitude and their amplitude and frequency changes
slowly with time; (ii) those peaks corresponding to noise usually have a lower amplitude and
their amplitude and frequency change faster than the HR with time. Hence, for regions where the
signal is composed by noise the mask will apply an attenuation.

Z[j, v] (Input signal) M[j, v] (Filter mask)

Zf[j, v] (Filtered signal)

Figure 3.5: Adaptive filtering. The signal is multiplied by a mask in an attempt to attenuate noise and make the HR
peak more prominent

If the assumptions made for the noise are not valid, that is, its frequency and amplitude do not
vary with time, the amplitude of the mask on the corresponding frequency will be proportional
the noise peak amplitude. Thus, the multiplication by the mask will have an effect similar to
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square the input signal at that frequency. As squaring a signal do not alter the ordering of the
peaks amplitude, the signal filtered by means of multiplication by this mask will have no negative
effect, in terms of estimation, for noise components that varies slowly with time and will attenuate
the noise components that variate faster.

Finally, from the filtered signal, the position of the peak of higher amplitude is found and
its frequency is the j-th estimated HR frequency for the subject (p[j]). If the absolute difference
between p[j] and p[j − 1] is higher than 12 BPM, the algorithm search between the four highest
peaks which one is the nearest to p[j − 1] with an absolute difference inferior to 12 BPM. If none
of them meet this constraint, the frequency of the peak of higher amplitude is used as estimation.

3.2 PRELIMINARY RESULTS

Figure 3.6 presents the HR estimated with the proposed method in comparison with that of
Poh [13] for three different videos. For the ground truth we used an finger oximeter to monitor
the subject HR at the same time that the video was captured.

In the first two videos, I and II, the subject were asked to remain still, moving as little as
possible. In video III, the subject was talking and moving freely while the video was captured.
It can be seem that for the video I the performance of our method and that of Poh where very
similar. Indeed, they outcome the same values and their curves are overlapped. For video II,
between 20 and 33s, the algorithm of Poh diverged from the HR captured from the oximeter
while our approach remained very similar to it. We attribute this gain in performance due the
adaptive filtering employed that improves the SNR (see Figure 3.7).

In the third video, on the other hand, both algorithms diverged from the values measured from
the oximeter due to the artifacts introduced from movement.

The effect of the adaptive filtering can be observed in Figure 3.7, that shows the signal used to
feed the peak detector in both algorithms, Z[j, v] for Poh and Zf [j, v] for our method. The filter
was able to improve the SNR on all instants, except for the last video, as it can be seen. For video
I, the SNR was already high before the filtering, therefore both algorithms were able to correctly
estimate the HR. The same is valid for video II, as it can be see in (b), except for the interval
between 20 to 33s, where Poh algorithm failed due to noise. As the adaptive filtering removed
most of this noise, the performance of our algorithm was little influenced by it.

However, video III shows that both algorithms are not robust to movements of higher ampli-
tude and further improving is necessary concerning this case.
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Figure 3.6: Performance of the HR detection for three different videos. In I and II we asked the subject to stay as
still as possible and in III the subject is freely talking and moving as the video is captured.
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Poh et al. HR-FD

Figure 3.7: Signal fed to the peak detector as processed by the algorithm of Poh et al. and the proposed method.
These signals were extracted from the same videos used in Figure 3.6: a) I at 22s; b) II at 38s; c) II at 25s and
d) III at 34s. The colored rectangle correspond to the oximeter reading at that time.
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4 HEART RATE ESTIMATION THROUGH
MICRO-REGION TRACKING

This method, denominated “video heart rate estimation trough micro-region tracking” (HR-
MRT), emerged as a modification of the HR-FD method in an attempt to produce an algorithm
more robust to movements, avoiding the problem found in Figure 3.6-III.

Movement affects the ROI. The face deforms while someone speaks and the movement of
the lips, eyelid, eyebrows, etc, are all captured by the values of xr, xg and xb (the average value
for red, green and blue inside the ROI) and will introduce artifacts that makes the task of HR
estimation more difficult.

If this artifacts are of small amplitude or their frequency are different than the range of fre-
quencies where we search for the HR, they will have little influence on the estimation. That is the
case for videos I and II in Figure 3.6, where most of the artifacts are due to blinking and other
small movements, but not for video III, where the movements have higher amplitudes.

Therefore, we modify the ROI to make it more robust to movements. Figure 4.1 is a schematic
of how the ROI is defined in this method. We divide the video in blocks with the same duration,
segment the first frame of each block in micro-regions and extract some features from them to
track. The tracking of these features enable us to estimate the parameters of an affine transforma-
tion that describe how the micro-regions move with time. We then extract the red, green and blue
traces for each micro-region, normalize and mixture them with the same procedure employed for
HR-FD. From the DFT for each micro-region we feed a clustering algorithm that will define the
ROI as a combination of micro-regions where the PPG signal is visible. The output of the clus-
tering algorithm are the red, green and blue traces. The subsequent steps to estimate the HR were
omitted since they are the same employed for HR-FD, displayed in Figure 3.1.

I[0]
Image

Segmentation

Skin
Detection

Features
to Track

Point
Tracking

Affine
Parameters

Trace
Extraction

Normalization
and Mixture

DFT

I[i]

xr[i] xg[i] xb[i]

ClusteringI[i]

Figure 4.1: Block diagram for the ROI definition on HR-MRT.

Section 4.1 describes the skin detection algorithm employed to ignore non-skin pixels from the
micro-regions, Section 4.2 shows how we divide the image in micro-regions to take movements
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into account and Section 4.3 how we use tracking to compensate for movements. Section 4.4
explain the clustering algorithm used to define the ROI.

4.1 SKIN DETECTION

As the PPG signal is only present in pixels that correspond to the skin of the person being
monitored, a skin detector is a good tool to eliminate non-skin pixels that could add noise to the
red, green and blue traces computed on the ROI. Hence, we decided we employ a skin detector to
ignore non-skin pixels following three strategies. In the first strategy we created a look-up table
using the histogram based approach described in Section 2.2.3. We used the database provided
by Jones and Rehg [44]1 that is composed of images obtained from the internet for which we
know the ground truth. The database is comprised by 3789 images containing skin from people
in different backgrounds and 6187 images where no skin is present. The color space employed
is the YCbCr as it is the preferred among researchers in the area. We do not drop the luminance
component and the histograms have 2563 bins. We used a cubic filter of size 33 to smoth the
histogram before creating the look-up table; .

As it can be seen in Figure 4.2-(b), this algorithm results in a great quantity of false positives
because, in real life images, the clusters for skin and non-skin pixels overlap. Therefore, in the
second strategy we combine this skin detector with the Viola-Jones face detector to eliminate
those pixels that do not correspond to the face. Only pixels in the rectangle with 100% of the
height and 80% of the width of the region found by the face detector are kept.

a) Original b) Lookup table c) Face detect d) Manual

Figure 4.2: The image in a) was provided to the skin detection algorithm using b) histogram based approach employ-
ing a lookup table, c) the histogram approach combined with Viola-Jones face detector and d) manual detection.

In the third strategy we manually selected the skin pixels to observe the performance of our
algorithm when we eliminate its dependence on the performance of the skin detector.

1https://drive.google.com/folderview?id=0Bz-X0E2bqx9YcW9GaEM0OS0xb28&usp=sharing
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4.2 MICRO-REGIONS

The micro-regions are defined in the first frame of each block of the video and are segments
with uniform color, found by a segmentation algorithm. We used the watershed method, an idea
introduced by Beucher and Lantuéjoul [66] based in a topological representation of an image, to
segment the frame. This method was chosen because of its simplicity and also because it divides
the image in several segments and we can indirectly control the size and number of segments.

Prior to the segmentation with watershed we usually compute the gradient modulus of the
image. The gradient is more intense for regions of transition, like the edges between one object to
another, and less intense elsewhere. It is a good representation of the image borders. The regions
of high gradient can be seen as mountains separating valleys (low gradient).

Referring to Figure 4.3, if we let a drop of water fall in a given position, it will flow down the
mountains formed by the gradient until it arise to a local minimum. As more water drops arrive
they start to form a puddle. We can intuitively interpret the watershed segmentation by means of
these drops. Those pixels that flow to the same puddle belong to the same region (they are in the
same catchment basin of that minimum) and the gradient is used as a base to separate one region
from another.

Region 1 Region 2 Region 3

Figure 4.3: Two dimensional representation of the watershed segmentation method. A region correspond to all
positions for which a drop of water, flowing down the hills, would fall in the same puddle.

The algorithm to perform the watershed segmentation can be given in three steps:

1. Create a group containing all non-labeled pixels of the image. As initially none of them is
labeled, this group will contain the entire image;

2. From the group of non-labeled pixels, extract those of minimal altitude and attribute to them
the label of an adjacent labeled pixel. If there is no adjacent labeled pixel, atribute a new
label to it.

3. Repeat step 2 until there is no more non-labeled pixels left.

One disadvantage of the watershed method is its tendency to over-segmentation. Thus, it is
a standard practice to smooth the image before applying it, eliminating or attenuating gradients
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of low amplitude in textured portions of the image. In our work we employed a bilateral filter, a
non-linear edge preserving low-pass filter that was first proposed by Tomasi and Manduch [67].
This filter smooths a pixel by averaging them with neighboring pixels, similar to isotropic filters,
but add a penalty based on their color difference. Let I(x, y) be the original image that we want
to filter, the filtered image is given by

IBF (x, y) =
∑

(i,j)∈Θ

I(x+ i, y + j) Dij P{∆Iij(x, y)}, (4.1)

∆Iij(x, y) = I(x+ i, y + j)− I(x, y),

where Θ defines the neighborhood. Dij is a distance penalty function that reduces the weight of a
pixel based on how far it is from the pixel being filtered and P{∆Iij(x, y)} introduces a penalty
based on how different the pixels are. We suppose that pixels that are in different sides of the
border will have a significant difference in color and those in the same side will be rather similar.
Therefore, the second penalty try to adjust the filtering in order to take the borders in account.
These functions are subject to the constraint

∑
(i,j)∈Θ

Dij P{∆Iij(x, y)} = 1. (4.2)

For our work we used a Gaussian function to express these penalties in a rectangular neigh-
borhood. The filtering is then expressed as

IBF (x, y) =

(
N∑

i=−N

N∑
j=−N

I(x+ i, y + j)Wij(x, y)

)/(
N∑

i=−N

N∑
j=−N

Wij(x, y)

)
, (4.3)

where, in this case, N defines the size of the neighborhood and

Wij(x, y) = exp

(
−i

2 + j2

2σ2
1

)
exp

(
−|∆Iij(x, y)|2

2σ2
2

)
, (4.4)

is the weight attribute to pixel at position (x+ i, y + j) to compose the filtered pixel at (x, y).

Equation (4.4) has two components. The first one is the distance penalty. The second term
introduces the non-linearity and anisotropy on the filtering trying to take in account the borders.

Figure 4.4 shows the application of this filter in the image of Lena with noise added. The filter
is capable of reducing the noise without corrupting the borders. However, one disadvantage of
this algorithm is its susceptibility to create a carton-like effect on the filtered image.

From the filtered image we compute its luminance, Y (x, y), the same way as the Y component
of the YCbCr color space (see Section 2.2.1.3). The gradient is given by the horizontal and vertical
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a) Original b) Noisy (SNR = 16.3 dB) c) Filtered (SNR = 23.6 dB) d) Section

Figure 4.4: Image smoothing with bilateral filtering: a) is the original image with a dimension of 512x512 pixels and
in b) a Gaussian noise was added to the image in a). c) shows the result of the filtering with σ1 = 3, σ2 = 0.15 and
N = 8. Figure d) is a section of Lena’s arm showing in close up the before and after filtering.

derivative of the luminance. To compute the horizontal and vertical derivative we use the kernels

Kh =

−1 0 +1

−2 0 +2

−1 0 +1

 and Kv =

−1 −2 −1

0 0 0

+1 +2 +1

 , (4.5)

respectively, and the squared gradient is given by

G(x, y)2 = (Y (x, y) ∗Kh)
2 + (Y (x, y) ∗Kv)

2 . (4.6)

We further smooth G(x, y)2 with a rectangular kernel to attenuate the gradient on textured
regions and avoid over segmentation and we apply the watershed method to segment the image
(see Figure 4.5).

Finally, after segmentation, we ignore those micro-regions that contain less than 80% of skin
pixels.

4.3 MICRO-REGION TRACKING

Each micro-region is delimited by the pixels in its border. Hence, if we can track how this
pixels position evolved with time we can describe how the micro-region moved and deformed in
the video sequence. In this fashion, we would be correcting the artifacts introduced by movement
in the video. Although, tracking the pixels on the borders of the micro-regions is not a easy task
because some of them may be in low textured regions where tracking algorithms fail to precisely
estimate the pixel disparity and the amount of pixels to track would slow down the algorithm.

Therefore, for each micro-region segmented, we select a set of easy to track points that are
inside or on the border of the micro-region (up to 12 points for each micro-region). We suppose
that the pixels inside the region are subject to the same movement as the border pixels. Thus,
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a) Original image

b) 9x9 c) 15x15 d) 25x25

Figure 4.5: Segmentation of the image in a) using watershed with different kernel sizes to smooth the gradient. The
bilateral filtering was performed using σ1 = 3, σ2 = 0.06 and N = 5.

we use these points to estimate how the micro-region moved and deformed with time. The set
of points is selected using the algorithm of Shi and Tomasi [68] as implemented in OpenCV 2.4.
This algorithms finds the most prominent corners within the micro-region. This set of points are
then tracked with the Lucas-Kanade algorithm as implemented by Yves [69].

The optical flow computed with Lucas-Kanade method may contain some noise. This noise
should not affect short sequences of video, but for longer sequences it start to add a drift to the
motion estimation that can lead to incorrect values for the optical flow, which can spoil the micro-
region tracking.

To overcome this issue, one can filter the data to attenuate this noise in order to reduce its
effect for longer sequences. But before that we need to define a model to the data to decide how
to filter it. In this work we suppose that, for a short interval, the movement of the objects in the
scene can be described by a polynomial function of a given order. Let p(t) = [xt(t), yt(t)]

T (•T

means transpose) be the position of a pixel that we are tracking in time t, then we can express
p(t) as

p(t) =

Npoly∑
n=0

rn
tn

n!
, (4.7)

where rn = [xn, yn]T are constants and Npoly is the polynomial order. The higher the polynomial
order the better it can represent complex movements, but it becomes more sensible to noise. A
good trade-off between data representation and noise cancellation is found for Npoly = 3. Thus,
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for simplicity of reading, we will consider only the case of third order polynomials models in this
chapter. Results for other orders can be found following the same steps. A demonstration of this
statement will be presented in the next chapter. Therefore we have

p(t) =

[
xt(t)

yt(t)

]
=

[
xn0
yn0

]
+

[
vnx
vny

]
t+

[
ax

ay

]
t2

2
+

[
ux

uy

]
t3

6
, (4.8)

or, in a more compact way,

p(t) = p0 + vt+ a
t2

2
+ u

t3

6
, (4.9)

where p0, v, a and u are constants vectors that define the initial position, velocity and accelera-
tion.

Let us now assume that we have two reference images, R1 and R0 that are consecutive in the
video sequence (R1 being first) for which we know the position of the point we are tracking, p1

and p0, respectively. We also have six other images on the sequence, I1, I2, I3, I4, I5 and I6,
for which we don’t know the tracking point position yet. Their position will be estimated using
Lucas-Kanade method.

The sequence of images, [R1, R0, I1, I2, I3, I4, I5, I6], form a sub-sequence of the video, mean-
ing that they are all consecutive. We suppose that Equation (4.9) is a good model to represent the
movement of the tracking pixel in this sub-sequence between frame R0 and I6.

Using the reference frames we estimate the optical flow as schematized by Figure 4.6. We
denote as p0

n = [x0
n, y

0
n]T the position estimated for frame In using information coming from

reference R0 and as p1
n when coming from reference R1. From this estimated values we find

the constants in Equation (4.9) that minimizes the quadratic error. We assume that R1 and R0

correspond to t = −1 and 0, respectively, and In correspond to t = n.

R1 R0 I2 I3 I4 I5 I6I1

Figure 4.6: Optical flow estimation scheme. The arrows indicate from which to which frame the optical flow is
estimated using the Lucas-Kanade method. Blue arrows represent that the flow was estimated using information
coming from reference R0 and red arrows from reference R1.
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The constants can be found by linear algebra, solving the equation
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

(4.10)

that can be more compactly written as

TA = P , (4.11)

where T is the time matrix, A the parameters matrix and P the position matrix.

Equation (4.11) falls in the category of a very well known mathematical problem: that of
linear least squares fitting for an overdetermined system of linear equations [70]. These problems
are convex and have a closed-form solution that is unique and given by

A = (T TT )−1T TP (4.12)

Now that we know the parameters we can recalculate the position of the tracking pixel in the
frame In, 1 ≤ n < 6 resulting in

T ′(T TT )−1T TP = FP , (4.13)

T ′ =


1 1 12/2 13/6

1 2 22/2 23/6

1 3 32/2 33/6

1 4 42/2 43/6

1 5 52/2 53/6

 . (4.14)

F = T ′(T TT )−1T T is therefore the filtering matrix that will eliminate from the set of points
P the movements that do not obey the model given by Equation (4.9), represented in Figure 4.7,
from where we can see that it corresponds to a low-pass filter, as expected. A higher (or lower)
order model could also be employed, but as the order increases it starts to become unable to
attenuate noise as they can be represented by the high order components of the model.
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Figure 4.7: Feature tracking filtering. Shows the value of the filtering matrix F that multiply each component of the
position matrix P .

Frame I6 was used only to calculate the filtering parameters, but the filtered pixel position
is not computed for this frame. We advance in the video sequence. I4 and I5 become now the
reference and we use the same approach to estimate the optical flow for I6, I7, I8, I9, I10 and I11.
We keep advancing until all the video sequence is covered.

Finally, after tracking how the set of points for a given micro-region evolved with time using
the above algorithm, we can determine how the micro-region moved. However, to this point, we
only know how a set of points inside the region evolved with time. To use the information of the
set of tracking points we suppose that the k-th points in the border of the micro-region, given by
bk(t) = [xkb (t), y

k
b (t)]T in time t, undergo an affine transformation of the form

[
xkb (t)

ykb (t)

]
= R(t)

[
xkb (0)

ykb (0)

]
+

[
dx(t)

dx(t)

]
, (4.15)

where R is a 2x2 affine matrix transformation and dx and dy are the translations. We don’t know
these parameters, but we can estimate them using the set of tracking points with the assumption
that the tracking points undergo the same transformation as the border points. Let [xnt (t), ynt (t)]T

be the n-th tracking points in time t for the micro-region we are processing, then

[
xnt (t)

ynt (t)

]
= R(t)

[
xnt (0)

ynt (0)

]
+

[
dx(t)

dx(t)

]
, (4.16)

We can eliminate the translation in Equation (4.16) by subtracting each side of the equation
by the mean value of the tracking point position in time, [xt(t), yt(t)]

T ,

[
xnt (t)

ynt (t)

]
−

[
xt(t)

yt(t)

]
= R(t)

([
xnt (0)

ynt (0)

]
−

[
xt(0)

yt(0)

])
(4.17)
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Equation (4.17) can be divided in 5 simple transformations. Ignoring translation, for simplic-
ity, we have:

Scaling

[
x(t)

y(t)

]
= α(t)

[
x(0)

y(0)

]

Rotation

[
x(t)

y(t)

]
=

[
cos(θ(t)) −sin(θ(t))

sin(θ(t)) cos(θ(t))

][
x(0)

y(0)

]

Vertical
Shearing

[
x(t)

y(t)

]
=

[
1 0

αv(t) 1

][
x(0)

y(0)

]

Horizontal
Shearing

[
x(t)

y(t)

]
=

[
1 αh(t)

0 1

][
x(0)

y(0)

]

Mirroring

[
x(t)

y(t)

]
=

[
(−1)m(t) 0

0 1

][
x(0)

y(0)

]

α is the scaling factor (a positive value), θ the anticlockwise angle of rotation, αh and αv are
the horizontal and vertical shearing and m = {0, 1} is a integer that indicate if the points suffered
or not a horizontal mirroring.

If we restrict the affine transformation to only rigid transformation, ignoring shearing and
mirroring, matrix R can be expressed as

R = α

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

]
=

[
a11 −a21

a21 a11

]
. (4.18)

On the other hand, allowing shearing and mirroring,

R = α

[
(−1)m 0

0 1

][
cos(θ) −sin(θ)

sin(θ) cos(θ)

][
1 αh

0 1

][
1 0

αv 1

]
=

[
a11 a12

a21 a22

]
(4.19)

These two distinct transformation are referred, in this work, as rigid affine transform and full
affine transform, respectively.

To solve for R we use the procedure described by Lawson and Hanson [70]. We find the
parameters that minimize the squared error. The solution is given in terms of sums
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Cxx(t) =
∑
n

[xnt (0)− xt(0)] . [xnt (t)− xt(t)]

Cxy(t) =
∑
n

[xnt (0)− xt(0)] . [ynt (t)− yt(t)]

Cyx(t) =
∑
n

[ynt (0)− yt(0)] . [xnt (t)− xt(t)]

Cyy(t) =
∑
n

[ynt (0)− yt(0)] . [ynt (t)− yt(t)]

Dxx =
∑
n

[xnt (0)− xt(0)]2

Dxy =
∑
n

[xnt (0)− xt(0)] . [ynt (0)− yt(0)]

Dyx =
∑
n

[ynt (0)− yt(0)] . [xnt (0)− xt(0)] = Dxy

Dyy =
∑
n

[ynt (0)− yt(0)]2

Then, for Equation (4.18) we have

R =
1

Dxx +Dyy

([
Cxx −Cxy
Cxy Cxx

]
+

[
Cyy Cyx
−Cyx Cyy

])
(4.20)

and for Equation (4.19)

R =

[
Cxx Cyx
Cxy Cyy

][
Dxx Dyx

Dxy Dyy

]−1

. (4.21)

We ignored the time dependency for simplicity of writing, but the reader must notice that matrix
R varies with time.

The translation can be found from Equation (4.17) as

[
dx(t)

dy(t)

]
=

[
xt(t)

yt(t)

]
−R(t)

[
xt(0)

yt(0)

]
(4.22)

Applying this affine transformation to the border of the micro-region we can determine how
it evolved with time from their initial position and where the micro-region is in time t. It can be
shown2 that if the micro-region has a total area of A0 in t = 0 and undergo an affine transfor-
mation, its area in time t is given by A0.det(R(t)). We use this function as a metric to ignore

2The demonstration was omitted here. The reader can refer to http://www.mathopenref.com/

coordpolygonarea.html and https://www.math.wisc.edu/~robbin/461dir/coordinateGeometry.

pdf for a rigorous mathematical demonstration
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those micro-regions for which its area became bigger than twice or smaller than half its initial
size at some point as it can indicate that there was a misleading during point tracking or affine
transformation estimation. Finally, we computed the mean value of red, green and blue for each
micro-region over time. We ignore those pixels that were not detected as skin-pixel from the traces
computation. The traces are then normalized following the same procedure as for the HR-FD and
we compute its DFT.

4.4 CLUSTERING

The traces extracted for each micro-region may contain different levels of noise. For example,
when the skin detector do not provide a good segmentation, some micro-regions may be com-
posed mainly by background pixels, where the PPG signal is not present. For the micro-regions
composed mainly by true skin pixels, the energy of the PPG signal and the noise may vary due to
the characteristics of the skin on the corresponding region, such as beard, vasculature, makeup,
motion noise.

We want to average the traces found for the micro-regions in a single trace to be employed for
HR estimation. To obtain a good SNR we try to ignore those micro-regions where the PPG signal
is not visible or where the noise energy obscures it. The clustering algorithm is used to resolve
which micro-regions to use in order to maximize the SNR. It groups in a cluster those micro-
regions that present similar traces comparing their Fourier transform. Based on the assumption
that most micro-regions contain the PPG signal, we select the cluster of micro-regions with the
highest number of elements and ignore the remaining. In this fashion, the algorithm automatically
selects the ROI.

Section 4.4.1 presents a new distance metric used to compute the similarity between the traces
of micro-regions and Section 4.4.2 the clustering algorithm per se.

4.4.1 Distance Metric

For each micro-region, we mix their red, green and blue traces using the weights given in
Section 3.1 and we compute its DFT. Those micro-regions corresponding to the skin of the in-
dividual being monitored will have a Fourier transform composed by the PPG signal plus an
additive noise and those that do not correspond to the skin will be primarily composed by noise.
Hence one can expect that the Fourier transform of some micro-regions will be similar between
each other because they carry the same signal.

However, even though some micro-regions have similar Fourier transform, their amplitude
can vary significantly from one to another as a result from shadows, changes in the characteristics
of the skin, e.g. tone, texture, beard, blood circulation, etc. Therefore, traditional approaches to
compare functions, such as Euclidean distance, are not suitable in our case. Thus the necessity to
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create a new metric capable of comparing the similarity between Fourier transforms that is robust
to the scale.

Let F1[v] and F2[v] be the magnitude of two discrete Fourier transform that we want to com-
pare, where v is the discrete frequency. They are said to be similar if they have peaks at the same
frequencies, with amplitudes proportional to each other i.e., exist a real constant k > 0 which
yields

F2[v] ≈ k.F1[v], vmin ≤ v ≤ vmax. (4.23)

Where vmin and vmax define the range of frequencies where the two Fourier transforms are com-
pared. This range is chosen as those frequencies where we expect the HR to be, from 30 to
240 BPM. Otherwise, when Equation (4.23) is not a good approximation, the functions are con-
sidered to be not similar.

One simple way to find the value of the constant k for equation (4.23) is to normalize F1[v]

and F2[v] by their root mean squared amplitude (RMS amplitude),

A1 =

√
1

N

∑
i

F1[v]2 and A2 =

√
1

N

∑
i

F2[v]2, (4.24)

respectively, where N is the number of elements of F1 and F2. Therefore, equation (4.23) be-
comes:

F2[v]

A2

≈ F1[v]

A1

(4.25)

Nevertheless, the RMS amplitudes can be influenced by noise. So, for a finer tuning, we can
add a real constant α > 0 in equation (4.25), resulting in:

F2[v]

A2

≈ α
F1[v]

A1

⇔ α−½F2[v]

A2

≈ α½F1[v]

A1

(4.26)

Thus, based in the Euclidean distance, we can define

D {F1, F2} =
∑
v

(
α½F1[v]

A1

− α−½F2[v]

A2

)2

(4.27)

as a distance between F1 and F2 which results in values near to zero when equation (4.26) is a
good approximation (for the cases where F1 and F2 are similar) and larger values otherwise.

The regions of low amplitude in functions F1[v] and F2[v] suffers more from the noise influ-
ence than regions with high amplitude. So, we can add a weight wv to equation (4.27) in order to
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give more importance for the regions of high amplitude, resulting in

D {F1, F2} =

∑
v wv

(
α½ F1[v]

A1
− α−½ F2[v]

A2

)2∑
v wv

=
1

W

(
α
V11

A2
1

+
1

α

V22

A2
2

− 2
V12

A1A2

)
, (4.28)

V11 =
∑
v

wvF1[v]2, V22 =
∑
v

wvF2[v]2, V12 =
∑
v

wvF1[v]F2[v] and W =
∑
v

wv,

where wv is defined as:

wv = max

(
F1[v]

A1

,
F2[v]

A2

)
. (4.29)

The value of α > 0 is found as the one minimizing the distance metric D {F1, F2} and can be
calculated by deriving equation (4.28) as a function of α and equaling it to zero, leading to:

α2 =
A2

1

A2
2

V22

V11

. (4.30)

Substituting the value of α given by equation (4.30) in equation (4.28) and simplifying, pro-
duces:

D {F1, F2} = 2

√
V11V22 − V12

A1A2W
. (4.31)

A similarity metric yielding values between 0 and 1, where 1 means completely similar and 0

completely different, can be calculated using a Gaussian function as:

S {F1, F2} = e
−D{F1,F2}

2σ2s , (4.32)

for a given σs.

4.4.2 Algorithm

Now that we have a distance metric capable of comparing the similarity between two Fourier
transforms we can use it as a base for a clustering algorithm. This algorithm should be capable
of grouping together regions that have similar Fourier transforms, indicating that they carry the
same signal.

The algorithm proposed in this work is a modification of the K-means [71]. The K-means
algorithm is used to cluster a set of input vectors into k groups (or clusters). Each group is defined
by its centroid and the vectors are assigned to the closest cluster. The k centroids are initialized
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by a set of representative samples or random selected from the input set and each element of the
input set is assigned to the closest centroid. After the elements are assigned, the centroids are
updated. This process is repeated iterativally till the centroids converge (or when the difference
of the current centroids to the previous ones is below a threshold).

One disadvantage of the K-means for our purpose is that we need to know, prior to the clus-
tering, how many cluster we want to form. The optimal number of cluster is video dependent
because the noise from different micro-regions tend to differ from one site to another.

The proposed algorithm is represented in Figure 4.8 and presents two majors modifications:

1. We employ Equation (4.31) as a distance metric;

2. The algorithm decides automatically the optimal number of clusters.

a) Initial set b) First iteration c) After convergence

din
dout

C1[i]

C2[i]
C1[i]

C2[i]

Figure 4.8: Clustering algorithm: a) Initial set of points that we want to cluster; b) Algorithm after first iteration.
The points within one of the colored regions belong to the same cluster; c) Algorithm after convergence. The points
inside the dashed regions belong to a special cluster where its elements are too different from others clusters.

The input of the algorithm is Υ = {Fn[i]}, a set of vectors of the Fourier transform for each
micro-region, in a total of NR vectors. This set is also seem as points in a nonlinear space which
have Equation (4.31) designed as a distance metric.

Differently from the K-means algorithm, the k-th cluster is entirely defined by the neighbor-
hood around the vector Ck[i], the cluster centroid, that is computed by the mean of the vectors
inside the cluster after each iteration. That is, we do not need to know the centroid of other
clusters to decided if a vector belongs or not to a given cluster.

In order for a vector to be included in the cluster, its distance to the cluster center must be less
or equal to din. Once inside the cluster, the vector will only be excluded when, in the next update
of the cluster center, its distance to the center is superior to dout.

From the initial set Υ, 20% of vectors are randomly selected as cluster center. For all the
remaining points we calculate its distance to Ck[i]. If this distance is below or equal to din, the
point is integrated to the cluster. Otherwise, if there are no cluster for which the distance is less
or equal to din, the element remain unclassified.

After this step we calculate the mean value of all vectors within a cluster and this mean is used
to update the cluster center. As it is possible that in the random selection of elements as cluster
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centers that we have separated elements that are in fact very similar, we compute the distance
between between all cluster centers to determine how similar they are. If this distance is less or
equal to dout the clusters are aggregated together. After this step, for those clusters that have just
one element, its vector are aggregated together in a special cluster for those elements that are too
different from others. Normally this correspond to elements composed primarily by noise.

It is possible that after updating the cluster center, some elements within a cluster will actually
no longer belong to the cluster. Therefore we calculate the distance of all elements within a
cluster to the cluster center. Those that have a distance higher than dout are excluded and set as
unclassified.

If we still have unclassified elements, we randomly select 20% of the unclassified elements to
form new clusters and we repeat the previous steps till there are no more unclassified elements
remaining. At this point, the algorithm is said to have achieved convergence.

For some cases it is possible that the algorithm never converges or converge just after a large
number of iterations. Hence, we fixed a limit of 200 iterations and the algorithms stops, even
without convergence, when reaches this limit.
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5 RESULTS

In this chapter we analysis the performance of our algorithms to real and synthetic data. Given
the lack of video databases for the purpose of HR estimation, we created our own database to test
the algorithms’ performance.

Section 5.1 present the database. The remaining sections evaluate the algorithms’ perfor-
mance.

5.1 DATABASE

The database is composed of video sequences with a duration of 60 seconds. The videos are
stored without compression since the motion compensation employed in compression algorithms
can eliminate the subtle variations of the skin tone that we employ for HR estimation.

We captured 2 different video sequences from 20 volunteers with an approximated duration
of 65 seconds. The videos were cropped to present an exact duration of 60 seconds. Among the
volunteers, 15 were man and 5 were women, 4 used glasses and 6 had beards. Figure 5.1 sketch
the average face of all volunteers as captured on the first frame of the videos.

a) Steady b) Movement

Figure 5.1: Average of volunteers face from the first frame of the videos. The images were aligned with respect to
the eyes and mouth position.

The videos were captured using the camera Firefly MV FMVU-03MTC from Point Grey,
with a resolution of 0.3 megapixels (640x480 pixels) and a temporal sampling of 60 frames per
second. Each frame is captured and stored without compression by a personal computer running
an application that communicates to the camera through USB. The frames are stored as a raw
data.
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During the acquisition process, when the application was not able to gather a frame from the
camera buffer before the camera start to overwrite it, some frames were lost. As this error occurs
with a relative small frequency, ours algorithms were able to estimate the HR even under such
errors. The performance of ours algorithms, evaluated with this database, is shown in subsequent
sections.

The captured frames present a Bayer pattern [72] of type ‘RGGB’ with 8 bits per pixel. The
frames are demosaiced using the function demosaic1 from MATLAB.

The camera captured mainly the volunteer’s face under two conditions: for the first video, we
asked the volunteer to stay as still as possible; for the second video, the volunteer was let to move
freely and we interviewed them to encourage movements of the lips, face and hands. The audio
was not recorded. The volunteers were not instructed on how to move on the second video in
order to obtain a more natural reaction and do not introduce a bias.

As the videos were captured, we monitored the volunteers HR using a commercial fingertip
pulse oximeter that presents an accuracy of 2 BPM and a resolution of 1 BPM, as informed by
the manufacturer. This measure is used as a reference (the ground-truth) to determine how well
the algorithms perform. The oximeter data is filtered with a Gaussian filter with variance equal to
0, 7071 to eliminate its descontinuities due to the low precision, as shown in Figure 5.2.
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Figure 5.2: Oximeter data filtering. The colored regions correspond to the fingertip oximeter reading for 5 volunteers,
within a range of ±1.86 BPM. The lines show the filtered data for each volunteer.

1http://www.mathworks.com/help/images/ref/demosaic.html
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5.2 EVALUATION OF HR-FD

To evaluate the performance of the algorithms, we employ, in this work, bar plots similar to
the one in Figure 5.3. These bar plots show the amount of time, as a percentage from the total
time, that the algorithm stayed within a given absolute error range for all 20 volunteers. The error
is considered to be the difference between the filtered oximeter reading and the estimated HR.

If the absolute error of the estimated HR, compared to the oximeter reading, is inferior or equal
to 2 BPM, then the estimation is considered correct as it falls in the accuracy range of the oximeter.
We also assume that errors inferior to 8 BPM are considered acceptable for HR estimations. On
the other hand, if the error is superior to 11 BPM, we consider that the estimated HR is incorrect.
Hence, the green regions correspond to correct estimations, red regions to incorrect estimations
and yellow regions correspond to the transition between acceptable and incorrect.

In this section we evaluate the performance of HR-FD compared to the algorithm of Poh [13].
To perform the analysis we employ the steady videos and the videos with movement from our
database, as well as synthetic data.

5.2.1 Steady Videos

Figure 5.3 shows the performance of the proposed algorithm compared to that of Poh. It can
be noticed that the HR-FD performs better than POH for the steady videos where Poh stayed
73.9% of the time with an error less or equal to 8 BPM, compared to 86.6% for HR-FD.
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Figure 5.3: HR detection performance of Poh versus HR-FD.

This better performance is due to three factors: the use of the adaptive filter, the derivative filter
and the fixed mixture of the traces to form the signal employed for HR estimation. As we apply
a fixed mixture for source separation, we are not susceptible to errors that could be introduced
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by the Independent Component Analysis algorithm that adaptively estimate the alpha values to
apply to each color channel. Also, the adaptive and derivative filter are capable of increasing the
SNR before heart rate estimation.

Table 5.1 portray the contribution of the adaptive and derivative filters, and the Blind Source
Separation (BSS) strategy: fixed mixture of the red, green and blue channels (the strategy em-
ployed in HR-FD); adaptive estimation of the weights to apply to each color channel by means of
ICA (the strategy employed by Poh).

Table 5.1: Evaluation of the contribution of the adaptive filter, derivative filter and BSS strategy on HR-FD for the
steady videos.

Filter Error range
Adaptive Derivative BSS |ε| ≤ 2 |ε| ≤ 5 |ε| ≤ 8 |ε| > 11 Position

No
No

Fixed 40.1% 79.4% 89.3% 07.4% 1st

Adaptive 31.8% 65.0% 72.4% 25.7% 7th ← Poh

Yes
Fixed 38.1% 72.9% 81.1% 15.5% 5th

Adaptive 28.6% 58.1% 64.4% 34.1% 8th

Yes
No

Fixed 40.8% 78.2% 87.3% 09.5% 2nd

Adaptive 31.8% 66.1% 73.9% 22.8% 6th

Yes
Fixed 39.8% 77.2% 86.6% 10.2% 3rd ← HR-FD

Adaptive 36.6% 73.0% 81.8% 14.0% 4th

The best performance was achieved when we used the fixed mixture for BSS and when no
adaptive and derivative filters were employed. The HR-FD obtained the third place, but we can
observe that its performance is very close to first and second place. The algorithm of Poh, on the
other hand, obtained the seventh place.

It can be seen from the average contribution, depicted in Table 5.2, that the use of the adaptive
filter and the fixed mixture improved the performance of the algorithm. The use of the filters did
not provide the best performance for the steady videos since their function is to attenuate noise
and the signal captured on this case comprises a good SNR as little motion artifact is present.
However, they provided a performance close to the best, achieving the second and third position
with only 2.0% and 2.7% less correct estimated HR than the first place, respectively.

Table 5.2: Average contributions of the adaptive filter, derivative filter and BSS strategy on HR-FD for steady videos.
The average percentage of incorrect estimated HR (|ε| > 11) and the average position is shown in each cell.

Employed
Feature Yes No

Adaptive Filter 14.1% (3.75th) 20.7% (5.25th)
Derivative Filter 18.5% (5.00th) 16.3% (4.00th)

Fixed Mixture BSS 10.7% (2.75th) 24.1% (6.25th)
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5.2.2 Videos with Movement

For the videos with movement, the difference between the performance of HR-FD and Poh is
even higher than for the steady videos, as it can be seen in Figure 5.3, resulting in 11.9% correct
estimations for Poh and 34.6% for HR-FD.

For these videos, the use of the adaptive and derivative filters become more important because
they present a lower SNR, resulting in an improvement of the algorithm performance, as show
in Table 5.3. Indeed, the best performance is acquired when both filters are employed, with an
advantage of 6.4% and 7.9% more correct HR estimations than the second and third place. The
average contribution, shown in Table 5.4, enforces this statement. As the use of the adaptive and
derivative filters provide a large advantage for the videos with movement and a performance close
to the best for the steady videos, they are employed in our algorithm for HR estimation.

Table 5.3: Evaluation of the contribution of the adaptive filter, derivative filter and BSS strategy on HR-FD for the
videos with movement.

Filter Error range
Adaptive Derivative BSS |ε| ≤ 2 |ε| ≤ 5 |ε| ≤ 8 |ε| > 11 Position

No
No

Fixed 07.9% 20.3% 26.1% 71.7% 4th

Adaptive 02.6% 07.5% 09.3% 89.7% 8th ← Poh

Yes
Fixed 06.8% 16.9% 23.0% 74.5% 5th

Adaptive 04.0% 13.9% 18.4% 78.7% 6th

Yes
No

Fixed 07.9% 20.1% 28.1% 68.6% 2nd

Adaptive 03.4% 10.4% 14.4% 83.9% 7th

Yes
Fixed 10.1% 25.6% 34.5% 61.6% 1st ← HR-FD

Adaptive 06.7% 20.7% 26.6% 71.2% 3rd

Table 5.4: Average contributions of the adaptive filter, derivative filter and BSS strategy on HR-FD for the videos
with movement. The average percentage of incorrect estimated HR (|ε| > 11) and the average position is shown in
each cell.

Employed
Feature Yes No

Adaptive Filter 71.3% (3.25th) 78.6% (5.75th)
Derivative Filter 71.5% (3.75th) 78.5% (5.25th)

Fixed Mixture BSS 69.1% (3.00th) 80.9% (6.00th)

As it can be seen, the use of the adaptive BSS is the main factor that reduces the performance
of the algorithm. The application of the fixed mixture, combined with the adaptive and derivative
filters, provided a better robustness against noise.
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5.2.3 Synthetic Data

Since it is hard to evaluate the noise performance of the algorithms for a real scenario, as
signal and noise energy are unknown, we created a simulated experiment to investigate their
performance against noise.

The PPG signal was simulated as a cossinus wave of known frequency, randomly chosen
between 60 and 200 BPM (uniform random variable) added to a Gaussian noise of known energy.
Figure 5.4 depicts the performance of HR-FD and Poh’s algorithm to this simulated data. We
also tested the performance of HR-FD without the adaptive and derivative filters to evaluate their
contribution.
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Figure 5.4: Evaluation of algorithm performance to Gaussian noise. A synthetic signal composed by a cossinus wave
of kwon frequency plus a Gaussian noise is fed to the algorithms. The percentage of time the estimation error is less
or equal to 8 BPM is plotted for different SNR values. Each point on the curve is the average value obtained in 100
simulations.

When the SNR is below −35 dB (point I), both algorithms present an equal percentage of
correct estimations equivalent to that of randomly choosing the output. Indeed, it can be shown
(see Appendix II) that the probability of percentage of time that the absolute error |ε| is inferior or
equal to TBPM (for TBPM ≤ 30, the error threshold), when the signal frequency and the algorithm
estimation are uniform independent random variables, is given by

P {|ε| ≤ TBPM} =
2TBPM(200− 60)

(240− 30)(200− 60)
=
TBPM
105

. (5.1)

For TBPM = 8, P {|ε| ≤ 8} = 7.6%, that correspond to the values found in Figure 5.4 for
SNR < −35dB.

Between points I and III we can notice that HR-FD performs significantly better than Poh for
this synthetic signal. At point II, where SNR = −18 dB, HR-FD reaches 100% of correctly
estimated HR. Poh reaches 100% at point III, where SNR = −11 dB. This means that the
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HR-FD achieves the maximum rate 7 dB before Poh, where the noise energy is 5 times greater
than the noise energy at point III. Poh reaches 50% for P {|ε| ≤ 8} at −23 dB while HR-FD at
−26.9 dB.

This better performance is due to the use of the fixed weights employed for BSS. The synthetic
data employed here shows that the use of the adaptive and derivative filters do not contribute to
improve the performance. Actually, the performance was slightly better when they were not
employed. This is the opposite behavior then the one found for the real data, where the use of the
adaptive and derivative filters enhanced the performance. It indicates that the Gaussian noise do
not simulate very well the noise found in real data.

From our database we can observe that the noise present higher amplitudes for low frequen-
cies, and the noise amplitudes tend to decay inversely to the frequency, as shown in Figure 5.5.
The low frequency characteristic of the noise was also observed by Xu et. al. [9].
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Figure 5.5: Discrete Fourier transform of the noise on real data. The curves depicts the average value of the DFT
obtained for all volunteers. The frequencies near the value obtained by the pulse oximeter (± 10 BPM), for each
volunteer, were not used to compute the average in order to eliminate the PPG signal from the resulting curves.

Therefore, to obtain a simulated noise more befitting to the real data, we integrate the Gaussian
noise in time to amplify the low frequencies and attenuate the high frequencies, applying a gain
inversely proportional to the frequency. We also remove the DC component of the noise and we
multiply it by a constant in order to obtain the desired SNR. The frequency characteristic of the
Gaussian noise and the integrated Gaussian noise are shown in Figure 5.6.

With this noise we obtain a different scenario. Results are shown in Figure 5.7 that depicts
the percentage of time that the algorithm presented an absolute error inferior to 8 BPM for 100
simulations.

Table 5.5 present the SNR values where which algorithm reached the given percentage of
correct estimation. We can notice that HR-FD reach 10% of correct estimations at -39.09 dB,
13.33 dB before the algorithm of Poh, and 95% at -30.18 dB while Poh reach this percentage
at -1.79 dB. This better performance is mainly due to the fixed mixture employed for BSS that
avoids the errors introduced by ICA at low SNR because this algorithm needs a relative high
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Figure 5.6: Discrete Fourier transform of the simulated noise.
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Figure 5.7: Evaluation of algorithm performance to integrated Gaussian noise. A synthetic signal composed by
a cossinus wave of kwon frequency plus a Gaussian noise is fed to the algorithms. The percentage of time the
estimation error is less or equal to 8 BPM is plotted for different SNR values. Each point on the curve is the average
value obtained in 100 simulations.

value of SNR in order to correct estimate the weights to apply for each color channel. This can
be observed by the performance of the algorithm employing only the fixed mixture (HR-FD w/o
Filters) that presented a better performance than Poh.

Table 5.5: SNR values, in dB, where which algorithm reached the given percentage of correct estimations.

10% 50% 95%

HR-FD -39.09 -34.75 -30.18
HR-FD (w/o Filters) -33.25 -29.36 -25.07

Poh -25.76 -11.89 -01.79

Also, we can observe that the use of the adaptive and derivative filter contributed for a better
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performance and the HR-FD reached a given percentage of correct estimations 5.4 dB, in average,
before its versions that do not employ those filters.

5.2.4 Conclusion

The HR-FD presented an improvement in performance, compared to the algorithm of Poh,
both in the videos with and without movement and on the synthetic data. We noticed that this
better performance is mainly due to the use of the fixed mixture employed for BSS. The adaptive
and derivative filters also contributed and an enhancement in performance was observed with their
use.

5.3 EVALUATION OF HR-MRT

Nonetheless, HR-FD and Poh do not show a satisfactory performance for videos with move-
ment, as was already stated in Section 3.2, due to movement artifacts. This issue is addressed by
HR-MRT, that employs a more complex trace extraction.

The HR-MRT is tuned by parameters that influence, for example, the frame segmentation
in micro-regions, point tracking filtering, clustering algorithm, etc. Table 5.6 summarizes the
parameters employed for HR-MRT. Sections 5.3.1, 5.3.2 and 5.3.3 disclose the choice of the
main parameters. In Section 5.3.4 we compare the performance of HR-MRT to HR-FD and Poh.

Table 5.6: Parameters employed for HR-MRT.

Stage Parameters

σ1 = 3 (control the distance penalty)

σ2 = 0.06 (control the color difference penalty)Bilateral Filter
Squared neighborhood of size 11x11

Frame
Segmentation

Low-pass Filter N = 6 (kernel size)

Skin Detection
Histogram based approach combined with Viola-Jones
face detector

Block Duration 10 seconds

Temporal Filter Third order polynomialsPoint Tracking
Filtering Spacial Filter Full affine transformation

din = −2 ln(0.4) (similarity of 0.4 for σs = 1)
Clustering Algorithm

dout = −2 ln(0.42) (similarity of 0.42 for σs = 1)

Traces Prefilter Employs the adaptive and derivative filters
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5.3.1 Block Duration

One block correspond to a set of frames upon each we perform point tracking in order to
compensate for movements. The smaller the block duration the less the algorithm will be affected
by drift errors and occlusions on the video when, for example, a moving hand occlude part of
the volunteer’s face. On the other hand, blocks can introduce artifacts due to discontinuities in
the transition from one block to another. Therefore, too small blocks should also be avoided.
In our work, the traces of each micro-region are normalized, removing its DC component and
adjusting its amplitude, resulting in a signal with unitary variance. This normalization reduces
the discontinuities between blocks, but it does not eliminate them.

In Figure 5.8 we show the performance of the HR-MRT for two block durations: 60 and 10
seconds. The performance was better for the estimations using blocks of 10 seconds, compared
to the one of 60 seconds. This better performance is due to the point tracking that can get lost
when applied for long sequences.
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Figure 5.8: Performance of HR-MRT for different block duration.

The opposite behavior is found for the steady videos, where blocks of 60 seconds perform
better than blocks of 10 seconds. As there is little movement, execute the point tracking using
blocks of 60 seconds is not very challenging and the algorithm offers, in general, a very good
estimation while avoiding the artifacts introduced in the transitions from one block to another.

As the videos with movement present a more challenging scenario, we decided to employ
blocks of 10 seconds. This block duration showed the best performance for videos with movement
and a satisfactory performance for steady videos.
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5.3.2 Skin Detection

The skin detection plays an important role in the definition of the ROI, eliminating the pixels
from the background. Although, skin detection is a hard task as the color of skin pixels overlap the
color of non-skin pixels found in the nature. Therefore, we proposed three strategies, as described
in Section 4.1:

• Auto: Automatic skin detection using a histogram based approach;

• Viola-Jones: The result of the automatic skin detection is combined with the Viola-Jones
face detector to eliminate those pixels that are not on the volunteers face;

• Manual: The volunteer skin was manually selected on the first frame of the video.

Figure 5.9 shows the performance of the three strategies for two block duration.
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Figure 5.9: Performance of HR-MRT for different skin detection strategies.

The use of automatic skin detection presented the best performance when combined with
blocks of 10 seconds, while for blocks of 60 seconds the automatic skin detection combined
with the Viola-Jones face detector had the best performance. Manual detection were only tested
for blocks of 60 seconds and did not offer the best performance because, as it can be seen in
Figure 4.2, it is just a rough contour that includes eyes, eyebrows, teeth and parts of clothing that
negatively influence the estimation.

5.3.3 Point Tracking Filtering

Points are tracked using eight successive frames of the video, as schematized in Figure 4.6.
The output of the tracking algorithm is considered rather an estimation of the the actual optical
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flow and some noise may be added. To reduce the noise we exploit the temporal and spatial
redundancy. The temporal redundancy is used by modeling the movement of the tracking points
by polynomials. The position of the estimated tracking position is adjusted in order to fit to the
model. The spatial redundancy is explored by means of an affine transformation, that combine
together up to 12 points within a small region (the micro-region).

The affine transformation is executed in two distinct ways:

• Rigid: Using only rigid transformation: translation, scaling and rotation;

• Full: Using a full search: translation, scaling, rotation, shearing and mirroring.

The performance of the different affine transform settings is presented in Figure 5.10. Their
performance is, in fact, very similar and it is hard to decide which is better. These results indicate
that the rigid transformation can, actually, represent well the movements of the micro-regions.
The full search would, in this case, result in parameters close to that for rigid transformation,
what implies in similar performance
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Figure 5.10: Performance of HR-MRT for different affine transform settings.

The polynomial used to model the movement vary in order. From the scheme used, it can
be used polynomial of zeroth to sixth order. Figure 5.11 depicts the performance for polynomial
from second to fourth order.

Third order polynomials is the one that presented the best performance among the three of
them for videos with movement. The use polynomials of smaller order is not very well suited
because they can not model satisfactorily the movement of the tracking points. Higher order are
also not a good choice because, despite their ability to model complex movements, they do not
offer a good noise suppression as the noise can fit more easily to it.
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Figure 5.11: Performance of HR-MRT for different polynomial orders.

5.3.4 HR-MRT Performance

Figure 5.12 presents a comparison between the algorithm of Poh, HR-FD and HR-MRT. The
HR-MRT presents a significant gain in performance compared to Poh and HR-FD for the videos
with movement, where the point tracking is used to reduce artifacts introduced by movement.
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Figure 5.12: Performance of HR-MRT compared to HR-FD and Poh.

Although, for the steady videos, the performance of the HR-MRT is slightly inferior to that
of HR-FD but still superior to Poh because of how the ROI is defined. For the HR-MRT we
employ a skin detector and point tracking. Therefore, it is possible that some micro-regions on
the volunteers face, that could be used for HR detection, were rejected either by the skin detector
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or the point tracker before the computation of the red, green and blue traces. Indeed, for the videos
on our database, some frames were lost during data acquisition. The discontinuities introduced
by these errors are not very well modeled by third order polynomials, which can introduces a
drifting effect that may culminate in the rejection of the micro-region.

This effect also occurs for the videos with movement, but most of the rejected regions on those
videos are affected by noise. Therefore, eliminating them actually results in a better SNR.

In general, we can conclude that the HR-FD is the best algorithm among the three shown
in Figure 5.8 to be employed for videos with little movement. When movement is present the
HR-MRT provides better estimations and the use of small blocks is preferable.

5.4 ANALYSIS OF THE AUTOMATIC ROI SELECTION

The HR-MRT divides the frames of the video in micro-regions. The micro-regions that do
not meet the criteria imposed during skin detection, point tracking and clustering are eliminated.
These criteria are:

1. Skin detection: those micro-regions that do not contain at least 80% of pixels detected as
skin are reject as the PPG signal can only be extracted from skin pixels;

2. Point tracking: the micro-regions for which the affine transform result in a area superior
to twice or inferior to half of the initial area in a given time are rejected as their estimated
optical flow may contain errors;

3. Clustering: we keep only the cluster of micro-regions, grouped accordingly to their DFT,
that presents the highest number of elements. The micro-regions of the other clusters are
eliminated as they are likely to be affected by motion noise.

The remaining micro-regions are used for HR estimation and form the ROI. Figure 5.13 sketch
the percentage of time that regions on the video were chosen to compose the ROI.

The forehead and cheeks were the most chosen as they correspond to very well vascularized
regions that facilitate the extraction of the PPG signal in the case of steady videos. For the
videos with movement, the algorithm gives privilege to the forehead over the cheeks as the cheeks
contain, in general, more motion noise in this case. We can also observe that eyes and mouth were
rejected most of the time, mainly for videos with movement, as they introduce artifacts due to
speaking and blinking. In the case of automatic skin detection without Viola-Jones face detector
we can see that the region on the neck were also employed for HR detection.

The density of chosen regions were higher when using blocks of smaller duration because less
micro-regions are rejected during the point tracking stage. This is not crucial for steady videos
as a considerable number of micro-regions, in general, are kept after the point tracking. On
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Figure 5.13: Percentage of time that the regions were chosen as ROI by HR-MRT. The mold is based on the average
face of the volunteers, after synchronizing them, and depicts the position of face, eyes, mouth and nose. The second
and third columns shows the percentage of time that a given region was selected for HR detection for the block
duration of 60 and 10 seconds.

the other hand, for videos with movement, the number of rejected regions during point tracking
increases, making the use of blocks of smaller duration a better choice. This effect can be seen in
Figure 5.14 that depicts the number of micro-region employed for HR detection for each volunteer
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individually. We can notice that most of the micro-regions were eliminated during the point
tracking for blocks of 60 seconds and, for videos 02 and 05, for example, almost none remained
for HR detection.
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Figure 5.14: Performance of the HR-MRT for the video with movement for each volunteer individually. The first
row depicts the number of micro-regions employed for HR estimation in light blue, for two blocks duration. In dark
blue is represented the number of micro-regions eliminated by the clustering algorithm and in gray the number of
micro-regions eliminated during point tracking. The total height of the bars show the total number of micro-regions
initialized by the skin detector. The second row presents the performance separated in three groups: A, B and C.

The volunteers were segregated into three groups, for better visualization, composed by those
videos where: A) both the block sizes tested presented a poor performance; B) blocks of 10 and
60 seconds diverged greatly in performance; C) both block sizes presented a good performance.
It can be observed that, in general, the higher the number of micro-regions employed for HR
detection the better is the HR detection performance. We can also see that for videos with a poor
performance, most of the micro-regions were eliminated during the point tracking stage.

5.5 SUMMARY

Table 5.7 summarizes the performance of the proposed algorithms, compared to that of Poh,
when using skin detection combined with the Viola-Jones face detector. The HR-FD, despite its
simplicity, is the best suited for videos without movement, resulting in only 10.2% of incorrect
HR estimations, less than half of the percentage found with Poh’s algorithm. For the videos with
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movement, on the other hand, HR-MRT presented the best performance with 62.6% of correct
estimations, almost twice that of HR-FD and 5.3 times than that of Poh.

Table 5.7: Performance of the algorithms of Poh, HR-FD and HR-MRT.

Error range
Video Group Algorithm |ε| ≤ 2 |ε| ≤ 5 |ε| ≤ 8 |ε| > 11

Steady
Poh 32.7% 67.1% 73.9% 23.1%

HR-FD 39.8% 77.2% 86.6% 10.2%
HR-MRT 35.2% 71.9% 80.8% 18.1%

Movement
Poh 03.4% 09.4% 11.9% 86.6%

HR-FD 10.1% 25.7% 34.6% 61.5%
HR-MRT 25.0% 55.0% 62.6% 34.3%

Figures 5.15 and 5.16 show the HR estimation over time for two videos without movement.
For most steady videos, all three algorithms are capable of correctly estimate the HR, as displayed
in Figure 5.15. The proposed algorithms have a better robustness against noise and are capable of
maintaining a good performance for more challenging videos, such as the one in Figure 5.16.

Figures 5.17, 5.18 and 5.19 exhibit the HR estimation over time for three volunteers for the
videos with movement. Figure 5.17 is an example where none of them were capable to offer a
satisfactory HR estimation. Nevertheless we can notice a better performance than the algorithm
of Poh due to use of the fixed mixture and the filters employed.

Figure 5.18 depicts an example where all three of them offered a satisfactory estimation.
Notwithstanding we can notice that the HR-MRT stayed closer to the ground-truth due to the
motion compensation. The effect of the motion compensation is more outstanding in Figure 5.19,
where only HR-MRT was capable to correct estimate the HR.
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Figure 5.15: HR detection for volunteer 18 - Steady video. The oximeter reading is shown in the range of absolute
errors of 2, 5 and 8 BPM.
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Figure 5.16: HR detection for volunteer 18 - Steady video. The oximeter reading is shown in the range of absolute
errors of 2, 5 and 8 BPM.
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Figure 5.17: HR detection for volunteer 05 - Video with movement. The oximeter reading is shown in the range of
absolute errors of 2, 5 and 8 BPM.
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Figure 5.18: HR detection for volunteer 13 - Video with movement. The oximeter reading is shown in the range of
absolute errors of 2, 5 and 8 BPM.
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Figure 5.19: HR detection for volunteer 18 - Video with movement. The oximeter reading is shown in the range of
absolute errors of 2, 5 and 8 BPM.
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6 CONCLUSIONS

In this work we proposed two algorithms for heart rate (HR) estimation using videos of the
human face under uncontrolled light in indoor enviroments. We compared our results to that of
Poh [13] and observed a substantial improvement.

The first algorithm, Video heart rate estimation through Face Detection (HR-FD), employs
an adaptive filter that imposes a temporal coherence on the signal. This filter is based on the
assumption that the heart rate varies slowly with time. A derivative filter was also employed to
reduce the influence of low frequency noise. These filters boosts the signal to noise ratio of the
signal used for HR estimation and we showed that they are capable of reducing the number of
incorrect estimated HR, particularly for noisy traces. But predominantly, a larger improvement
was obtained by avoiding the use of Independent Component Analysis (ICA), commonly used in
the literature. Without ICA we eliminate the dependence on the performance of this algorithm
and we are not susceptible to errors that could be introduced when it is not capable to correctly
determine the mixture of the three traces. The proposed algorithm presents a low complexity and,
despite its simplicity, can correctly estimate the heart rate for videos with little movement.

The second algorithm, Video heart rate estimation through micro-region tracking (HR-MRT),
further improved the performance by adding robustness to motion. This algorithm used a different
Region of Interest (ROI) than the previous one. The video is divided in blocks and the first frame
of the block is segmented in micro-regions using watershed segmentation. For each micro-region
we select a set of tracking points that are used to compensate for movement. The optical flow of
the tracking points is estimated using the Lucas-Kanade algorithm. The optical flow is spatial and
temporal filtered to reduce the effect of noise.

For the temporal filter we modeled the motion of the tracking points with a polynomial func-
tion. The order of the polynomial should be high enough to correctly accommodate the complex
movements of the tracking points but small enough to avoid data overfitting, which reduces the
capacity of the algorithm to eliminate or attenuate noise. The results indicate that the use of third
order polynomials presents the best trade-off between data representation and noise attenuation.

The spatial filtering is executed finding the affine transformation that represents the tracking
points for each micro-region, minimizing the quadratic error, at a given time. This affine trans-
formation is then applied to determine how the border of the micro-region evolved. We proposed
two approaches for the affine transform: restrict the transformation to only rigid transforms and
allow a full search. The results suggest that the full search is slightly better than the search re-
stricted to rigid movements in terms of number of correct estimated HR for the case of videos
with movement. Although, it is hard to decide which of the two approaches is better and we can
conclude that this choice is not crucial for HR estimation.

The HR-MRT algorithm also employs a clustering algorithm to decide which micro-regions
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to exploit for HR estimation, automatically defining the ROI. This algorithm is based on K-means
and try to cluster those micro-regions that present a similar DFT. For the sake of automation we
use only the cluster that presents the largest number of elements based on the assumption that
most of the micro-regions will contain the photoplestimographic (PPG) signal and that the micro-
regions composed primarily by noise do not cluster very well as the noise vary greatly from one
site to another. This assumption is dependent on the performance of the skin detection algorithm,
as micro-regions that are incorrectly detected as skin do not contain the desired signal. We ob-
served from the results that to perform the skin detection using the histogram based approach,
combined or not with the Viola-Jones face detector, presents a good performance.

6.1 FUTURE WORK

We noticed that, in general, the higher the number of micro-regions employed for HR detec-
tion, the better is the algorithm performance. We also noticed that most of the micro-regions are
rejected during point tracking, especially for blocks of higher duration. Therefore, in a future
work, special attention should be given to the optical flow algorithm.

The knowledge that, for steady videos, the forehead and the checks are the best regions on the
face for HR estimation could be exploited to ameliorate the ROI, improving the performance for
HR-FD and/or HR-MRT. For videos with movement it was observed that the forehead is the best
region for HR estimation, while the cheeks are rejected most of the time due to motion artifacts.

We could also improve the performance by pre-processing the traces obtained in each time
block to reduce the discontinuities artifacts introduced on the transition from one block to another.
This could be done by modifying the normalization step imposing the continuity of the DC level
and amplitude.
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I. AFFINE TRANSFORMATION MATRIX

The affine transformation matrix can be given by a combination of simple transformations, as

horizontal shear
rotation

mirroring
scaling

R
a11 a12
a21 a22

==
(-1)m

1

0

0

cos(θ)

sin(θ)

-sin(θ)

cos(θ) 1

1

1

1

v

vertical shear

0

0

h

(I.1)

We assume that det(R) 6= 0. Therefore we can find the values of m, α, θ, αh and αv that
represent this transformation.

Scaling and mirroring can be determined directly from the matrix determinant:

m =

{
1, if det(R) < 0

0, otherwise
(I.2)

α =
√
|det(R)| (I.3)

Let us now modify matrix R in such a way that the determinant of the modified matrix is equal
to 1, resulting in

R′ =

[
a′11 a′12

a′21 a′22

]
=

1

α

[
(−1)m 0

0 1

]
R (I.4)

From this modified matrix we can compute the other parameters as:

αh = ±
√
a′212 + a′222 − 1 (I.5)

αv =
a′11a

′
12 + a′21a

′
22 − αh

a′212 + a′222

(I.6)

cos(θ) =
a′12αh + a′22

1 + α2
h

(I.7)
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sin(θ) =
a′22αh − a′12

1 + α2
h

(I.8)

Notice that there are two possible solution for αh, αv and θ depending on the sign of αh, but
both solutions lead to the same matrix R.
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II. RANDOM ESTIMATION OF THE HEART RATE

Consider two independent random variables I and E that represent the input and estimated
frequency, respectively. Assume that I is uniform between 60 and 200 and E is uniform between
30 and 240. Their joint probability distribution, f(i, e), is depicted in Figure II.1. As they are
independent, f(i, e) is given by the product of the probability distribution function of I and E
and is, therefore, constant inside the drawn rectangle and zero outside.

The joint probability distribution is restricted to the constraint:

∫ ∞
−∞

∫ ∞
−∞

f(i, e) di de =

∫ 200

60

∫ 240

30

K di de = 1, (II.1)

where K is the constant level of f(i, e) inside the rectangle and is found to be equal to the inverse
of the rectangle area given by (200− 60)(240− 30).
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Figure II.1: Joint probability distribution.

The blue line correspond to the points where I = E and the region marked in blue correspond
to all points where |I−E| ≤ TBPM . Thus, P{|I−E| ≤ TBPM} is given by the integral of f(i, e)

inside the blue region and is equivalent to the ratio of the blue region area by the total area of the
rectangle.

When TBPM ≤ 30, the upper and bottom frontiers of |I −E| ≤ TBPM do not cross the upper
and bottom lines of the rectangle and the area of the blue region is given by 2TBPM(200 − 60).
Therefore,

P{|I − E| ≤ TBPM} =
2TBPM(200− 60)

(200− 60)(240− 30)
=
TBPM
105

, (II.2)

which, even though it may be small, it is higher than zero.
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