
DISSERTAÇÃO DE MESTRADO

DESCRITOR LOCAL BASEADO NO ALGORITMO SIFT
PARA RASTREAMENTO E SEGMENTAÇÃO DE OBJETOS

EM VÍDEO VIA GRAFOS DE REGIÕES

Gustavo Maia Queiroz de Mendonça

Brasília, Fevereiro de 2016

UNIVERSIDADE DE BRASÍLIA

FACULDADE DE TECNOLOGIA



UNIVERSIDADE DE BRASÍLIA
Faculdade de Tecnologia

DISSERTAÇÃO DE MESTRADO

DESCRITOR LOCAL BASEADO NO ALGORITMO SIFT
PARA RASTREAMENTO E SEGMENTAÇÃO DE OBJETOS

EM VÍDEO VIA GRAFOS DE REGIÕES

Gustavo Maia Queiroz de Mendonça

Relatório submetido ao Departamento de Engenharia

Elétrica como requisito parcial para obtenção

do grau de Mestre em Engenharia de Sistemas Eletrônicos e Automação

Banca Examinadora

Prof. Ricardo Lopes de Queiroz, Ph.D., CIC/UnB
Orientador

João Luiz Azevedo de Carvalho, Ph.D., ENE/UnB
Examinador interno

Camilo Chang Dorea, Ph.D., CIC/UnB
Examinador externo

Bruno Luiggi Macchiavello Espinoza, Dr., CIC/UnB
Examinador suplente



FICHA CATALOGRÁFICA

DE MENDONÇA, GUSTAVO MAIA QUEIROZ
DESCRITOR LOCAL BASEADO NO ALGORITMO SIFT PARA RASTREAMENTO E SEGMENTA-
ÇÃO DE OBJETOS EM VÍDEO VIA GRAFOS DE REGIÕES [Distrito Federal] 2016.
xvi, 118 p., 210 x 297 mm (ENE/FT/UnB, Mestre, Engenharia Elétrica, 2016).
Dissertação de Mestrado - Universidade de Brasília, Faculdade de Tecnologia.
Departamento de Engenharia Elétrica

1. Descritor local 2. SIFT
3. Grafos 4. Segmentação de vídeo
I. ENE/FT/UnB II. Título (série)

REFERÊNCIA BIBLIOGRÁFICA
DE MENDONÇA, G. Q. M. (2016). DESCRITOR LOCAL BASEADO NO ALGORITMO SIFT PARA
RASTREAMENTO E SEGMENTAÇÃO DE OBJETOS EM VÍDEO VIA GRAFOS DE REGIÕES.
Dissertação de Mestrado, Departamento de Engenharia Elétrica, Universidade de Brasília, Brasília, DF,
118 p.

CESSÃO DE DIREITOS
AUTOR: Gustavo Maia Queiroz de Mendonça
TÍTULO: DESCRITOR LOCAL BASEADO NO ALGORITMO SIFT PARA RASTREAMENTO E
SEGMENTAÇÃO DE OBJETOS EM VÍDEO VIA GRAFOS DE REGIÕES.
GRAU: Mestre em Engenharia de Sistemas Eletrônicos e Automação ANO: 2016

É concedida à Universidade de Brasília permissão para reproduzir cópias desta Dissertação de Mestrado e
para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. Os autores reservam
outros direitos de publicação e nenhuma parte dessa Dissertação de Mestrado pode ser reproduzida sem
autorização por escrito dos autores.

Gustavo Maia Queiroz de Mendonça
Depto. de Engenharia Elétrica (ENE) - FT
Universidade de Brasília (UnB)
Campus Darcy Ribeiro
CEP 70919-970 - Brasília - DF - Brasil



RESUMO

Na segmentação de objetos em vídeos por intermédio de um rastreamento quadro a quadro de re-

giões, a manutenção da coerência temporal depende diretamente da qualidade desse rastreamento

ao longo dos quadros. Para esse fim, adaptou-se para o domínio dos superpixels processados

como grafos de regiões, princípios de um extrator de características bastante difundido, o SIFT,

que exibe grande eficiência na identificação/rastreamento de objetos em cenas. Um descritor é

criado para cada região, a partir de histogramas de orientação do gradiente de setores ao redor

do vértice, calculado de forma a garantir, como no SIFT, invariância à escala, rotação e ilumina-

ção. As contribuições do descritor proposto na segmentação de objetos em vídeo, feita a partir

de corte em grafos, são testadas em três níveis: ajuste, ou compensação, de movimento do objeto

em cena; reforço nos pesos de ligação entre arestas dos grafos, para os elementos considerados

correspondentes entre os quadros e; determinação de grafos equivalentes com redução no número

elementos guiada pela correspondência encontradas a partir algoritmo proposto.

ABSTRACT

In the segmentation of object in video through frame to frame region tracking, the temporal cohe-

rence maintenance depends directly on the quality of the regions tracking along the frames. To

this aim, principles of a widespread feature extractor, the SIFT, were adapted for the superpi-

xels domain rendered as region graphs, which exhibits high efficiency in identification/tracking

of objects in scenes. A descriptor is created to each vertex of graph, from orientation histograms

of the gradient of bins around the vertex, calculated to ensure, as the SIFT, a scale, rotation and

lighting invariance. The contributions of the proposed descriptor in the segmentation of objects in

video, performed by a graph cut, are tested on three levels: the adjustment or compensation of the

movement of object in scenes; the strengthening of the connection weights between edges of the

graphs for the elements considered matches between frames and; the determination of equivalent

graphs with reduction in the number elements guided by matches found through the proposed

algorithm.
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1 INTRODUÇÃO

1.1 CONTEXTO

A segmentação de objetos ou regiões de interesse em vídeos é um problema básico em visão

computacional. Na segmentação de áreas de interesse ao longo de quadros de um vídeo, regiões

que convirjam ao longo de vários quadros, se faz necessário um agrupamento/rotulação não su-

pervisionado de pixels ou elementos. Em geral, esses agrupamentos utilizam relações de textura,

cor e/ou movimento para serem construídos [1], essas relações se dão entre pixels próximos,

vizinhos, ao longo do espaço e ao longo do tempo.

Quando se realiza um agrupamento em mais de um quadro simultaneamente, os pixels tomam

formato de uma unidade espaço-temporal, unidades de volume conhecidas como voxels, que

quando relacionados a um mesmo bloco de voxels, são chamados de supervoxels. Essa aborda-

gem relaciona os pixels dentro de um quadro e de seus vizinhos, consequentemente A quantidade

de dados gerados por um volume espaço-temporal de um vídeo, ao longo de um número pode

demandar um grande esforço computacional, principalmente ao se analisar os elementos como

volumes [2, 3].

Uma forma de se reduzir o esforço computacional produzido por uma análise de volumes ao

longo de vários quadros, é agrupar previamente os pixels de um quadro em regiões, chamadas

de superpixels. Esse procedimento elimina redundâncias em um quadro agrupando pixels seme-

lhantes e grandes regiões de pixels, reduzindo o número total de elementos por quadro. Ao se

analisar elementos vizinhos sejam eles vou apenas por suas relações de vizinhança, sejam eles pi-

xels ou voxels, superpixels ou supervoxels, podemos representá-los como um problema de grafos,

amplamente utilizado em agrupamento de regiões e segmentação de imagens.

A segmentação de imagem por meio de grafos demostram uma alta performance quando ori-

entadas a um objeto, ou seja, quando um usuário define uma certa quantidade de elementos perten-

centes ao fundo ou ao objeto [4]. Entretanto, essa abordagem supervisionada se torna ineficiente

para vários quadros, fazendo-se necessário a intervenção de um algoritmo que oriente a segmen-

tação do objeto automaticamente, um rastreamento. Em geral, os algoritmos de rastreamento

mais difundidos se restringem ao domínio dos pixels, os menores elementos que representam

uma imagem, apresentando poucas representações para superpixels.
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1.2 APRESENTAÇÃO DO PROBLEMA E JUSTIFICATIVA

A segmentação hierárquica utilizando grafos [5, 6] vem sendo aplicada para redução do es-

forço computacional ao se analisar um vídeo por meio de voxels. Uma abordagem de correspon-

dências entre superpixels é vastamente empregada dada [1, 7, 8, 4, 9], entretanto questiona-se a

manutenção da coerência temporal e espacial, dada a instabilidade de uma segmentação quadro

a quadro [5], ou seja, pode haver distorções entre regiões correspondentes de um quadro e seu

vizinho, bem como regiões com erros de correspondência.

Para uma boa manutenção da coerência temporal, se faz necessária uma técnica de rastrea-

mento que aumente o desempenho do casamento de superpixels tendo como base o confronto

entre as características de aparência (cor, textura) e posição dessas regiões ao longo do tempo.

Essas propriedades são limitadas, isto é, duas regiões pertencentes a dois quadros consecutivos

apresentando níveis de cor ou posição muito próximas (senão iguais) não representam necessa-

riamente um mesmo objeto. O movimento de regiões entre quadros deve ser estimado para uma

melhor utilização de propriedades que projetam pouca informação. A definição de características

ditas discriminantes para essas regiões (superpixels) também estabelece uma boa relação entre

quadros, consequentemente, um bom rastreamento.

A Transformação de Características Invariante à Escala (SIFT) [10] é um algoritmo bastante

difundido em visão computacional. Inspirado em algoritmos que tentam imitar o funcionamento

do sistema visual humano, o SIFT tem se mostrado eficiente na captura de pontos relevantes

de uma imagem para confronto de características, seja para rastreamento ou reconhecimento de

objetos em imagens ou vídeo. A aplicação do algoritmo SIFT em processamento de vídeos não se

restringe apenas ao rastreamento de objetos [11], sendo aplicada, por exemplo, em estabilização

de vídeos [12].

O algoritmo SIFT trabalha com a seleção de pontos especiais para a extração de característi-

cas, a fim de aumento na precisão no casamento de pontos e diminuição de esforço computacio-

nal. A utilização do histograma associado às regiões e de um descritor produzido pela SIFT, ou

semelhante, exibe uma melhora de desempenho na segmentação vídeos [5, 13, 14]. Entretanto,

o cálculo dos descritores é realizado nas imagens construídas por pixels, ou seja, não se apro-

veita a simplificação das imagens enquanto representadas por regiões e nem a redução do esforço

computacional associado a essa simplificação.
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1.3 MÉTODOS PROPOSTOS

Este trabalho tem como objetivo a construção de um descritor local que opere em uma ima-

gem construída por superpixels, criando vínculos entre superpixels de quadros consecutivos, as

quais podem definir, com razoável grau de coerência, regiões correspondentes. Pare esse fim,

adaptou-se o algoritmo SIFT para extração de características em regiões de pixels. Primeira-

mente, a técnica watershed é aplicada em um espaço de escala, em conjunto com o algoritmo de

agrupamento SLIC [15], efetuando uma sobre-segmentação das imagens, os superpixels.

Em seguida, as definições de gradiente são adaptadas de forma a atender regiões de diferentes

tamanhos, posições (por vezes conflitantes) e conformações. O descritor de gradientes é cons-

truído a partir das vizinhanças de uma região em análise. Diferentemente da SIFT, processo é

realizado para todos os elementos de uma imagem, porém, em uma escala determinada.

Para testar a contribuição do descritor proposto segmentações utilizando um corte de grafos

de regiões foram aplicadas, visando o isolamento do objeto ao longo de 9 quadros. Os pesos de

ligação dos grafos foram determinados de 4 maneiras, de forma medir as possíveis contribuições

do rastreamento e casamento de regiões proposta. A segmentação de objetos em cenas é tem

como base a segmentação manual (ground truth - GT) do objeto no primeiro quadro, por meio

dessa referência deseja-se avaliar a contribuição do descritor proposto no rastreado e segmentação

dos objetos a partir do primeiro até o último quadro das sequências testadas.

1.4 APRESENTAÇÃO DO MANUSCRITO

Incluindo este capítulo de Introdução, o trabalho se desenvolve em total de oito capítulos. O

Capítulo 2 apresenta definições sobre o funcionamento do sistema visual humano, os processos

biológicos que são base para o algoritmo SIFT e, de forma resumida, apresenta a implementação

desse algoritmo que inspira o presenta trabalho. Para uma melhor compreensão dos métodos

de segmentação propostos, bem como o campo da teoria dos grafos adotada, o Capítulo 3 traz

definições desses conceitos. O processo de segmentação por escalas e a extração de características

de regiões que são detalhadamente explicados nos Capítulos 4 e 5, respectivamente. Os resultados

são apresentados no Capítulo 6 e as conclusões acerca desses resultados, inclusas propostas de

trabalhos futuros, no Capítulo 7.
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2 SISTEMA VISUAL HUMANO E O ALGORITMO SIFT

2.1 INTRODUÇÃO

São abordados neste capítulo princípios de anatomia e processos fisiológicos humanos que

estão envolvidos no sistema visual. O início do capítulo envolve aspectos da anatomia do olho

humano, como as estruturas que o compõem se organizam para a formação de imagens na retina

e como as células receptoras se distribuem ao longo dessa rede receptora. Essas primeiras defi-

nições dão base para o entendimento dos campos receptivos, que funcionam de acordo com os

arranjos formados pelas células receptoras na retina, extraindo informações importantes para os

processos da percepção, que inspiram o algoritmo SIFT (transformação de características invari-

ante à escala). Esse algoritmo, que reflete princípios biológicos em um descritor de gradientes,

se mostra um referencial para algoritmos de reconhecimento e confronto de características e é

brevemente descrito ao fim deste capítulo.

2.2 VISÃO HUMANA

Para compreender as demandas e aplicações de grafos em processamento de imagens, é es-

sencial uma breve explanação sobre alguns aspectos da visão e percepção humana, visto que a

resolução de problemas que contemplem a captura e interpretação de cenas, é o principal objetivo

em visão computacional. Mesmo quando registros não são realizados via ondas eletromagnéti-

cas, como na ultrassonografia, ou na faixa não visível do espectro eletromagnético, como no caso

de aquisições térmicas, imagens médicas em geral (ressonância magnética, radiografia), busca-

se a interpretação desses dados em mapas de magnitude que traduzam essas informações para o

espectro visível.

2.2.1 Estrutura dos olhos e formação da imagem na retina

De maneira superficial, apresentando a clássica analogia do olho humano a uma câmera foto-

gráfica, ambos são dotados de mecanismos para controle de entrada de luz, lentes para ajuste do

foco e receptores para transdução da luz. A luz inicia seu percurso pelo olho humano através da

córnea, que está diretamente conectada à esclera (branco do olho), esse conjunto forma a proteção

inicial de todo o aparato visual. O olho humano tem um formato aproximadamente esférico com

cerca de 20 mm de diâmetro [16].
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Por meio de dois músculos, a pupila controla a entrada de luz que atinge a retina. Tanto por

uma questão de proteção, em situações de grande exposição luminosa, quanto para uma melhora

no contraste da imagem, em momentos de escassez de luz. A resposta da pupila a estímulos

externos que atingem a retina é simétrica, controlada pelo sistema nervoso autônomo [16].

O cristalino é uma estrutura translúcida, constituída basicamente de água e proteínas, tendo

suas dimensões controladas por meio do músculo ciliado. Apesar da analogia proposta, e da

intuição induzirem o pensamento de que o sistema de lentes do olho humano é composto apenas

pelo cristalino, esse tem um papel importante na formação de uma imagem, mas uma contribuição

pequena na refração da luz até a chegada à retina. Grande parte da refração sofrida pela luz é

gerada pela curvatura da córnea, que se soma à do cristalino e à refração oferecida pelos fluidos

que constituem os humores aquoso e vítreo.

1.34
1.40

1.33
1.38 1.00

ArCórneaHumor
Aquoso

CristalinoHumor
Vítreo

PupilaRetina

Figura 2.1: Estruturas do olho que operam no controle da entrada de luz e sua refração para formação da imagem no
olho (inspirado em [17]).

A contração do músculo ciliado alivia a tensão nos ligamentos de suspensão do cristalino, o

qual entra em conformação mais arredondada para ajuste de foco de imagens na retina, origina-

das de objetos mais próximos aos olhos (cerca de 10 cm). Em estado relaxado, essa musculatura

aumenta a tensão nos ligamentos de suspensão e deixa o cristalino mais achatado, em uma con-

formação ideal para objetos que, devido à distância, têm incidência de raios aproximadamente

paralelos na córnea. Um objeto muito próximo aos olhos exige um ajuste no cristalino para com-

pensar a incidência difusa dos raios que chegam à córnea.

A luz que atravessa o cristalino em direção à córnea, passa pelo fluido translúcido e impuro

do humor vítreo. Tal impureza pode ser notada por meio das partículas suspensas que são exibi-

das no campo visual, chamadas de mocas volantes. Salienta-se tal peculiaridade do olho humano

para destacar a capacidade do cérebro em eliminar ou ignorar certos tipos de interferências cau-

sadas pelas limitações, ou propriedades intrínsecas, como no caso dos cílios, nariz e, por ventura,

armações de óculos.
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2.2.2 Cones, bastonetes e a transdução do sinal luminoso

Ao ser projetada na retina, a imagem é enviada ao cérebro na forma de sinais nervosos que

são inciados nos fotorreceptores, que se exibem em dois tipos, cones e bastonetes. Ambos recep-

tores são ativados por meio de proteínas específicas que se decompõe na presença de luz, em um

processo em cascata que chega a amplificar em milhões de vezes um estímulo. Os bastonetes,

por exemplo, podem atingir metade de sua saturação na presença de 30 fótons de luz. A relação

entre o potencial desencadeado no receptor e a intensidade de luz absorvida pode ser aproximada

por uma relação logarítmica, permitindo aos olhos operarem em uma vasta faixa de intensidades

[17], comparativamente a uma relação linear.

Além de seus formatos que dão referência aos seus nomes no português, o que diferencia

cones e bastonetes são as proteínas envolvidas no processo de absorção de luz. Ativados pela

proteína rodopsina, os bastonetes respondem a parte do espectro visível, são responsáveis pela

percepção em baixo nível da visão humana, com grande contribuição na detecção de movimentos

na periferia do campo visual e durante a visão noturna.

Os cones se apresentam em três tipos, representados por três variantes de proteínas com dife-

rentes respostas a diferentes faixas do espectro de luz. Antes da constatação da existência desses

três tipos de receptores, sensíveis principalmente às cores vermelha, verde e azul, tal fato foi pre-

viso 200 anos antes pelo físico Thomas Young, que demonstrou que todas as cores do arco-íris,

incluindo o branco, poderiam ser obtidas a partir de proporção exata entre o vermelho, verde e

azul. Young induziu então que a retina do olho humano deveria perceber cores obedecendo uma

codificação composta por essas três cores [16].
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Figura 2.2: Resposta em codificação de cores por comprimento de onda das células receptoras da retina: cones e
bastonetes (adaptado de [17]).
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2.2.3 Distribuição dos fotorreceptores na retina

A quantidade de bastonetes na retina é da ordem de grandeza de 100 milhões de receptores,

enquanto o número de cones é consideravelmente menor, em torno de 3 milhões de receptores

(Figura 2.3) [17]. Grande parte dos cones se concentram na região da fóvea, região na qual não

são encontrados bastonetes, a densidade de cones nesta região chega aos 150 mil elementos por

mm2, podendo ser comparada a um sensor quadrado com dimensões 1,5×1,5 mm [18]. Saindo

da fóvea em direção à região mais periférica da retina, essa relação se inverte e a densidade de

bastonetes se torna largamente maior que a de cones [16].
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Figura 2.3: Gráfico da concentração de cones e bastonetes versus a ângulo de afastamento em relação à fóvea
(adaptado de [18])

A percepção de uma visão periférica menos definida do que a central, relacionada a fóvea, é

amplificada pela conexão de vários receptores a um mesmo neurônio ganglionar, o qual transmite

o sinal para o córtex visual. Os 103 milhões de receptores são distribuídos por cerca de 1,6 milhão

de células ganglionares, perfazendo uma média de 60 bastonetes por célula e 2 cones por célula.

Na região da fóvea, cada cone está conectado diretamente a uma única célula ganglionar, cones

que ao longo da região periférica vão se tornando maiores e mais escassos, enquanto em regiões

mais periféricas, cerca de 200 bastonetes convergem a uma mesma fibra nervosa [17].
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A Figura 2.4 ilustra a varição de concentração de tipos de receptores ao logo da retina e as co-

nexões desses com as células ganglionares. A maior concentração de bastonetes por ganglionares

amplifica o sinal luminoso em relação os recebidos pelos cones. Esse fato, aliado à característica

intrínseca dos bastonetes de maior sensibilidade à luz, de 30 a 300 vezes mais sensíveis que cones,

tornam os bastonetes importantíssimos durante estímulos sob baixa luminosidade e nas periferias

do campo visual [17].

Cones

Bastonetes

Células
Horizontais

Células
Amácrinas

Células
Bipolares

Células
Glanglionares

Periferia Fóvea

Figura 2.4: Ilustração da distribuição de receptores pela retina e suas conexões com células nervosas que transmitem
e processam previamente o sinal recebido (inspirado em [17] e [16]).

O sinal oriundo dos receptores é transmitido até o córtex visual por meio das células gan-

glionares, entretanto, a ligação entre essas duas células é intermediada por neurônios bipolares.

Essas células bipolares estão sob influência de inibitória das células horizontais, mecanismo que

aprimora a percepção do contraste. Se apresentando em cerca de 30 tipos e expressando em meia

dúzia de funções, as células amácrinas são interneurônios que ajudam na análise do sinal antes de

sua chegada ao córtex visual.

2.3 CAMPOS RECEPTIVOS

Adaptado a partir de estudos para descrição de uma região da pele a qual quando submetida

a um estímulo poderia induzir um reflexo, o termo campo receptivo foi utilizado para definir

disposições de regiões no sistema nervoso, assim como na retina, regiões caracterizadas por uma

resposta específica dada uma certa organização neurônios [19].
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2.3.1 Modulação centro-periferia

Toda a área de fotorreceptores que circunda uma célula bipolar, e contribui para a despolariza-

ção de sua membrana, é considerado um campo receptivo, despolarização a qual atua na produção

de impulsos nervosos. Células bipolares estão conectados diretamente a um conjunto de fotor-

receptores, ou a uma unidade quando se trata das proximidades da fóvea, essas conexões diretas

formam o centro do campo receptivo. A periferia do campo receptivo é determinada por aqueles

receptores conectados a uma célula bipolar por meio de células horizontais, em uma conexão de

inibitória.

As células bipolares são separadas em duas categorias, ON ou OFF, que representam a forma

na qual as células respondem na presença ou ausência de luz. Pode-se ilustrar uma conexão

centro-ON em uma configuração simples, com um bastonete no centro do campo receptivo e dois

na periferia (Figura 2.5(a)).

-- +
-- +

-- +

-- +

(a)

(b)

(c)

(d)

Figura 2.5: Organização dos campos receptivos: (a) configuração simples para uma célula bipolar centro-ON, com
um bastonete no centro do campo receptivo e dois na periferia; (b) campo receptivo em estado de repouso; (c)
resposta para um estímulo luminoso na região central de um campo receptivo centro-ON; e (d) em toda área do
campo receptivo, percebe-se uma diminuição na frequência de disparos devido a inibição provocada pela presença
de luz na periferia do campo (inspirado em [16]).

Em uma configuração centro-ON, há uma constante produção de impulsos no repouso (Fi-

gura 2.5(b)). A presença de luz no centro do campo receptivo promove a despolarização da célula

bipolar (c) e um aumento na frequência de impulsos; caso essa luz atinga a periferia, a célula

bipolar sofre uma inibição que decresce o número de impulsos (d).

Como mencionado, os campos receptivos se estendem a todo o sistema nervoso. Em uma

conexão em maior escala, em um segundo nível, as células ganglionares também formam campos

receptivos, em que a conexão direta com uma célula bipolar, define seu tipo, ON ou OFF. O

9



mesmo esquema de campos receptivos das células bipolares (Figura 2.5(b), (c) e (d)) pode ser

estendido aos campos receptivos das células ganglionares.

As células ganglionares são classificadas em duas categorias principais, tipo-M e tipo-P. As

células ganglionares tipo-M têm campos receptivos de grande área e são sensíveis a estímulos de

baixo contraste, conduzindo-os de maneira mais rápida pelo nervo óptico. Os campos receptivos

explicam ilusões de óptica referentes à percepção visual do contraste, como bordas que aparentam

sofrer um realce devido a transição abrupta de iluminação de uma área para outra (Figura 2.6(a)).

A densidade de iluminação ao redor de um ponto cria a ilusão de existência de pontos negros entre

os vértices dos quadrados exibidos na Figura 2.6(b), quando se foca o olhar em um dos vértices,

esse não apresenta o ponto, mas os demais sim, consequência da distribuição não-uniforme de

fotorreceptores na retina.

percebido
real

(a) (b)

Figura 2.6: Ilusões de óptica de contraste: (a) para o cérebro e olho humano, um realce de bordas aparenta existir
entre as barras, que é uma diferença entre a intensidade real e a percebida ao longo das transições entre as barras, cada
uma com um nível de cinza constante, essa ilusão de realce é criada pelos campos receptivos e sua capacidade de
detectar transições; (b) pontos escuros, que não existem na imagem, são percebidos entre os vértices dos quadrados,
pela forma que as vizinhanças dos campos receptivos recebem luz para essa disposição de regiões claras e escuras,
sendo que nas vizinhanças entre os vértices o número de regiões claras é maior. O efeito é maior na periferia da
visão, onde os campos receptivos são mais extensos.

As células tipo-P têm resposta mais lenta rápida e com pulsos mais duradouros que as tipo-M.

A sensibilidade quanto à diferença do comprimento de onda de um estímulo luminoso, também

diferencia as células tipo-P das tipo-M. Na retina, os campos receptivos das células tipo-P são

encontrados nas oposições de cores verde/vermelho e azul/amarelo. Os estímulos e as respostas

são análogas às descritas para os campos receptivos de iluminação (Figura 2.7).
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(a) (b)

-- + -- +

--

--

--

-- -- +

--

+

+

+

+ +

(c) (d) (e)

Figura 2.7: Organização dos campos receptivos em oposição de cores: (a) configuração simples para uma célula
bipolar centro-ON para a cor verde em oposição à cor vermelha na periferia; (b) mesmo padrão para (a) mas para a
oposição entre as cores azul, centro-ON, e amarela, periferia; (c) resposta para um estímulo luminoso convergente à
cor da região central de um campo receptivo centro-ON; (d) frequência disparos cai em relação a (c) quando todo o
campo é submetido a cor que caracteriza o seu centro; (e) uma maior inibição nos disparos de impulsos nervosos é
causada pela incidência de luz na periferia do campo receptivo, na cor de oposição a do centro.

Os campos receptivos de cores, bem como as características tempo de resposta de suas células,

podem imprimir um padrão de cores opostas na retina, quando essa é estimulada por uma única

cor por um longo período de tempo, e em seguida se troca esse estímulo pela cor branca, que

contém todos os comprimentos de onda (Figura 2.8(a)). Esse efeito seria explicado pela saturação

de campos receptivos estimulados por uma mesma cor (Figura 2.7(b)), que ao ser trocado pela

luz branca, que contém a cor de estímulo e a sua opositora, a qual é ressaltada.

As percepções visuais equivocadas quanto a oposição de cores não se limitam a imposições

temporais. A oposição de cores para uma região e suas vizinhanças pode produzir a sensação de

que uma região tem cor diferente da real, uma vez posicionada em uma vizinhança com certa cor.

Na Figura 2.8(b), os quadrados ‘b’ e ‘d’ dentro da região quadriculada aparenta ter cores próxi-

mas, entretanto, visualizando-se os quadrados fora da região, percebe-se que os quadrados ‘a’ e

‘d’ são idênticos e que b diverge, efeito fruto da oposição azul/amarelo. Isso indica que os campos

receptivos se estendem em várias escalas, da possibilidade de realce de bordas (Figura 2.6(b)) ao

reforço de oposição para regiões (Figura 2.8(b)).
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e

d

f

a

b

c

(a) (b)

Figura 2.8: Ilusões de óptica de cor: (a) ao se focar o olhar no centro de um dos quadrados coloridos por cerca de
30 s e se voltar o olhar para um dos quadrados brancos, logo acima ou abaixo, este fica preenchido pela a cor em
oposição à focada anteriormente; (b) cor da vizinhança dos quadrados determina como a ele é percebido, note que o
quadrado ‘a’ e ‘d’ têm cores idênticas, mas quando expostos a regiões distintas, produzem efeitos distintos.

2.4 RESPOSTA NEUROLÓGICA

As informações são enviadas pela retina por intermédio dos neurônios ganglionares, que inci-

dem no núcleo geniculado lateral (NGL) [16]. O NGL (Figura 2.9(a)) de cada um dos hemisférios,

recebe informações referentes ao lado oposto do campo visual, por exemplo, toda a imagem refe-

rente ao lado esquerdo do campo visual, seja oriunda do olho esquerdo ou do olho direto, segue

pelo NGL direito.

Estudos sobre os potenciais de ação no NGL indicam que os campos receptivos ali são quase

idênticos àqueles que o estimulam [16]. Em sua aparente disposição em camadas, as células do

NGL parvocelular se assemelham a células ganglionares do tipo-P, com áreas centro-periferia

pequenas e apresentando resposta a oposição de cores, verde/vermelho e azul/amarelo, em opo-

sição luz/escuridão. Em contraste, as células do NGL magnocelular apresentam centro-periferia

extensos e insensíveis a diferenças na frequência da luz de estímulo.

De forma semelhante ao que acontece com o NGL em relação às aferências dos neurônios

ganglionares, grande parte de uma das camadas córtex estriado (Figura 2.9(a)), a camada IVC,

responde de acordo com as células NGL magnocelular e parvocelular. Em outra camada do

córtex estriado, a IVCα, neurônios possuem campos receptivos insensíveis à luz, e na camada

IVCβ, neurônios apresentam centro-periferia operando em oposição de cores.
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Os campos receptivos aparentam ter uma grande contribuição na forma em que o cérebro

interpreta os estímulos visuais. Os estudos laboratoriais quanto ao funcionamento do córtex es-

triado ganharam força com os neurobiologistas David Hubel e Torste Wiesel, no início da década

de 1960 [20]. Seus achados apontaram para uma gama de propriedades da percepção visual entre

mamíferos, inclusive a organização de campos receptivos binoculares, essencial em seres huma-

nos.

NGL

retina

córtex estriado

-
- +

-
-
+-

-
+

neurônios do
NGL

neurônio 
do córtex 
estriado

trecho na retina

(a) (b)

Figura 2.9: Percurso dos estímulos visuais pelo cérebro humano: (a) representação do caminho dos estímulos ner-
vosos da retina, passando pelo núcleo geniculado lateral (NGL) até o córtex estriado; (b) ilustração para uma célula
simples de um campo receptivo do NGL, que combina campos receptivos com origem na retina, que estimulam um
neurônio no córtex visual.

Os trabalhos de Hubel e Wiesel constataram também uma seletividade quanto à direção de

movimento, em que se observava resposta do córtex quando uma barra de luz se movimentava em

certa direção, o mesmo efeito não era observado quando barra se movimentava na direção oposta,

indicando a presença de neurônios no córtex especializados na análise de movimento.

2.4.1 Seletividade quanto à orientação

Nos estudos relacionados à seletividade de neurônios por certas orientações, destaca-se o ex-

perimento com uma barra de luz, que era posicionada em uma orientação ótima para o campo

receptivo de um nerônio em análise, ressaltando o que é possivelmente uma das propriedades

mais importantes na análise de objetos, essa seletividade quanto à orientação(Figura 2.10).

Grande parte dos neurônios da camada V1 do córtex estriado, bem como alguns da camada

IVC, é seletiva à orientação. Uma organização simples de campos receptivos (Figura 2.9 (b)) pode

explicar a predileção por uma certa orientação, entretanto, não se aplica a campos receptivos que

respondem a orientação independentemente da posição da barra ao longo do campo, esse tipo de

organização foi rotulada por Hubel e Wiesel como célula complexa.
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estímulo luminoso estímulo visual

campo 
receptivo

Figura 2.10: Uma célula simples de um campo receptivo no NGL promove diferentes respostas para diferentes orien-
tações de um estímulo luminoso. A intensidade da resposta ao estímulo luminoso é codificada em frequência, quanto
maior o número de impulsos, maior o estímulo visual, que tem seu pico quando a barra luminosa tem orientação
igual à orientação de predileção do campo receptivo.

Tomando ensejo nas descobertas quanto ao funcionamento do córtex visual, [21] hipotetizou

que a liberdade de posicionamento de células complexas ao definir a orientação de um estímulo,

seria o ponto chave para o reconhecimento e casamento de características de objetos 3D ao longo

de várias vistas. O SIFT [10] foi baseado nessa ideia, preservando a orientação posicional ao

descrever um ponto por meio de sua vizinhança.

2.5 O ALGORITMO SIFT

Suavizações por 

Gaussianas e 

redimensionalizações 

para e criação de um 

espaço de escalas

Diferença de 

imagens vizinhas 

no espaço de 

escalas

Cálculo de gradiente 

nas imagens do 

espaço de escalas

Cálculo dos 

descritores dos 

pontos-chave 

Seleção de 

pontos-

chave

Detecção de 

extremos

),( yxI

Figura 2.11: Diagrama de funcionamento do SIFT. O algoritmo tem como ponto principal a criação de um espaço
de escalas para a determinação de mapas de gradiente e extração de pontos-chaves, para os quais serão criados os
descritores locais.
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O algoritmo SIFT segue 4 passos principais: (1) detecção e seleção de extremos em um espaço

de escalas; (2) localização de pontos-chave; (3) definição da orientação e magnitude dos pontos-

chave; e (4) criação de um descritor para os pontos-chave (Figura 2.11). Serão discutidos neste

capítulo aqueles passos que inspiram os métodos adotados, não dando ênfase a passos sem um

correspondente no algoritmo proposto, como a seleção de pontos-chaves.

2.5.1 Espaço de escalas

No primeiro passo, as escalas representam um conjunto de imagens oriundas da convolução

da imagem da I(x, y) com Gaussianas G(x, y, kσ) de diferentes desvios padrão, determinados

por um fator de escala k:

L(x, y, kσ) = I(x, y) ∗G(x, y, kσ), (2.1)

em que:

G(x, y, σ) =
1√
2πσ

e−
(x2+y2)

2σ2 . (2.2)

Esse procedimento simula redimensionamentos consecutivos na imagem para a seleção de

pontos que se preservam nessas mudanças de escala, pontos-chave. O espaço de escalas é divido

por uma constante de escala k que varia em passo de k = 21/s até atingir o valor de 2, ou seja, até

dobrar o valor inicial de σ. A partir desse ponto, a imagem é reduzida por um fator 2 e o processo

reiniciado, configurando uma oitava.

Segundo Lowe, para cobrir uma oitava objetivando invariância à escala, deve-se produzir

s + 3 imagens dentro da oitava. Uma vez completada a oitava, pega-se a imagem que teve seu σ

dobrado e inicia-se uma outra oitava com essa imagem subamostrada, promovendo uma redução

em 2× de suas dimensões (Figura 2.12). A detecção de extremos e pontos-chave é realizada nas

diferenças entre a pilha de imagens suavizadas, uma oitava. Visto que as imagens de uma oitava

estão suavizadas, uma maneira mais eficiente de se obter as diferenças é realizando a subtração

em pares das imagens:

D(x, y) = L(x, y, kσ)− L(x, y, σ). (2.3)

Denomina-se mais eficiente o método utilizando a equação (2.3), pois a convolução reali-

zada com diferenças entre Gaussianas é uma boa aproximação do Laplaciano de uma Gaussiana

normalizado σ252 G originalmente utilizado proposto na referência [22]:

(k − 1)σ252 G(x, y, σ) ∗ I(x, y) ≈ (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y), (2.4)

uma vez que: (
G(x, y, kσ)−G(x, y, σ)

)
∗ I(x, y) = L(x, y, kσ)− L(x, y, σ), (2.5)
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evita-se uma novas filtragens utilizando as imagens L(x, y). A Figura 2.12 exibe uma ilustração

que esquematiza os espaços de escala quanto as Gaussianas e suas diferenças.

Escala
((n+1)ª
oitava) 

Gaussianas  

...

Diferença de Gaussianas
(DoG)

Escala
(nª

oitava)

Figura 2.12: Espaço de escalas é criado a partir da diferença de Gaussianas que suavizam um imagem original,
simulando uma redimensionalização dessa imagem. O crescimento na escala implica em uma maior suavização da
imagem, ao atingir certo nível de suavização, a imagem tem dimensões reduzidas pela metade, configurando uma
nova oitava (adaptado de [10]).

2.5.2 Detecção de extremos e seleção de pontos-chave

A detecção de extremos é feita em uma vizinhança 26-conectividade em torno de um pixel em

uma pilha de três imagens de diferenças da oitava em sequência, estando este pixel na imagem

central. Se um pixel central tem maior ou menor valor de diferença em relação aos seus 8 vizinhos

na mesma imagem e seus 18 vizinhos nas outras duas imagens da pilha, ele é considerado um

extremo.

Os pontos definidos como extremo são então candidatos a pontos-chave. Exclui-se desses

extremos, pontos que possuam pouco contraste em relação a vizinhança, sensíveis a ruído, ou que

representem arestas, que formariam descritores pobres em informação. Uma vez selecionados os

pontos, esses restantes são chamados de pontos-chave e são fonte para a criação dos descritores.
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D(x,y,k²σ)

D(x,y,σ)

D(x,y,kσ)

Figura 2.13: Para restrição no número de descritores criados para uma imagem, pontos extremos são detectados
entre as imagens do espaço de escalas. Um pixel é considerado relevante se tem maior magnitude dentro de uma
vizinhança de 26, 8 com origem na imagem da escala em análise e 18 pixels da imagens das escalas acima e abaixo
do pixel em análise.

2.5.3 Determinação da orientação dos pontos-chave

A definição da orientação e magnitude dos pontos-chave, terceiro passo, é realizada na res-

pectiva imagem do espaço de escalas do ponto-chave. Mapas de gradiente são criados, dos quais

as projeções horizontal e vertical,

mx = L(x+ 1, y)− L(x− 1, y), (2.6)

my = L(x, y + 1)− L(x, y − 1) (2.7)

respectivamente, geram uma magnitude

m(x, y) =
√
m2
x +m2

y (2.8)

e uma orientação

θ(x, y) = tan−1(my/mx). (2.9)

Pode-se representar essas propriedades vetorialmente, em que a magnitude e orientação de

cada pixel é dada por:

~mi =
∑
j∈V 4

i

Lj~ui,j, (2.10)

sendo V 4
i a vizinhança 4-conectividade do pixel i, Li sua magnitude e ~ui,j é o vetor unitário que

define a direção entre i e j, neste caso, o conjunto [(±1, 0), (0,±1)]. Essa forma vetorial de

representação será útil em termos de analogia para os métodos propostos neste trabalho.

Um histograma de orientações é criado para uma região ao redor do ponto-chave (Figura

2.14(a)). Cada amostra adicionada ao histograma é ponderada pela magnitude do gradiente e

por uma Gaussiana circular simétrica em relação à localização do ponto-chave. A orientação
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de com maior magnitude dentro do histograma é selecionada como a orientação do ponto-chave

(Figura 2.14(b)). A partir de um limiar, até três picos de orientações e suas respectivas magnitudes

são relacionados à localização do ponto (Figura 2.15).

(a) (b)

Figura 2.14: Determinação da orientação de um ponto-chave: (a) selecionado um ponto-chave, ponto destacado
com a cor vermelho; (b) determina-se a sua orientação de acordo com a orientação vencedora para histograma
calculado com base mapa de gradiente m(x, y) da escala em análise, o vetor em vermelho representa a orientação
do ponto-chave, que é visivelmente a direção de maior frequência e amplitude para o mapa de gradiente ao redor do
ponto-chave.

Figura 2.15: Pontos-chaves e suas respectivas direções e escalas representadas por vetores em três imagens distintas.
A orientação do ponto-chave é representada pela direção do vetor e a escala pela magnitude do vetor, quanto menor
o vetor, menor a escala, quanto maior, maior a escala. Uma mesma posição pode estar associado a mais de um
ponto-chave.
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2.5.4 Criação dos descritores

Novos histogramas são calculados em setores ao redor do ponto-chave, com as orientações

dos gradientes referenciadas pela orientação do ponto-chave, o que gera invariância à rotação. Os

histogramas, com elementos também ponderados pelas magnitudes dos gradientes e pela janela

Gaussiana, são dispostos em um único vetor, definido como descritor do ponto-chave. Esse des-

critor é normalizado em valores entre 0 e 1, objetivando a invariância às mudanças na iluminação.

Figura 2.16: Grade retangular para cálculo dos histogramas de orientação do mapa gradiente ao redor de um ponto-
chave. À esquerda o mapa de magnitudes e orientações (gradiente) é dividido em quatro setores ao redor do ponto-
chave, no caso, cada uma com 16 pixels. Essa grade de setores deve ter a mesmo alinhamento do ponto-chave em
análise, representada pela seta em vermelho. Para cada setor, a magnitude e orientação desses pixels, referente ao
mapa de gradiente da escala e oitava em análise, são amostrados em um histograma de orientação ponderado por
uma Gaussiana de desvio padrão proporcional a escala (indicado com círculo azul) e pela magnitude do vetor. O
histograma de cada setor para 8 orientações é observado na imagem da direita (traduzido de [10]).

Figura 2.17: Criação do descritor por meio dos histogramas de orientação. As componentes dos histogramas (à
esquerda) calculados em setores em torno do ponto-chave são distribuídos em componentes de um vetor, que ao ser
normalizado, visando invariância à mudanças na intensidade, configura descritor do ponto-chave (adaptado de [10]).
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2.6 CONFRONTO E CASAMENTO DE CORRESPONDÊNCIAS

Realizou-se o confronto entre imagens submetidas a transformações descritas anteriormente:

em escala (Figura 2.18); em rotação (Figura 2.19) e; em intensidade luminosa (Figura 2.20).

Os pontos com produto interno entre descritores que assumem entre si seu maior valor, são con-

siderados correspondências, sendo ilustrados por um padrão de cor e dimensão proporcional à

magnitude da ponto-chave.

(b)(a)

Figura 2.18: Confronto entre duas vistas distintas de uma cena, uma delas submetida a uma transformação na escala:
(a) vista em seu aspecto original e; (b) vista com dimensões reduzidas pela metade, mostrada no aspecto original
para melhor visualização. Os pontos correspondentes entre as duas imagens são marcados por círculos com um
mesmo padrão de cor e tamanho. Devido à grande quantidade de pontos, somente são exibidos correspondências
com produto interno superior a 0, 9.

(a) (b)

Figura 2.19: Confronto entre duas vistas distintas de uma cena, uma delas submetida a uma rotação: (a) vista em seu
aspecto original e; (b) vista rotacionado em 60o no sentido anti-horário. Os pontos correspondentes entre as duas
imagens são marcados por círculos com um mesmo padrão de cor e tamanho. Devido à grande quantidade de pontos,
somente são exibidos correspondências com produto interno superior a 0, 9.
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(a) (b)

Figura 2.20: Confronto entre duas vistas distintas de uma cena, uma delas submetida a uma transformação na ilumi-
nação: (a) vista em seu aspecto original e; (b) vista com magnitude reduzida em

√
2×. Os pontos correspondentes

entre as duas imagens são marcados por círculos com um mesmo padrão de cor e tamanho. Devido à grande quanti-
dade de pontos, somente são exibidos correspondências com produto interno superior a 0, 9.
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3 GRAFOS E SEGMENTAÇÃO DE IMAGENS

3.1 INTRODUÇÃO

São definidas neste capítulo as propriedades da teoria dos grafos e de como elas se aplicam em

processamento de imagem. A teoria dos grafos tem uma ampla lista de definições atribuídas a par-

tir de suas representações gráficas. Este trabalho abordará apenas os aspectos básicos, suficientes

para desenvolver e compreender os métodos propostos. Ao final do Capítulo serão apresenta-

das as técnicas de segmentação empregadas neste trabalho, watershed e SLIC na formação de

agrupamentos e GrowCut na segmentação de objetos nos vídeos via grafos.

3.2 GRAFOS

A definição da palavra grafo é oriunda da capacidade dessa representação poder ilustrar pro-

blemas graficamente, permitindo uma visualização mais intuitiva para soluções de problemas.

Isso reflete situações em que se torna conveniente tratar e descrever um problema por meio de um

conjunto de pontos conectados por setas ou linhas, sejam esses pontos, pessoas, lugares, átomos,

moléculas, etc. Frisando-se que o importante nesse tipo de análise não é a posição dos pontos, há

várias maneiras de se desenhar um grafo, no entanto as relações estabelecidas entre os elementos

que o constituem, muitas vezes rotulada com algum tipo de ponderação, são preservadas [23].

3.2.1 Histórico

Figura 3.1: Ilustração das pontes de Königsbert sua representação por grafos. O problema envolvendo as pontes de
Königsbert consistia em determinar se seria possível atravessar pelas sete pontes, sem repeti-las, e retornar ao ponto
inicial (adaptado de [24]).
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A origem da utilização dos grafos remete ao ano de 1736, quando Euler provou não solucio-

nável o clássico problemas das pontes de Königsbert. Esse problema retrata duas ilhas conectadas

por sete pontes, para as quais se questiona a possibilidade de se atravessar pelas sete, uma única

vez em cada, e retornar ao ponto inicial. Dentro de todas as soluções empíricas negativas, Euler

generalizou o problema conectando as origens e destinos pontos por linhas (Figura 3.1), um grafo,

e mostrando que tal grafo não pode ser cruzado de certas maneiras, provando que o problema não

possuía solução [25].

No campo da eletricidade, em 1887, Kirchhoff começou a substituir os elementos de um cir-

cuito, resistências, indutores, capacitores, por conexões de pontos feitas por linhas, possibilitando

a postulação de um teorema para a análise de sistemas de equações lineares [25]. No século

XX, Richard Feynman levou a outra dimensão o mesmo conceito de representação gráfica de

problemas (Figura 3.2), definindo soluções de equações em eletrodinâmica quântica por meio de

diagramas [26].

e  +  

q  

q  

g  

e  

t  

Figura 3.2: Exemplo de um diagrama de Feynman utilizado para a resolução de problemas em eletrodinâmica quân-
tica (retirado de [27]).

Atualmente, o processamento com grafos tem envolvido principalmente grandes volumes de

dados, nas quais simplifica-se a relação entre elementos por seu nível de conexão. A análise

por grafos diminui a velocidade de processamento em relação a bancos de dados relacionais,

onde espera-se que os grafos forneçam uma simplificação para uma estrutura complexa, agilize e

flexibilize a solução de problemas [28].

As análises de redes sociais, como Youtube, Facebook e Instragram, também podem ser feitas

graficamente, uma vez que as pessoas podem ser relacionadas por meio de conexões [29, 30].

Mais de meio século antes da criação das redes sociais, o escritor Húngaro Frigyes Karinthy,

postulou em um dos seus romances uma conjectura de que dois indivíduos no mundo estariam

conectados por no máximo 5 conhecidos. Essa teoria hoje pode ser testada e aplicada nos dados

de redes sociais, analisadas via teoria dos grafos [31], remetendo-se a um número de conexões

menor que o da conjectura.
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A teoria dos grafos se faz presente na análise de trajetos mais curtos ou mais rápidos dentro de

uma rede de vias automotivas [32, 33], que ligam dois pontos. Dados em estrutura topológica são

uma das formas nas quais também se pode representar imagens e vídeos, descrevendo-as como

uma série de elementos com conexões definidas por uma matriz adjacente, ou por uma matriz de

pesos a qual remete em seus elementos a conexão e a força de conexão entre elementos [34].

3.2.2 Definições e notações

Em geral, a termologia utilizada pelos autores em teoria dos grafos é personalizada, tornando

essencial uma boa definição dos conceitos e notações para um bom entendimento do trabalho.

Este trabalho não possui um alto nível de complexidade de análise em grafos, fazendo uso das

propriedades básicas. Definições quanto à morfologia de um grafo não serão abordadas, as defi-

nições apresentadas aqui são inspiradas em [24].

Definição 1 (Grafos) Um grafo G = (V,E) consiste em um par, no qual V e E são ambos

conjuntos finitos de elementos. Os elementos v ∈ V são chamados vértices (nós) e os elementos

e ∈ E ⊂ {{i, j}, i, j ∈ V, i 6= j} são chamados de arestas

A Figura 3.3 representa o grafo do problema das pontes de Königsbert. As pontes em du-

plicidade foram agrupadas em uma única aresta. As arestas são rotuladas de acordo com seu

endereçamento, segundo os vértices que são conectados por elas. Essa relação de vizinhança é

chamada de adjacência.

1

4

2 3

2,1e

3,1e

3,2e

3,4e4,2e

Figura 3.3: Representação do problema de Kirchhoff por um grafo com seus vértices 1, 2, 3 e 4 representados por
círculos azuis, conectados por suas respectivas arestas que que ilustram as relações de adjacência do grafo.

Definição 2 (Adjacência) Se uma aresta ei,j conecta i a j, então estes são adjacentes, ou seja, i

é vizinho de j (e vice-versa)

As adjacências podem ainda ser caracterizadas por forças de ligação, ou seja, define-se valores

de pesos para a relação entre um vértice e outro, formando um grafo ponderado.
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Definição 3 (Grafo Ponderado) No caso de um triplete G = (V,E,W) (grafo ponderado),

wi,j ∈ W determina a força de ligação de uma aresta ei,j

1

4

2 3

2,1w

3,1w

3,2w

3,4w4,2w

(a)

1

4

2 3

1,0
5,0

2,0

9,0

0,1

(b)

Figura 3.4: Representação de um grafo ponderado: (a) as arestas que ligam vértices recebem pesos associados a elas;
(b) os valores desse pesos determinam uma força de ligação para aquele par de vértices.

As adjacências e pesos de um grafo podem ser ainda representadas por uma matriz, ou mapa

de pesos.

Definição 4 (Mapa de Pesos) O mapa W é chamado mapa de pesos de G = (V,E,W). O

mapa Wn denotará o mapeamento do conjunto de arestas E de forma que o peso da aresta ei,j é

igual a wni,j

A quantidade de elementos na matriz de ponderação W é determinada pelo número de vértices

N do grafo, determinando N2 relações. No exemplo da Figura 3.4 temos:

W =


0 0, 1 0, 9 0

0, 1 0 0, 5 1

0, 9 0, 5 0 0, 2

0 1 0, 2 0

 . (3.1)

O ordenamento das linhas representa os índices dos vértices, e as colunas as incidências desses

vértices, por exemplo, o elemento da segunda linha e primeira coluna, retrata a força de ligação

do vértice 2 com o vértice 1, que vale 0,1. Este trabalho utiliza apenas com grafos unidirecionais,

ou seja, os elementos da matriz de peso são estritamente positivos, determinando uma relação de

simetria wi,j = wj,i.

O principal objetivo deste trabalho é selecionar subconjuntos de um grafo que melhor repre-

sentem o objeto de interesse, uma segmentação. Esse subconjunto é denominado subgrafo.

Definição 5 (Subgrafo) Dado um grafo G = (V,E), o grafo G′ = (V ′, E ′) é chamado de sub-

grafo de G se e somente se V ′ ⊂ V e E ′ ⊂ E.
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3.3 IMAGENS REPRESENTADAS COMO GRAFOS

A representação mais básica de uma imagem consiste no registro de uma matriz contendo

dados sobre a magnitude de um pixel, sua intensidade e/ou componentes de cores (Figura 3.5 de

(a) a (c)). Esse tipo de registro também é saída de filtragens e processamentos, como suavizações

e realce de bordas [34].

Um segundo de nível de registro e representação é feito a partir do agrupamento de pixels em

regiões (superpixels), essas regiões representam áreas da imagem com características muito se-

melhantes de cor, textura, posição, e, possivelmente, pertencentes a um mesmo objeto (Figura 3.5

de (d) a (f)). As duas formas de representação podem ser analisadas a partir das suas vizinhanças,

as matrizes de pixels por meio dos grafos de pixels e as regiões por meio dos grafos de regiões.

(b)(a)

0 2 4 6 8 10
0

2

4

6

8

10

(c)

(e)(d) (f)

Figura 3.5: Representações de um modelo real em pixels e em regiões: (a) representação por meio de pixels, (b)
que são amostras uniformemente distribuídas da cena; (c) em que seu grafo de pixels tem relações de vizinhança
que podem ser trivialmente definidas, dada a organização dos dados; (d) o modelo real pode ser representado por
regiões; (e) que também se expressam em amostras do modelo real; (f) entretanto, as relações de vizinhança para o
respectivo grafo de regiões não são simplesmente definidas, mas tal aproximação supera a versão em pixels pelo grau
de representatividade do modelo real com um número similar elementos.
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3.3.1 Grafo de pixels

Uma imagem digital F (x, y) determina um tipo especial de grafo (grafo de adjacência de pi-

xels ou grafo de pixels), com vizinhança bem definida por uma grade retangular. Os vértices v

desse grafo são representados pelos pixels, as relações de pesos entre os vértices, pixels, adjacen-

tes é, em geral, determinadas pela proximidade espacial e de intensidade luminosa (Figura 3.5(c)).

Métodos de segmentação, como watershed, utilizam as propriedades da teoria dos grafos para

isolar regiões a partir de um gradiente da imagem original. Outros métodos também se valem

da relação entre vizinhança, como mean shift e k-means [35], com uma atualização constante de

pesos em um processo iterativo que busca a minimização da distância entre os elementos e seus

agrupamentos. Esses métodos de agrupamento citados anteriormente, são usualmente aplicados

na criação de regiões em uma imagem.

3.3.2 Grafo de regiões

A partir de um método de agrupamento aplicado a uma imagem de pixels (sub-grafo de pi-

xels), cada um desses agrupamentos pode ser substituído e representado por uma região homo-

gênea (superpixel), promovendo uma segmentação em baixo nível [24]. Ao contrário de uma

imagem de pixels, dispostas em grade bem definida, as uma imagem constituída por regiões pos-

suem, em geral, vizinhanças com relações não triviais. Essas relações podem ser representadas

por um grafo de adjacência de regiões (Figura 3.5(f)).

3.4 SEGMENTAÇÃO DE IMAGENS

O processo de segmentação consiste em subdividir uma imagem em regiões ou objetos que a

constituem. Seu objetivo é simplificar ou alterar a representação de uma imagem, com a finalidade

de facilitar sua análise. Para isso, existem diversos métodos capazes de realizar tal função, nos

quais se destacam técnicas baseadas em similaridade (threshold), detecção de descontinuidades,

agrupamento de dados (clustering). Neste trabalho, serão retratados aqueles processos utilizados

nos métodos propostos, as técnicas de agrupamento watershed e SLIC que realizam, em conjunto,

a formação de regiões ao longo de quadros de vídeos, e a técnica de corte de grafos GrowCut para

a segmentação do objeto.
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3.4.1 Técnicas de agrupamento

Métodos de agrupamento permitem que se extraiam características determinadas de um grupo

de dados, separando-os em subgrupos funcionais ou hierarquizando os dados para algum tipo

de análise posterior. As técnicas de agrupamento ou análise de agrupamento é o nome dado

para o grupo de técnicas computacionais cujo propósito consiste em separar determinados dados

pertencentes a um grupo específico, baseando-se nas características que estes dados possuem. A

ideia básica consiste em colocar em um mesmo grupo objetos que sejam similares de acordo com

algum critério pré-determinado.

O critério de determinação de agrupamento, normalmente, baseia-se em uma função de dissi-

milaridade. Tal função recebe dois objetos e retorna a distância entre eles. Os grupos determina-

dos por uma métrica de qualidade devem apresentar alta homogeneidade interna e alta separação

(heterogeneidade externa). Isto quer dizer que os elementos de um determinado conjunto de-

vem ser mutuamente similares e, preferencialmente, muito diferentes dos elementos de outros

conjuntos.

3.4.1.1 Watershed

(d)(c)

(b)(a)

Figura 3.6: Ilustração do processo de agrupamento de regiões pelo algoritmo watershed: (a) o mapa de magnitude de
uma imagem representa um mapa topológico, no qual os mínimos locais da imagem são estão nas áreas de depressão
desse mapa topológico; (b) a partir dos mínimos locais, as depressões começam a ser preenchidas, formando lagos;
(c) os lagos crescem de forma a terem uma mesma altura; (d) no ponto de encontro dos lagos, as represas que dividem
as regiões são definidas (inspirado em [24]).

A técnica de agrupamentos watershed, palavra traduzida para o português como bacia hidro-

gráfica, tem o funcionamento intuitivamente correspondente a sua nomenclatura. Pode-se ima-

ginar os mapas de magnitude de uma imagem como acidentes geográficos, em que os mínimos
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locais estão localizados nas depressões. Essas depressões, indicadas em ilustração pelos círculos

em diferentes pontos na Figura 3.6(a), são inundadas simultaneamente (Figura 3.6(b) e (c)) de

forma que as alturas dos lagos formados nessas depressões estejam sempre niveladas. Regiões

são tratadas como um agrupamento, quando os lagos se tocam e uma barragem é construída para

definir essa fronteira [24].

Os princípios básicos da watershed desencadeiam uma série de algoritmos que possibilitam

o tipo de solução desejada. Entre esses algoritmos, destacam-se os métodos de Vicent-Soille,

Meyer e técnicas de custo e topológicas, todos envolvendo princípios de teoria dos grafos, uma

vez que utilizam as relações entre vizinhanças para a construção de regiões [36]. A watershed

aplicada ao longo deste trabalho, utiliza o algoritmo de Fernand Meyer [37].

A watershed pode ter inicialização feita por marcadores manualmente definidos, entretanto,

regiões agrupadas a partir de mínimos locais definidos por um mapa de variações espaciais (gra-

diente) são usualmente utilizados, por representarem pontos singulares, especiais dentro de uma

imagem. Os mínimos locais são evidenciados nos mapas de gradiente da imagem original (Fi-

gura 3.7(a)), esse gradiente pode ser obtido ou por meio de aproximações do Laplaciano ou por

filtros detectores de borda e é a imagem, em geral, utilizada para a aplicação da watershed.

(a) original (b) T = 1    N = 5843 (c) T = 2    N = 2494

(d) T = 3    N = 1748 (e) T = 4    N = 1111 (f) T = 5    N = 646

Figura 3.7: Watershed aplicada no gradiente de uma (a) imagem fornece diferentes números de regiões N quando
um limiar T é definido para esse mapa de gradiente. T é um valor mínimo de variação aceito dentro de um gradiente
que diminui o número de mínimos locais, utilizados para inicialização do agrupamento de regiões.
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Um limiar mínimo T para as variações detectadas podem diminuir a quantidade de mínimos

locais e, por consequência, o número de regiões N formadas a partir da inundação desses platôs

(Figura 3.7(b) a (e)).

3.4.1.2 K-means

O método de agrupamento k-means possui paradigma de aprendizado não-supervisionado, ou

seja, procura determinar e identificar automaticamente como os dados estão organizados em um

conjunto ou em uma base de dados. O k-means é um método de agrupamento que tem como

objetivo encontrar k grupos (padrões, ou regiões) na imagem [35].

Estes grupos são representados por centroides, que são médias numéricas de todos os pixels

pertencentes ao agrupamento em questão. Deve-se escolher k centroides iniciais, que representam

os centros dos k agrupamentos dados por C1, C2,..., Ck (Figura 3.8(a)). Cada pixel da imagem é

rotulado em relação ao centroide da classe mais similar. Por conseguinte, os centroides têm seus

valores atualizados com base nos pixels que passaram a pertencer aos respectivos agrupamentos.

Assim, o processo se repete enquanto um critério de parada não for satisfeito (Figura 3.8(b)).

A heurística de agrupamento não hierárquico do k-means busca minimizar a distância dos

elementos a um conjunto de k centros dado por X = {C1, C2, ..., Ck} de forma iterativa. Cada

centroide Ck é um conjunto de médias que, em geral, tem associado a ele características de

posição espacial ou de cor do agrupamento, Ck = {~rk,~lk}. ~rk define a posição espacial média do

agrupamento k e~lk o vetor de cores médio desse centroide.

Ao se medir a distância d de conjunto de características de um elemento pi = {~ri,~li} a um

agrupamento representado por um centroide Ck:

kw = arg min
k

D(pi, Ck), (3.2)

deseja-se encontrar o centroide Ckw que está mais próximo do elemento i. A cada iteração o valor

das propriedades do centroide Ck, posição e cor, são atualizadas com a média dos elementos

agrupados por ele.

O algoritmo cessa iterações assim que todos os elementos estão agrupados aos centroides

mais próximos a eles. Há uma convergência relativamente rápida para uma solução de equilíbrio,

aquela que minimize todas as distâncias dos elementos aos seus respectivos centroides. Essa

solução depende dos valores com os quais centroides são inicializados, em geral, determinados

de forma aleatória.
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1 1 1 2 1 2 1 21

C1 C2

(a)

(b)

Figura 3.8: A técnica de agrupamento k-means busca relacionar elementos em com centroides, comparando a distân-
cia entre si desses elementos e os centroides: (a) os centroides, C1 e C2 no exemplo, são inicializados de acordo com
a necessidade do usuário e os elementos a serem agrupados podem ou não ter rotulação prévia; (b) a cada iteração
os elementos vão sendo rotulados de acordo com sua proximidade com os centroides, os quais vão alterando seus
valores com base nos elementos que agrupam.

3.4.1.3 SLIC

A técnica de agrupamento SLIC (agrupamento iterativo linear simples, do inglês simple linear

iterative clustering) é uma adaptação do algoritmo k-means [15]. Os mesmos procedimentos são

adotados da forma que descrita anteriormente para o k-means, modificando-se a área de atuação

de cada centroide. Impõe-se uma restrição, geralmente espacial para imagens, de forma que as

distâncias a um centroide são calculadas para um grupo menor de elementos, não todo o conjunto

em análise.

Na Figura 3.8, que exemplifica o algoritmo k-means, tem-se dois centroides, C1 e C2, com-

petindo por todos os elementos de um conjunto o qual deseja-se separar em grupos. Podemos

expandir esse raciocínio para elementos distribuídos em um plano 2-D, como na Figura 3.9(a), na

qual todos os elementos sem rótulos são disputados por todos os 4 centroides, C1, C2, C3 e C4.
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Na sua versão adaptada, os centroides disputam os elementos de acordo com áreas de atuação

pré-definidas (Figura 3.9(b)). O objetivo dessa restrição na quantidade de elementos em disputa

para cada centroide é a redução do esforço computacional.

C3 C4

C1 C2

C3 C4

C1 C2

(a) (b)

Figura 3.9: Ilustração comparando os algoritmos k-means e SLIC: (a) no algoritmo k-means os centroides disputam
todos os elementos em análise entre si, uma área de atuação ampla, representada pelos quadrados, com arestas
seguindo o padrão de cores de seus respectivos centroides; (b) para o SLIC, essa análise fica restrita a áreas pré-
definidas, que se sobrepõem, novamente ilustrando casamento das cores das arestas dos quadrados e os centroides
que atuam na sua respectiva área.

Da mesma forma descrita para o algoritmo k-means, Ck é um conjunto de médias do agru-

pamento k, contendo informações quanto à posição média ~rk desse grupo e seu vetor de cores

médio ~Ik, o conjunto pi do elemento i também tem os mesmos vetores associados a ele, ~ri e
~Ii. Em [15], a distância Di,k entre um agrupamento k a um elemento i, é uma combinação da

distância espacial:

dsi,k = ||~ri −~rk|| (3.3)

e a distância entre as cores:

dci,k = ||~Ii −~Ik||, (3.4)

em que || · || é a norma euclidiana entre os vetores.

Ao se normalizar a distância espacial dsi,k entre centroide e elemento por uma constante S,

que é a dimensão da aresta da região de atuação dos centroides (Figura 3.9(b)), e se inserir um

fator de peso m, define-se a distância Di,k para o SLIC como:

Di,k =

√√√√dc2i,k +

(
dsi,k
S

)2

m2. (3.5)

A dimensão S da região de disputa do agrupamento, normaliza a distância espacial dsi,k entre o

centroide e o elemento em análise, de forma que os valores desta distância para pontos extremos

nesta região de disputa fiquem próximos a 1.
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O parâmetro m é um peso determinado pelo usuário que define a maior grau de importância

para a distância espacial ou para a distância entre cores, no processo de agrupamento, quanto

maior o valor de m maior peso é dado a dsi,k. A quantidade de agrupamentos ainda é definida

pelo usuário, assim como no k-means (Figura 3.10).
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Figura 3.10: Algoritmo de agrupamento SLIC aplicado na imagem da Figura 3.7(a), para diferentes níveis de nú-
mero de agrupamentos K e peso m. O aumento de m implica no aumento da importância da distância espacial no
agrupamento, percebe-se para regiões como alto grau de semelhança, como o céu da imagem, a uniformidade no
formato das regiões para os valores mais altos de m. A definição no número de agrupamentos depende do grau de
representatividade desejado pelo usuário, quanto menor o número de agrupamentos, maior serão as áreas e os erros
envolvendo suas fronteiras.

3.4.2 Cortes em grafos

A segmentação de imagens via cortes consiste na desassociação de um grafo V em dois sub-

conjuntos, A e B, em que A∪B = V e A∩B = ∅. O subconjunto A pode representar um objeto

de interesse enquanto B representa o fundo do qual deseja-se separar o objeto.
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Em geral, um corte em grafos tem como objetivo a determinação dos subconjuntos A e B que

minimizem uma função de custos:

C(A,B) =
∑
i∈A

∑
j∈B

wi,j. (3.6)

A função de custos C é chamada também de capacitância, e leva em consideração a forma na

qual os conjuntos A e B estão conectada, somando o peso de todas as suas conexões wi,j . Quanto

menor o valor de C(A,B) menor o custo de se desassociar um grafo nos dois subconjuntos A e

B.

3.4.2.1 Min cut/Max flow

Definindo a = (a1, a2, ..., aN) como um vetor binário cujas componentes especificam se um

elemento p de uma imagem pertence ao conjunto A (ap = 1) ou ao conjunto B (ap = 0), dentro

dos N nós do grafo, a ref. [38] propõe uma função de energia para minimização e corte dada

como:

E(a) = λR(a) + C(a), (3.7)

em que a função de capacitância C(a), que exprime as relações de fronteira do objeto, é combi-

nada a uma função de custos R(a), que mede o custo de se tomar um elemento p como parte do

objeto ou do fundo, que pode independer das relações de fronteira, podendo estar relacionado aos

níveis de magnitude de uma região ou pixel, por exemplo. A combinação entre as duas funções é

mediada pela constante λ, quanto menor o seu valor, mais peso se dá as relações de fronteira do

objeto.

Um novo grafo é construído com dois nós a mais (Figura 3.11), um nó chamando de source (s,

fonte) e o outro chamado de sink (t, pia), o nó s representa o conjunto A (objeto) e o t o conjunto

B (fundo). As conexões desses novos vértices aos nós do grafo é independente, recebendo como

peso as relações da função de custosR para nós sem definição de rótulo (se pertencem ao conjunto

A ou ao B), um peso K muito alto para aqueles elementos previamente rotulados de acordo com

o seu conjunto e um peso nulo caso contrário (Figura 3.11(a)).

Os algoritmos de maximum flow/minimum cut se baseiam no teorema de grafos que define que

o fluxo (flow) entre os vértices s e t é máximo para o corte mínimo (minimum cut). Pode-se fazer

uma analogia a um circuito elétrico, no qual o nó s é a fonte de energia e o t é a referência para

qual as cargas fluem (Figura 3.11(a)). Os pesos para as conexões são as admitâncias, quanto maior

o peso, menor a resistência quanto a passagem de corrente. O conjunto de arestas/conexões na

qual a corrente satura é o conjunto de conexões na qual a admitância é mínima (Figura 3.11(b)).
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Figura 3.11: No corte de grafos s/t, geralmente utilizado nos algoritmos de max flow/min cut, cria-se dois vértices a
mais para análise, s (source) e t (sink): (a) os pesos para as arestas desses novos vértices são determinados por um
K, de valor alto, caso o rótulo do vértice seja o mesmo do novo nó, na ilustração branco para pertencente ao s e preto
para t, os nós i destinados à segmentação (em azul), recebem uma ligação Ri(0/1) que representam um risco de se
tomá-los como parte do objeto (1) ou do fundo (0); (b) na análise ou do fluxo máximo ou do corte mínimo, procura-se
um conjunto de arestas (ligações em vermelho) para se desvincular um conjunto do outro a um custo baixo.

3.4.2.2 Normalized cut

Um dos problemas com os algoritmos de mínimo corte é que eles favorecem a segmentação de

pequenos conjuntos de nós isolados. Por exemplo, uma vez que o peso de ligação de um elemento

de cor muito distinta a sua vizinhança é baixo, um corte mínimo pode isolar apenas esse elemento

do restante do grafo, visto que esse fornece uma capacitância pequena. Resolve-se tal deficiência,

quando se analisa a desassociação de dois conjuntos A e B de um grafo V pela fração que esses

dois conjuntos representam no grafo, nas condições anteriormente definidas, determinando um

corte normalizado [39].

Define-se um grau de conectividade di do elemento i com o grafo V (Figura 3.12(a)), ao se

somar todos os pesos de conexão que esse elemento faz com o grafo:

di =
∑
j∈V

wi,j. (3.8)

Esse grau de conectividade pode ser estendido a um conjunto A (Figura 3.12(b)), somando-se

todos os valores de di para i ∈ A:

assoc(A, V ) =
∑
i∈A

di. (3.9)

Com o corte cut(A,B) entre os dois conjuntos A e B, que é a função de capacitância da equa-
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ção (3.6), [39] constrói a função Ncut(A,B) utilizada para minimização:

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
. (3.10)

Recorrendo novamente ao vetor de rótulos a que define quais nós pertencem ao conjunto A

e quais pertencem ao B, o corte normalizado que minimiza Ncut(a) pode ser solucionado ao se

resolver um problema de autovalores λ e autovetores u [39]:

D
1
2 (D−W)D

1
2 u = λu, (3.11)

em que D é a matriz diagonal do grafo V , em que di se torna o elemento da posição {i, i} dessa

matriz. Por exemplo, a matriz diagonal referente ao grafo da Figura 3.4 com mapa de pesos da

equação (3.1) é dada como:

D =


10 0 0 0

0 1, 6 0 0

0 0 1, 6 0

0 0 0 1, 2

 , (3.12)

As N (número de nós) soluções linearmente independentes para o vetor u retornam valores

contínuos. Discretizando esse vetor em dois níveis, 0 ou 1, obtém-se uma segmentação para o

grafo, uma aproximação para o a que minimiza Ncut(a).





Vj

jii wd , 



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idVAassoc ),( 
 


Ai Bj

jiwBAcut ,),(

(a) (b) (c)

i

A

A
B

A

Figura 3.12: Expressões utilizadas no corte normalizado e suas respectivas representações nos grafos: (a) a soma
de todas dos pesos de todas as arestas de um vértice i fornece um nível de conectividade di desse ao grafo; (b)
a ideia pode ser estendida para um subgrafo A, medindo-se o grau de associação desse subconjunto ao grafo V ,
assoc(A, V ), pelo somatório de di com i ∈ A; (c) ponderando e combinando um corte cut(A,B) pelo grau de
associação de A e B com o grafo V , obtém-se a função Ncut(A,B), utilizada para o corte normalizado.
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3.4.2.3 GrowCut

A técnica de cortes em grafos GrowCut proposto na ref. [1], tem princípios muito semelhantes

aos do SLIC. A competição para rotulação dos elementos ocorre também mediante uma restrição

espacial, somente vizinhos próximos a cada elemento são analisados. Diferentemente do SLIC,

no GrowCut são formados apenas dois agrupamentos, objeto e fundo, e a competição por um

elemento ocorre entre os próprios nós do grafo (pixels no caso de imagens), não entre centroides.

Definindo-se valores de um nó i para o vetor de rótulos a como ai = 1, caso o elemento

pertença ao objeto, ai = −1, caso pertença ao fundo e ai = 0, caso não tenha rótulo definido, o

algoritmo GrowCut opera iterativamente, atualizando o vetor a até todos os elementos do grafo

terem um rótulo definido e as condições impostas terem sido respeitadas, 1 ou -1. Para inicializa-

ção, alguns rótulos precisam ser previamente definidos, quanto maior a quantidade de rótulos pré

definidos melhor a segmentação obtida (Figura 3.13).

(a) (b) (c)

Figura 3.13: Aplicação da técnica de segmentação via grafos GrowCut em uma imagem. A segmentação manual de
fundo (em azul) e objeto (em vermelho) determinam a qualidade da segmentação pela quantidade de rótulos prévios
que são criados, antes da aplicação do GrowCut. O algoritmo retorna resultados aceitáveis para a segmentação da
estátua, mesmo com diante de uma rotulação prévia pobre, (a) e (b), e retorna um bom resultado para uma rotulação
prévia próxima à segmentação desejada (c).
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Mantendo a comparação entre GrowCut e SLIC, para a técnica de corte, pode-se considerar

cada elemento i do grafo como o seu próprio centroide que, a cada iteração, em vez de atacar,

é atacado pelos seus vizinhos j ∈ Q, recebendo o rótulo do vizinho mais próximo a ele. Essa

distância é medida por uma função de custos:

g(i, j) = 1− ||
~Ii −~Ij||2

max||~I||2
, (3.13)

Para os valores médio que representariam o centroide no SLIC, cada elemento i no GrowCut

recebe uma função de transição local θti , que recebe inicialmente (primeira iteração, t = 0) valor

1 para os nós rotulados e 0 para nós não rotulados. A condição para que um nó i seja atacado por

um vizinho j e ganhe o seu rótulo é:

g(i, j) · θtj > θti . (3.14)

O vértice i também ganha um novo valor para a função de transição local baseado no valor do

vizinho j:

θt+1
i = g(i, j) · θtj. (3.15)

O algoritmo cessa iterações quando a condição (3.14) não é mais respeitada, ponto no qual todos

os elementos estão classificados/rotulados.

38



4 PROPOSTA PARA CONSTRUÇÃO DE REGIÕES EM
IMAGENS E SEUS DESCRITORES LOCAIS

4.1 INTRODUÇÃO

Neste Capítulo, serão abordados os métodos propostos para a criação de superpixels/regiões

que determinam os grafos de regiões, bem como os métodos utilizados para a determinação dos

descritores locais referentes a essas regiões. Tanto a criação de regiões quanto a criação dos des-

critores é inspirada em processos da SIFT, que visam encontrar características nas imagens que se

preservem diante de transformações geométricas como o escalonamento e rotação, e em face de

mudanças nos níveis de intensidade. A partir do descritor, é proposto um método para determina-

ção de regiões correspondentes e de vetores de estimativa de movimento entre duas imagens. O

rastreamento de regiões, pela determinação de correspondências, permite que a criação de regiões

seja orientada ao objeto e ao seu movimento.

4.2 WATERSHED EM UM ESPAÇO DE ESCALAS

O descritor proposto tem inspiração no algoritmo SIFT, no qual os descritores são obtidos de

forma a tentar representar um objeto ou cena em diferentes escalas [10]. Essa representação em

várias escalas tem como objetivo o reconhecimento de um objeto/cena apresentada em qualquer

tamanho em uma imagem, fazendo-se necessária uma seleção de pontos (pontos-chave) para a

redução na quantidade de dados em análise (Figura 2.11).

Para os objetivos propostos neste trabalho, a mudança de escala esperada para um objeto entre

dois quadros consecutivos é pequena. Isso restringe a aplicação do algoritmo, para o qual se

escolheu construir os descritores apenas para regiões de uma imagem dentro de um espaço de

escalas. A imagem é definida pelos parâmetros n, σ e T , e selecionada visualmente pelo usuário,

de forma que a sobre-segmentação oferecida represente bem o objeto de interesse (Figura 4.1).

Diferentemente de alguns algoritmos utilizados para criação de agrupamentos (regiões) em

uma imagem, como k-means e mean shift, a técnica watershed, quando baseada nos mínimos

locais da imagem, não depende de um usuário para determinação do número de agrupamentos. A

quantidade de regiões formada está diretamente ligada a uma propriedade intrínseca da imagem,

os mínimos locais definidos pelo módulo do gradiente da imagem, dos quais regiões emergem até

a formação de barreiras entre elas [18].
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Figura 4.1: Diagrama do algoritmo proposto para a determinação de regiões e descritores em uma imagem I(x, y).
A imagem recebe suavizações que dependem da escala n e de um desvio padrão σ (caminho à esquerda), para a
aplicação da técnica de watershed para a criações de regiões em uma aproximação de gradiente de I(x, y), que tem
valores nulos a partir limiar T . De forma semelhante, uma suavização mais intensa é aplicada à I(x, y), que ainda
pode ser redimensionada antes da criação de regiões via watershed (caminho à direita), essas regiões são tomadas
como referência para o reagrupamento das regiões previamente definidas. Uma vez selecionados os parâmetros n, σ
e T que produzam uma imagem com sobre-segmentação satisfatória para o objeto de interesse, os descritores locais
são calculados para esta imagem selecionada.

Se assemelhando ao SIFT [10] na busca de pontos especiais para objetos em imagens sujeitos

a transformações, sejam elas geométricas ou em magnitude, a técnica watershed se mostrou a

mais indicada para a criação de regiões de maneira não supervisionada e para a determinação do

descritor proposto. Apesar da preservação de pontos (mínimos locais), o algoritmo watershed

perde em desempenho na irregularidade das bordas e no tamanho das regiões formadas a partir

desses pontos [15]. Neste trabalho, foram obtidas regiões com bordas e tamanhos mais estáveis

ao se mesclar o algoritmo SLIC [15] ao watershed em um agrupamento por escalas.

No caso proposto, o gradiente para aplicação do watershed é aproximado pela combinação

da convolução do filtro detector de bordas Sobel com os três canais de cores no padrão CIELAB

[40] da imagem. A adição de propriedades de oposição de cores no descritor proposto, é um dife-

rencial em relação ao algoritmo SIFT, que leva em consideração somente o mapa de luminância

da imagem.
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Pares de vistas de cenas (Figura 4.2) serão utilizadas ao longo deste capítulo para exemplifi-

car e testar o algoritmo proposto. A escolha dessas cenas, que possuem um leve deslocamento

horizontal entre si, recai na semelhança das transformações entre cenas com as de uma transição

entre quadros subsequentes de um vídeo.

(a)

(b)

(c)

(d)

Figura 4.2: Pares de vistas distintas de cenas utilizados para avaliação do algoritmo proposto. Uma das imagens
dos pares será submetida a transformações geométricas e de intensidade. Ao longo deste capítulo as cenas também
exemplificam o algoritmo proposto, cenas intituladas como: (a) Statue; (b) Teddy; (c) Cones; e (d) Venus.
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4.2.1 Aproximação do gradiente

O filtro Sobel é aplicado sobretudo em problemas de detecção de bordas em uma imagem

ao longo de uma das suas direções. Por meio de uma combinação dessas resultantes em cada

direção, uma soma euclidiana, por exemplo, pode-se obter uma imagem que ressalta suas bordas

independentemente da sua disposição. A máscara Sobel que representa uma detecção ao longo

do eixo horizontal x, é expressa como:

hx =


1 2 1

0 0 0

−1 −2 −1

 . (4.1)

A variação abrupta da máscara Sobel (equação 4.1) ao logo do eixo vertical, ressalta os pon-

tos com variações no mapa de magnitude de uma imagem ao longo desse eixo, por intermédio da

convolução entre a máscara e imagem. Quando essas variações perduram ao longo do eixo hori-

zontal, bordas são ressaltadas nessa direção. A convolução de uma imagem I(x, y) (Figura 4.2(a)

à esquerda) e a máscara hx retorna uma imagem Dx(x, y) de componentes horizontais:

Dx(x, y) = hx ∗ I(x, y) (4.2)

Para a obtenção de componentes verticais, aplica-se a máscara hy (que é a transposta de hx) à

imagem:

Dy(x, y) = hy ∗ I(x, y). (4.3)

O módulo do gradiente aproximado por essas duas componentes, Dx e Dy, retorna a imagem:

U(x, y) =
∥∥(Dx(x, y), Dy(x, y)

)∥∥. (4.4)

Do canal de luminância IL(x, y) (Figura 4.3(a)), obtém-se a resultante UL(x, y) (Figura 4.3(d)),

por meio das componentes horizontais (Figura 4.3(b)) e verticais (Figura 4.3(c)).

O procedimento é aplicado aos outros dois canais de cores individualmente, Ia(x, y) e Ib(x, y)

(Figura 4.4 (a) e (b)). É possível observar que os módulos resultantes Ua(x, y) e Ub(x, y) (Fi-

gura 4.4 (c) e (d)), respondem de maneira mais enfática aos pontos de variação de cor, os quais

podem não ser detectados analisando-se apenas a luminosidade (Figura 4.3(d)).

A técnica de watershed poderia ser aplicada às três imagens de módulo do gradiente obtidas

pelos três canais CIELAB, o que forçaria a uma análise conjunta de três camadas de regiões.

Optou-se em aplicar a transformação na combinação de módulos dos gradientes para os três

canais:

U(x, y) =
√
UL(x, y)2 + Ua(x, y)2 + Ub(x, y)2. (4.5)
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(b)

(c)

(a)

(d)

Figura 4.3: Ilustração da aplicação do filtro Sobel para aproximação do gradiente no (a) canal de iluminação para
detecção de bordas (b) horizontais e (c) verticais, (d) que são combinadas em uma soma euclidiana.

A utilização de informações quanto às cores das imagens para a formação das suas regiões,

reflete uma nova propriedade agregada à adaptação da SIFT para os grafos de regiões. A ideia

parte dos campos receptivos presente no sistema visual humano, apresentados no Capítulo 2 e

que são inspiração para o algoritmo SIFT. Os campos receptivos se apresentam tanto para as

diferenças em iluminação quanto para a oposição de cores, verde em oposição ao vermelho e azul

em oposição ao amarelo, enquanto que o SIFT utiliza apenas os aspectos de iluminação [10].

A Figura 4.4 ilustra em (a) e (b) a oposição de cores para a imagem da esquerda da Fi-

gura 4.2(a), oposição fornecida pelo sistema CIELAB de cores. Na Figura, (a) exibe a oposição

de cores entre o verde e vermelho, e (b) a oposição entre o azul e amarelo. Esses mapas são

registrados em valores que variam na faixa de [−100, 100]; o verde e o azul recebem os valores

negativos e o vermelho e o amarelo os valores positivos. A Figura 4.4 (c) e (d) mostra o módulo

do gradiente (equação (4.4)) para componentes vertical e horizontal aproximadas pelo filtro Sobel

aplicado nos mapas de oposição de cores.
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(b)(a)

(c) (d)

Figura 4.4: Canais de cores no sistema CIELAB em (a) e (b), e seus respectivos módulos dos gradientes aproximados
por um filtro detector de bordas Sobel em (c) e (d).

4.2.2 Formação de regiões pela watershed e definição de suas propriedades

O agrupamento de pixels em regiões (usualmente chamadas de superpixels) via watershed,

está associado a uma redução de elementos, que pode ser observada na Figura 4.5: (a) quando

aplicada à combinação de módulos do gradiente de uma imagem originalmente de dimensões

385×288, 110592 pixels; (b) obtém-se uma imagem com 7784 regiões, que é menos de um nono

da quantidade de pixels na imagem original.

A redução do número de regiões em relação número de pixels para um valor abaixo de um

nono não é arbitrária. O algoritmo de watershed adotado utiliza uma análise de vizinhança 8-

conectividade [41]. Na formação de uma inundação a partir de um mínimo local são necessários

no mínimo 8 pixels ao desse ponto para formação de uma represa. Isso limita a criação de regiões

em uma região para cada composição de 3×3 pixels analisada. Um método para uma redução

mais relevante no número de elementos dentro de uma imagem de regiões é apresentado neste

mesmo Capítulo.
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(a) 385 × 288 = 110592 pixels (b) N = 7784 regiões

Figura 4.5: Aplicação da watershed: (a) imagem fruto da combinação dos módulos do gradiente dos três canais
de cores aproximados pelo filtro Sobel; (b) superpixels em branco delimitados pelas "barreiras"representadas pelas
linhas em preto.

O intuito de se representar uma imagem via grafos de região é simplificar a análise dessa ima-

gem com uma quantidade menor de elementos, de forma que esses essa redução ainda represente

de maneira satisfatória o problema. Essa simplificação também é valida para as propriedades de

cada agrupamento de pixels representado por uma região SP .

Assim como um pixel, um superpixel i tem associado a ele uma posição ~ri e um vetor de

componentes de cores ~Ii. Além dessas duas características comuns a um pixel, está associada

a um superpixel i uma área Ai, que é a quantidade de pixels que a compõe. A posição de um

superpixel é obtida pela posição média dos pixels que o formam:

~ri =
1

Ai

∑
p∈SPi

~rp, (4.6)

em que ~rp é a posição (xp, yp) dos pixels que compõem a região e Ai a sua área, que computa a

quantidade de pixels dentro desse superpixel SPi.

Na geração de um mapa de magnitude de uma imagem digital, a quantidade de fótons que

atinge um receptor eletrônico é convertido por uma função de potência inversa de γ antes de ser

registrada. Desta forma, para intensidade em regiões é interessante considerar a soma de potências

de γ, visto que:

1

Ai

∑
p∈Ri

I(xp, yp) ≤

(
1

Ai

∑
p∈Ri

I(xp, yp)
γ

) 1
γ

, (4.7)

para γ > 1. A média simples das intensidades é menor que a raiz da média potencializada por γ,

que é a intensidade real capturada. Uma possibilidade é usar a popular norma quadrática para a
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média, de forma que:

Ii =

√
1

Ai

∑
p∈SPi

I(xp, yp)2, (4.8)

em que I(xp, yp) é a magnitude de um canal de cores para o pixel p contido no superpixel SPi, o

processo então deve ser repetido para os 3 canais de cores.

Apesar da criação das regiões no sistema de cores CIELAB, o formato RGB foi utilizado para

obter a média de intensidades e cores das regiões, evitando assim distorções causadas pela não

linearidade do processo de conversão do sistema RGB para o CIELAB. A representação desse

valor médio para intensidades pode ser observado na Figura 4.6(a), em que as regiões formadas

são divididas pelos contornos em preto.

A imagem da Figura 4.6(a) fornece uma boa visualização dos pixels concatenados pelas res-

pectivas regiões, entretanto, para fins práticos, cada região i possui apenas três propriedades, uma

posição ~ri, uma cor~Ii e uma área Ai, a qual pode ser convertida em um raio equivalente:

Ri =

√
Ai
π
, (4.9)

tal simplificação é ilustrada na Figura 4.6(b).

(a) (b)

Figura 4.6: Ilustração dos agrupamentos formados após aplicação da watershed: (a) cada região agrupa uma certa
quantidade de pixels que determina a sua área Ai, suas fronteiras são determinadas pelas linhas pretas e no interior é
representado pela cor média; (b) uma forma mais simplificada de se representar esses elementos que na análise via
grafos se tornam vértices, pontos, é os representando por um círculo de área Ai, os cálculos para gradiente e pesos
de ligações nos Capítulos futuros, dependerão apenas desses três atributos, posição~r, cor~I e área A.
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Quando representada por um grafo, cada região da Figura 4.6(a) se torna um simples ponto,

um nó. A Figura 4.6(b) ilustra esses nós com círculos dispostos nas posições calculadas para

cada região e com cores médias determinadas. Esses círculos têm raio igual ao raio equivalente

calculado pela equação( 4.9), essa representação é interessante para o cálculo de gradiente para a

construção dos descritores que envolvem apenas essas três propriedades.

4.2.2.1 Suavização e Limiar

A sobre-segmentação oferecida pela watershed é essencial para se analisar um objeto por meio

do conjunto de diversas regiões que o compõe. Entretanto quando aplicada diretamente à imagem

de gradiente U(x, y), essa sobre segmentação pode retornar uma quantidade de elementos ainda

indesejada. A forma encontrada para controlar essa produção de regiões foi a suavização da

imagem antes da aplicação do filtro detector de bordas e a determinação de um limiar T para

U(x, y) antes de se aplicar watershed.

A suavização consiste na convolução da imagem original, ainda no sistema de cores RGB,

com uma Gaussiana de desvio padrão σ:

L(x, y, σ) = I(x, y) ∗G(x, y, σ), (4.10)

onde:

G(x, y, σ) =
1√
2πσ

e−
(x2+y2)

2σ2 (4.11)

Esse procedimento de suavização pode ser comparado a uma desfocalização da imagem que

chega a retina ou à densidade de receptores capazes de resolver essa imagem, que é aliado a uma

transformação:

U(x, y) =

{
U(x, y) caso U(x, y) ≥ T,

0 caso U(x, y) < T.
(4.12)

da imagem U(x, y) a partir de um limiar T . Elementos com magnitude menor que o limiar

definido são anulados, limitando a detecção de bordas e a formação de regiões a uma sensibilidade

T . Quanto maior o seu valor, menor a capacidade de detecção de diferenças e, por consequência,

menor o número de regiões.

A escolha do limiar T fica a critério do objeto de segmentação definido. No caso de objetos

que se destaquem em cor ou brilho em relação a sua vizinhança, um limiar alto promove uma boa

delimitação das regiões objeto, sem se confundir com a vizinhança. Já no caso de objetos com

pouco contraste, tanto em intensidade quanto em cor, em relação à vizinhança, sensibilidades

mais baixas são recomendadas. O valor de T está limitado à escala de cores CIELAB da imagem

L(x, y) e ao filtro Sobel que dá ganhos às variações de L para gerar U(x, y).
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Figura 4.7: Relação entre suavização da imagem e aplicação de um limiar para o gradiente, antes de realizar um
agrupamento via watersehd. A suavização é aplicada na imagem original, antes da determinação de seu gradiente,
por um filtro gaussiano de desvio padrão σ. O limiar é determinado para a imagem de gradiente U(x, y) que é a
combinação do gradiente dos três canais de cores no padrão CIELAB. Nota-se quantidade de regiões formadas, uma
relação inversa tanto para o crescimento do limiar quanto para o crescimento desvio padrão. A suavização diminui a
relevância das bordas detectadas, aquelas que formam as barreiras na watershed, e o limiar diminui a quantidade de
mínimos locais dos quais as inundações são iniciadas.

Um aumento de T promove uma diminuição do número de regiões formadas e, por con-

sequência, do número de elementos para o grafo obtido final destinado à análise. Essa relação de

decréscimo depende das características da imagem em estudo (Figura 4.7).
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4.2.3 Agrupamento por Escalas

A relação entre suavização e diminuição no número de regiões aparenta ser uma relação di-

reta, alheia às características da imagem (Figuras 4.7 e 4.8). Um borramento na imagem ne-

cessariamente altera as relações entre pixels de suas bordas, tornando transições mais suave e

indiscrimináveis pelo limiar T adotado após filtragem com a máscara Sobel.

(b) f = 1; σ =  2; T = 4   N = 4097

(d) f = 2; σ =  2; T = 4   N = 746(c) f = 1; σ = 2 2; T = 4   N = 827

(a) f = 1; σ = 0; T = 4   N = 14975

Figura 4.8: Técnica watershed aplicada à cena Teddy com um mesmo limiar T e diferentes graus de suavização e
redimensionalização: (a) quando aplicada a imagem sem borramento em seu tamanho original, mesmo na presença
de um limiar, a watershed produz uma grande quantidade de elementos, comparada à; (b) e (c) versões suavizadas em
tamanho original, quanto maior o desvio padrão σ do filtro gaussiano, menor a quantidade de regiões; (d) entretanto
uma redução na imagem original aliada a uma suavização por um filtro gaussiano, retorna uma quantidade de regiões
semelhante a uma versão suavizada com maior σ da imagem em seu tamanho original (c), implica um ganho de
homogeneidade nas regiões formadas.

Um fator limitante na detecção de uma borda usando uma máscara de Sobel (equação (4.1))

em uma imagem borrada, ou qualquer outra transição naturalmente mais suave dentro de uma

imagem, é o tamanho dessa máscara detectora, 3× 3.
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A Figura 4.8 ilustra como uma imagem suavizada por Gaussianas de desvios padrões distintos,

σ =
√

2 em (b) e σ = 2
√

2 em (c), promove uma significante redução no número de regiões em

relação à imagem sem suavização, (a) para um mesmo limiar T = 4. Quando se aplica os mesmos

princípios em uma imagem reduzida por um fator f = 2 (d), utilizando uma interpolação bicúbica

e um filtro anti-aliasing [42], constata-se a produção de um número menor de regiões que nas

outras três imagens, regiões que estão distribuídas de maneira mais homogênea.

Diminuindo-se o tamanho da imagem, verifica-se a capacidade de versões reduzidas produ-

zirem regiões mais homogêneas (Figura 4.8 (d)), dada uma quantidade semelhante de regiões

comparando-se versões mais amplas apenas suavizadas. Entretanto, existe uma degradação de

bordas oriunda da redução da imagem e da perda de seus detalhes. Tal degradação foi superada

combinando-se a watershed de imagens em seu tamanho original com suas versões borradas ou

reduzidas e adaptando-se o algoritmo SLIC para fornecer um ajuste fino das bordas das regiões

(Figura 4.9).

A Figura 4.9 esquematiza o funcionamento do agrupamento proposto, (a) em que as regiões

formadas pela aplicação de watershed em uma imagem no seu tamanho original são (b) reagrupa-

das conforme as regiões definidas pela watershed em uma imagem mais borrada ou reduzida, (h)

formando agrupamentos que aproveita a redução e homogeneidade de regiões de (b) e os detalhes

oferecidos pela watershed aplicada à imagem original em (a).

Primeiramente, determina-se quais sub-regiões de (a) têm seu centro médio ~r = (x, y), de-

terminado pela equação (4.6), concatenados por qual região da imagem (b) após um processo de

erosão (c). Nessa etapa espera-se classificar rapidamente um grande número de elementos, defi-

nido se esses pertencem a uma região e a qual região somente pela sua posição espacial. Esses

elementos espacialmente classificados são chamados concatenados, Vc (Figura 4.9(d)).

Os elementos não concatenados Vnc (Figura 4.9(e)) são aqueles cujos centroides das regiões

formadas por eles, se posiciona nas fronteiras, nas linhas na cor preta da imagem em (c). Por re-

tratarem as bordas das regiões finais, essas sub-regiões do conjunto Vcn passam por um processo

de agrupamento mais sofisticado, o SLIC (Capítulo 3), para definir a qual região pertencem. A

imagem de referência para a formação de novas regiões (c) pode ser uma imagem no mesmo

tamanho da original, mas com um maior borramento, ou uma versão reduzida e borrada da ima-

gem original. Claramente, ao se comparar as posições das regiões da imagem original com as

regiões de uma versão reduzida, há a necessidade de um escalonamento nas posições ~r = (x, y)

da magnitude do fator de redução f.
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Criação da imagem final 
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regiões de (a) em relação às 
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Figura 4.9: Diagrama ilustrativo para o processo de agrupamento por escalas: (a) uma imagem em seu tamanho
original tem watershed aplicada a ela, para um σ1 e T definidos; (b) deseja-se para um mesmo limiar T , redistribuir
as regiões de (a) pelas regiões em menor número de uma imagem mais borrada σ2 > σ1 ou reduzida por um fator
f > 1, uma referência para a criação novos agrupamentos; (c) um processo de erosão na imagem em (b) amplia
as fronteiras (linhas na cor preta) e diminui o alcance das regiões, nas quais os elementos de (a) que tiverem seus
centroides~r = (x, y) ali posicionados; (d) são rotulados como elementos concatenados Vnc, com uma região definida
pela sua localização espacial, dentro ou fora da região; (e) os elementos não concatenados, Vnc são aquelas regiões
de (a) que têm seus centros posicionados nas fronteiras definias em (c), as bordas na cor preta, região de dúvidas;
(f) os elementos Vnc são agrupados por meio do algoritmo SLIC, uma restrição espacial para as regiões em análise
para cada agrupamento k é definida por uma vizinhança Delaunay em torno da região k em (b); (g) a quantidade
de elementos envolvidos no processo de agrupamentos via SLIC cai consideravelmente para a cada iteração em um
agrupamento k, o centroide inicial Co

k é definido pelos elementos concatenados Vnc, esse centroide atualiza seus
valores de posição ~rnk , cor~I

n

k e área An
k a cada iteração n; (h) o agrupamento das regiões de (a) em relação às de (b)

produz as regiões desejadas.
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4.2.3.1 Considerações para o SLIC em regiões

Quando se aplica o SLIC em superpixels/região, algumas considerações se fazem necessárias,

uma vez que os elementos possuem tamanhos distintos, diferentemente do caso via pixels. A

divergência no tamanho de regiões interfere na distância Di,k de um elemento i a um centroide k,

para a equação (3.5) descrita no Capítulo 3 e utilizada na proposta original [15].

Neste trabalho, optou-se por eliminar o termo m, determinando a distância de uma região i a

um centroide k como:

Di,k = dci,k
dsi,k

Rk +Ri

. (4.13)

Obtém-se uma expressão na qual a distância entre cores fica ponderada pela distância espacial

normalizada pela soma entre os raios equivalentes do centroide k, Rk =
√

Ak
π

, e da região i,

Ri =
√

Ai
π

. Elimina-se uma variável de entrada, produzindo-se resultados satisfatórios.

A normalização pela soma dos dois raios equivalentes coloca a distância espacial dsi,k em

termos das dimensões do centroide e da região. Considera-se um contato entre um centroide k

e uma região i, quando esta dista do centroide em magnitude menor ou igual a Ri + Rk, nessas

condições a distância Di,k é fortemente dependente da distância entre cores dci,k e, para efeitos

de competição, se torna independente da dimensão das regiões e dos centroides.

A normalização pelos raios equivalentes assemelha-se àquela globalmente feita pelo termo S

(equação (3.5)), que é o tamanho da aresta do quadrado que fornece a área esperada do superpixel

na ref. [15], sendo que a competição entre centroides se estende a uma área quadrada 2S × 2S.

Para o método proposto, a área de atuação Sk de um centroide Ck (Figura 4.9(f)) é determinado

pela vizinhança Delaunay [43] da região k de origem (Figura 4.9(b)) do agrupamento, todas os

elementos não concatenados Vnc que têm seu centro dentro desta área, ficam em disputa pelo

centroide k e por outros centroides que por ventura se sobreponham a essa área.

Outra consideração se refere a média dos centroides, que deve contabilizar a contribuição de

cada elemento i ∈ Ck, ou seja, sua áreaAi. A área de um centroide é a soma das áreas das regiões

que o compõe:

Ak =
∑
i∈Ck

Ai. (4.14)

Para a posição ~rk de um centroide k, por exemplo, é dado por:

~rk =
1

Ak

∑
i∈Ck

Ai~ri, (4.15)

que é a média ponderada entre as posições das regiões. Para o vetor de cores ~Ik recorre-se no-

vamente ao sistema RGB para o cálculo da norma quadrática média em cada componente de
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cor:

Ik =

√
1

Ak

∑
i∈Ck

AiI(xi, yi)2. (4.16)

Os valores de posição, cor e área para os centroides são atualizados a cada iteração. O crité-

rio de parada de 4 iterações se mostrou suficiente para um bom reagrupamento das regiões não

concatenadas Vnc.

4.2.4 Espaço de escalas

Os agrupamentos formados pela watershed de uma imagem em escalas distintas, ajustados

pelo algoritmo SLIC, permitem a criação de um espaço de escalas semelhante ao adotado na ref.

[10] (Figura 4.10). O agrupamento por escalas proposto é definido por duas imagens, uma que

serve como referência para os novos agrupamentos (Figura 4.9(b)) de elementos oriundos de uma

versão mais detalhada da imagem (Figura 4.9(a)).

No espaço de escalas proposto, a imagem de regiões detalhada é uma watershed aplicada à

imagem em seu tamanho original, que recebe um borramento de acordo com a oitava do agru-

pamento. Por exemplo, a primeira imagem de regiões da primeira oitava não recebe suavização,

suas regiões são distribuídas por uma imagem de referência que é suavizada (equação 4.10) por

uma gaussiana de desvio padrão σ > 0. Um exemplo de agrupamento por escala resultante desta

primeira oitava é exibido na primeira linha da Figura 4.10.

A transição de uma oitava para outra é determinada quando cria-se uma referência a partir

da imagem original redimensionada por um fator de redução f =
√

2, ou seja, as dimensões da

imagem ficam menores por uma razão
√

2 e sua área cai pela metade. Uma oitava n tem como

imagem de referência watersheds aplicadas à imagem original reduzida por um fator:

f(n) = (
√

2)(n−1). (4.17)

A imagem de referência da Figura 4.9(b) tem metade das dimensões da imagem original, ou seja,

define uma terceira oitava, f(3) =
√

2
(3−1)

= 2.

Para uma primeira oitava adota-se σ = 0 (sem borramento), para uma oitava n > 1 o desvio

padrão da suavização é dado por σ =
√
2
2

f(n) (equação 4.11). O limiar T para todas as situações,

referência ou imagem destinada a novos agrupamentos, é o mesmo. O espaço de escalas ilustrado

na Figura 4.10 tem limiar T definido como 8 para todas as watersheds aplicadas no processo de

agrupamentos por escalas. Observa-se uma diminuição gradual no número de elementos com o

crescimento da escala e oitava.
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Figura 4.10: Ilustração para o espaço de escalas definido pelo método de agrupamento por escalas proposto, o
crescimento da escala implica em um aumento dos agrupamentos. Uma nova oitava é determinada pela redução da
imagem original para aplicação da watershed e criação de uma imagem de regiões, essa imagem reduzida é tomada
como referência para a formação de agrupamentos via SLIC.

Diferentemente da proposta original [10] que visa a determinação de pontos-chave dentro de

um espaço de escalas, isto é, pontos especiais que se preservem diante de transformações na

escala, o espaço de escalas para o algoritmo proposto visa orientar a criação de regiões, em nível

de detalhamento e número de elementos. Na adaptação proposta, não é utilizado todo o espectro

de imagens da escala para a criação dos descritores em seus pontos-chave, escolhida uma imagem

no espaço de escalas, que satisfaça o usuário em número de regiões e grau de representatividade

do objeto de interesse, descritores são calculados para todas as regiões dessa imagem.
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4.3 DESCRITOR LOCAL PROPOSTO

Para adaptação do algoritmo SIFT para uma representação por superpixels, foi necessário de-

finir procedimentos que garantissem as mesmas proposições do algoritmo original. A invariância

às mudanças de escala, intensidade e rotação devem ser preservadas pela nova expressão proposta

para o cálculo de gradientes, bem como pela região na qual o descritor é construído.

4.3.1 Cálculo do gradiente em regiões

O vetor gradiente indica a direção e magnitude do crescimento em um ponto de uma função

de mais de uma variável. No caso de uma imagem digital, retrata a variação entre os valores dos

pixels vizinhos a esse ponto de análise. Para a proposta original [10], o gradiente é aproximado

pela equação (2.10), em que são analisadas as diferenças de intensidade entre os vizinhos 4-

conectividade de um pixel. A diferença entre os valores dos pixels imediatamente acima e abaixo

do pixel em análise determina a componente vertical desse gradiente, e a diferença horizontal

determina a componente nessa direção.

As etapas adotadas para obter expressão para o gradiente neste trabalho são detalhadas na

sequência com base na equação da proposta original (equação (2.10)), em que V 4
i é a vizinhança

4-conectividade do pixel i, cuja intensidade não é levada em consideração para cálculos. Em

geral, para os grafos de regiões as vizinhanças não são bem definidas, fazendo necessária a escolha

de um outro tipo de vizinhança para análise. O gradiente obtido pela equação (2.10) é bastante

sensível a ruído, que é superado pela construção de histogramas [10].

No caso do algoritmo SIFT, os pontos-chave são selecionados e a direção e magnitude asso-

ciados a eles é determinada pela seleção de orientações de predileção, obtidos em histogramas

de orientação de uma região ao redor do ponto. Para o descritor proposto, todos os as regiões

formadas, são tratadas como pontos-chave. Optou-se que direção e magnitude associadas a uma

região deveriam sair diretamente da expressão proposta.

Uma possibilidade para o cálculo do vetor gradiente ~mi para um vértice i de um grafo seria:

~mi =
∑
j∈V

Lj − Li
||~rj −~ri||

~ui,j, (4.18)

em que se considera a soma vetorial de todas as diferenças de intensidade Lj − Li entre os

elementos j pertencentes ao grafo V , com o vértice i. A magnitude de cada contribuição na soma

é ponderada pela distância ||~rj−~ri|| entre o elemento i e o j, e a direção é dada pelo vetor unitário

que conecta os dois vértices, definido como:

~ui,j =
~rj −~ri
||~rj −~ri||

. (4.19)
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A equação 4.18 é menos sensível a ruídos, por levar em consideração todos os elementos

pertencentes ao grafo, ponderados por sua distância até o ponto de análise. A equação leva em

consideração a intensidade Li do ponto i de análise, entretanto não considera como as vizinhanças

desses elementos se interagem e nem a possibilidade da distância ||~rj − ~ri|| retornar um valor

próximo a zero.

Para expressão adotada neste trabalho, adiciona-se na equação (4.18) uma normalização na

distância entre os elementos e um deslocamento unitário. Sendo L o canal luminância da respec-

tiva região:

~mi =
∑
j∈V

Lj − Li
||~rj−~ri||
(Ri+Rj)

+ 1
~ui,j. (4.20)

Ao se normalizar a distância entre os elementos,~ri e~rj , pela soma de raios equivalentes, Ri+Rj ,

obtém-se uma expressão que tenta aproximar a interação entre duas regiões, pela proximidade dos

círculos que as representam, tendo dimensões fornecidas pelos seus respectivos raios equivalentes

(Figura 4.11).

Como foi salientado, a simplificação de uma imagem em superpixels carrega consigo uma

simplificação nas relações de fronteira entre as regiões. Cada região i passa a ser representada

por três propriedades: uma posição ~ri = (xi, yi), uma cor ~Ii = (Li, ai, bi) (CIELAB) e uma área

Ai.

Ao se normalizar a distância entre elementos (equação (4.20)), busca-se colocar a distância

entre duas regiões em termos de seus raios equivalentes. Uma unidade dessa distância norma-

lizada representa um tangenciamento dos círculos que representam as regiões (Figura 4.11(a)).

Valores menores que 1 para essa distância, indicam que fronteiras as regiões são muito próximas

(Figura 4.11(b)) e uma distância normalizada maior do que 1 indica que as fronteiras das regiões

se toquem em poucos pontos ou até estejam desconectadas (Figura 4.11(c)).

Para valores menores do que 1 para a distância normalizada (Figura 4.11(b)), ainda há a pos-

sibilidade de uma situação extrema em que ||~rj − ~ri|| ≈ 0. Essa proximidade entre alguns dos

centroides das regiões é fruto das suas conformações geométricas. Nessa situação limite, a ex-

pressão (2.10) retorna valores muito altos, podendo diminuir a força do descritor, visto que esta

singularidade pode ser oriunda de uma instabilidade na formação das regiões. Na equação (4.20),

evita-se essa situação ao se somar uma unidade no denominador da equação (2.10).

A normalização efetuada também visa preservar a invariância às mudanças de escala na ima-

gem, ou possíveis distanciamentos ou aproximações de objetos dentro de uma cena. Regiões de

maior área têm magnitude de gradiente maior que regiões de menor área, dada sua área de atua-

ção, e acabam servindo como pontos de referência na construção dos descritores próximos a ele.

56



ir


jr


iR

jR

(a) ||~rj−~ri||
(Ri+Rj)

= 1

ir


jr
iR

jR

(b) ||~rj−~ri||
(Ri+Rj)

< 1

ir


jr


iR

jR

(c) ||~rj−~ri||
(Ri+Rj)

> 1

Figura 4.11: Normalização pela soma dos raios equivalentes Ri e Ri da distância ||~rj −~ri|| entre dois elementos i e
j: (a) uma unidade dessa distância normalizada equivale a um tangenciamento entre os círculos que representam as
regiões, círculos com dimensões determinadas pelos raios equivalentesRi eRj ; (b) valores menores do que 1 indicam
uma proximidade e interação entre as fronteiras da região; (c) valores maiores do que 1 indicam um distanciamento
entre as fronteiras das regiões.

Além do canal de luminância L (Figura 4.12(b)), o gradiente é calculado para os outros

dois canais de cores no sistema CIELAB, medindo o distanciamento do verde ao vermelho (Fi-

gura 4.12(c)) e do azul ao amarelo (Figura 4.12(c)). Na Figura 4.12, temos uma imagem dividida

em regiões (a) que são representadas por círculos em seus três canais, luminância (a), verde/-

vermelho (b), azul/amarelo(c). A simplificação em círculos, com dimensões determinadas pelas

áreas das regiões e posicionados nos centroides das mesmas, exemplifica a adoção de uma distân-

cia normalizada (equação (4.20)).
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Para o canal de luminância (Figura 4.12(b)), por exemplo, as regiões que fazem fronteira com

o setor esquerdo da estátua, são mais escura que ela, os vetores de gradiente indicam isso com

sua orientação nessa direção. Se fosse adotada uma distância não normalizada (equação 4.18),

a magnitude da interação entre essas regiões descritas seria menor, dada a dimensão da região

referente a parte esquerda da cabeça da estátua e a distância entre os elementos.

A utilização dos canais de cores que representam a oposição de cores verde/vermelho (Fi-

gura 4.12(c)), azul/amarelo (Figura 4.12(d)), é um diferencial em relação ao SIFT que utiliza

apenas os mapas de magnitude das imagens. Assim como o SIFT, esse diferencial é baseado nos

campos receptivos presentes no sistema visual humano (Capítulos 2).

(c) (d)

(b)(a)

Figura 4.12: Representação em vetores para oo gradiente de regiões: (a) a imagem original é dividida em regiões
conforme as técnicas de agrupamento definidas neste Capítulo, a simplificação dessas regiões por círculos; (b) podem
representar o gradiente para canal de luminância; (c) de oposição das cores verde/vermelho e; (d) de oposição das
cores azul/amarelo.
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Aplicando transformações geométricas de mudança de escala (Figura 4.13 (b)), orientação

(Figura 4.13 (c)), e de iluminação (Figura 4.13 (d)), percebe-se a manutenção das orientações da

maior parte dos vetores gradiente em relação a imagem em seus aspectos originais (Figura 4.13

(a)), principalmente as orientações relacionadas a regiões de grandes áreas. Isso indica robustez

do método de cálculo de gradiente proposto, que dentro de mudanças em escala, intensidade e

orientação das imagens, preserva as características nos vetores de gradiente.

(a) (b) (c) (d)

Figura 4.13: Comparativo para o gradiente proposto diante de transformações geométricas e em iluminação, a ima-
gem no topo é aquela fornece as regiões para definição dos gradientes abaixo de cada imagem os gradientes dos três
canais de cores no sistema CIELAB, todas regiões definidas uma mesma oitava n, escala σ e limiar T : (a) imagem
original; (b) antes do agrupamento em regiões, a imagem original com uma redução pela metade em suas dimensões,
exibida no mesmo aspeto original para facilitar a visualização; (c) imagem em (a) é rotacionada em 60o no sentido
anti-horário; (d) imagem em (a) recebe uma redução atenuação seu mapa de magnitude, de forma que essa cai para
metade do valor.
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4.3.2 Região de definição do descritor

Para dar uma orientação ao ponto-chave, no SIFT é necessário buscar uma orientação e uma

magnitude vencedora dentro de um histograma de orientações bem detalhado do mapa de gradi-

entes, em uma região em torno dos pontos-chave. Diferentemente do algoritmo SIFT [10], todos

os vértices da imagem analisada são considerados pontos-chave, com orientação e magnitude

determinadas pelo próprio vetor de gradiente ~mi. No SIFT, além daqueles para determinar as

orientações dos pontos-chave, histogramas são calculados ao longo de regiões/setores ao redor do

ponto-chave, cujas componentes são combinadas para formar o descritor do ponto-chave.

Os histogramas que compõem o descritor na SIFT englobam a contagem de vetores em 8

direções distintas. Neste trabalho, foram adotadas 4 orientações para os histogramas, θ1 a θ4
(Figura 4.14(a)). A orientação ou não de um vetor de gradiente ~mi em relação a θk é dada pela

função:

Θ( ~mj, θk) =

{
1, se ~mj está orientado na direção de θk
0, caso contrário

(4.21)

A função Θ( ~mj, θk) retorna o valor 1, quando a orientação mais próxima do vetor de gradiente

~mi é θk e 0 caso contrário.

R

2R

(b)

B1

(a)

B2

B3

B4

B5

B6B8

B7

θ1

θ2

θ3

θ4

Figura 4.14: Determinação das orientações e das regiões para os cálculo dos histogramas de orientações: (a) 4
orientações, θ1 a θ4, para as quais serão criados histogramas em (b) cada setor de uma grade polar dividida em dois
raios e quatro quadrantes, totalizando 8 setores, B1 a B8. O raio da grade polar é determinado é proporcional a R,
definido pelas dimensões da região para qual se calcula o descritor.

O cálculo dos histogramas que compõem o descritor é feito por setores dentro de regiões ao

redor do ponto-chave, entretanto, em vez da distribuição dos setores em uma região retangular

[10], foi definida uma distribuição de setores por uma grade polar (Figura 4.14(b)).
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A grade polar de análise é dividida em 4 quadrantes e dois raios, R e 2R (Figura 4.14(b)),

contabilizando 4× 2 = 8 setores Bl, l = {1, 2, ..., 8}. O raio equivalente Ri do superpixel i, para

qual se está calculando o descritor, determina o raio da grade, definiu-se R = 10Ri uma vez que

tal proporção apresentou os melhores resultados em testes.

Antes de contabilizar os histogramas, deve-se alinhar o contador (Figura 4.15(a)) e a grade

polar (Figura 4.15 (b)) em relação ao vetor de gradiente ~mi, do superpixel i para o qual está

sendo computado o descritor. A definição da direção dos vetores de gradiente (Figura 4.15 (a))

é feita ao se alinhar a direção θ1 com ~mi (Figura 4.15 (b)). A grade polar é posicionada com o

centro convergente ao centro do superpixel i e alinhada com o vetor ~mi (Figura 4.15 (c)).

(a) (b)

(c)

Figura 4.15: Processo de criação do descritor: (a) mapa de gradientes do canal de luminância (Figura 4.12) com um
vetor de gradiente (cor azul) em destaque; (b) os vizinhos a esse vetor têm nele uma direção de referência, θ1; (c)
bem como a grade polar na qual são construídos histogramas de orientação por setor.
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Cada componente do histograma, de cada um dos 8 setores, computa a quantidade de vetores

orientados em uma das quatro possibilidades θ1, θ2, θ3 e θ4. Uma vez definido como pertencente

a uma certa orientação, a contribuição de um vetor ~rj , da região j dentro da grade polar de

construção do descritor da região i, é ponderada pela magnitude do gradiente e por uma Gaussiana

circular simétrica em torno da posição ~ri de i:

ci(θk, Bl) =
∑
i∈Bl

Θ( ~mj, θk)|| ~mj||e−
(
||~rj−~ri||

2R

)2
. (4.22)

A orientação do setor de acordo com a orientação do vetor do elemento de referência, visa dar ao

descritor invariância à rotação ou mudanças de orientação de objetos e cenas.

A ilustração da Figura 4.16 mostra os histogramas das 4 orientações (a) para cada um dos 8

setores, suas componentes são dispostos em um vetor (b) de tamanho 8 × 4 = 32 componentes.

Esse descritor da região i para um canal de cores pode ser escrito como:

~Di = [ci(θ1, B1), ci(θ2, B1), ..., ci(θ3, B8), ci(θ4, b8)], (4.23)

(a) (b)

Figura 4.16: Representação do descritor em um vetor: (a) 8 histogramas posicionados em seus respectivos setores
que contabilizam para 4 orientações, os vetores de gradiente, as componentes desses histogramas, representados
pelas setas em cada setor; (b) são dispostos em um vetor que ao ser normalizado, representa o descritor ~D de um
canal de cor para uma região.

O descritor final utilizado neste trabalho é formado por uma composição dos três descritores,

com um tamanho 3 × 32 = 96, referentes aos seus respectivos canais de cor. Antes de serem

dispostos em um único vetor, esses histogramas são individualmente normalizados, e quando

dispostos em um único vetor, esse vetor também é normalizado. Esse vetor de norma unitária tem

contribuição peso de 1/3 para cada canal de cor. Esse procedimento de normalização objetiva

fornecer ao descritor invariância quanto a mudanças na iluminação da imagem.
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4.4 DETERMINAÇÃO DE REGIÕES CORRESPONDENTES

Para determinação de regiões correspondentes entre duas imagens com o descritor proposto,

optou-se por utilizar o produto interno em vez de uma distância euclidiana, pela facilidade de

implementação ao se confrontar conjuntos de descritores de duas imagens por uma multiplicação

de matrizes e pelos valores nulos para os confrontos entre descritores ortogonais. Esse produto

interno revela correspondências de forma que:

jw(i) = argmax
j

~Di · ~Dj, (4.24)

sendo que i a região de uma imagem V1, e jw(i) a região de maior produto interno com i dentro

dos elementos de uma segunda imagem V2. jw(i) só é considerado uma correspondência, se a

partir da relação inversa:

iw(j) = argmax
i

~Dj · ~Di, (4.25)

[jw, iw] formam um par recíproco.

A Figura 4.17 ilustra os pares [1, 4] e [3, 7] como pares de correspondências. O produto interno

de i = 1 da imagem V1 tem maior produto interno na imagem V2 com a região 5 e a relação inversa

é respeitada.

2

1

3

5

6

4

7

V1
V2

Figura 4.17: Ilustração para a determinação de regiões correspondentes entre duas imagens que tem regiões con-
frontadas com a aplicação do descritor proposto. [1, 4] e [3, 7] configuram pares de correspondência, pois formam
um par recíproco na determinação do produto interno máximo no confronto de elementos da imagem V1 com a V2 e
vice-versa.

As Figuras 4.18, 4.19, 4.20 e 4.21 exibem o confronto de regiões de imagens tratadas como

referência (a) e suas versões em transformações geométricas de escala (b), orientação (c) e mu-

danças na iluminação (d). Percebe-se uma boa convergência entre as regiões da imagem original

(a) para com seus respectivos pares de vistas sob transformações. No próximo Capítulo é defi-

nido um método de cálculo de fluxo óptico que refina esse confronto de regiões com a inclusão

de informações de posição e cor das regiões.
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(a) T=8; n=4; σ= 2 (b) redimensionamento ×½  

(d) magnitude reduzida em 2×(c) rotação de 60º

Figura 4.18: Confronto entre duas imagens da cena Statue uma em seu aspecto original e a outra submetida a três tipos de transformação: (a) uma vista em seus aspectos
originais com regiões criadas pelo método de agrupamento proposto com parâmetros T , n e σ que são mantidos para as imagens confrontadas, todas as regiões recebem
uma cor que se mantém para as regiões correspondentes nas imagens confrontadas; (b) a segunda vista tem dimensões reduzidas pela metade, exibida no tamanho original
para melhor visualização; (c) aplicada uma rotação de 60o e; (d) uma atenuação no seu mapa de magnitude na ordem de 2×.
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(a)  T=4; n=3; σ= 2

(c) rotação de 60º

(b) redimensionamento ×½  

(d) magnitude reduzida em 2×

Figura 4.19: Confronto entre duas imagens da cena Teddy uma em seu aspecto original e a outra submetida a três tipos de transformação: (a) uma vista em seus aspectos
originais com regiões criadas pelo método de agrupamento proposto com parâmetros T , n e σ que são mantidos para as imagens confrontadas, todas as regiões recebem
uma cor que se mantém para as regiões correspondentes nas imagens confrontadas; (b) a segunda vista tem dimensões reduzidas pela metade, exibida no tamanho original
para melhor visualização; (c) aplicada uma rotação de 60o e; (d) uma atenuação no seu mapa de magnitude na ordem de 2×.
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(a)  T=8; n=4; σ= 2

(c) rotação de 60º (d) magnitude reduzida em 2×

(b) redimensionamento ×½  

Figura 4.20: Confronto entre duas imagens da cena Cones uma em seu aspecto original e a outra submetida a três tipos de transformação: (a) uma vista em seus aspectos
originais com regiões criadas pelo método de agrupamento proposto com parâmetros T , n e σ que são mantidos para as imagens confrontadas, todas as regiões recebem
uma cor que se mantém para as regiões correspondentes nas imagens confrontadas; (b) a segunda vista tem dimensões reduzidas pela metade, exibida no tamanho original
para melhor visualização; (c) aplicada uma rotação de 60o e; (d) uma atenuação no seu mapa de magnitude na ordem de 2×.
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(b) redimensionamento ×½  (a) T=8; n=4; σ= 2

(c) rotação de 60º (d) magnitude reduzida em 2×

Figura 4.21: Confronto entre duas imagens da cena Venus uma em seu aspecto original e a outra submetida a três tipos de transformação: (a) uma vista em seus aspectos
originais com regiões criadas pelo método de agrupamento proposto com parâmetros T , n e σ que são mantidos para as imagens confrontadas, todas as regiões recebem
uma cor que se mantém para as regiões correspondentes nas imagens confrontadas; (b) a segunda vista tem dimensões reduzidas pela metade, exibida no tamanho original
para melhor visualização; (c) aplicada uma rotação de 60o e; (d) uma atenuação no seu mapa de magnitude na ordem de 2×.
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4.4.1 Ajuste fino de correspondências e estimativa de movimento

Foi desenvolvido um método que, a partir do descritor proposto, estima o movimento das

regiões entre quadros, visando o aumento da exatidão nas convergências determinadas. A téc-

nica utilizada se aproveita da capacidade do descritor em relacionar regiões em diferentes graus

de transformação geométrica, ajustando e refinando os deslocamentos das regiões em um pro-

cesso iterativo. O método iterativo proposto está ilustrado na Figura 4.22, na qual estima-se os

deslocamentos das regiões de um quadro de referência (a) em relação ao seu subsequente (b).

Processo iterativo de cálculo do vetor de movimento 

e determinação de regiões convergentes

(d) (e)

(g)(c) (f)

(a)

(b)

Criação de 

regiões

Criação de regiões 

e extração de 

propriedades

Extração de 

propriedades

kF],,,:[ 1 DLr


AVq

],,,:[ DLr


AVq

Determinação dos 

vetores de movimento 

parciais

k'f


Espalhamento

Para todos os vetores

f


1kf
 Sim

Parar processo 

iterativo

  |||| 1kk ff


kf


Realizar nova 

iteração e um 

incremento em k

Não

Figura 4.22: Diagrama ilustrando o processo de estimativa de movimento entre regiões: (a) uma imagem/quadro
é tomada como referência, Vq; (b) o método proposto estima para um quadro subsequente, Vq+1 (ilustrado como
uma rotação do par estéreo da imagem de referência), o movimento em relação ao quadro de referência; (c) Vq+1

é representada por regiões e parâmetros são extraídos delas, posições, áreas, cores e descritores, o mesmo é feito
para Vq; (d) o processo iterativo calcula e atualiza as correspondências e o vetor de movimento parcial das regiões
do quadro subsequente; (e) a informação dos vetores de fluxo definidos pelas correspondências é espalhada para as
vizinhas a partir de uma filtragem; (f) após cerca de 15 interações, as correspondências e; (g) os vetores permanecem
estáveis.
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Uma vez determinado o descritor ~Di, do elemento i pertencente ao quadro Vq, e o descritor
~Dj , do elemento i pertencente ao quadro subsequente Vq+1, um vetor de ajuste, ou vetor de

movimento ~fj , é calculado para corrigir a posição ~rj da região/elemento j em relação ao vetor

posição ~ri do elemento i. O vetor de fluxo ~fj é obtido por um processo iterativo.

Calcula-se inicialmente uma força de conexão F k entre os elementos para determinação das

correspondências, que são atualizadas a cada iteração. O produto interno que define essa força

de conexão entre os descritores, é então ponderado pela multiplicação de duas gaussianas, uma

referente à distância entre as componentes de cor, ~Lj e ~Lj , e outra referente à distância espacial

entre os elementos, ~ri e ~rj , ajustada pelo vetor de movimento ~fkj na iteração k:

F k
i,j = ~Di · ~Dje

−
(
||~Li−~Lj ||

T

)2
e
−
(

(k−~Di·~Dj)||~ri−(~rj+
~fkj )||

Ri

)2
. (4.26)

A cada iteração, há na equação (4.26) um incremento de uma unidade em k, que é inicializado

como 1. Nesta inicialização, k = 1, temos a seguinte aproximação para F 1
i,j:

F 1
i,j ≈ ~Di · ~Dje

−
(
||~Li−~Lj ||

T

)2
, (4.27)

uma vez que os valores do produto interno de regiões semelhantes ~Di · ~Dj estão próximos de 1,

quando subtrai-se k = 1 por esse produto interno, o expoente da gaussiana referente a posição

se aproxima de zero na equação (4.26), ou seja, na inicialização as correspondências não são

influenciadas pela posição dos elementos, somente pela sua proximidade entre cores e descritores.

Para todo j ∈ Vq+1 ,~f
0
j é inicializado com valor 0.

Em uma primeira iteração, por exemplo, para imagem ou quadro de referência e as regiões

que a definem (Figura 4.22(a) e (b), respectivamente) determina-se para o quadro subsequente

(Figura 4.22(c)) correspondências parciais (Figura 4.22(e)). Essas correspondências parciais são

determinadas como descrito para as equações (4.24) e (4.25), encontra-se um par vencedor [i, j] ∈
Vwp determinado para a função F , que representa o produto interno de descritores ponderado.

Encontradas as correspondências parciais para os vencedores (Figura 4.22(c)) atualiza-se um

vetor de movimento parcial ~fkj para um elemento jw em relação ao seu par i como:

~f ′kj =

{
~ri −~rj, se [i, j] ∈ Vwp
~fk−1j , caso contrário

, (4.28)

se [i, j] não representam um par vencedor, ~f ′kj toma o valor do vetor na iteração anterior ~fk−1j .

Na primeira iteração (Figura 4.22(c)) há uma atualização do vetor de fluxo apenas para as cor-

respondências, enquanto os elementos sem correspondências continuam com o argumento nulo.

A informação referente aos vencedores é difundida para os elementos próximos (Figura 4.22(f))
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e, por consequência, para elementos sem par de correspondência, calculando-se a média entre

todos os pontos dentro de uma vizinhança:

~fkj =

( ∑
∀u∈V jdel

~f ′ku Au

)
/

( ∑
∀u∈V jdel

Au

)
. (4.29)

A equação (4.29) opera de maneira semelhante a um filtro média móvel no domínio de uma

imagem de pixels. Obtém-se uma média dos elementos em uma vizinhança, no caso da repre-

sentação por regiões, utilizou-se a vizinhança V j
del, que são os elementos conectados à j por uma

triangulação Delaunay [43], incluindo o próprio j. Multiplicando-se cada vetor ~f ′ku por sua res-

pectiva áreaAu, cria-se uma soma ponderada que é média de vetores dentro da vizinhança; quanto

maior a área da região, maior sua contribuição .

O crescimento de k a cada iteração (equação 4.26) restringe espacialmente as possibilidades

de casamento. A gaussiana referente à distância espacial entre os elementos i e j, tendo j sua

posição ajustada por ~fkj , determina essa restrição quando assume valores muito próximo de zero

para elementos mais afastados de i.

A mudança nas correspondências passa a ser irrelevante a cada iteração, bem como a mudança

no vetor de movimento antes (Figura 4.22(g)) e depois da filtragem (Figura 4.22(h)). O processo é

encerrado quando de uma iteração para a outra, o máximo módulo do deslocamento dentre todos

os elementos j ∈ Vq+1 é menor que ε:

||~fk−1j −~fkj ||
∀j∈Vq+1

< ε, (4.30)

Um valor ε unitário representa um deslocamento inferior a um pixel. Este valor foi adotado

por se mostrar um bom critério de parada. Valores menores do que 1 para o ε se mostraram

inatingíveis em algumas situações, e valores maiores implicam em incoerências espaciais, ou

seja, correspondências erroneamente definidas. Os vetores final ~f têm valores iguais a ~fk na

última iteração.

4.4.1.1 Restrições

Visando maior exatidão no casamento de correspondências e, por consequência, no vetor de

movimento determinado, duas restrições para o casamento de regiões foram empregadas. Tais

restrições têm contribuição para a diminuição no tempo de execução do algoritmo, uma vez au-

mentado o grau de exatidão para as primeiras iterações.

Foi determinada uma restrição quanto à distância entre a posição dos i e j, ~ri e ~rj , em relação

a suas dimensões, Ri e Rj . F na equação (4.26) assume valores nulos caso a seguinte condição
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seja respeitada:

||~ri − (~rj +~fkj )|| − ρ(Ri +Rj) > 0. (4.31)

A restrição em (4.31) visa eliminar casamentos de regiões que tenham suas fronteiras muito dis-

tantes umas das outras. Estima-se a distância entre as fronteiras subtraindo-se o vetor posição

entre do centro das regiões, ~ri e ~rj corrigido pelo vetor de fluxo ~fkj na iteração k, pela soma dos

raios equivalentes, Ri e Rj (Figura 4.23), multiplicada por um fator ρ. Adotou-se o valor ρ = 4,

por exibir uma boa captura de movimentos relevantes dos objetos, e, ao mesmo tempo, excluir

falsos positivos que possam influenciar no cessar de iterações do processo.

ir


jj fr



qVi

1 qVj

iR

jR

Figura 4.23: Ilustração para a restrição espacial para casamento de regiões, determinada pela equação 4.31. Apesar
de estarem representadas em um mesmo plano, as regiões i e j pertencem a dois quadros distintos Vq e Vq+1,
respectivamente. Após a correção da posição de j com um vetor de fluxo~fkj , nota-se que as fronteiras da região não se
interceptam, indicando que regiões não se tratam de correspondências. Uma forma de se aproximar e simplificar essa
relação de fronteiras é aproximando as regiões por circunferências de raio igual ao equivalenteRi eRj , representado
pelas circunferências tracejadas ao redor do centroide das regiões.

Outra restrição aplicada é para a mudança de escala da região, ou seja, um aumento ou dimi-

nuição de área de um quadro para o outro que não se adéqua a um padrão estabelecido, leva a

função F da equação (4.26) a valores nulos, pela condição:

|Ai − Aj|
Ai + Aj

> ν. (4.32)

Quando as áreas Ai e Aj , referentes as regiões i e j, respectivamente, têm uma área muito pró-

xima, o valor do lado esquerdo da inequação (4.32) tente a 0, enquanto para áreas com grande

desproporcionalidade esse valor tende a 1.

Quando, por exemplo, a área Aj assume o dobro do valor de Ai, Aj = 2Aj , ou Ai assume o

dobro do valor deAj , o lado direito da inequação (4.32) assume valor 1/3. Adotou-se um ν = 0, 4

que permite o casamente de regiões que sofram deformações máximas em área de aproximada-

mente 2, 5 vezes. O valor visa contemplar as transformações em escala e a instabilidade gerada

pela segmentação watershed.
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4.4.2 Correspondências e sementes

Para experimentos e testes dos métodos propostos, foi utilizado um algoritmo de segmentação

de simples implementação, o GrowCut [44]. Esse método, apresentado no Capítulo 3, utiliza

sementes para inicialização e rotulação de elementos que são pertencentes a um objeto (OB) ou

ao fundo da imagem (BK). O método foi originalmente desenvolvido para ser aplicado em uma

imagem, em que as sementes s são pixels de inicialização, que dão suporte ao agrupamento de

novos pixels a cada iteração, para a segmentação do objeto de interesse.

Para este trabalho, as sementes têm origem no primeiro quadro da sequência a ser segmen-

tada, ou seja, todos os elementos do primeiro quadro possuem uma rotulação prévia, se pertence

ao conjunto OB ou ao BK. Essa rotulação é determinada pelo groud truth (GT) desse primeiro

quadro. A Figura 4.24 demonstra a propagação das sementes relativas ao objeto (círculos verme-

lhos) e ao fundo (marcações ‘x’em azul), que tem origem no primeiro quadro (esquerda superior).

Como o rastreamento é feito quadro a quadro, essa propagação de sementes e as correspondências

indicadas pela padronização de cores são exibidos em pares de quadros na (Figura 4.24).

Figura 4.24: Casamento de regiões entre quadros, com correspondências atribuídas pelo algoritmo proposto. Os
círculos vermelhos e as marcações em ‘x’azul apontam as regiões referentes às sementes, com origem no primeiro
quadro, que são perpetuados ao longo da sequência pelo casamento de regiões. Nos pares de confronto, 1-2, 2-3
e 3-4, as regiões correspondentes ganham o mesmo padrão de cores. As regiões sem correspondência no quadro
subsequente analisado, como região escurecida referente ombro esquerdo do urso no quadro número 2 inferior,
recebem uma nova rótulo e uma nova coloração/rótulo. O GT de todos os quadros está representado como uma
contorno esbranquiçado em torno do urso.

Uma forma de se observar a propagação e casamento de regiões ao longo de quadros (Fi-

gura 4.25) é a representação dessas regiões distribuídas em forma de volumes ao longo do tempo,

x × y× tempo (Figura 4.26). Ao contrário da Figura 4.24 a regiões da sequência da Figura 4.25

não possuem regiões escurecidas, que é uma forma de ilustrar no confronto regiões sem cor-
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respondências para o quadro subsequente, todas as regiões exibem um padrão de cor. Com um

mesmo padrão de cores para regiões correspondentes (Figura 4.25) é possível ilustrar o casamento

de regiões em um volume espaço×tempo (Figura 4.26).

(b) 

(a)

Figura 4.25: Ilustração do casamento de regiões em duas sequências de 6 quadros, regiões as quais recebem um
mesmo padrão de cores para representar uma correspondência: (a) sequência Traffic e; (b) sequência Rhino.
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Figura 4.26: Representação 3D das regiões que formam as sequências Traffic e Rhino da Figura 4.25(a) e (b), respec-
tivamente. Os volumes exibidos nas imagens (a) e (b), Traffic e Rhino, representam regiões relevantes propagadas ao
longo do tempo.
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4.5 ESCALA MISTA ORIENTADA AO OBJETO

Aproveitando informações referentes ao posicionamento e tamanho do objeto fornecida pelo

primeiro quadro e seu GT, é possível determinar regiões mais robustas e extensas para pontos mais

afastados do objeto. Um processo inspirado na fisiologia do olho humano, que tem uma concen-

tração de receptores na região da fóvea (Figura 4.27(a)), força uma distribuição de elementos de

forma não uniforme, em que para objeto desejado há uma concentração maior de elementos/re-

giões por unidade de área, enquanto para as vizinhanças desse objeto, uma concentração menor

de regiões é definida (Figura 4.27(b)) e regiões mais amplas são formadas.

(b)

(a)

Figura 4.27: Escala mista aplicada a uma imagem (Football) com foco no capacete do jogador: (a) a combinação de
imagens borradas por Gaussianas de diferentes desvios padrão, produz semelhante ao que se tem quando se foca um
objeto com o olhar, no caso, cabeça e capacete de jogador; (b) aplicando em (a) os métodos para criação de regiões
desenvolvidos no Capítulo 4, obtém-se uma alta concertação no objeto de interesse e um maior número de elementos
para representar áreas afastadas do objeto.
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A técnica de escala mista consiste na adaptação de um passo dos métodos apresentados no

Capítulo 4, modificando-se a equação (4.10) para a criação das regiões de forma que:

L(x, y, σ) = H(x, y)
(
I(x, y) ∗G(x, y, σ)

)
+
(
1−H(x, y)

)(
I(x, y) ∗G(x, y, 2σ))

)
, (4.33)

em que H é uma máscara Butterworth tal que:

H(x, y) =
1

1 +
(

(x−xs)2+(y−ys)2
2R

)6 . (4.34)

A equação (4.33) representa a filtragem de I(x, y) por gaussianas de diferentes desvios padrões,

G(x, y, σ) e G(x, y, 2σ), que são combinadas por meio de uma janela Butterworth, H(x, y) (Fi-

gura 4.28(a)), e seu complemento, 1 − H(x, y) (Figura 4.28(b)). A filtragem pela gaussiana de

menor desvio padrão σ é multiplicada pela Butterworth centrada em (xs, ys), ressaltando o objeto,

com detalhes menos desfocados que o fundo, para o qual o borramento é mais intenso e salientado

pelo complemento da Butterworth.

(b)(a) ),( yxH ),(1 yxH

Figura 4.28: Janelas utilizadas para combinação de escalas: (a) Butterwoth relacionada a imagem da Figura 4.27(a),
ponto de máximo e amplitude da janela estão vinculadas à posição do objeto e sua área em imagem, respectivamente;
(b) representação do complemento de (a), ou seja, uma função constante 1 subtraída da Butterwoth.

Na equação (4.33) a posição (xs, ys) é uma estimativa para a localização do centro do objeto.

No casamento de regiões quadro a quadro adotada neste trabalho, apenas o primeiro quadro de

uma sequência tem esta localização exata, determinada pelo GT. Nos demais quadros, estima-se

(xs, ys) pelo centroide formado pelas sementes referentes ao objeto de um quadro. No caso de

movimento, por exemplo, é como se o foco (região mais bem resolvida) estivesse sempre em

atraso quanto à posição do objeto.
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O valor 2 que multiplica o raio equivalente R na equação (4.34), aumenta a abrangência da

área menos borrada, ou mais bem definida, de forma a compensar algum tipo de movimento

ou mudança de dimensão do objeto. Fixou-se R = Rgt ao longo de toda sequência, onde Rgt

representa o raio equivalente da área do objeto para o GT do primeiro quadro.

Foi observado em testes que, para um objeto em movimento, as sementes vão se extinguindo

para ao longo de uma sequência de quadros (Figura 4.29 (a)), devido à falta de correspondências,

consequente das divergências entre as imagens conforme o movimento. O mesmo acontece para

as sementes referentes ao fundo (Figura 4.29 (b)), em maior volume devido à variação de escala.

(b)

(a)
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y x

Figura 4.29: A representação 3D do esquema de regiões em uma imagem de escala mista (Figura 4.27(a)) pode
ser dividida nos conjuntos mais importantes para a segmentação proposta neste trabalho: (a) sementes referentes ao
objeto (OB) propagadas ao longo de um grupo de quadros, verifica-se uma maior concentração de elementos para
este conjunto do que para: (b) conjunto formado por sementes do fundo (BK).
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4.5.1 Deslocamento normalizado do centroide

Não foram definidas métricas específicas para avaliar a coerência espaço-temporal do casa-

mento de regiões ao longo dos quadros. Para avaliar como o movimento do objeto ao longo dos

quadros pode influenciar a sua segmentação, foram construídos gráficos para o deslocamento nor-

malizado do GT do objeto nas cenas estudadas. As componentes do deslocamento normalizado

em termos absolutos do centroide (xc, yc) de objeto, segundo GT, entre dois quadros, q e q+ 1, é

calculado como:

(dxQ, dyQ) =
1

RMGT

|(xcq+1, ycq+1)− (xcq, ycq)| (4.35)

em que RMGT é a média dos raios equivalentes das regiões pertencentes ao GT:

RMGT =
1

NGT

∑
i∈GT

√
Ai
π

(4.36)

O módulo do deslocamento normalizado do objeto de um quadro para o outro é a soma eucli-

diana das componentes do deslocamento.

dQ =
√
dx2Q + dy2Q (4.37)

O objetivo desses deslocamentos normalizados é verificar o quanto em média as fronteiras das

regiões estão afastando, de acordo com o movimento do objeto. Quando se normaliza o desloca-

mento pela média dos raios equivalentes da região do GT do objeto, RMGT , esse deslocamento

fica em termos desse raio médio. Essas curvas de deslocamento, calculados para cada sequência,

são exibidos no Capítulo 6.
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5 MAPAS DE PESOS E SEGMENTAÇÃO DE VÍDEOS VIA
CORTES EM GRAFOS

5.1 INTRODUÇÃO

Neste capítulo serão apresentados os métodos utilizados para proceder a segmentação de ob-

jetos em vídeo via corte de grafos. Para avaliar as contribuições do descritor proposto, serão

detalhados quatro modos de organização e ponderação de grafos, que serão aplicados em dois

modos de segmentação, quadro a quadro e ao longo de um grupo de quados. A primeira forma de

conectar e ponderar vértices de um grafo, representa fornecendo-se peso às ligações a partir da

análise das distâncias entre posições e cores de forma direta (não ajustado – NA), a segunda utiliza

o descritor proposto para realizar uma estimativa de movimento entre quadros (Ajustado – AJ),

a terceira conecta os vértices correspondentes reforçando-se suas ligações com um peso infinto

(Reforçado – RE); e a quarta agrupa as correspondências em vértices equivalentes (Equivalente –

EQ).

5.2 ORGANIZAÇÃO DOS GRAFOS E DETERMINAÇÃO DOS MAPAS DE PESOS

Por intermédio da sobre-segmentação em regiões, obtida pelos métodos propostos no Capí-

tulo 4, e a definição de regiões correspondentes também pelos métodos propostos, um vídeo pode

ser interpretado como grafo, cujas relações entre elementos serão estudadas em favor da análise

da contribuição do descritor local proposto para as regiões.

A partir desse ponto, as regiões são tratadas como vértices de um grafo que se estendem ao

longo do tempo, em que o peso das relações entre esses vértices é determinado por características

dessas regiões, como posição, cor, área e um vetor de movimento, estimado de acordo com o

proposto no Capítulo 4.

Quatro tipos de grafos foram adotados para estudos, separados de acordo com organização

e pesos de conexões entre as regiões entre quadros: (1) sem ajuste de movimento entre regiões

(NA) (Figura 5.1(a)); (2) com ajuste no movimento entre regiões (AJ) (Figura 5.1(b)); (3) re-

giões correspondentes com pesos reforçados (RE) (Figura 5.1(c)); e (4) regiões correspondentes

substituídas por elementos equivalentes (EQ) (Figura 5.1(d)).
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A Figura 5.1 exibe as quatro variantes de organização de grafos, o grafo com elementos sem

ajuste de movimento entre regiões, NA (Figura 5.1(a)), o grafo em que os elementos recebem um

ajuste de movimento, AJ (Figura 5.1(b)), definido pela estimativa de movimento determinada no

Capítulo 4. A ilustração exibe também o grafo no qual reforça-se ligações entre as correspondên-

cias, RE (Figura 5.1(c)), e aquele em se representa as correspondências por um único elemento

equivalente, EQ (Figura 5.1(d)).

1V
2V 3V

4V 1V
2V 3V

4V

1V
2V 3V

4V 1V
2V 3V

4V

(a)

(c)

(b)

(d)

Figura 5.1: Ilustração para os quatro modos de grafos aplicados às sequências de vídeo estudadas: (a) o modo
sem ajuste (NA) relaciona as regiões sem qualquer interferência na posição espacial das mesmas; (b) no modo
ajustado (AJ), corrige-se a posição das regiões de um quadro em relação ao antecessor, por meio da estimativa de
movimento proposta, tal correção é ilustrada pela reorganização da posição dos elementos em cada quadro em relação
a disposição exibida em (a); (c) no grafo com pesos reforçados (RE), define-se uma ligação de peso infinito para as
correspondências determinadas pelo algoritmo proposto, essa representação é feita pelas linhas mais espessas que
ligam elementos de quados distintos; (d) para um grafo equivalente (EQ), as ligações triplas representam aqueles
elementos considerados como um só, definidos pelas correspondências encontradas pelo algoritmo proposto.

Os casos RE e EQ são construídos com base no mapa de pesos do grafo AJ. Uma vez corrigido

o movimento entre regiões e determinada os pesos de ligação dessas regiões, agora tratadas como

vértices de um grafo, o grafo RE é construído ao se criar um ligações de pesos infinito entre

aqueles elementos ditos correspondentes, pesos infinitos representados por linhas mais espessas

na Figura 5.1(c).

No caso do grafo EQ, em vez dos pesos infinitos, trata-se essas regiões correspondentes como

um único vértice, um vértice equivalente. Na Figura 5.1(d), por exemplo, as ligações triplas

conectam regiões tratadas como um único vértice em um grafo equivalente, que é um grafo com

menos elementos do que RE, mas que preserva suas propriedades para uma segmentação via corte

de grafo.

79



A intenção da proposta dessas quatro formas de se organizar grafos é verificar a contribuição

do descritor, uma vez que a ferramenta proposta é utilizada para se estimar o movimento das

regiões entre quadros, podendo-se comparar uma segmentação aplicada a uma relação direta,

sem ajuste (NA), a uma relação na qual as posições entre as regiões de um quadro para outro são

ajustadas (AJ), antes da determinação da força de ligação entre elas.

As outras duas formas de avaliar as contribuições do descritor, envolvem como ele é capaz de

relacionar as regiões entre quadros por meio das correspondências. Utiliza-se o mapa de pesos

do grafo AJ, no qual diferencia-se a força de ligação entre aquelas regiões/vértices determina-

dos como correspondentes (RE), ou simplesmente agrupa-se essas correspondências em vértices

únicos, vértices equivalentes (EQ).

5.2.1 Grafos sem ajuste de movimento entre regiões

O princípio básico da segmentação de imagem/vídeo via grafos é utilizar informações refe-

rentes à cor e a posição das dos elementos que a compõe, pixels ou regiões, para a formação

dos mapas de ponderação. Em vídeo, a contribuição da posição dos elementos no mapa de pon-

deração pode ser feita de maneira direta, medindo-se a distância euclidiana dos elementos intra

quadros, sem se levar em consideração movimento que um objeto pode ter sofrido na passagem

de um quadro para outro.

Em uma das quatro formas apresentadas neste trabalho para se relacionar as regiões de um

vídeo sobre-segmentado, não se corrige o movimento entre essas regiões (NA). A força de ligação

wNAi,j entre o elemento i, pertencente ao conjunto de regiões de um quadro Vq, é calculada em

relação ao elemento j, pertencentes quadro seguinte Vq+1. Utilizando-se no cálculo elementos de

cor ~L e posição ~r, forma-se uma matriz de pesos com componentes fornecidas pela equação:

wNAi,j =

 e−
(
||~Li−~Lj ||

2T

)2
e
−
(
||~ri−~rj ||
Ri+Rj

)2
, se i ∈ Vq e j ∈ Vq+1

0, caso contrário
, (5.1)

em que T é o limiar definido para a segmentação e determinação das regiões do quadro (Capí-

tulo 4), Ri e Rj são os raios equivalentes das regiões, determinadas pela expressão R =
√
Ai/π.

A equação 5.1 tem valor determinado pela multiplicação de duas Gaussianas, caso os vértices

i e j pertençam a dois quadros subsequentes, e zero, caso se tratem de regiões/vértices de um

mesmo quadro. Regiões de um mesmo quadro recebem pesos nulos entre si, partindo do princípio

que o objeto já é bem definido na sobre-segmentação realizada, e regiões semelhantes devem ser

relacionadas ao longo dos quadros subsequentes. Esses pesos nulos representam uma grande

região esparsa na matriz de pesos (Figura 5.2).
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Figura 5.2: Mapa de pesos do grafo NA representado como um mapa de magnitudes. A relação se restringe aos
conjuntos de elementos de dois quadros, Vq e Vq+1, entretanto a representação pode ser estendida para um mapa que
contemple elementos de toda uma sequência. O mapa possui valores nulos para conexões de elementos no mesmo
quadro, as regiões no mapa destacadas por retângulos com linhas pontilhadas representam as relações entre o quadro
Vq e seu sucessor Vq+1.

5.2.2 Grafo com ajuste de movimento entre regiões

Para exemplificar o processo, pode-se aproveitar o mesmo exemplo de cálculo de vetor de

movimento exibido na Figura 4.22(g), que contém os vetores que representam deslocamento es-

timado das regiões entre uma imagem e seu par estéreo rotacionado (Figura 5.3(a)). O efeito do

ajuste/correção da posição dos elementos de uma imagem a partir do vetor de movimento, pode

ser observado melhor em ilustração contendo esferas com raios iguais aos raios equivalentes R

das regiões (Figura 5.3(b)), em mesma posição. Pode-se tratar a imagem original como um qua-

dro de referência Vq, em que o vetor de movimento~f ajusta a posição dos elementos pertencentes

a imagem rotacionada, um quadro subsequente Vq+1 (Figura 5.3(c)).

Define-se pesos wAJi,j para a matriz de ponderação do caso AJ como:

wAJi,j =

 e−
(
||~Li−~Lj ||

2T

)2
e
−
(
||~ri−(~rj+

~fj)||
Ri+Rj

)2
, se i ∈ Vq e j ∈ Vq+1

0, caso contrário
, (5.2)

em que as variáveis envolvidas são as mesmas que no caso NA da equação 5.1, com adição do

vetor de movimento ~fj que corrige a posição ~rj do elemento j ∈ Vq+1 em relação a um quadro

de referência Vq. Uma vez ajustadas as posições de acordo com o vetor de movimento estimado,
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Figura 5.3: Ilustração da correção no movimento entre regiões proposta: (a) regiões são definidas para um quadro Vq e
um quadro subsequente Vq+1, ilustrados por duas vista de uma cena, uma em seu aspecto origina e outra rotacionada;
(b) representando as regiões de cada quadro como esferas de raio proporcional ao seu raio equivalente R é observar
melhor o ajuste efetuado; (c) a correção na posição dos elementos de Vq+1, os posiciona em convergência com
possíveis correspondências no quadro de referência Vq .

anula-se elementos que entre quais:

||~ri − (~rj +~fkj )|| > 2(Ri +Rj). (5.3)

Considera-se desconectados aqueles elementos que a distância das posições ~ri e ~rj , mesmo

quando ajustados pelo vetor de movimento ~fj , estejam a uma distância maior que duas vezes a

soma dos seus raios equivalentes Ri e Rj . Essa consideração visa desconectar regiões não que

tenham suas fronteiras próximas, mesmo com uma correção pelo vetor de movimento. O mesmo

princípio não pode ser aplicado para o caso NA, pois sem informação quanto o movimento do

objeto, pode-se desconectar regiões que ultrapassem qualquer limiar pré-definido.
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Quando ajustado o movimento percebe-se um aumento de intensidade na força de ligação de

alguns elementos (Figura 5.4) em relação ao caso não ajustado (Figura 5.2). Essa condição está

relacionado a uma melhor convergência das posições das regiões aliado a sua proximidade em

componentes de cor.
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Figura 5.4: Mapa de pesos de um grafo AJ representado como um mapa de magnitudes. As relações são as mesmas
para que as do mapa exibido na Figura 5.2, entretanto nota-se uma mudança na magnitude das componentes do mapa,
oriunda da do ajuste na posição das regiões do quadro Vq+1 em relação a Vq , que implica na mudança nos pesos em
relação ao mapa NA.

5.2.3 Correspondências com pesos reforçados

A partir do último grupo de correspondências criadas para o cálculo do vetor de movimento

(Figura 5.3(a)) pode-se determinar um grau maior de associação entre esse grupo de elementos.

Repete-se o mesmo método de cálculo de pesos para o modelo AJ, substituindo-se os pesos dos

pares de vencedores, ou agora, elementos equivalentes [i, j] ∈ Ve, por pesoswREi,j com valor muito

grande, tratados infinitos:

wREi,j =

{
∞, se [i, j] ∈ Ve,

wAJi,j , caso contrário
(5.4)

Este método de mapeamento de pesos cria uma força de ligação tal, que os elementos conec-

tados por esses pesos infinitos passam a representar um único elemento. Entretanto, esse aumento

no peso das ligações desses vértices não elimina as redundâncias criadas.
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Figura 5.5: Mapa de pesos de um grafo RE representado como um mapa de magnitudes. Esse mapa tem em maior
parte das componentes com o mesmo valor do mapa para o caso AJ (Figura 5.4). A diferença está nos pares de
correspondência [ie, je], com ie ∈ Vq e ie ∈ Vq + 1, que recebem um valor de ponderação muito alto, representando
uma ligação infinita que pode ser observada no mapa pelos pontos em vermelho escuro.

5.2.4 Correspondências substituídas por elementos equivalentes

Em vez de se determinar pesos infinitos aos vértices referentes a regiões consideradas cor-

respondentes entre quadros em sequência, como no modo RE, pode-se emergir os vértices equi-

valentes [ie1, ie2, ie3, ..., ien] ∈ Ve ao longo de vários n quadros em um único vértice Ie tal que

[ie1, ie2, ie3, ..., ien] ≡ Ie. Na Figura 5.6, que estende a Figura 5.3(a), temos em (a) e em (b) duas

vistas do que retrata pares de elementos equivalentes emergidos, Ve, e aqueles vértices sem equi-

valência nos quadros Vq e Vq+1. Esse grafo equivalente pode ser visto como a combinação dos

dois quadros (Figura 5.3(c)).

O mapa de pesos WEQ tem componentes wEQI,J determinadas com base nas componentes do

mapa de pesos ajustado:

wEQI,J =
∑
i∈I

∑
j∈J

wAJi,j , (5.5)

cada nova componente da matriz de pesos WEQ será uma soma das relações de vizinhança dos

seus elementos com referência ao mapa WAJ . A equação (5.5), para formação de um mapa

de pesos equivalentes [45], tem como objetivo formar uma representação do grafo original que

permita a realização de um corte/segmentação preservando as características originais mesmo

com uma redução no número de elementos em análise.
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Para um corte em grafo que envolva matrizes de tamanho N × N a redução no número de

elementos é a alternativa mais direta para redução no curto computacional, sobressaltando o caso

de segmentação de vídeos em que esse número N pode crescer linearmente com a adição de

quadros. Constata-se uma redução no número de elementos para as matrizes para o caso EQ

(Figura 5.6) em relação ao mapa de pesos de origem dessa redução AJ (Figura 5.4).

(a)

(c)

(b)

eq VV 

eV

eq VV 1

eq VV 

eq VV 1

eV

eqq VVV  )( 1

Figura 5.6: Ilustração para a equivalência de regiões referentes à Figura 5.3: (a) os quadros Vq e Vq+1, regiões/ele-
mentos na base e no topo, respectivamente, são exibidos sem os elementos equivalentes, representando pelo conjunto
Ve ao centro; (b) outra vista para o apresentado em (a); (c) a correção de posição e substituição de elementos corres-
pondentes por equivalências, permitem combinar dois quadros com características muito próximas de forma a serem
tratados quase que como uma única imagem.
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Figura 5.7: Mapa de pesos para o grafo EQ representado como um mapa de magnitudes. Esse mapa tem como
base o mapa AJ, sendo que os elementos correspondentes são substituídos nós equivalentes. Isso elimina possíveis
redundâncias (Vq+1 − Ve) entre quadros, reduzindo o número de elementos submetidos à análise.

5.3 DETERMINAÇÃO DOS CORTES NOS GRAFOS

Oito formas de segmentação foram testadas neste trabalho, sendo separadas pelas 4 maneiras

que seus elementos/regiões são agrupados e os 2 modos como o corte no grafo é aplicado. O

corte de grafo pode ser aplicado quadro a quadro (Figura 5.8(a)) ou na totalidade de quadros

(Figura 5.8(b)). O caso quadro a quadro envolve apenas um quadro e o subsequente, em uma

segmentação feita em passos .

Apesar de envolver dois quadros, no modo de segmentação quadro a quadro apenas um quadro

é segmentado na prática a cada passo, enquanto o outro fornece sementes (fundo em azul e objeto

em vermelho, Figura 5.8). Para o primeiro quadro V1 as sementes são determinadas por um GT,

para os passos seguintes, as sementes são obtidas a partir das segmentações. Por exemplo, no

passo 2 na (Figura 5.8(a)), o quadro segmentado V2 segmentado no primeiro passo (representado

por círculos coloridos), fornece sementes para a segmentação do terceiro quadro V3, o processo

se repete até todos os elementos da sequência passarem pelo corte.

A segunda forma de se segmentar um vídeo é aplicando um corte de grafos em uma sequência

por completo (Figura 5.8(b)). Após o processamento quadro a quadro destinado ao casamento de

regiões e do cálculo do vetor de movimento, aplica-se o corte no grafo contendo todos os elemen-

tos da sequência. O primeiro modo de corte, quadro a quadro, tem um esforço computacional

menor do que o segundo modelo devido à quantidade de elementos agrupada.
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Figura 5.8: Ilustração para os dois padrões de segmentação adotados: (a) a segmentação quadro a quadro é procedida
em um par de quadros, o quadro de referência segmentado oferece sementes para a segmentação de um quadro sub-
sequente (elementos coloridos em vermelho para o objeto e em azul para o fundo). O primeiro quadro é segmentado
a partir de um GT, os demais pelos métodos de corte de grafos proposto, a cada passo (esquerda para direita, de
cima para baixo) um novo quadro é segmentado; (b) a segmentação em uma sequência de quadros possui um quadro
como referência, o primeiro quadro segmentado com base no GT, que oferece sementes para a segmentação de toda
sequência em um único passo.

Para se diferenciar os oito métodos em nomenclatura, adotou-se NAQ para a segmentação

quadro a quadro sem ajuste de movimento, AJQ para a segmentação quadro a quadro com ajuste

de movimento, REQ para a segmentação quadro a quadro com pesos reforçados e EQQ para a

segmentação quadro a quadro com elementos equivalentes. O mesmo princípio de nomenclatu-

ras pode ser definido para segmentações na totalidade de quadros de uma sequência testada, no

mesmo padrão definido anteriormente temos: NAT, AJT, RET e EQT.

O princípio para a criação da matriz de pesos é semelhante para segmentação quadro a qua-

dro e para aquela que contempla todos os quadros da sequência. No caso quadro a quadro uma

imagem é segmentada a cada passo, mas duas imagens fornecem elementos para o grafo, um já

segmentado fornecendo sementes e outro a ser segmentado. Quando se segmenta uma sequên-

cia por completo, utilizando-se elementos/regiões de todos os quadros, que se transformam em

vértices do grafo. A construção do mapa de pesos reflete a força de ligação desses vértices.
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5.3.1 Corte de grafo via GrowCut

O método utilizado para segmentar os grafos a partir de seus respectivos mapas de pesos

criados neste Capítulo, foi o GrowCut, proposto na ref. [44] e apresentado no Capítulo 3. Os pro-

cedimentos adotados neste trabalho são semelhantes aos descritos na ref. [44], sofrendo algumas

modificações para a aplicação no caso proposto.

Ao contrário do método original, quando aplica-se o GrowCut aos grafos utilizados neste

trabalho, não se adota uma vizinhança de análise. Os próprios mapas de peso utilizados se valem

de alguma informação quanto à abrangência da vizinhança de análise, como aquelas regiões que

se te fronteiras afastadas, não sendo consideradas como desconectadas (equação (5.3)).

A cada iteração, o elemento i é atacado por seusN−1 vizinhos, sendoN o número de vértices

do grafo a ser segmentado. O outro ponto de mudança em relação ao algoritmo original é a função

de custos adotada. Para a ref. [44] tem-se a seguinte função:

g(i, j) = 1− ||
~Ii −~Ij||2

max||~I||2
, (5.6)

em que ~Ii é a componente de cor RGB do elemento/pixel i e ~Ij a componente RGB do elemento

j. Subtraindo-se 1 pela distância euclidiana ao quadrado normalizada pela distância máxima ao

quadrado entre as componentes de cor dos elementos, cria-se uma função monótona decrescente.

A normalização limita o valor dessa função ao intervalo [0, 1].

Na equação (5.6), sua característica decrescente aumenta o custo de se excluir dois elementos

com cores próximas. No método proposto, essa função de custos deve envolver a magnitude dos

pesos de ligação entre os elementos dos grafos, que é por si só fruto de uma função monotônica-

mente crescente e com valores dentro do intervalo [0, 1]. A função de custos para os elementos i

e j nos grafos estudados é dada por:

g(i, j) = w(i, j), (5.7)

em que w(i, j) são as componentes do mapa de ponderação W.

5.4 MÉTRICAS PARA ACURÁCIA E ERRO DE SOBRE-SEGMENTAÇÃO

Os métodos utilizados para medir acurácia da segmentação e erros de sobrestimação nos re-

sultados oferecidos pelo algoritmo proposto, são baseadas na ref. [2], que utiliza o volume de

supervoxels segmentados em relação a um ground truth para estimar o volume corretamente seg-

mentado.
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No caso estudado, a partir de uma segmentação SG (Figura 5.9(b)) a acurácia para um quadro

é dada pelo número de pixels corretamente segmentados (Figura 5.9(c)) em relação a um ground

truth (GT) (Figura 5.9(a)), dividido pelo número de elementos (pixels) deste GT. A sobrestimação

(SE) segue o mesmo princípio, entretanto mede-se a quantidade de pixels segmentados que não

pertencem à segmentação manual (Figura 5.9(d)).

Para a acurácia associada a um único quadro, divide-se o número de elementos contidos na

intersecção entre a segmentação proposta SG e GT , pelo número de elementos de GT :

AC =
n(SG ∩GT )

n(GT )
, (5.8)

em que n(·) é a função que conta o número de pixels não nulos dentro da imagem binária. A

proporção de pixels que ultrapassa a segmentação ground truth em um quadro é calculada como:

SE =
n(SG−GT ))

n(GT )
. (5.9)

Define-se também uma acurácia no volume 3D no espaço x × y× tempo, para todos os ele-

mentos corretamente segmentados ao longo de um trecho de nf quadros, como:

AC3D =

∑nf
k n(SGk ∩GTk)∑nf

k n(GTk)
. (5.10)

a porcentagem de pixels que ultrapassa a segmentação ground truth de referência ao longo do

trecho é calculada como:

SE3D =

∑nf
k n(SGk −GTk)∑nf

k n(GTk)
. (5.11)
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(a) GT (b) SG

(d)  SG   GT(c) SG   GT

Figura 5.9: Ilustração representando a acurácia (AC) e sobrestimação (SE) do quadro 4 da sequência Panda exibida
na Figura 4.24: (a) a segmentação manual do urso, ou chamado ground truth (GT ) do objeto; (b) ao ser intersec-
cionado pela segmentação (SG) proposta, no caso as regiões oriundas de sementes do primeiro quadro; (c) geram
um conjunto de elementos/pixels, SG∩GT , corretamente segmentados, que quando contabilizados e divididos pela
soma de elementos do GT fornecem a AC; (d) quando se subtrai os elementos do conjunto GT do conjunto SG,
obtém-se a quantidade de pixels que ultrapassam a segmentação de ideal (GT ), ao se dividir a soma desses ele-
mentos que ultrapassam uma segmentação de referência, pela soma dos elementos dessa segmentação de referência,
obtém-se o erro de sobrestimação SE.
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6 RESULTADOS

6.1 INTRODUÇÃO

Neste capítulo serão apresentados e discutidos os resultados obtidos, quanto ao rastreamento e

segmentação de vídeos a partir dos métodos propostos. Primeiramente, é discutida a contribuição

do algoritmo proposto para o casamento de regiões e para o rastreamento de objeto e fundo ao

longo dos quadros. Em um segundo passo, discute-se a influência desse casamento de regiões na

redução da quantidade de elementos para os grafos. Por fim, avalia-se as segmentações quadro a

quadro ou ao longo da sequência, por meio do corte de grafos GrowCut para os tipos de mapas

propostos NA, AJ, RE e EQ. Esses mapas foram pensados de forma a se avaliar a contribuição

do descritor proposto no ajuste na posição das regiões (AJ), no reforço de pesos entre regiões

correspondentes (RE) e na definição de equivalências para essas regiões correspondentes (EQ),

todos em relação a forma mais simples e difundida de análise, comparando-se as posições e cores

das região (NA).

6.2 SEQUÊNCIAS TESTADAS

As sequências de 9 quadros testadas foram: Stefan, Angelfish, Trainer, Mobile e Panda,

apresentadas visualmente na Figura 6.1. A resolução natural das sequências Stefan e Mobile é

352×288, que podem ser obtidas, bem como seus ground truth para os objetos de interesse (Fi-

gura 6.2), na ref. [46]. O restante das sequências e suas segmentações manuais são encontradas

na ref. [47], sendo que a resolução natural dos quadros dessas sequências é 320×200. Os quadros

iniciais fi de cada sequência foram definidos de forma que, ao longo dos 8 quadros subsequentes,

houvesse um movimento constante do objeto em análise e poucas deformações.

Para cada sequência, o limiar T foi aplicado antes da segmentação watershed para a formação

das regiões (Capítulo 4), escolhido de forma a criar regiões estáveis ao longo dos quadros. A

Figura 6.3 apresenta gráficos para os deslocamentos normalizados dos centroides dos objetos de

interesse nas sequências testadas. Esses deslocamentos são obtidos com base no GT da sequência

e nas dimensões das regiões que o compõe, esses gráficos ajudam a avaliar os resultados.
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(a) Stefan; n = 1; T = 8; fi = 1 (b) Angelfish; n = 2; T = 12; fi = 22

(c) Trainer; n = 3; T = 10; fi = 1 (d) Mobile; n = 4; T = 10; fi = 10

(e) Panda; n = 5; T = 5; fi = 12

Figura 6.1: Quadros iniciais das sequências de 9 quadros utilizadas para teste. fi define a posição desse quadros
iniciais na sequências originais encontradas em [46] e [47] . Abaixo das figuras define-se os parâmetros utilizados
para a criação de regiões, a oitava n e o limiar T . As sequências são: (a) Stefan; (b) Angelfish; (c) Trainer; (d) Mobile
e; (e) Panda.
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(a) Stefan (b) Angelfish

(c) Trainer (d) Mobile

(e) Panda

Figura 6.2: Segmentação ground truth aplicada ao objeto de interesse para o primeiro quadro de cada uma das
sequências testadas, esse GT do primeiro quadro fornece as sementes que são base para os processos de segmentação
implementados: (a) na sequência Stefan, objeto de interesse é o tenista; (b) na Angelfish é o peixe de cores azul e
amarela; (c) na Trainer é o indivíduo que orienta cachorro; (d) na Mobile envolve o conjunto calendário, bola e trem
de brinquedo; (e) na Panda
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Figura 6.3: Gráfico dos deslocamentos normalizados entre quadros do centroide dos GT dos objetos para todas as
sequências.

6.2.1 Espaço de escalas

Utilizou-se cinco escalas distintas nas cinco sequências estudadas, escalas as quais determi-

nam a segmentação de regiões e, por consequência, os descritores dessas regiões (Capítulo 4).

As cinco sequências, Stefan, Angelfish, Trainer, Mobile e Panda, estão distribuídas em escalas

distintas de forma a cobrirem 5 oitavas no processo, indicadas pelo índice n na Figura 6.1. O

desvio padrão que define a posição da escala na oitava (equação 4.33), foi fixado o mesmo para

todas as sequências, σ = 2.

O intuito de representar as sequências em escalas ou oitavas distintas é verificar o nível de

representatividade que uma escala pode fornecer para os objetos, oferecendo resultados satisfató-

rios e ao mesmo tempo reduzindo o esforço computacional relacionado a processamento em um

nível de escala baixo. Também tem-se interesse em analisar a contribuição de diferentes níveis de

escala para futuros trabalhos envolvendo segmentação hierárquica.
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6.3 RASTREAMENTO DE REGIÕES E DE OBJETOS

Não foram determinadas métricas específicas para se estimar espacialmente a precisão do

rastreamento fornecida pelo algoritmo proposto, ou seja, uma forma de se avaliar os desloca-

mentos das regiões e sua coerência espacial. Avaliou-se neste trabalho a contribuição do casa-

mento/rastreamento de regiões para a segmentação do objeto ao longo de uma sequência, isto é,

erros de casamento de regiões dentro do objeto, ou para o fundo, não foram levadas em conside-

ração. Por exemplo, para o tenista na sequência Stefan, o erro quanto ao casamento de uma perna

esquerda em um quadro com uma perna direta de outro quadro é ignorado, pois ambos elementos

pertencem ao objeto de desejo.

A análise do rastreamento fornecido pelo algoritmo proposto focou na contribuição que esse

tem na segmentação das sequências. Verifica-se a acurácia e a sobrestimação para uma segmen-

tação levando-se em consideração apenas o casamento de regiões, sem o corte de grafo. Essa

análise é feita de duas maneiras: (1) avalia-se o nível de conexão entre dois quadros subsequentes

ao se utilizar o GT para definir as regiões corretamente casadas no outro, para objeto (OBQ) e

fundo (BKQ); (2) rastreando as sementes fornecidas pelo primeiro quadro para toda a sequência,

avalia-se o nível de mudanças do objeto dentro da sequência a partir do primeiro quadro, para

objeto (OBT) e fundo (BKQ).

Pode-se exemplificar as duas formas de análise do rastreamento com a sequência Angelfish na

Figura 6.4. O padrão de cores que se repete de um quadro para o outro, representa o casamento

de regiões ao longo da sequência, sendo que uma nova cor é atribuída a cada nova área sem

correspondência. Regiões escuras representam elementos sem correspondência dentro do par de

confronto. A cada par de confrontos, 1-2, 2-3, 3-4 e assim por diante, a manutenção de um mesmo

padrão de cor para uma região dentro do objeto ou fora dele, no caso o peixe, determina se há

um erro ou não de rastreamento quadro a quadro. As regiões coloridas em quadros subsequentes

(inferiores) que convergem com regiões dentro do GT (contorno esbranquiçado) na imagem de

referência (superiores) representam o acerto de rastreamento quadro a quadro.

Os círculos vermelhos na Figura 6.4 representam as sementes do objeto determinadas pelo o

GT do primeiro quadro, que se propagam ao longo da sequência pelo confronto de regiões. Os

marcadores em ‘x’na cor azul representam a mesma propagação de sementes para o fundo, com

base no GT da primeira imagem da sequência. Essas sementes propagadas a partir do primeiro

quadro, são base para segmentações ao longo de toda a sequência, aproveitando as correspondên-

cias nos mapas de peso, RET e EQT.

Os gráficos exibidos na Figura 6.5 registram as taxas de acerto AC (equação (5.8)) e erro de

sobrestimação SE (barras verticais) por quadro para as sequências estudadas. As curvas OBQ re-
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Figura 6.4: Rastreamento de sementes e convergência de regiões para a sequência Angelfish. São exibidos pares
de confronto, par 1-2 e o 8-9. A manutenção do padrão de cores dentro do par indicam um casamento de regiões,
as regiões escuras são regiões sem correspondência dentro do par de confronto. As circunferências vermelhas e as
marcações em ‘x’azuis representam sementes, para objeto e fundo, respectivamente, que tem base no GT do primeiro
quadro e são propagadas ao longo do sequência por meio do algoritmo de rastreamento proposto.

gistram um nível de semelhança do objeto para quadro o seu antecessor, da mesma maneira temos

as curvas BKQ que medem a porcentagem do fundo pode ser encontrada no quadro antecessor

por meio do confronto de regiões. As curvas OBT e BKT relacionam a área do objeto e fundo de

um quadro, com as regiões que o objeto e do fundo no primeiro quadro. Essa relação é fruto do

casamento de regiões do primeiro propagadas até o quadro de desejo.

Os resultados para o rastreamento aparentam indicar uma correlação do movimento entre qua-

dros (Figura 6.3) com capacidade do algoritmo proposto em achar correspondências para o objeto

ao longo de uma sequência (Figura 6.5). Tal comportamento era esperado, pois movimentos ou

distorções nas regiões e nas suas vizinhanças provocam uma queda no desempenho do descritor.

Além do movimento, a escala pode ser um fator que influencia nessa queda de desempenho, pois

quanto menores os agrupamentos dentro da imagem, menor a sua representatividade e singulari-

dade, da mesma forma que o algoritmo original se propõe a eliminar pontos irrelevantes, deixando

apenas os chamados pontos-chave.

Ao se acumular uma taxa de acerto (equação (5.10)) ou de sobrestimação (equação (5.11)) do

primeiro quadro ao quadro final da sequência, pode-se analisar o desempenho do algoritmo de

rastreamento dentro do volume x× y× tempo. A Tabela 6.1 exibe essa representação de erro no

volume.
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(b) Angelfish
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(c) Trainer
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(d) Mobile
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(e) Panda

Figura 6.5: Gráficos para acurácia (AC) e erro de sobrestimação (SE, barras verticais) para o rastreamento de
regiões ao longo dos quadros. OBQ e BKQ são curvas que representam a porção de regiões que são encontradas em
um quadro originadas de um quadro antecessor pelo processo de casamento de regiões. OBT e BKT representam as
porções de área referentes ao objeto e ao fundo no primeiro quadro que são encontradas nos quadros seguintes pelo
processo de rastreamento proposto.
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Tabela 6.1: Tabela para acurácia (AC3D) e erro sobrestimação (SE3D) no volume composto pelo objeto rastreado ao
longo 9 dos quadros das sequências. OBQ retrata um nível de casamento entre quadros, a porção de área dos quadros
que tem origem em um quadro antecessor. OBT relaciona a porção do volume formado por regiões do objeto na
primeiro propagadas pelos demais quadros pelo rastreamento proposto.

Sequência Percentual OBQ OBT

Stefan AC3D 76,79 54,15

SE3D 1,62 0,8

Angelfish AC3D 80,33 56,53

SE3D 3,07 1,73

Trainer AC3D 91,97 82,14

SE3D 3,22 2,4

Mobile AC3D 95,63 90,91

SE3D 1,96 1,85

Panda AC3D 87,37 75,97

SE3D 4,43 4,4

Para o rastreamento de regiões, as sequências Stefan e Angelfish têm os piores desempenhos

para as duas situações, no casamento quadro a quadro e na propagação de sementes do objeto no

primeiro quadro. O movimento de ambos em relação a dimensões das regiões que os compõe

é mais relevante que para as outras sequências. Para Stefan (Figura 6.3) o deslocamento entre

quadros, dQ, se mantém acima de uma unidade, enquanto a sequência mais estável e de melhor

desempenho, Mobile (d), não ultrapassa esse valor em nenhuma situação.

A hipótese de que a escala é um fator de influência no casamento e rastreamento de regiões é

reforçada quando se compara o casamento de regiões nas sequências Stefan e Trainer (Figuras 6.6

e 6.7, respectivamente). Apesar de apresentarem o mesmo padrão de movimento para os indiví-

duos em cenas (Figuras 6.6 e 6.7, mapa de movimento), um movimento lateralizado da câmera

que produz um deslocamento de objeto e fundo, o rastreamento para a sequência Trainer (n = 3,

terceira oitava) apresenta melhor desempenho na análise quadro a quadro, acurácia de 91,97%

contra 76,79%. Ao longo dos 9 quadros o volume das regiões rastreadas do objeto a partir do pri-

meiro quadro (OBT) representa 82,14% do indivíduo em Trainer, enquanto para mesma situação

tem-se 54,15% para a sequência Stefan.

Em termos de sobrestimação, a sequência Trainer tem um desempenho mais baixo que a

Stefan, ultrapassando as fronteiras da segmentação GT de maneira mais acentuada que o ras-

treamento na sequência Stefan. Atribui-se esse comportamento à escala/oitava, quanto maior as

regiões formadas no processo de agrupamentos, maior a área relacionada a um erro de rastrea-

mento ou sobrestimação.
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Figura 6.6: Pares de confronto e casamento de regiões dos quadros 3-4, 4-5 e 5-6 da sequência Stefan (pares de
imagem superiores). Regiões correspondentes tem um mesmo rótulo e recebem uma mesma cor, regiões escuras
representam regiões sem correspondência para o par de confronto. Circunferências vermelhas e os marcadores ‘x’em
azul são as sementes referentes ao objeto e ao fundo, respectivamente, propagadas ao longo dos quadros pelo processo
de rastreamento proposto. Abaixo de cada par de confronto encontra-se o respectivo mapa de movimento, calculado
em conjunto com o casamento de regiões.
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Figura 6.7: Pares de confronto e casamento de regiões dos quadros 5-6, 6-7 e 7-8 da sequência Trainer (pares de
imagem superiores). Regiões correspondentes tem um mesmo rótulo e recebem uma mesma cor, regiões escuras
representam regiões sem correspondência para o par de confronto. Circunferências vermelhas e os marcadores ‘x’em
azul são as sementes referentes ao objeto e ao fundo, respectivamente, propagadas ao longo dos quadros pelo processo
de rastreamento proposto. Abaixo de cada par de confronto encontra-se o respectivo mapa de movimento, calculado
em conjunto com o casamento de regiões.
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A Tabela 6.2 apresenta valores de acurácia (AC3D) e erro de sobrestimação (SE3D) para a

segmentação dos objetos ao longo do volume formado pelos 9 quadros nas 5 sequências testadas.

Na Tabela, BKQ* e BKT* são os percentuais de acurácia e sobrestimação BKQ e BKT com base

no volume do GT do objeto.

Tabela 6.2: Resultados para acurácia (AC3D) e erro sobrestimação (SE3D) no volume composto pelo fundo rastreado
ao longo 9 dos quadros das sequências. BTQ retrata um nível de casamento entre quadros, a porção de área dos
quadros que tem origem em um quadro antecessor. BKT relaciona a porção do volume formado por regiões do fundo
na primeiro propagadas pelos demais quadros pelo rastreamento proposto. BTQ* e BKT* têm como referência o
objeto, ou seja, a porção do fundo rastreada em relação ao tamanho do objeto de interesse.

Sequência Percentual BKQ BKT BKQ* BKT*

Stefan AC3D 93,9 87,65 1.349 1.260

SE3D 0,61 0,52 8,76 7,46

Angelfish AC3D 97,16 92,21 4.049 3.843

SE3D 0,1 0,1 3,69 1,97

Trainer AC3D 95,17 82,58 1.504 1.305

SE3D 0,22 0,18 3,44 2,87

Mobile AC3D 90,27 80,37 76,34 67,96

SE3D 0,68 0,68 0,58 0,57

Panda AC3D 88,74 67,93 454,5 347,9

SE3D 0,9 0,73 4,61 3,74

A análise do casamento de regiões relacionadas ao fundo (BK) retorna aspectos importantes

para a segmentação do objeto. O movimento do objeto dentro de uma cena, revela regiões oclusas

que podem ser casadas com regiões que pertencem ao objeto, configurando um erro de sobresti-

mação. Os erros de sobrestimação para o casamento de elementos BK, limitam a acurácia para a

segmentação do objeto.

Essa limitação pode ser observada com maior relevância para a sequência Stefan, uma vez que

a Tabela 6.2 exibe para essa sequência um erro de sobrestimação de cerca de 8%, para os dois

casos BKQ* e BKT*. Isto é, ao se segmentar uma imagem a partir do corte em grafos em um

mapas de pesos do tipo RE ou EQ, que têm ponderações ou equivalências baseados no casamento

de regiões, a acurácia não ultrapassará os 92%, pois 8% do objeto foi incorretamente relacionado

a uma região pertencente ao fundo. Essa sobrestimação também pode estar relacionada a uma má

definição dos contornos das regiões em relação ao GT.

Ao contrário do rastreamento de regiões para o objeto, a taxa de acerto para o casamento

de regiões relacionadas ao fundo foi menor em agrupamentos oriundos de escalas maiores. As

sequências Mobile (n = 4, quarta oitava, Figura 6.8) e Panda (n = 5, quinta oitava, Figura 6.9)

têm as maiores quedas em taxa de acerto para o casamento de regiões BK.
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Figura 6.8: Pares de confronto e casamento de regiões dos quadros 3-4, 4-5 e 5-6 da sequência Mobile (pares de
imagem superiores). Regiões correspondentes tem um mesmo rótulo e recebem uma mesma cor, regiões escuras
representam regiões sem correspondência para o par de confronto. Circunferências vermelhas e os marcadores ‘x’em
azul são as sementes referentes ao objeto e ao fundo, respectivamente, propagadas ao longo dos quadros pelo processo
de rastreamento proposto. Abaixo de cada par de confronto encontra-se o respectivo mapa de movimento, calculado
em conjunto com o casamento de regiões.
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Figura 6.9: Pares de confronto e casamento de regiões dos quadros 5-6, 6-7 e 7-8 da sequência Panda (pares de
imagem superiores). Regiões correspondentes tem um mesmo rótulo e recebem uma mesma cor, regiões escuras
representam regiões sem correspondência para o par de confronto. Circunferências vermelhas e os marcadores ‘x’em
azul são as sementes referentes ao objeto e ao fundo, respectivamente, propagadas ao longo dos quadros pelo processo
de rastreamento proposto. Abaixo de cada par de confronto encontra-se o respectivo mapa de movimento, calculado
em conjunto com o casamento de regiões.
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6.3.1 Redução no número de elementos em grafos via equivalências

Uma contribuição importante para o casamento de regiões é a possibilidade da redução de

elementos para a construção de um grafo, procedimento aplicado neste trabalho para a criação

dos mapas tipo EQ. O número total de regiões/elementos N dentro dos 9 quadros para cada

sequência estudada, pode ser distribuído em uma média por quadros N1 ou uma média por pares

de quadros N .

O número de elementos EE dentro de um grafo do tipo EQ retrata a quantidade de elementos

com a qual é possível se representar um grafo primordial, no caso, os grafos do tipo AJ. Para

uma análise em termos normalizados, a média de elementos por quadro N serve de base para

medir-se um nível de compressão fornecida por um grafo equivalente, criado a partir do casa-

mento de regiões. Compara-se a quantidade média de elementos a cada dois quadros, N2, com o

número de elementos para sua versão comprimida, equivalente, NE2. Mesma comparação pode

ser feita entre o total de regiões/elementos na sequência,N , com o número de elementos da versão

equivalente NE. Esses dados, para as 5 sequências, estão expressos na Tabela 6.3.

Tabela 6.3: Relação de elementos em valores absolutos e normalizados. A normalização se dá pelo número médio de
elementos por quadro N1, calculado com base no número total de elementos/regiões dentro da sequência N dividido
uniformemente pelos seus 9 quadros. N2 é o número médio de elementos a cada dois quadros e NE2 o número
de elementos equivalentes entre dois quadros, determinado pelos casamentos de regiões. O mesmo princípio de
equivalência pode ser adotado para toda a sequência com o número de elementos NE.

Sequência Valor N1 N2 NE2 N NE

Stefan absoluto 434,6 869,1 572,9 3.911 1.577

normalizado 1 2 1,32 9 3,63

Angelfish absoluto 67,89 135,8 90,13 611 238

normalizado 1 2 1,33 9 3,51

Trainer absoluto 115 230 145,1 1.035 350

normalizado 1 2 1,26 9 3,04

Mobile absoluto 355,7 711,3 416,3 3.201 845

normalizado 1 2 1,17 9 2,38

Panda absoluto 128,7 257,3 157,9 1.158 352

normalizado 1 2 1,23 9 2,74

O número médio de elementos por quadroN1 é uma boa referência, por se tratar da quantidade

média de regiões envolvida no processo de cálculo de descritores. As sequência que envolvem o

maior esforço computacional nesse processo são a Stefan e Mobile, com uma média de 434,6 e

355,7 elementos por quadro. No corte quadro a quadro, que envolve grafos que relacionam dois

quadros, a sequência Mobile sofre a maior compressão de elementos. Ao invés de mapas de peso,
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com dimensão média de 711×711, pode-se representar pares de quadros na sequência Mobile

com mapas reduzidos para uma dimensão 416×416.

No caso de grafos construídos com elementos de toda a sequência, a compressão é signifi-

cativa, ao invés de um crescimento no número de componentes de 92×, 81 vezes, na matriz de

pesos, em relação a média por quadros, tem-se mapas de peso equivalentes com um crescimento

de máximo 3,652×, cerca de 13 vezes, em relação a um mapa construído com a N1 elementos.

Os descritores propostos são calculados utilizando matrizes com dimensão N1 ×N1.

6.4 SEGMENTAÇÃO DE OBJETOS

Os resultados da segmentação estão dispostos de acordo com a forma que o corte de grafos

é aplicado, quadro a quadro ou na sequência por completo. As duas modalidades de corte são

divididas em quatro formas de se ponderar as ligações do grafo, NAQ, AJQ, REQ e EQQ para os

casos quadro a quadro e NAT, AJT, RET e EQT para a segmentação em um grupo de quadros.

Os gráficos da Figura 6.10 exibem a taxa de acerto por quadro (AC) e erro de sobrestima-

ção (SE) representado pelas barras verticais, para segmentações efetuadas em cortes quadro a

quadro nas 5 sequências estudadas. Nota-se que, quando não aplicado um ajuste nas posições

dos elementos de um quadro para o outro, caso NAQ, as duas sequências segmentadas a partir

de agrupamentos em escalas menores, Stefan e Angelfish, apresentam um baixo desempenho em

relação aos outros casos que utilizam um vetor de movimento para correção de deslocamentos.

Os gráficos da Figura 6.11 registram a taxa de acerto por quadro para o corte de grafo aplicado

a todos 9 os quadros das sequências estudadas. Os modos de organização e ponderação das liga-

ções dos grafos são separados em NAT, AJT, RET e EQT. Para as sequências Stefan e Angelfish há

uma queda de desempenho em relação aos mesmo padrões de ponderação para um corte efetuado

quadro a quadro.

Comparando o corte quadro a quadro (Figura 6.10) com o efetuado ao longo de toda a sequên-

cia (Figura 6.11), ao se observar o resultado para as sequências com regiões agrupadas em na

quarta e na quinta oitava, Mobile (d) e Panda (e), respectivamente, nota-se uma certa manutenção

no desempenho para ambos os casos, tendo a sequência Panda um aumento na sobrestimação

(barras verticais) do caso quadro a quadro em relação aquele aplicado em toda a sequência.

Como esperado, os cortes que operam com o casamento de regiões, sejam por uma ligação

reforçada entre essas (REQ ou RET) ou a emersão de um grupo de elementos em um único nó

equivalente (EQQ ou EQT) têm comportamentos semelhantes para as sequências. As curvas
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para esses casos se super posicionam em quase todas as taxas de erro por quadro (Figura 6.10

e 6.11), destacando-se a sequência Trainer na qual o corte no mapa no padrão EQT tem melhor

desempenho do que o RET (Figura 6.11(c)) e o melhor desempenho entre todas a formas de mapa

e corte.
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Figura 6.10: Taxa de acerto (AC) e erro sobrestimação (SE, barras verticais) por quadro para as segmentações
aplicadas aos grafos no modo quadro a quadro nas sequências estudadas. NAQ representa acurácias para o corte em
em um grafo no qual não há correção de movimento de um quadro para outro para atribuição e pesos de ligação.
AJQ representa o grafo cujas relações de vizinhança recebem a correção do vetor de movimento proposto. REQ é
tem o mesmo mapa que AJQ com reforços de ligação nos nós/regiões correspondentes. EQQ são as curvas para a
segmentação em um grafo equivalente, onde emerge-se nós correspondentes em um mesmo elemento.
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Figura 6.11: Taxa de acerto (AC) e erro sobrestimação (SE, barras verticais) por quadro para as segmentações
aplicadas aos grafos compostos por elementos dos 9 quadros das sequências estudadas. NAT representa acurácias
para o corte em em um grafo no qual não há correção de movimento de um quadro para outro para atribuição e pesos
de ligação. AJT representa o grafo cujas relações de vizinhança recebem a correção do vetor de movimento proposto.
RET é tem o mesmo mapa que AJT com reforços de ligação nos nós/regiões correspondentes. EQT são as curvas
para a segmentação em um grafo equivalente, onde emerge-se nós correspondentes em um mesmo elemento.
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A Tabela 6.4 registra os valores paraAC3D e SE3D, taxas de acerto e de erro de sobrestimação,

para o volume formado pelo conjunto de 9 quadros.

Tabela 6.4: Resultados para acurácia (AC3D) e erro sobrestimação (SE3D) no volume referente ao objeto segmen-
tado após aplicação do corte de grafos. São exibidos resultados para 4 tipos de mapa de pesos no corte quadro a
quadro, NAQ, AJQ, REQ e EQQ, e para os 4 tipos de mapa no corte de grafo aplicado em todo grupo de quadros,
NAT, AJT, RET e EQT.

Mapa de pesos
Sequência Percentual NAQ AJQ REQ EQQ NAT AJT RET EQT

Stefan AC3D 72,56 86,1 85,86 85,24 43,33 77,33 82,47 80,89

SE3D 4,15 7,39 7,92 7,74 1,49 2,99 5,01 3,94

Angelfish AC3D 80,87 94,07 85,61 85,61 54,03 82,72 77,78 78,66

SE3D 5,1 6,44 9,33 9,33 2,59 3,18 4,79 4,82

Trainer AC3D 95,33 95,23 88,39 88,39 91,73 94,78 88,07 95,9

SE3D 3,55 9,6 9,23 9,23 4,96 6,13 3,97 5,38

Mobile AC3D 99,14 99,15 99,15 99,15 98,54 99,21 99,21 99,1

SE3D 2,13 2,22 2,22 2,23 3,16 2,21 2,12 2,24

Panda AC3D 94,59 94,59 94,17 94,17 93,85 94,74 94,3 94,84

SE3D 5,14 5,14 5,01 5,01 9,82 8,42 7,87 9,38

Uma discussão aliada a uma inspeção visual nos resultados pode ajudar a entender melhor os

dados da Tabela 6.4. No corte de grafos quadro a quadro em baixas escalas, Stefan (Figura 6.12)

e Angelfish (Figura 6.13), o ajuste nas posições da regiões entre quadros, elevou a acurácia de

72,56% (NAQ) para 86,1% (AJQ) em Stefan (Figura 6.12) e de 80,87% (NAQ) para 94,07%

(AJQ) em Angelfish (Figura 6.12). Nos grafos com pesos reforçados (REQ) e equivalente EQQ

há um desempenho superior do caso sem ajuste, NAQ, entretanto abaixo do grafo com de ajuste

pelo vetor de movimento, AJQ.

Ainda para as duas sequências Stefan e Angelfish, ao se realizar um corte de grafos ao pelas

regiões formadas pelos 9 quadros, o desempenho sem ajuste, NAT, fica abaixo dos 50% para

Stefan, retratando uma acurácia nula para os quadros finais (Figura 6.12 (a)). O corte no grafo

equivalente da sequência Stefan apresenta taxa de acerto abaixo de AJQ, 80, 89% contra 86,1%, o

maior para a sequência, entretanto, há uma redução na sobrestimação (Figuras 6.12(b) e 6.14(b))

e na quantidade de elementos entre os dois tipos de grafos, de 3911 nós para 1577 (Tabela 6.3),

representa uma troca de operações com matriz de pesos de 15.295.921 componentes por uma de

2.486.029. Essa troca entre esforço computacional, taxa de acerto e sobrestimação pode ser uma

discussão para trabalhos futuros.
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(a)

(b)

Figura 6.12: Comparação de segmentação, do 5o ao 7o quadro da sequência Stefan relativos às segmentações NAQ
(a) e AJQ (b). Observa-se uma maior acurácia para o mapa com posições ajustadas, AJQ, bem como uma maior
sobrestimação.

(a)

(b)

Figura 6.13: Comparação de segmentação, do 7o ao 9o quadro da sequência Angelfish relativos às segmentações NAQ
(a) e AJQ (b). Observa-se uma maior acurácia para o mapa com posições ajustadas, AJQ.

Para uma oitava intermediária, como é o caso da sequência Trainer, destaca-se o comporta-

mento para os grafos equivalentes, EQQ (Figura6.15(a)) e EQT (Figura6.15(b)). No corte quadro

a quadro, NAQ tem o melhor desempenho, com taxa de acerto de 95,33% dentro dos 9 quadros
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(a)

(b)

Figura 6.14: Comparação de segmentação, do 7o ao 9o quadro da sequência Stefan relativos às segmentações NAT (a)
e EQT (b). Observa-se uma baixa acurácia para a aplicação do corte de grafos formado por toda a sequência com um
mapa de pesos obtido sem uma correção de movimento, NAT. Um mapa equivalente, EQT, que leva em consideração
o movimento entre quadros, promove uma melhor segmentação com razoável acurácia e baixa sobrestimação.

(Tabela 6.4), superando o caso ajustado AJQ, com uma melhor acurácia e com uma menor so-

brestimação. REQ juntamente a EQQ têm os piores desempenhos dentro da segmentação quadro

a quadro, entretanto quando aplicado ao longo de toda a sequência, o corte em um grafo equi-

valente apresenta o melhor acurácia entre todos os casos, tendo uma sobrestimação cerca de 2%

maior que NAQ.

Explorando novamente a troca entre a redução no número de elementos do grafo utilizado

para corte e o desempenho da segmentação, tem-se para a sequência Trainer as maires acurácias

para todos os casos em NAQ e EQT, 95,33% e 95,9%, respectivamente, e uma redução de 1035

elementos para 350 (Tabela 6.3). Ao invés de operações de corte efetuadas em uma matriz de

1.071.225 componentes, um grafo equivalente pode ser segmentado com uma matriz de 122.500

componentes, cerca de 9× menor.

Ressalta-se novamente a necessidade de estudos futuros relacionados ao trade off entre, es-

forço computacional, acurácia e sobrestimação. Apesar da compressão fornecida pelos grafos

equivalentes, deve-se atentar ao fato de que a construção dos vetor de movimento, em conjunto

com o casamento de regiões, é feita a partir de operações de matrizes com aproximadamente N
2

1

elementos, no caso da sequência Trainer, matrizes em média com 13.225 componentes para se
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rastrear o objeto e se calcular o vetor de movimento. Para escalas menores, ou grandes desloca-

mentos entre regiões (Figura 6.3), a correção de movimento pelo vetor de movimento se mostrou

importante para o aumento na acurácia.

(a)

(b)

Figura 6.15: Comparação de segmentação, do 7o ao 9o quadro da sequência Trainer relativos às segmentações EQQ
(a) e EQT (b). Observa-se uma maior acurácia para o mapa equivalente construído por regiões de toda a sequência,
EQT. No caso quadro a quadro, EQT, além de uma acurácia mais baixa, observa-se uma sobrestimação relevante.

As sequências mais estáveis, como um movimento relativo entre regiões menos acentuadas

(Figura 6.3), são as de maior escala, Mobile (4a oitava) e Panda (5a oitava). Nessas duas sequên-

cias há uma relação inversa a apresentada para a Mobile e Panda, a segmentação quadro a quadro

promove uma menor sobrestimação do que o corte aplicado em toda a extensão de quadros. Mo-

bile e Panda mantém valores de acurácia próximas aos 99% e 94%, respectivamente, para todos

os mapas e tipos de corte.

Um bom desempenho dos mapas sem correção de movimento, NAQ e NAT, nas sequências

Mobile e Stefan, indicam uma não necessidade de rastreamento e cálculo de vetor de movimento

para situações de pouco movimento e distorção entre quadros. Entretanto, trabalhos futuros po-

dem averiguar melhor a relação entre esforço computacional e desempenho, pode-se determinar

uma quantidade de quadros ideal para uma corte ao longo de uma sequência longa e espera-se

que diante de pouco movimento o número de iterações para o cálculo de vetor de movimento e

rastreamento de regiões seja baixo.
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(a)

(b)

Figura 6.16: Comparação de segmentação, do 7o ao 9o quadro da sequência Mobile relativos às segmentações EQQ
(a) e EQT (b). Os resultados para sequência Mobile são bastante próximos, nos dois casos destacados, trabalha-se
com grafos equivalentes, que comprimem os mapas de peso para segmentação, preservando o resultado final.

(a)

(b)

Figura 6.17: Comparação de segmentação, do 5o ao 7o quadro da sequência Panda relativos às segmentações EQQ
(a) e EQT (b). Observa-se um maior nível de sobrestimação para o corte aplicado em toda a sequência, EQT.
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7 CONCLUSÃO

O presente trabalho apresentou uma proposta de algoritmo que generaliza conceitos da trans-

formação SIFT para grafos de regiões, visando aplicação em representações de uma imagem com

relações de vizinhança menos triviais que a proporcionada por pixels. O descritor local proposto

tem como objetivo o casamento de regiões entre quadros de vídeo para a segmentação de objetos

ao longo de cenas, simplificando a análise de um volume de vídeo (espaço×tempo) ao se eliminar

redundâncias espacias e temporais.

No processo de desenvolvimento do algoritmo de criação de descritores locais para as regiões,

foi desenvolvido um método de agrupamento que alia velocidade e automaticidade da técnica

de watershed com a velocidade e precisão do algoritmo SLIC. Esse método de agrupamento

de regiões se mostrou eficaz no propósito de conservar características de um objeto e cenas no

decorrer de quadros de um vídeo, características importantes para a estabilidade dos descritores e

a sua eficácia no casamento de regiões e importante para a segmentação de objetos em cenas.

O descritor proposto conseguiu conservar as propostas do SIFT, realizando o casamento de

regiões mediante transformações geométricas nas cenas e nos objetos, como mudanças na escala

das imagens, sua orientação e transformações no seu nível de intensidade. Não foram realizados

testes específicos para avaliação direta da eficácia do descritor, ficando inicialmente restrita a uma

avaliação perceptual.

As contribuições do descritor proposto foram analisadas de maneira indireta, com a compa-

ração das segmentações em grafos que utilizam ou não o descritor proposto para um ajuste de

posição dos elementos antes da determinação da força de ligação entre esses de um quadro para

um quadro subsequente.

Outra forma de avaliação se baseou na análise da melhora na acurácia das segmentações em

trechos de vídeo, ao se inserir informações nos grafos a respeito daqueles elementos que são

correspondentes ao longo do trecho, quando não atribuídas forças de ligação mais altas, cada

elemento e suas correspondências foram representados por um único nó dentro de um grafo equi-

valente destinado a segmentação.

Os resultados se mostraram favoráveis a utilização do algoritmo proposto na segmentação

de vídeos via grafo, principalmente em situações de grande movimento relativo entre regiões

de um objeto. Apesar dos testes terem sido aplicados em trechos curtos de vídeo, 9 quadros,

em um número baixo de sequências, alguns resultados significativos foram encontrados, como

113



a necessidade da correção de movimento em uma segmentação realizada simultaneamente em

todos os quadros da sequência. Essa correção é promovida por um fluxo óptico obtido por meio

do algoritmo proposto.

7.1 CONSIDERAÇÕES FINAIS

Foi apresentada uma proposta de algoritmo que traz conceitos da transformação SIFT para o

domínio dos grafos de região, criando descritores para as regiões que aumentam a discriminação

entre elas, objetivando o rastreamento de objetos ao longo de cenas. Esse rastreamento se mos-

trou eficiente no aprimoramento da segmentação de objetos ao longo de cenas, ao ser utilizado

na correção do movimento entre as regiões. O estudo do casamento de regiões para a criação de

grafos equivalentes, com uma quantidade reduzida de elementos, apresentou resultados promis-

sores para a utilização do algoritmo proposto em trabalhos futuros, visando a redução do esforço

computacional na segmentação em volumes de vídeo.

7.2 TRABALHOS FUTUROS

Para trabalhos futuros espera-se aperfeiçoar o descritor e sua forma de aplicação em vídeos,

avaliando a eficiência para sua utilização comparado a outros trabalhos. A princípio, deve-se

melhorar a técnica de agrupamentos propostas. A união das técnicas watershed e SLIC para a

criação de regiões/superpixels se mostrou resultados promissores, entretanto, se faz necessário

a definição mais precisa dos parâmetros para essa adaptação. O método de agrupamentos por

escalas pode ser utilizado para segmentações em hierarquia, aproveitando as características da

imagem em diferentes estágios.

Os ganhos da adição de informações quanto os canais de cores no descritor proposto, um dife-

rencial em relação ao SIFT, pode ser detalhadamente explorados. O descritor pode ser submetido

a testes mais objetivos quanto o confronto de características entre cenas, com outras propostas

de transformações entre imagens. Assim como os pontos-chave algoritmo SIFT, podem ser defi-

nidas regiões-chave, um grupo restrito de regiões para quais serão calculados os descritores que

fornecem um melhor casamente de regiões.

No campo da segmentação, novas formas de organizar os grafos podem ser definidos, e outras

técnicas de cortes em grafos aplicadas. A análise principal recai na definição de um equilíbrio

entre esforço computacional, acurácia e erros sobre-segmentação na análise de volumes de vídeo.
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