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RESUMO

Na segmentacdo de objetos em videos por intermédio de um rastreamento quadro a quadro de re-
gides, a manutengao da coeréncia temporal depende diretamente da qualidade desse rastreamento
ao longo dos quadros. Para esse fim, adaptou-se para o dominio dos superpixels processados
como grafos de regides, principios de um extrator de caracteristicas bastante difundido, o SIFT,
que exibe grande eficiéncia na identificacdo/rastreamento de objetos em cenas. Um descritor é
criado para cada regido, a partir de histogramas de orientacdo do gradiente de setores ao redor
do vértice, calculado de forma a garantir, como no SIFT, invariincia a escala, rotag¢do e ilumina-
cdo. As contribui¢des do descritor proposto na segmentacdo de objetos em video, feita a partir
de corte em grafos, sdo testadas em trés niveis: ajuste, ou compensagao, de movimento do objeto
em cena; reforco nos pesos de ligac@o entre arestas dos grafos, para os elementos considerados
correspondentes entre os quadros e; determinagdo de grafos equivalentes com reducao no nimero

elementos guiada pela correspondéncia encontradas a partir algoritmo proposto.

ABSTRACT

In the segmentation of object in video through frame to frame region tracking, the temporal cohe-
rence maintenance depends directly on the quality of the regions tracking along the frames. To
this aim, principles of a widespread feature extractor, the SIFT, were adapted for the superpi-
xels domain rendered as region graphs, which exhibits high efficiency in identification/tracking
of objects in scenes. A descriptor is created to each vertex of graph, from orientation histograms
of the gradient of bins around the vertex, calculated to ensure, as the SIFT, a scale, rotation and
lighting invariance. The contributions of the proposed descriptor in the segmentation of objects in
video, performed by a graph cut, are tested on three levels: the adjustment or compensation of the
movement of object in scenes; the strengthening of the connection weights between edges of the
graphs for the elements considered matches between frames and; the determination of equivalent
graphs with reduction in the number elements guided by matches found through the proposed

algorithm.
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1 INTRODUCAO

1.1 CONTEXTO

A segmentacio de objetos ou regides de interesse em videos € um problema basico em visao
computacional. Na segmentacdo de dreas de interesse ao longo de quadros de um video, regides
que convirjam ao longo de varios quadros, se faz necessdrio um agrupamento/rotulacdo ndo su-
pervisionado de pixels ou elementos. Em geral, esses agrupamentos utilizam relagdes de textura,
cor e/ou movimento para serem construidos [1], essas relacdes se ddo entre pixels proximos,

vizinhos, ao longo do espaco e ao longo do tempo.

Quando se realiza um agrupamento em mais de um quadro simultaneamente, os pixels tomam
formato de uma unidade espago-temporal, unidades de volume conhecidas como voxels, que
quando relacionados a um mesmo bloco de voxels, sdo chamados de supervoxels. Essa aborda-
gem relaciona os pixels dentro de um quadro e de seus vizinhos, consequentemente A quantidade
de dados gerados por um volume espago-temporal de um video, ao longo de um niimero pode
demandar um grande esforco computacional, principalmente ao se analisar os elementos como

volumes [2, 3].

Uma forma de se reduzir o esforco computacional produzido por uma anélise de volumes ao
longo de vérios quadros, é agrupar previamente os pixels de um quadro em regides, chamadas
de superpixels. Esse procedimento elimina redundancias em um quadro agrupando pixels seme-
lhantes e grandes regides de pixels, reduzindo o niimero total de elementos por quadro. Ao se
analisar elementos vizinhos sejam eles vou apenas por suas relagdes de vizinhanga, sejam eles pi-
xels ou voxels, superpixels ou supervoxels, podemos representd-los como um problema de grafos,

amplamente utilizado em agrupamento de regides e segmentagdo de imagens.

A segmentacdo de imagem por meio de grafos demostram uma alta performance quando ori-
entadas a um objeto, ou seja, quando um usudrio define uma certa quantidade de elementos perten-
centes ao fundo ou ao objeto [4]. Entretanto, essa abordagem supervisionada se torna ineficiente
para varios quadros, fazendo-se necessdrio a interven¢do de um algoritmo que oriente a segmen-
tacdo do objeto automaticamente, um rastreamento. Em geral, os algoritmos de rastreamento
mais difundidos se restringem ao dominio dos pixels, os menores elementos que representam

uma imagem, apresentando poucas representagcdes para superpixels.



1.2 APRESENTAGCAO DO PROBLEMA E JUSTIFICATIVA

A segmentac¢do hierdrquica utilizando grafos [5, 6] vem sendo aplicada para redugdo do es-
for¢co computacional ao se analisar um video por meio de voxels. Uma abordagem de correspon-
déncias entre superpixels é vastamente empregada dada [1, 7, 8, 4, 9], entretanto questiona-se a
manutencdo da coeréncia temporal e espacial, dada a instabilidade de uma segmentagdo quadro
a quadro [5], ou seja, pode haver distor¢cdes entre regides correspondentes de um quadro e seu

vizinho, bem como regides com erros de correspondéncia.

Para uma boa manutencdo da coeréncia temporal, se faz necessdria uma técnica de rastrea-
mento que aumente o desempenho do casamento de superpixels tendo como base o confronto
entre as caracteristicas de aparéncia (cor, textura) e posi¢ao dessas regides ao longo do tempo.
Essas propriedades sdo limitadas, isto €, duas regides pertencentes a dois quadros consecutivos
apresentando niveis de cor ou posi¢do muito proximas (sendo iguais) ndo representam necessa-
riamente um mesmo objeto. O movimento de regides entre quadros deve ser estimado para uma
melhor utilizacdo de propriedades que projetam pouca informacao. A definicdo de caracteristicas
ditas discriminantes para essas regides (superpixels) também estabelece uma boa relagdo entre

quadros, consequentemente, um bom rastreamento.

A Transformacdo de Caracteristicas Invariante a Escala (SIFT) [10] é um algoritmo bastante
difundido em visdo computacional. Inspirado em algoritmos que tentam imitar o funcionamento
do sistema visual humano, o SIFT tem se mostrado eficiente na captura de pontos relevantes
de uma imagem para confronto de caracteristicas, seja para rastreamento ou reconhecimento de
objetos em imagens ou video. A aplicacdo do algoritmo SIFT em processamento de videos ndo se
restringe apenas ao rastreamento de objetos [11], sendo aplicada, por exemplo, em estabilizacdo
de videos [12].

O algoritmo SIFT trabalha com a selecdo de pontos especiais para a extragdo de caracteristi-
cas, a fim de aumento na precisdo no casamento de pontos e diminui¢do de esfor¢co computacio-
nal. A utilizacdo do histograma associado as regides e de um descritor produzido pela SIFT, ou
semelhante, exibe uma melhora de desempenho na segmentacdo videos [5, 13, 14]. Entretanto,
o célculo dos descritores € realizado nas imagens construidas por pixels, ou seja, ndo se apro-
veita a simplificacdo das imagens enquanto representadas por regides e nem a reducdo do esforco

computacional associado a essa simplificacao.



1.3 METODOS PROPOSTOS

Este trabalho tem como objetivo a constru¢do de um descritor local que opere em uma ima-
gem construida por superpixels, criando vinculos entre superpixels de quadros consecutivos, as
quais podem definir, com razodvel grau de coeréncia, regides correspondentes. Pare esse fim,
adaptou-se o algoritmo SIFT para extracdo de caracteristicas em regides de pixels. Primeira-
mente, a técnica watershed € aplicada em um espago de escala, em conjunto com o algoritmo de

agrupamento SLIC [15], efetuando uma sobre-segmentacdo das imagens, os superpixels.

Em seguida, as definicdes de gradiente sdo adaptadas de forma a atender regides de diferentes
tamanhos, posi¢des (por vezes conflitantes) e conformacdes. O descritor de gradientes € cons-
truido a partir das vizinhancas de uma regido em andlise. Diferentemente da SIFT, processo é

realizado para todos os elementos de uma imagem, porém, em uma escala determinada.

Para testar a contribui¢do do descritor proposto segmentagdes utilizando um corte de grafos
de regides foram aplicadas, visando o isolamento do objeto ao longo de 9 quadros. Os pesos de
ligacdo dos grafos foram determinados de 4 maneiras, de forma medir as possiveis contribui¢des
do rastreamento e casamento de regides proposta. A segmentacdo de objetos em cenas é tem
como base a segmentacdo manual (ground truth - GT) do objeto no primeiro quadro, por meio
dessa referéncia deseja-se avaliar a contribui¢c@o do descritor proposto no rastreado e segmentacao

dos objetos a partir do primeiro até o ultimo quadro das sequéncias testadas.

1.4 APRESENTAGCAO DO MANUSCRITO

Incluindo este capitulo de Introdugio, o trabalho se desenvolve em total de oito capitulos. O
Capitulo 2 apresenta definicdes sobre o funcionamento do sistema visual humano, os processos
bioldgicos que sdo base para o algoritmo SIFT e, de forma resumida, apresenta a implementacao
desse algoritmo que inspira o presenta trabalho. Para uma melhor compreensao dos métodos
de segmentacdo propostos, bem como o campo da teoria dos grafos adotada, o Capitulo 3 traz
defini¢des desses conceitos. O processo de segmentacao por escalas e a extragdo de caracteristicas
de regides que sao detalhadamente explicados nos Capitulos 4 e 5, respectivamente. Os resultados
sdo apresentados no Capitulo 6 e as conclusdes acerca desses resultados, inclusas propostas de

trabalhos futuros, no Capitulo 7.



2 SISTEMA VISUAL HUMANO E O ALGORITMO SIFT

2.1 INTRODUCAO

Sdo abordados neste capitulo principios de anatomia e processos fisiolégicos humanos que
estdo envolvidos no sistema visual. O inicio do capitulo envolve aspectos da anatomia do olho
humano, como as estruturas que o compdem se organizam para a formacdo de imagens na retina
e como as células receptoras se distribuem ao longo dessa rede receptora. Essas primeiras defi-
ni¢cdes dao base para o entendimento dos campos receptivos, que funcionam de acordo com o0s
arranjos formados pelas células receptoras na retina, extraindo informagdes importantes para os
processos da percepcao, que inspiram o algoritmo SIFT (transformacgdo de caracteristicas invari-
ante a escala). Esse algoritmo, que reflete principios biolégicos em um descritor de gradientes,
se mostra um referencial para algoritmos de reconhecimento e confronto de caracteristicas e é

brevemente descrito ao fim deste capitulo.

2.2 VISAO HUMANA

Para compreender as demandas e aplica¢Oes de grafos em processamento de imagens, € es-
sencial uma breve explanacdo sobre alguns aspectos da visdo e percepcdo humana, visto que a
resolucao de problemas que contemplem a captura e interpretacao de cenas, € o principal objetivo
em visdo computacional. Mesmo quando registros ndo sdo realizados via ondas eletromagnéti-
cas, como na ultrassonografia, ou na faixa nao visivel do espectro eletromagnético, como no caso
de aquisi¢des térmicas, imagens médicas em geral (ressonincia magnética, radiografia), busca-
se a interpretacao desses dados em mapas de magnitude que traduzam essas informacdes para o

espectro visivel.

2.2.1 Estrutura dos olhos e formacao da imagem na retina

De maneira superficial, apresentando a cldssica analogia do olho humano a uma camera foto-
grifica, ambos sdo dotados de mecanismos para controle de entrada de luz, lentes para ajuste do
foco e receptores para transdugdo da luz. A luz inicia seu percurso pelo olho humano através da
cornea, que estd diretamente conectada a esclera (branco do olho), esse conjunto forma a prote¢ao
inicial de todo o aparato visual. O olho humano tem um formato aproximadamente esférico com

cerca de 20 mm de didmetro [16].



Por meio de dois musculos, a pupila controla a entrada de luz que atinge a retina. Tanto por
uma questdo de protecdo, em situagdes de grande exposi¢ao luminosa, quanto para uma melhora
no contraste da imagem, em momentos de escassez de luz. A resposta da pupila a estimulos

externos que atingem a retina € simétrica, controlada pelo sistema nervoso autdonomo [16].

O cristalino € uma estrutura transldcida, constituida basicamente de dgua e proteinas, tendo
suas dimensdes controladas por meio do musculo ciliado. Apesar da analogia proposta, e da
intuicao induzirem o pensamento de que o sistema de lentes do olho humano é composto apenas
pelo cristalino, esse tem um papel importante na formacdo de uma imagem, mas uma contribuicao
pequena na refracdo da luz até a chegada a retina. Grande parte da refracdo sofrida pela luz é
gerada pela curvatura da cérnea, que se soma a do cristalino e a refracio oferecida pelos fluidos

que constituem os humores aquoso e vitreo.

Retina Pupila

H}JmOF Cristalin Humor Cérnea r
Vitreo 1.40 Aquoso 1.38 1.00
1.34 1.33

Figura 2.1: Estruturas do olho que operam no controle da entrada de luz e sua refragdo para formagdo da imagem no
olho (inspirado em [17]).

A contragdo do musculo ciliado alivia a tensdo nos ligamentos de suspensao do cristalino, o
qual entra em conformacdo mais arredondada para ajuste de foco de imagens na retina, origina-
das de objetos mais proximos aos olhos (cerca de 10 cm). Em estado relaxado, essa musculatura
aumenta a tensao nos ligamentos de suspensdo e deixa o cristalino mais achatado, em uma con-
formacao ideal para objetos que, devido a distancia, t€ém incidéncia de raios aproximadamente
paralelos na cérnea. Um objeto muito préximo aos olhos exige um ajuste no cristalino para com-

pensar a incidéncia difusa dos raios que chegam a cornea.

A luz que atravessa o cristalino em direcdo a cérnea, passa pelo fluido translicido e impuro
do humor vitreo. Tal impureza pode ser notada por meio das particulas suspensas que sdo exibi-
das no campo visual, chamadas de mocas volantes. Salienta-se tal peculiaridade do olho humano
para destacar a capacidade do cérebro em eliminar ou ignorar certos tipos de interferéncias cau-
sadas pelas limitacdes, ou propriedades intrinsecas, como no caso dos cilios, nariz e, por ventura,

armacoes de 6culos.



2.2.2 Cones, bastonetes e a transducao do sinal luminoso

Ao ser projetada na retina, a imagem € enviada ao cérebro na forma de sinais nervosos que
sdo inciados nos fotorreceptores, que se exibem em dois tipos, cones e bastonetes. Ambos recep-
tores sdo ativados por meio de proteinas especificas que se decompde na presenga de luz, em um
processo em cascata que chega a amplificar em milhdes de vezes um estimulo. Os bastonetes,
por exemplo, podem atingir metade de sua saturacio na presenca de 30 fétons de luz. A relacdo
entre o potencial desencadeado no receptor e a intensidade de luz absorvida pode ser aproximada
por uma relacdo logaritmica, permitindo aos olhos operarem em uma vasta faixa de intensidades

[17], comparativamente a uma relagao linear.

Além de seus formatos que dao referéncia aos seus nomes no portugués, o que diferencia
cones e bastonetes sdo as proteinas envolvidas no processo de absor¢cdo de luz. Ativados pela
proteina rodopsina, os bastonetes respondem a parte do espectro visivel, sdo responsdveis pela
percepcdo em baixo nivel da visdo humana, com grande contribuicio na detec¢do de movimentos

na periferia do campo visual e durante a visao noturna.

Os cones se apresentam em trés tipos, representados por trés variantes de proteinas com dife-
rentes respostas a diferentes faixas do espectro de luz. Antes da constatacao da existéncia desses
trés tipos de receptores, sensiveis principalmente as cores vermelha, verde e azul, tal fato foi pre-
viso 200 anos antes pelo fisico Thomas Young, que demonstrou que todas as cores do arco-iris,
incluindo o branco, poderiam ser obtidas a partir de proporcdo exata entre o vermelho, verde e
azul. Young induziu entdo que a retina do olho humano deveria perceber cores obedecendo uma

codificagdo composta por essas trés cores [16].
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Figura 2.2: Resposta em codificacdo de cores por comprimento de onda das células receptoras da retina: cones e
bastonetes (adaptado de [17]).



2.2.3 Distribuicao dos fotorreceptores na retina

A quantidade de bastonetes na retina € da ordem de grandeza de 100 milhdes de receptores,
enquanto o nimero de cones € consideravelmente menor, em torno de 3 milhdes de receptores
(Figura 2.3) [17]. Grande parte dos cones se concentram na regido da fovea, regido na qual ndo
sao encontrados bastonetes, a densidade de cones nesta regiao chega aos 150 mil elementos por
mm?, podendo ser comparada a um sensor quadrado com dimensdes 1,5x 1,5 mm [18]. Saindo
da fovea em dire¢do a regido mais periférica da retina, essa relacao se inverte e a densidade de

bastonetes se torna largamente maior que a de cones [16].
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Figura 2.3: Gréifico da concentracdo de cones e bastonetes versus a dngulo de afastamento em relacdo a févea
(adaptado de [18])

A percep¢do de uma visdo periférica menos definida do que a central, relacionada a fovea, é
amplificada pela conexao de vérios receptores a um mesmo neurdnio ganglionar, o qual transmite
o sinal para o cértex visual. Os 103 milhdes de receptores sdo distribuidos por cerca de 1,6 milhdao
de células ganglionares, perfazendo uma média de 60 bastonetes por célula e 2 cones por célula.
Na regido da févea, cada cone estd conectado diretamente a uma Unica célula ganglionar, cones
que ao longo da regido periférica vao se tornando maiores e mais escassos, enquanto em regides

mais periféricas, cerca de 200 bastonetes convergem a uma mesma fibra nervosa [17].



A Figura 2.4 ilustra a vari¢do de concentracao de tipos de receptores ao logo da retina e as co-
nexoes desses com as células ganglionares. A maior concentracao de bastonetes por ganglionares
amplifica o sinal luminoso em relacao os recebidos pelos cones. Esse fato, aliado a caracteristica
intrinseca dos bastonetes de maior sensibilidade a luz, de 30 a 300 vezes mais sensiveis que cones,
tornam os bastonetes importantissimos durante estimulos sob baixa luminosidade e nas periferias

do campo visual [17].

Periferia <@@—————————— > Févea

Horizontais

®
T~ Células /

Bipolares

— Células /
Amacrinas 5
_

Figura 2.4: Tlustracdo da distribuicio de receptores pela retina e suas conexdes com células nervosas que transmitem
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e processam previamente o sinal recebido (inspirado em [17] e [16]).

O sinal oriundo dos receptores € transmitido até o cortex visual por meio das células gan-
glionares, entretanto, a ligacdo entre essas duas células € intermediada por neurdnios bipolares.
Essas células bipolares estdo sob influéncia de inibitdria das células horizontais, mecanismo que
aprimora a percep¢ao do contraste. Se apresentando em cerca de 30 tipos e expressando em meia
duzia de fungdes, as células amdcrinas sao interneurdnios que ajudam na andlise do sinal antes de

sua chegada ao cértex visual.

2.3 CAMPOS RECEPTIVOS

Adaptado a partir de estudos para descricao de uma regido da pele a qual quando submetida
a um estimulo poderia induzir um reflexo, o termo campo receptivo foi utilizado para definir
disposicdes de regides no sistema nervoso, assim como na retina, regides caracterizadas por uma

resposta especifica dada uma certa organiza¢do neurdnios [19].



2.3.1 Modulacao centro-periferia

Toda a drea de fotorreceptores que circunda uma célula bipolar, e contribui para a despolariza-
cdo de sua membrana, é considerado um campo receptivo, despolarizacao a qual atua na produgao
de impulsos nervosos. Células bipolares estdo conectados diretamente a um conjunto de fotor-
receptores, ou a uma unidade quando se trata das proximidades da févea, essas conexdes diretas
formam o centro do campo receptivo. A periferia do campo receptivo é determinada por aqueles
receptores conectados a uma célula bipolar por meio de células horizontais, em uma conexdo de
inibitoria.

As células bipolares sdo separadas em duas categorias, ON ou OFF, que representam a forma
na qual as células respondem na presenga ou auséncia de luz. Pode-se ilustrar uma conexao
centro-ON em uma configuracao simples, com um bastonete no centro do campo receptivo e dois

na periferia (Figura 2.5(a)).
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Figura 2.5: Organizacido dos campos receptivos: (a) configuracio simples para uma célula bipolar centro-ON, com

um bastonete no centro do campo receptivo e dois na periferia; (b) campo receptivo em estado de repouso; (c)
resposta para um estimulo luminoso na regido central de um campo receptivo centro-ON; e (d) em toda drea do
campo receptivo, percebe-se uma diminui¢do na frequéncia de disparos devido a inibicdo provocada pela presenca
de luz na periferia do campo (inspirado em [16]).

Em uma configuracio centro-ON, hd uma constante produgdo de impulsos no repouso (Fi-
gura 2.5(b)). A presenca de luz no centro do campo receptivo promove a despolarizacdo da célula
bipolar (c) e um aumento na frequéncia de impulsos; caso essa luz atinga a periferia, a célula

bipolar sofre uma inibi¢dao que decresce o nimero de impulsos (d).

Como mencionado, os campos receptivos se estendem a todo o sistema nervoso. Em uma
conexao em maior escala, em um segundo nivel, as células ganglionares também formam campos

receptivos, em que a conexdo direta com uma célula bipolar, define seu tipo, ON ou OFF. O



mesmo esquema de campos receptivos das células bipolares (Figura 2.5(b), (c) e (d)) pode ser

estendido aos campos receptivos das células ganglionares.

As células ganglionares sdo classificadas em duas categorias principais, tipo-M e tipo-P. As
células ganglionares tipo-M t€m campos receptivos de grande drea e sdo sensiveis a estimulos de
baixo contraste, conduzindo-os de maneira mais rapida pelo nervo optico. Os campos receptivos
explicam ilusdes de Optica referentes a percepg¢ao visual do contraste, como bordas que aparentam
sofrer um realce devido a transi¢@o abrupta de iluminacao de uma drea para outra (Figura 2.6(a)).
A densidade de iluminagdo ao redor de um ponto cria a ilusdo de existéncia de pontos negros entre
os vértices dos quadrados exibidos na Figura 2.6(b), quando se foca o olhar em um dos vértices,
esse ndo apresenta o ponto, mas os demais sim, consequéncia da distribuicdo nao-uniforme de

fotorreceptores na retina.

EEEEEN
HEEEEEN
HEEEEEN

HEEEEEN
. EEEEER
|

Figura 2.6: Tlusdes de Optica de contraste: (a) para o cérebro e olho humano, um realce de bordas aparenta existir

percebido
real

entre as barras, que ¢ uma diferenca entre a intensidade real e a percebida ao longo das transicdes entre as barras, cada
uma com um nivel de cinza constante, essa ilusdo de realce € criada pelos campos receptivos e sua capacidade de
detectar transigdes; (b) pontos escuros, que ndo existem na imagem, sdo percebidos entre os vértices dos quadrados,
pela forma que as vizinhangas dos campos receptivos recebem luz para essa disposi¢do de regides claras e escuras,
sendo que nas vizinhangas entre os vértices o nimero de regides claras € maior. O efeito é maior na periferia da

visdo, onde os campos receptivos sdo mais extensos.

As células tipo-P tém resposta mais lenta rdpida e com pulsos mais duradouros que as tipo-M.
A sensibilidade quanto a diferenca do comprimento de onda de um estimulo luminoso, também
diferencia as células tipo-P das tipo-M. Na retina, os campos receptivos das células tipo-P sdo
encontrados nas oposi¢cdes de cores verde/vermelho e azul/amarelo. Os estimulos e as respostas

sdo andlogas as descritas para os campos receptivos de iluminagado (Figura 2.7).
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(b)

Figura 2.7: Organizac¢do dos campos receptivos em oposicdo de cores: (a) configuracdo simples para uma célula

bipolar centro-ON para a cor verde em oposicdo a cor vermelha na periferia; (b) mesmo padrdo para (a) mas para a
oposi¢do entre as cores azul, centro-ON, e amarela, periferia; (c) resposta para um estimulo luminoso convergente a
cor da regido central de um campo receptivo centro-ON; (d) frequéncia disparos cai em relacdo a (c) quando todo o
campo € submetido a cor que caracteriza o seu centro; (€) uma maior inibi¢do nos disparos de impulsos nervosos é

causada pela incidéncia de luz na periferia do campo receptivo, na cor de oposicdo a do centro.

Os campos receptivos de cores, bem como as caracteristicas tempo de resposta de suas células,
podem imprimir um padrdo de cores opostas na retina, quando essa € estimulada por uma Unica
cor por um longo periodo de tempo, e em seguida se troca esse estimulo pela cor branca, que
contém todos os comprimentos de onda (Figura 2.8(a)). Esse efeito seria explicado pela saturacao
de campos receptivos estimulados por uma mesma cor (Figura 2.7(b)), que ao ser trocado pela

luz branca, que contém a cor de estimulo e a sua opositora, a qual € ressaltada.

As percepgdes visuais equivocadas quanto a oposicdo de cores ndo se limitam a imposi¢oes
temporais. A oposi¢cdo de cores para uma regido e suas vizinhangas pode produzir a sensagao de
que uma regido tem cor diferente da real, uma vez posicionada em uma vizinhanga com certa cor.
Na Figura 2.8(b), os quadrados ‘b’ e ‘d’ dentro da regido quadriculada aparenta ter cores proxi-
mas, entretanto, visualizando-se os quadrados fora da regido, percebe-se que os quadrados ‘a’ e
‘d’ sdo idénticos e que b diverge, efeito fruto da oposi¢ao azul/amarelo. Isso indica que os campos
receptivos se estendem em varias escalas, da possibilidade de realce de bordas (Figura 2.6(b)) ao

reforco de oposi¢ao para regides (Figura 2.8(b)).
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Figura 2.8: Tlusdes de 6ptica de cor: (a) ao se focar o olhar no centro de um dos quadrados coloridos por cerca de

(@) (b)

30 s e se voltar o olhar para um dos quadrados brancos, logo acima ou abaixo, este fica preenchido pela a cor em
oposicdo a focada anteriormente; (b) cor da vizinhanca dos quadrados determina como a ele é percebido, note que o
quadrado ‘a’ e ‘d’ t€m cores idénticas, mas quando expostos a regides distintas, produzem efeitos distintos.

2.4 RESPOSTA NEUROLOGICA

As informacdes sdo enviadas pela retina por intermédio dos neurdnios ganglionares, que inci-
dem no nucleo geniculado lateral (NGL) [16]. O NGL (Figura 2.9(a)) de cada um dos hemisférios,
recebe informacoes referentes ao lado oposto do campo visual, por exemplo, toda a imagem refe-
rente ao lado esquerdo do campo visual, seja oriunda do olho esquerdo ou do olho direto, segue
pelo NGL direito.

Estudos sobre os potenciais de agdo no NGL indicam que os campos receptivos ali sdo quase
1dénticos aqueles que o estimulam [16]. Em sua aparente disposi¢do em camadas, as células do
NGL parvocelular se assemelham a células ganglionares do tipo-P, com dreas centro-periferia
pequenas e apresentando resposta a oposi¢ao de cores, verde/vermelho e azul/amarelo, em opo-
sicdo luz/escuriddao. Em contraste, as células do NGL magnocelular apresentam centro-periferia

extensos e insensiveis a diferencas na frequéncia da luz de estimulo.

De forma semelhante ao que acontece com o NGL em relacdo as aferéncias dos neurdnios
ganglionares, grande parte de uma das camadas cortex estriado (Figura 2.9(a)), a camada IVC,
responde de acordo com as células NGL magnocelular e parvocelular. Em outra camada do
cortex estriado, a IVCa, neurdnios possuem campos receptivos insensiveis a luz, e na camada

IVCS, neur6nios apresentam centro-periferia operando em oposicao de cores.
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Os campos receptivos aparentam ter uma grande contribuicdo na forma em que o cérebro
interpreta os estimulos visuais. Os estudos laboratoriais quanto ao funcionamento do cortex es-
triado ganharam forca com os neurobiologistas David Hubel e Torste Wiesel, no inicio da década
de 1960 [20]. Seus achados apontaram para uma gama de propriedades da percepcao visual entre
mamiferos, inclusive a organiza¢do de campos receptivos binoculares, essencial em seres huma-

nos.

trecho na retina

neurdnios do
NGL
neurdnio
O do cértex

cortex estriado estriado

(a) (b)

Figura 2.9: Percurso dos estimulos visuais pelo cérebro humano: (a) representagdo do caminho dos estimulos ner-
vosos da retina, passando pelo nicleo geniculado lateral (NGL) até o cértex estriado; (b) ilustragdo para uma célula
simples de um campo receptivo do NGL, que combina campos receptivos com origem na retina, que estimulam um
neurdnio no cértex visual.

Os trabalhos de Hubel e Wiesel constataram também uma seletividade quanto a direcdo de
movimento, em que se observava resposta do cortex quando uma barra de luz se movimentava em
certa direcdo, o mesmo efeito ndo era observado quando barra se movimentava na direcdo oposta,

indicando a presenca de neurdnios no cortex especializados na andlise de movimento.

2.4.1 Seletividade quanto a orientacao

Nos estudos relacionados a seletividade de neurdnios por certas orientagdes, destaca-se o ex-
perimento com uma barra de luz, que era posicionada em uma orientagdo 6tima para 0 campo
receptivo de um ner6nio em andlise, ressaltando o que é possivelmente uma das propriedades

mais importantes na andlise de objetos, essa seletividade quanto a orientacao(Figura 2.10).

Grande parte dos neurdnios da camada V1 do cortex estriado, bem como alguns da camada
IVC, € seletiva a orientagdo. Uma organizagdo simples de campos receptivos (Figura 2.9 (b)) pode
explicar a predilecdo por uma certa orientacao, entretanto, nio se aplica a campos receptivos que
respondem a orientacdo independentemente da posi¢do da barra ao longo do campo, esse tipo de

organizacdo foi rotulada por Hubel e Wiesel como célula complexa.
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campo

estimulo luminoso estimulo visual receptivo

Figura 2.10: Uma célula simples de um campo receptivo no NGL promove diferentes respostas para diferentes orien-
tacdes de um estimulo luminoso. A intensidade da resposta ao estimulo luminoso € codificada em frequéncia, quanto
maior o nimero de impulsos, maior o estimulo visual, que tem seu pico quando a barra luminosa tem orientacao
igual a orientacdo de predilecdo do campo receptivo.

Tomando ensejo nas descobertas quanto ao funcionamento do cortex visual, [21] hipotetizou
que a liberdade de posicionamento de células complexas ao definir a orientacdo de um estimulo,
seria o ponto chave para o reconhecimento e casamento de caracteristicas de objetos 3D ao longo
de varias vistas. O SIFT [10] foi baseado nessa ideia, preservando a orientagdo posicional ao

descrever um ponto por meio de sua vizinhanga.

2.5 O ALGORITMO SIFT

Suavizagdes por
Gaussianas e Calculo de gradiente
[(X,y)®»| redimensionalizagdes |— nas imagens do
para e criacdo de um espaco de escalas
espaco de escalas
Célculo dos
+ descritores dos
pontos-chave
Diferenca de x | ’
imagens vizinhas Deteccdo de Selecdo de
no espago de —> extremos | pontos-
chave
escalas

Figura 2.11: Diagrama de funcionamento do SIFT. O algoritmo tem como ponto principal a criagdo de um espaco
de escalas para a determinagdo de mapas de gradiente e extracdo de pontos-chaves, para os quais serdo criados os
descritores locais.
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O algoritmo SIFT segue 4 passos principais: (1) detec¢do e selegdo de extremos em um espago
de escalas; (2) localizacdo de pontos-chave; (3) definicdo da orientacdo e magnitude dos pontos-
chave; e (4) criagdo de um descritor para os pontos-chave (Figura 2.11). Serdo discutidos neste
capitulo aqueles passos que inspiram os métodos adotados, ndo dando &nfase a passos sem um

correspondente no algoritmo proposto, como a selecao de pontos-chaves.

2.5.1 Espaco de escalas

No primeiro passo, as escalas representam um conjunto de imagens oriundas da convolugao
da imagem da /(x,y) com Gaussianas G(x,y, ko) de diferentes desvios padrdo, determinados

por um fator de escala k:

L(z,y, ko) = I(z,y) * G(z,y, ko), 2.1)
em que:
1 w2 2
G(z,y,0) = 6_( 27 ). 2.2)

V2o

Esse procedimento simula redimensionamentos consecutivos na imagem para a selecdo de
pontos que se preservam nessas mudancas de escala, pontos-chave. O espago de escalas € divido
por uma constante de escala k que varia em passo de k = 2!/* até atingir o valor de 2, ou seja, até
dobrar o valor inicial de o. A partir desse ponto, a imagem € reduzida por um fator 2 e o processo

reiniciado, configurando uma oitava.

Segundo Lowe, para cobrir uma oitava objetivando invariincia a escala, deve-se produzir
s + 3 imagens dentro da oitava. Uma vez completada a oitava, pega-se a imagem que teve seu o
dobrado e inicia-se uma outra oitava com essa imagem subamostrada, promovendo uma redugao
em 2Xx de suas dimensdes (Figura 2.12). A deteccdo de extremos e pontos-chave € realizada nas
diferencas entre a pilha de imagens suavizadas, uma oitava. Visto que as imagens de uma oitava
estdo suavizadas, uma maneira mais eficiente de se obter as diferencas € realizando a subtra¢ao
em pares das imagens:
D(z,y) = L(x,y, ko) — L(x,y,0). (2.3)

Denomina-se mais eficiente o método utilizando a equagdo (2.3), pois a convolucdo reali-
zada com diferencas entre Gaussianas € uma boa aproximacgdo do Laplaciano de uma Gaussiana

normalizado o2 572 G originalmente utilizado proposto na referéncia [22]:
(k - 1>U2 VQ G(l’, Y, 0) * I(l’,y) ~ (G(l’,y, ]{]0') - G(;C,y, U)) * I(l’,y), (24)
uma vez que:

(G(Ivya ]{0‘) - G(xvyvg)) * I(ZL’,y) = L(l’,y, ]{?0‘) - L(I,y,O‘), (25)
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evita-se uma novas filtragens utilizando as imagens L(x,y). A Figura 2.12 exibe uma ilustracio

que esquematiza os espagos de escala quanto as Gaussianas e suas diferencas.

Escala ﬁ = >

(e |

oitava) M
:ﬁp

%
“f

Escala >y@—>
(n2
oitava) >@ 5

Diferenca de Gaussianas
Gaussianas (DoG)

Figura 2.12: Espago de escalas € criado a partir da diferenca de Gaussianas que suavizam um imagem original,
simulando uma redimensionaliza¢do dessa imagem. O crescimento na escala implica em uma maior suaviza¢do da
imagem, ao atingir certo nivel de suavizacdo, a imagem tem dimensdes reduzidas pela metade, configurando uma
nova oitava (adaptado de [10]).

2.5.2 Deteccao de extremos e selecao de pontos-chave

A detec¢do de extremos € feita em uma vizinhanga 26-conectividade em torno de um pixel em
uma pilha de trés imagens de diferencas da oitava em sequéncia, estando este pixel na imagem
central. Se um pixel central tem maior ou menor valor de diferenga em relacio aos seus 8 vizinhos
na mesma imagem e seus 18 vizinhos nas outras duas imagens da pilha, ele é considerado um

extremo.

Os pontos definidos como extremo sdo entdo candidatos a pontos-chave. Exclui-se desses
extremos, pontos que possuam pouco contraste em relagdo a vizinhanca, sensiveis a ruido, ou que
representem arestas, que formariam descritores pobres em informa¢do. Uma vez selecionados os

pontos, esses restantes sdo chamados de pontos-chave e sdo fonte para a criacdo dos descritores.
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Figura 2.13: Para restri¢do no nimero de descritores criados para uma imagem, pontos extremos sdo detectados
entre as imagens do espaco de escalas. Um pixel é considerado relevante se tem maior magnitude dentro de uma
vizinhanc¢a de 26, 8 com origem na imagem da escala em andlise e 18 pixels da imagens das escalas acima e abaixo
do pixel em anélise.

2.5.3 Determinacao da orientacao dos pontos-chave

A defini¢do da orientagdo e magnitude dos pontos-chave, terceiro passo, € realizada na res-
pectiva imagem do espacgo de escalas do ponto-chave. Mapas de gradiente sdo criados, dos quais

as proje¢oes horizontal e vertical,
mx:L(x—i—l,y)—L(x—l,y), (26)

my = L(z,y+1) — L(z,y — 1) 2.7

respectivamente, geram uma magnitude

m(z,y) = \/m3 + m (2.8)

0(z,y) = tan™*(m,/m,). (2.9)

€ uma orientagcao

Pode-se representar essas propriedades vetorialmente, em que a magnitude e orientagdo de
cada pixel € dada por:
m = 3 Ly, (2.10)
jeVE
sendo V;* a vizinhanga 4-conectividade do pixel 4, L; sua magnitude e u; ; é o vetor unitdrio que
define a diregdo entre i e j, neste caso, o conjunto [(£1,0),(0,41)]. Essa forma vetorial de

representacdo serd ttil em termos de analogia para os métodos propostos neste trabalho.

Um histograma de orientagdes € criado para uma regido ao redor do ponto-chave (Figura
2.14(a)). Cada amostra adicionada ao histograma € ponderada pela magnitude do gradiente e

por uma Gaussiana circular simétrica em relagdo a localizagdo do ponto-chave. A orientagdo
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de com maior magnitude dentro do histograma € selecionada como a orientacdo do ponto-chave
(Figura 2.14(b)). A partir de um limiar, até trés picos de orientagdes e suas respectivas magnitudes

sdo relacionados a localizag¢ao do ponto (Figura 2.15).

~

-~ - - - /
N

.
. //

(b)

Figura 2.14: Determinacdo da orientagdo de um ponto-chave: (a) selecionado um ponto-chave, ponto destacado

com a cor vermelho; (b) determina-se a sua orientacdo de acordo com a orientagdo vencedora para histograma
calculado com base mapa de gradiente m(x,y) da escala em andlise, o vetor em vermelho representa a orientagéo
do ponto-chave, que € visivelmente a direcdo de maior frequéncia e amplitude para o mapa de gradiente ao redor do

ponto-chave.

Figura 2.15: Pontos-chaves e suas respectivas dire¢des e escalas representadas por vetores em trés imagens distintas.
A orientacdo do ponto-chave é representada pela dire¢do do vetor e a escala pela magnitude do vetor, quanto menor
o vetor, menor a escala, quanto maior, maior a escala. Uma mesma posi¢do pode estar associado a mais de um

ponto-chave.
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2.5.4 Criacao dos descritores

Novos histogramas sdo calculados em setores ao redor do ponto-chave, com as orientagdes
dos gradientes referenciadas pela orientacdo do ponto-chave, o que gera invariancia a rotacao. Os
histogramas, com elementos também ponderados pelas magnitudes dos gradientes e pela janela
Gaussiana, sdo dispostos em um unico vetor, definido como descritor do ponto-chave. Esse des-

critor € normalizado em valores entre O e 1, objetivando a invariancia as mudangas na iluminacao.

Gradiente ao redor do ponto-chave Descritor do ponto-chave

Figura 2.16: Grade retangular para cdlculo dos histogramas de orientacdo do mapa gradiente ao redor de um ponto-
chave. A esquerda o mapa de magnitudes e orientacdes (gradiente) é dividido em quatro setores ao redor do ponto-
chave, no caso, cada uma com 16 pixels. Essa grade de setores deve ter a mesmo alinhamento do ponto-chave em
andlise, representada pela seta em vermelho. Para cada setor, a magnitude e orientacdo desses pixels, referente ao
mapa de gradiente da escala e oitava em andlise, sdo amostrados em um histograma de orienta¢do ponderado por
uma Gaussiana de desvio padrdo proporcional a escala (indicado com circulo azul) e pela magnitude do vetor. O
histograma de cada setor para 8 orientacdes € observado na imagem da direita (traduzido de [10]).

k| ¥
s 11

Descritor do ponto-chave

Figura 2.17: Criacdo do descritor por meio dos histogramas de orientagdo. As componentes dos histogramas (a
esquerda) calculados em setores em torno do ponto-chave sdo distribuidos em componentes de um vetor, que ao ser
normalizado, visando invaridncia a mudangas na intensidade, configura descritor do ponto-chave (adaptado de [10]).
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2.6 CONFRONTO E CASAMENTO DE CORRESPONDENCIAS

Realizou-se o confronto entre imagens submetidas a transformacdes descritas anteriormente:
em escala (Figura 2.18); em rotagdo (Figura 2.19) e; em intensidade luminosa (Figura 2.20).
Os pontos com produto interno entre descritores que assumem entre si seu maior valor, sdo con-
siderados correspondéncias, sendo ilustrados por um padrdao de cor e dimensdo proporcional a

magnitude da ponto-chave.

(b)

Figura 2.18: Confronto entre duas vistas distintas de uma cena, uma delas submetida a uma transformacao na escala:
(a) vista em seu aspecto original e; (b) vista com dimensdes reduzidas pela metade, mostrada no aspecto original
para melhor visualizagcdo. Os pontos correspondentes entre as duas imagens sdo marcados por circulos com um
mesmo padrdo de cor e tamanho. Devido a grande quantidade de pontos, somente sdo exibidos correspondéncias
com produto interno superior a 0, 9.

(b)

Figura 2.19: Confronto entre duas vistas distintas de uma cena, uma delas submetida a uma rotacao: (a) vista em seu
aspecto original e; (b) vista rotacionado em 60° no sentido anti-hordrio. Os pontos correspondentes entre as duas
imagens sdo marcados por circulos com um mesmo padrio de cor e tamanho. Devido a grande quantidade de pontos,
somente sdo exibidos correspondéncias com produto interno superior a 0, 9.
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(b)

Figura 2.20: Confronto entre duas vistas distintas de uma cena, uma delas submetida a uma transformacao na ilumi-

nagio: (a) vista em seu aspecto original e; (b) vista com magnitude reduzida em /2x. Os pontos correspondentes
entre as duas imagens sdo marcados por circulos com um mesmo padrdo de cor e tamanho. Devido a grande quanti-

dade de pontos, somente sdo exibidos correspondéncias com produto interno superior a 0, 9.
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3 GRAFOS E SEGMENTACAO DE IMAGENS

3.1 INTRODUCAO

Sao definidas neste capitulo as propriedades da teoria dos grafos e de como elas se aplicam em
processamento de imagem. A teoria dos grafos tem uma ampla lista de defini¢des atribuidas a par-
tir de suas representacoes graficas. Este trabalho abordard apenas os aspectos basicos, suficientes
para desenvolver e compreender os métodos propostos. Ao final do Capitulo serdo apresenta-
das as técnicas de segmentacdo empregadas neste trabalho, watershed e SLIC na formagao de

agrupamentos e GrowCut na segmentagao de objetos nos videos via grafos.

3.2 GRAFOS

A definicdo da palavra grafo é oriunda da capacidade dessa representacdo poder ilustrar pro-
blemas graficamente, permitindo uma visualizacdo mais intuitiva para solucdes de problemas.
Isso reflete situagdes em que se torna conveniente tratar e descrever um problema por meio de um
conjunto de pontos conectados por setas ou linhas, sejam esses pontos, pessoas, lugares, &tomos,
moléculas, etc. Frisando-se que o importante nesse tipo de anélise nao € a posi¢ao dos pontos, hd
varias maneiras de se desenhar um grafo, no entanto as relacdes estabelecidas entre os elementos

que o constituem, muitas vezes rotulada com algum tipo de ponderagdo, sdao preservadas [23].

3.2.1 Historico

Figura 3.1: Tlustracdo das pontes de Konigsbert sua representacéio por grafos. O problema envolvendo as pontes de
Konigsbert consistia em determinar se seria possivel atravessar pelas sete pontes, sem repeti-las, e retornar ao ponto
inicial (adaptado de [24]).

22



A origem da utilizac¢do dos grafos remete ao ano de 1736, quando Euler provou ndo solucio-
navel o cldssico problemas das pontes de Konigsbert. Esse problema retrata duas ilhas conectadas
por sete pontes, para as quais se questiona a possibilidade de se atravessar pelas sete, uma tnica
vez em cada, e retornar ao ponto inicial. Dentro de todas as solugdes empiricas negativas, Euler
generalizou o problema conectando as origens e destinos pontos por linhas (Figura 3.1), um grafo,
e mostrando que tal grafo ndo pode ser cruzado de certas maneiras, provando que o problema nao

possuia solugdo [25].

No campo da eletricidade, em 1887, Kirchhoff comecgou a substituir os elementos de um cir-
cuito, resisténcias, indutores, capacitores, por conexodes de pontos feitas por linhas, possibilitando
a postulacdo de um teorema para a andlise de sistemas de equacdes lineares [25]. No século
XX, Richard Feynman levou a outra dimensdo o mesmo conceito de representacdo grafica de
problemas (Figura 3.2), definindo solugdes de equacdes em eletrodinamica quantica por meio de

diagramas [26].

Figura 3.2: Exemplo de um diagrama de Feynman utilizado para a resolu¢io de problemas em eletrodinamica quén-
tica (retirado de [27]).

Atualmente, o processamento com grafos tem envolvido principalmente grandes volumes de
dados, nas quais simplifica-se a relacdo entre elementos por seu nivel de conexdo. A andlise
por grafos diminui a velocidade de processamento em relacdo a bancos de dados relacionais,
onde espera-se que os grafos fornecam uma simplificagdo para uma estrutura complexa, agilize e

flexibilize a solu¢do de problemas [28].

As andlises de redes sociais, como Youtube, Facebook e Instragram, também podem ser feitas
graficamente, uma vez que as pessoas podem ser relacionadas por meio de conexdes [29, 30].
Mais de meio século antes da criagdo das redes sociais, o escritor Hingaro Frigyes Karinthy,
postulou em um dos seus romances uma conjectura de que dois individuos no mundo estariam
conectados por no mdximo 5 conhecidos. Essa teoria hoje pode ser testada e aplicada nos dados
de redes sociais, analisadas via teoria dos grafos [31], remetendo-se a um nimero de conexdes

menor que o da conjectura.
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A teoria dos grafos se faz presente na andlise de trajetos mais curtos ou mais rapidos dentro de
uma rede de vias automotivas [32, 33], que ligam dois pontos. Dados em estrutura topoldgica sdao
uma das formas nas quais também se pode representar imagens e videos, descrevendo-as como
uma série de elementos com conexdes definidas por uma matriz adjacente, ou por uma matriz de

pesos a qual remete em seus elementos a conexao e a forca de conexao entre elementos [34].

3.2.2 Definicoes e notacoes

Em geral, a termologia utilizada pelos autores em teoria dos grafos € personalizada, tornando
essencial uma boa defini¢do dos conceitos e notacdes para um bom entendimento do trabalho.
Este trabalho ndo possui um alto nivel de complexidade de andlise em grafos, fazendo uso das
propriedades bdésicas. Defini¢des quanto a morfologia de um grafo ndo serdo abordadas, as defi-

ni¢des apresentadas aqui sdo inspiradas em [24].

Definicao 1 (Grafos) Um grafo G = (V| E) consiste em um par, no qual V e E sdo ambos
conjuntos finitos de elementos. Os elementos v € V sdo chamados vértices (nds) e os elementos

ec EC{{i,j},i,j € V,i# j} sdo chamados de arestas

A Figura 3.3 representa o grafo do problema das pontes de Konigsbert. As pontes em du-
plicidade foram agrupadas em uma tnica aresta. As arestas sdo rotuladas de acordo com seu
enderecamento, segundo os vértices que sdo conectados por elas. Essa relacdo de vizinhanca é

chamada de adjacéncia.

Figura 3.3: Representacdo do problema de Kirchhoff por um grafo com seus vértices 1, 2, 3 e 4 representados por
circulos azuis, conectados por suas respectivas arestas que que ilustram as relacdes de adjacéncia do grafo.

Definicao 2 (Adjacéncia) Se uma aresta e; ; conecta i a j, entdo estes sdo adjacentes, ou seja, 1

é vizinho de j (e vice-versa)

As adjacéncias podem ainda ser caracterizadas por for¢as de ligacao, ou seja, define-se valores

de pesos para a relag@o entre um vértice e outro, formando um grafo ponderado.

24



Definicao 3 (Grafo Ponderado) No caso de um triplete G = (V, E, W) (grafo ponderado),

w; ; € W determina a for¢a de ligagdo de uma aresta e;

Wa

W,

Vo

(a) (b)

Figura 3.4: Representaciio de um grafo ponderado: (a) as arestas que ligam vértices recebem pesos associados a elas;
(b) os valores desse pesos determinam uma forga de ligacdo para aquele par de vértices.

As adjacéncias e pesos de um grafo podem ser ainda representadas por uma matriz, ou mapa

de pesos.

Definicio 4 (Mapa de Pesos) O mapa W é chamado mapa de pesos de G = (V,E,W). O
mapa W' denotard o mapeamento do conjunto de arestas E de forma que o peso da aresta e; ; é

igual a wy';

A quantidade de elementos na matriz de ponderacdo 11 € determinada pelo numero de vértices

N do grafo, determinando N? relacdes. No exemplo da Figura 3.4 temos:

0 0,1 0,9 O

0,1 0 0,5 1
W = ) (3.1

0,9 0,5 0 0,2

0 1 0,2 0
O ordenamento das linhas representa os indices dos vértices, e as colunas as incidéncias desses
vértices, por exemplo, o elemento da segunda linha e primeira coluna, retrata a forca de ligacao
do vértice 2 com o vértice 1, que vale 0,1. Este trabalho utiliza apenas com grafos unidirecionais,

ou seja, os elementos da matriz de peso sdo estritamente positivos, determinando uma relagcao de

simetria W;j = Wji.

O principal objetivo deste trabalho € selecionar subconjuntos de um grafo que melhor repre-

sentem o objeto de interesse, uma segmentagdo. Esse subconjunto é denominado subgrafo.

Definicdo 5 (Subgrafo) Dado um grafo G = (V, E), o grafo G' = (V' E’) é chamado de sub-
grafo de G se e somente se V' C Ve E' C E.
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3.3 IMAGENS REPRESENTADAS COMO GRAFOS

A representacdo mais bdsica de uma imagem consiste no registro de uma matriz contendo
dados sobre a magnitude de um pixel, sua intensidade e/ou componentes de cores (Figura 3.5 de
(a) a (c)). Esse tipo de registro também € saida de filtragens e processamentos, como suavizagoes
e realce de bordas [34].

Um segundo de nivel de registro e representacdo € feito a partir do agrupamento de pixels em
regides (superpixels), essas regides representam dreas da imagem com caracteristicas muito se-
melhantes de cor, textura, posi¢ao, e, possivelmente, pertencentes a um mesmo objeto (Figura 3.5
de (d) a (f)). As duas formas de representacao podem ser analisadas a partir das suas vizinhancas,

as matrizes de pixels por meio dos grafos de pixels e as regides por meio dos grafos de regioes.

(b)

(d)

Figura 3.5: Representacdes de um modelo real em pixels e em regides: (a) representacdo por meio de pixels, (b)
que sdo amostras uniformemente distribuidas da cena; (c) em que seu grafo de pixels tem relacdes de vizinhanga
que podem ser trivialmente definidas, dada a organiza¢do dos dados; (d) o modelo real pode ser representado por
regides; (e) que também se expressam em amostras do modelo real; (f) entretanto, as relagdes de vizinhanga para o
respectivo grafo de regides ndo sdo simplesmente definidas, mas tal aproximagao supera a versdo em pixels pelo grau

de representatividade do modelo real com um ntimero similar elementos.
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3.3.1 Grafo de pixels

Uma imagem digital F'(z,y) determina um tipo especial de grafo (grafo de adjacéncia de pi-
xels ou grafo de pixels), com vizinhanga bem definida por uma grade retangular. Os vértices v
desse grafo sdo representados pelos pixels, as relacdes de pesos entre os vértices, pixels, adjacen-

tes €, em geral, determinadas pela proximidade espacial e de intensidade luminosa (Figura 3.5(c)).

Métodos de segmentacdo, como watershed, utilizam as propriedades da teoria dos grafos para
1solar regides a partir de um gradiente da imagem original. Outros métodos também se valem
da relacdo entre vizinhanca, como mean shift € k-means [35], com uma atualiza¢do constante de
pesos em um processo iterativo que busca a minimizacdo da distancia entre os elementos e seus
agrupamentos. Esses métodos de agrupamento citados anteriormente, sdo usualmente aplicados

na criacdo de regides em uma imagem.

3.3.2 Grafo de regioes

A partir de um método de agrupamento aplicado a uma imagem de pixels (sub-grafo de pi-
xels), cada um desses agrupamentos pode ser substituido e representado por uma regido homo-
génea (superpixel), promovendo uma segmentacdo em baixo nivel [24]. Ao contrdrio de uma
imagem de pixels, dispostas em grade bem definida, as uma imagem constituida por regides pos-
suem, em geral, vizinhancas com rela¢des nao triviais. Essas relacdes podem ser representadas

por um grafo de adjacéncia de regides (Figura 3.5(f)).

3.4 SEGMENTAGAO DE IMAGENS

O processo de segmentagdo consiste em subdividir uma imagem em regides ou objetos que a
constituem. Seu objetivo é simplificar ou alterar a representacao de uma imagem, com a finalidade
de facilitar sua andlise. Para isso, existem diversos métodos capazes de realizar tal funcdo, nos
quais se destacam técnicas baseadas em similaridade (threshold), detec¢dao de descontinuidades,
agrupamento de dados (clustering). Neste trabalho, serdo retratados aqueles processos utilizados
nos métodos propostos, as técnicas de agrupamento watershed e SLIC que realizam, em conjunto,
a formacao de regides ao longo de quadros de videos, e a técnica de corte de grafos GrowCut para

a segmentacdo do objeto.
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3.4.1 Técnicas de agrupamento

Métodos de agrupamento permitem que se extraiam caracteristicas determinadas de um grupo
de dados, separando-os em subgrupos funcionais ou hierarquizando os dados para algum tipo
de andlise posterior. As técnicas de agrupamento ou andlise de agrupamento ¢ o nome dado
para o grupo de técnicas computacionais cujo propdsito consiste em separar determinados dados
pertencentes a um grupo especifico, baseando-se nas caracteristicas que estes dados possuem. A
ideia bésica consiste em colocar em um mesmo grupo objetos que sejam similares de acordo com

algum critério pré-determinado.

O critério de determinacdo de agrupamento, normalmente, baseia-se em uma fun¢ao de dissi-
milaridade. Tal fun¢do recebe dois objetos e retorna a distancia entre eles. Os grupos determina-
dos por uma métrica de qualidade devem apresentar alta homogeneidade interna e alta separacio
(heterogeneidade externa). Isto quer dizer que os elementos de um determinado conjunto de-
vem ser mutuamente similares e, preferencialmente, muito diferentes dos elementos de outros

conjuntos.

3.4.1.1 Watershed

(c) (d)

Figura 3.6: Ilustrag@o do processo de agrupamento de regides pelo algoritmo watershed: (a) o mapa de magnitude de

uma imagem representa um mapa topoldgico, no qual os minimos locais da imagem sao estdo nas dreas de depressao
desse mapa topoldgico; (b) a partir dos minimos locais, as depressdes comecam a ser preenchidas, formando lagos;
(c) os lagos crescem de forma a terem uma mesma altura; (d) no ponto de encontro dos lagos, as represas que dividem
as regides sdo definidas (inspirado em [24]).

A técnica de agrupamentos watershed, palavra traduzida para o portugués como bacia hidro-
gréfica, tem o funcionamento intuitivamente correspondente a sua nomenclatura. Pode-se ima-

ginar os mapas de magnitude de uma imagem como acidentes geograficos, em que 0s minimos
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locais estdo localizados nas depressoes. Essas depressoes, indicadas em ilustracdo pelos circulos
em diferentes pontos na Figura 3.6(a), sdo inundadas simultaneamente (Figura 3.6(b) e (c)) de
forma que as alturas dos lagos formados nessas depressdes estejam sempre niveladas. Regides
sdo tratadas como um agrupamento, quando os lagos se tocam e uma barragem € construida para

definir essa fronteira [24].

Os principios bésicos da watershed desencadeiam uma série de algoritmos que possibilitam
o tipo de solucdo desejada. Entre esses algoritmos, destacam-se os métodos de Vicent-Soille,
Meyer e técnicas de custo e topoldgicas, todos envolvendo principios de teoria dos grafos, uma
vez que utilizam as relacdes entre vizinhangas para a construg¢do de regides [36]. A watershed

aplicada ao longo deste trabalho, utiliza o algoritmo de Fernand Meyer [37].

A watershed pode ter inicializagdo feita por marcadores manualmente definidos, entretanto,
regides agrupadas a partir de minimos locais definidos por um mapa de variacdes espaciais (gra-
diente) sdo usualmente utilizados, por representarem pontos singulares, especiais dentro de uma
imagem. Os minimos locais sdo evidenciados nos mapas de gradiente da imagem original (Fi-
gura 3.7(a)), esse gradiente pode ser obtido ou por meio de aproximagdes do Laplaciano ou por

filtros detectores de borda e é a imagem, em geral, utilizada para a aplicacdo da watershed.

N

€ T=4— N=1111

N

(d)T=3— N=1748 HT=5— N=646

Figura 3.7: Watershed aplicada no gradiente de uma (a) imagem fornece diferentes niimeros de regides [N quando
um limiar 7" € definido para esse mapa de gradiente. 7' é¢ um valor minimo de variagdo aceito dentro de um gradiente
que diminui o nimero de minimos locais, utilizados para inicializagcdo do agrupamento de regides.
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Um limiar minimo 7" para as variagdes detectadas podem diminuir a quantidade de minimos
locais e, por consequéncia, o nimero de regides N formadas a partir da inundacao desses platos
(Figura 3.7(b) a (e)).

3.4.1.2 K-means

O método de agrupamento k-means possui paradigma de aprendizado nao-supervisionado, ou
seja, procura determinar e identificar automaticamente como os dados estdo organizados em um
conjunto ou em uma base de dados. O k-means é um método de agrupamento que tem como

objetivo encontrar k£ grupos (padrdes, ou regides) na imagem [35].

Estes grupos sdo representados por centroides, que sao médias numéricas de todos os pixels
pertencentes ao agrupamento em questdo. Deve-se escolher k centroides iniciais, que representam
os centros dos k agrupamentos dados por C'y, Cj,..., C}, (Figura 3.8(a)). Cada pixel da imagem é
rotulado em relagdo ao centroide da classe mais similar. Por conseguinte, os centroides tém seus
valores atualizados com base nos pixels que passaram a pertencer aos respectivos agrupamentos.

Assim, o processo se repete enquanto um critério de parada nao for satisfeito (Figura 3.8(b)).

A heuristica de agrupamento nao hierdrquico do k-means busca minimizar a distancia dos
elementos a um conjunto de k centros dado por X = {C4,(Cy, ..., Cy} de forma iterativa. Cada
centroide C}, é um conjunto de médias que, em geral, tem associado a ele caracteristicas de
posigao espacial ou de cor do agrupamento, Cj, = {1, fk} 1}, define a posicdo espacial média do

agrupamento k e 1 o vetor de cores médio desse centroide.

Ao se medir a distancia d de conjunto de caracteristicas de um elemento p; = {r;,1;} a um

agrupamento representado por um centroide C':
k., = arg min D(p;, Cy), (3.2)
k

deseja-se encontrar o centroide ', que estd mais préximo do elemento 7. A cada iteragdo o valor
das propriedades do centroide C}, posicdo e cor, sdo atualizadas com a média dos elementos

agrupados por ele.

O algoritmo cessa iteragdes assim que todos os elementos estdo agrupados aos centroides
mais proximos a eles. H4 uma convergéncia relativamente rdpida para uma solu¢do de equilibrio,
aquela que minimize todas as distancias dos elementos aos seus respectivos centroides. Essa
solu¢do depende dos valores com os quais centroides sdo inicializados, em geral, determinados

de forma aleatoria.

30



(b)

Figura 3.8: A técnica de agrupamento k-means busca relacionar elementos em com centroides, comparando a distan-
cia entre si desses elementos e os centroides: (a) os centroides, C; e C no exemplo, sdo inicializados de acordo com
a necessidade do usudrio e os elementos a serem agrupados podem ou nio ter rotulagdo prévia; (b) a cada iteracdo
os elementos vao sendo rotulados de acordo com sua proximidade com os centroides, os quais vao alterando seus

valores com base nos elementos que agrupam.

3.4.1.3 SLIC

A técnica de agrupamento SLIC (agrupamento iterativo linear simples, do inglés simple linear
iterative clustering) ¢ uma adaptacdo do algoritmo k-means [15]. Os mesmos procedimentos sao
adotados da forma que descrita anteriormente para o k-means, modificando-se a drea de atuacao
de cada centroide. Impde-se uma restricdo, geralmente espacial para imagens, de forma que as
distancias a um centroide sdo calculadas para um grupo menor de elementos, nao todo o conjunto

em analise.

Na Figura 3.8, que exemplifica o algoritmo k-means, tem-se dois centroides, C; e C'2, com-
petindo por todos os elementos de um conjunto o qual deseja-se separar em grupos. Podemos
expandir esse raciocinio para elementos distribuidos em um plano 2-D, como na Figura 3.9(a), na

qual todos os elementos sem rétulos sao disputados por todos os 4 centroides, C', Cs, C3 e Cy.
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Na sua versdo adaptada, os centroides disputam os elementos de acordo com areas de atuacao
pré-definidas (Figura 3.9(b)). O objetivo dessa restricao na quantidade de elementos em disputa

para cada centroide € a redu¢do do esforco computacional.

sfEsseieisizesss

(2

CQQﬂﬁﬁﬁ

SRS

FOBBBB5
SBS

(@) (b)

Figura 3.9: Ilustragdo comparando os algoritmos k-means e SLIC: (a) no algoritmo k-means os centroides disputam
todos os elementos em andlise entre si, uma drea de atuacdo ampla, representada pelos quadrados, com arestas
seguindo o padrdo de cores de seus respectivos centroides; (b) para o SLIC, essa andlise fica restrita a dreas pré-
definidas, que se sobrepdem, novamente ilustrando casamento das cores das arestas dos quadrados e os centroides

que atuam na sua respectiva area.

Da mesma forma descrita para o algoritmo k-means, C}, € um conjunto de médias do agru-
pamento k, contendo informagdes quanto a posicdo média 1} desse grupo e seu vetor de cores
médio fk o conjunto p; do elemento ¢ também tem os mesmos vetores associados a ele, r; e
fi. Em [15], a distancia D, entre um agrupamento & a um elemento ¢, € uma combinacdo da

distancia espacial:

dsi = ||t — Thl| (3.3)
e a distancia entre as cores:

deiy = ||T — i, 34
em que || - || é a norma euclidiana entre os vetores.

Ao se normalizar a distincia espacial ds;; entre centroide e elemento por uma constante S,
que ¢ a dimensdo da aresta da regido de atuacdo dos centroides (Figura 3.9(b)), e se inserir um

fator de peso m, define-se a distancia D; ;, para o SLIC como:

2
dS@k

S m2. (3.5)

Djy, = y|dciy +
A dimensio S da regido de disputa do agrupamento, normaliza a distancia espacial ds; j entre o

centroide e o elemento em anélise, de forma que os valores desta distancia para pontos extremos

nesta regido de disputa fiquem préximos a 1.
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O parametro m € um peso determinado pelo usudrio que define a maior grau de importancia
para a distancia espacial ou para a distancia entre cores, no processo de agrupamento, quanto
maior o valor de m maior peso € dado a ds; ;. A quantidade de agrupamentos ainda € definida

pelo usudrio, assim como no k-means (Figura 3.10).

m (peso)

\ 4

1 4 8

50

K (nimero de agrupamentos)

500 |

Figura 3.10: Algoritmo de agrupamento SLIC aplicado na imagem da Figura 3.7(a), para diferentes niveis de nu-
mero de agrupamentos K e peso m. O aumento de m implica no aumento da importincia da distincia espacial no
agrupamento, percebe-se para regides como alto grau de semelhanga, como o céu da imagem, a uniformidade no
formato das regides para os valores mais altos de m. A defini¢do no nimero de agrupamentos depende do grau de
representatividade desejado pelo usudrio, quanto menor o nimero de agrupamentos, maior serfo as dreas € 0s erros
envolvendo suas fronteiras.

3.4.2 Cortes em grafos

A segmentacdo de imagens via cortes consiste na desassociacdo de um grafo V' em dois sub-
conjuntos, Ae B,emque AUB =V e AN B = (). O subconjunto A pode representar um objeto

de interesse enquanto B representa o fundo do qual deseja-se separar o objeto.
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Em geral, um corte em grafos tem como objetivo a determinagio dos subconjuntos A e B que

minimizem uma fun¢io de custos:

C(A,B) =) > wy. (3.6)

icA jeB
A funcdo de custos C' é chamada também de capacitancia, e leva em consideracdo a forma na

qual os conjuntos A e B estdo conectada, somando o peso de todas as suas conexdes w; j. Quanto

menor o valor de C'(A, B) menor o custo de se desassociar um grafo nos dois subconjuntos A e
B.

3.4.2.1 Min cut/Max flow

Definindo a = (ay, as, ..., ay) como um vetor bindrio cujas componentes especificam se um
elemento p de uma imagem pertence ao conjunto A (a, = 1) ou ao conjunto B (a, = 0), dentro
dos N nés do grafo, a ref. [38] propde uma fun¢do de energia para minimizacao e corte dada
como:

E(a) = AR(a) + C(a), (3.7)

em que a funcgdo de capacitincia C'(a), que exprime as relagdes de fronteira do objeto, é combi-
nada a uma funcdo de custos R(a), que mede o custo de se tomar um elemento p como parte do
objeto ou do fundo, que pode independer das relacdes de fronteira, podendo estar relacionado aos
niveis de magnitude de uma regido ou pixel, por exemplo. A combina¢do entre as duas funcoes é
mediada pela constante A\, quanto menor o seu valor, mais peso se d4 as relacdes de fronteira do

objeto.

Um novo grafo € construido com dois nds a mais (Figura 3.11), um n6 chamando de source (s,
fonte) e o outro chamado de sink (¢, pia), o n s representa o conjunto A (objeto) e o ¢ o conjunto
B (fundo). As conexdes desses novos vértices aos nds do grafo € independente, recebendo como
peso as relacdes da funcao de custos R para nds sem defini¢do de rétulo (se pertencem ao conjunto
A ou ao B), um peso K muito alto para aqueles elementos previamente rotulados de acordo com

0 seu conjunto e um peso nulo caso contrério (Figura 3.11(a)).

Os algoritmos de maximum flow/minimum cut se baseiam no teorema de grafos que define que
o fluxo (flow) entre os vértices s e ¢t € maximo para o corte minimo (minimum cut). Pode-se fazer
uma analogia a um circuito elétrico, no qual o n6 s € a fonte de energia e o ¢ é a referéncia para
qual as cargas fluem (Figura 3.11(a)). Os pesos para as conexdes sdo as admitancias, quanto maior
0 peso, menor a resisténcia quanto a passagem de corrente. O conjunto de arestas/conexdes na

qual a corrente satura é o conjunto de conexdes na qual a admitancia € minima (Figura 3.11(b)).
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@ (b)

Figura 3.11: No corte de grafos s/t, geralmente utilizado nos algoritmos de max flow/min cut, cria-se dois vértices a
mais para andlise, s (source) e t (sink): (a) os pesos para as arestas desses novos vértices sao determinados por um
K, de valor alto, caso o rétulo do vértice seja 0 mesmo do novo nd, na ilustragdo branco para pertencente ao s e preto
para t, os nds ¢ destinados a segmentagdo (em azul), recebem uma ligagdo R;(0/1) que representam um risco de se
toma-los como parte do objeto (1) ou do fundo (0); (b) na anélise ou do fluxo maximo ou do corte minimo, procura-se
um conjunto de arestas (ligacdes em vermelho) para se desvincular um conjunto do outro a um custo baixo.

3.4.2.2 Normalized cut

Um dos problemas com os algoritmos de minimo corte € que eles favorecem a segmentacao de
pequenos conjuntos de nds isolados. Por exemplo, uma vez que o peso de ligagdo de um elemento
de cor muito distinta a sua vizinhanga € baixo, um corte minimo pode isolar apenas esse elemento
do restante do grafo, visto que esse fornece uma capacitancia pequena. Resolve-se tal deficiéncia,
quando se analisa a desassociacdo de dois conjuntos A e B de um grafo V' pela fracdo que esses
dois conjuntos representam no grafo, nas condi¢des anteriormente definidas, determinando um

corte normalizado [39].

Define-se um grau de conectividade d; do elemento ¢ com o grafo V' (Figura 3.12(a)), ao se

somar todos os pesos de conexdo que esse elemento faz com o grafo:
JEV
Esse grau de conectividade pode ser estendido a um conjunto A (Figura 3.12(b)), somando-se

todos os valores de d; parai € A:

assoc(A, V) = Zdi‘ (3.9)

€A

Com o corte cut(A, B) entre os dois conjuntos A e B, que é a fungio de capacitincia da equa-
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¢a0 (3.6), [39] constr6i a fungdo Ncut(A, B) utilizada para minimizagéo:

cut(A, B) cut(A, B)
assoc(A, V)  assoc(B,V)’

Ncut(A, B) = (3.10)

Recorrendo novamente ao vetor de rétulos a que define quais nés pertencem ao conjunto A
e quais pertencem ao B, o corte normalizado que minimiza Ncut(a) pode ser solucionado ao se

resolver um problema de autovalores A e autovetores u [39]:

(D — W)Dzu = Au, (3.11)

[ I

D

em que D € a matriz diagonal do grafo V, em que d; se torna o elemento da posi¢do {i,i} dessa
matriz. Por exemplo, a matriz diagonal referente ao grafo da Figura 3.4 com mapa de pesos da

equacdo (3.1) é dada como:

D= , (3.12)

As N (numero de nds) solucdes linearmente independentes para o vetor u retornam valores
continuos. Discretizando esse vetor em dois niveis, 0 ou 1, obtém-se uma segmentagdo para o

grafo, uma aproximacdo para o a que minimiza N cut(a).
i A
g% g é EE g A§ 3 B
A
d :;Wi,j assoo(AV)=) 4 cut(a, B)=Y > w,
Je ieA icA jeB ’

(@) (b) (c)

Figura 3.12: Expressdes utilizadas no corte normalizado e suas respectivas representagdes nos grafos: (a) a soma
de todas dos pesos de todas as arestas de um vértice 7 fornece um nivel de conectividade d; desse ao grafo; (b)
a ideia pode ser estendida para um subgrafo A, medindo-se o grau de associagdo desse subconjunto ao grafo V,
assoc(A, V'), pelo somatério de d; com i € A; (c) ponderando e combinando um corte cut(A, B) pelo grau de
associacdo de A e B com o grafo V', obtém-se a fun¢do Ncut(A, B), utilizada para o corte normalizado.
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3.4.2.3 GrowCut

A técnica de cortes em grafos GrowCut proposto na ref. [1], tem principios muito semelhantes
aos do SLIC. A competicao para rotulacdo dos elementos ocorre também mediante uma restri¢ao
espacial, somente vizinhos proximos a cada elemento sdo analisados. Diferentemente do SLIC,
no GrowCut sao formados apenas dois agrupamentos, objeto e fundo, e a competi¢do por um

elemento ocorre entre os proprios nés do grafo (pixels no caso de imagens), ndo entre centroides.

Definindo-se valores de um né ¢ para o vetor de rétulos a como a; = 1, caso o elemento
pertenca ao objeto, a; = —1, caso pertenca ao fundo e a; = 0, caso ndo tenha rétulo definido, o
algoritmo GrowCut opera iterativamente, atualizando o vetor a até todos os elementos do grafo
terem um rétulo definido e as condicdes impostas terem sido respeitadas, 1 ou -1. Para inicializa-
¢do, alguns rétulos precisam ser previamente definidos, quanto maior a quantidade de rétulos pré

definidos melhor a segmentac¢ao obtida (Figura 3.13).

(a) (b) (c)

Figura 3.13: Aplicacdo da técnica de segmentagdo via grafos GrowCut em uma imagem. A segmenta¢cdo manual de

fundo (em azul) e objeto (em vermelho) determinam a qualidade da segmentacdo pela quantidade de rétulos prévios
que sdo criados, antes da aplicagdo do GrowCut. O algoritmo retorna resultados aceitdveis para a segmentagdo da
estitua, mesmo com diante de uma rotulagdo prévia pobre, (a) e (b), e retorna um bom resultado para uma rotulagéo
prévia préxima a segmentacio desejada (c).

37



Mantendo a comparacdo entre GrowCut e SLIC, para a técnica de corte, pode-se considerar
cada elemento 7 do grafo como o seu proprio centroide que, a cada iteragdo, em vez de atacar,
¢ atacado pelos seus vizinhos j € (@), recebendo o rétulo do vizinho mais proximo a ele. Essa
distancia € medida por uma func¢do de custos:

.
L il

maz||I]|?’

9(i,j) =1 (3.13)

Para os valores médio que representariam o centroide no SLIC, cada elemento ¢ no GrowCut
recebe uma fungdo de transi¢do local 6, que recebe inicialmente (primeira iteragdo, ¢ = 0) valor
1 para os nds rotulados e 0 para nés nao rotulados. A condicdo para que um no ¢ seja atacado por

um vizinho j e ganhe o seu rétulo é:
g(i,7) - 0;- > 0. (3.14)

O vértice ¢+ também ganha um novo valor para a func¢do de transicdo local baseado no valor do
vizinho j:

;" = g(i, j) - 05 (3.15)
O algoritmo cessa iteragdes quando a condicdo (3.14) ndo € mais respeitada, ponto no qual todos

os elementos estao classificados/rotulados.
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4 PROPOSTA PARA CONSTRUCAO DE REGIOES EM
IMAGENS E SEUS DESCRITORES LOCAIS

4.1 INTRODUGCAO

Neste Capitulo, serdo abordados os métodos propostos para a criacdo de superpixels/regides
que determinam os grafos de regides, bem como os métodos utilizados para a determinacao dos
descritores locais referentes a essas regides. Tanto a criagdo de regides quanto a criagdo dos des-
critores € inspirada em processos da SIFT, que visam encontrar caracteristicas nas imagens que se
preservem diante de transformagdes geométricas como o escalonamento e rotagdo, e em face de
mudancas nos niveis de intensidade. A partir do descritor, é proposto um método para determina-
cdo de regides correspondentes e de vetores de estimativa de movimento entre duas imagens. O
rastreamento de regides, pela determinacgdo de correspondéncias, permite que a criacdo de regides

seja orientada ao objeto e a0 seu movimento.

4.2 WATERSHED EM UM ESPACO DE ESCALAS

O descritor proposto tem inspiragao no algoritmo SIFT, no qual os descritores sdo obtidos de
forma a tentar representar um objeto ou cena em diferentes escalas [10]. Essa representacdo em
vdrias escalas tem como objetivo o reconhecimento de um objeto/cena apresentada em qualquer
tamanho em uma imagem, fazendo-se necessdria uma selecao de pontos (pontos-chave) para a

reducdo na quantidade de dados em anélise (Figura 2.11).

Para os objetivos propostos neste trabalho, a mudanca de escala esperada para um objeto entre
dois quadros consecutivos € pequena. Isso restringe a aplicacdo do algoritmo, para o qual se
escolheu construir os descritores apenas para regioes de uma imagem dentro de um espacgo de
escalas. A imagem € definida pelos parametros n, o € T', e selecionada visualmente pelo usuério,

de forma que a sobre-segmentacao oferecida represente bem o objeto de interesse (Figura 4.1).

Diferentemente de alguns algoritmos utilizados para criacdo de agrupamentos (regides) em
uma imagem, como k-means € mean shift, a técnica watershed, quando baseada nos minimos
locais da imagem, nao depende de um usudrio para determinac¢do do nimero de agrupamentos. A
quantidade de regides formada estd diretamente ligada a uma propriedade intrinseca da imagem,
os minimos locais definidos pelo médulo do gradiente da imagem, dos quais regides emergem até

a formacao de barreiras entre elas [18].
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Figura 4.1: Diagrama do algoritmo proposto para a determinac@o de regides e descritores em uma imagem I (x,y).
A imagem recebe suavizagdes que dependem da escala n e de um desvio padrdo o (caminho a esquerda), para a
aplicag@o da técnica de watershed para a criagdes de regides em uma aproximagdo de gradiente de I(z,y), que tem
valores nulos a partir limiar 7. De forma semelhante, uma suavizagdo mais intensa € aplicada a I(x,y), que ainda
pode ser redimensionada antes da criacdo de regides via watershed (caminho a direita), essas regides sdo tomadas
como referéncia para o reagrupamento das regides previamente definidas. Uma vez selecionados os parametros n, o
e T que produzam uma imagem com sobre-segmentagao satisfatéria para o objeto de interesse, os descritores locais
sdo calculados para esta imagem selecionada.

Se assemelhando ao SIFT [10] na busca de pontos especiais para objetos em imagens sujeitos
a transformacdes, sejam elas geométricas ou em magnitude, a técnica watershed se mostrou a
mais indicada para a cria¢do de regides de maneira nao supervisionada e para a determinagao do
descritor proposto. Apesar da preservacdo de pontos (minimos locais), o algoritmo watershed
perde em desempenho na irregularidade das bordas e no tamanho das regides formadas a partir
desses pontos [15]. Neste trabalho, foram obtidas regides com bordas e tamanhos mais estiveis

ao se mesclar o algoritmo SLIC [15] ao watershed em um agrupamento por escalas.

No caso proposto, o gradiente para aplicacdo do watershed é aproximado pela combinacao
da convolugao do filtro detector de bordas Sobel com os trés canais de cores no padrao CIELAB
[40] da imagem. A adicdo de propriedades de oposicdo de cores no descritor proposto, € um dife-
rencial em relacdo ao algoritmo SIFT, que leva em consideracdo somente o mapa de luminancia

da imagem.
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Pares de vistas de cenas (Figura 4.2) serdo utilizadas ao longo deste capitulo para exemplifi-
car e testar o algoritmo proposto. A escolha dessas cenas, que possuem um leve deslocamento
horizontal entre si, recai na semelhanca das transformacdes entre cenas com as de uma transicao

entre quadros subsequentes de um video.

Figura 4.2: Pares de vistas distintas de cenas utilizados para avaliacdo do algoritmo proposto. Uma das imagens
dos pares serd submetida a transformacdes geométricas e de intensidade. Ao longo deste capitulo as cenas também
exemplificam o algoritmo proposto, cenas intituladas como: (a) Statue; (b) Teddy; (c) Cones; e (d) Venus.
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4.2.1 Aproximacao do gradiente

O filtro Sobel € aplicado sobretudo em problemas de detec¢do de bordas em uma imagem
ao longo de uma das suas direcdes. Por meio de uma combinacdo dessas resultantes em cada
dire¢do, uma soma euclidiana, por exemplo, pode-se obter uma imagem que ressalta suas bordas
independentemente da sua disposicdo. A mdscara Sobel que representa uma detec¢do ao longo

do eixo horizontal x, é expressa como:

1 2 1
he=10 0 0]. (4.1)
-1 -2 -1

A variagdo abrupta da mascara Sobel (equacao 4.1) ao logo do eixo vertical, ressalta os pon-
tos com variagdes no mapa de magnitude de uma imagem ao longo desse eixo, por intermédio da
convolucdo entre a mdscara e imagem. Quando essas variagdes perduram ao longo do eixo hori-
zontal, bordas sdo ressaltadas nessa dire¢do. A convolugdo de uma imagem /(z, y) (Figura 4.2(a)

a esquerda) e a mdscara h,, retorna uma imagem D, (x,y) de componentes horizontais:

D, (z,y) = hy * I(z,y) (4.2)

Para a obtengdo de componentes verticais, aplica-se a mascara h,, (que € a transposta de h;) a
imagem:

O mddulo do gradiente aproximado por essas duas componentes, D, e D,, retorna a imagem:

Uz, y) = ||(De(z,y), Dy(z,y))||. (4.4)

Do canal de luminncia I (z,y) (Figura 4.3(a)), obtém-se a resultante Uy, (x,y) (Figura 4.3(d)),

por meio das componentes horizontais (Figura 4.3(b)) e verticais (Figura 4.3(c)).

O procedimento é aplicado aos outros dois canais de cores individualmente, [,(x,y) e I(z,y)
(Figura 4.4 (a) e (b)). E possivel observar que os médulos resultantes U, (x,y) e Uy(x,y) (Fi-
gura 4.4 (c) e (d)), respondem de maneira mais enfédtica aos pontos de variacdo de cor, os quais

podem nao ser detectados analisando-se apenas a luminosidade (Figura 4.3(d)).

A técnica de watershed poderia ser aplicada as trés imagens de mdédulo do gradiente obtidas
pelos trés canais CIELAB, o que forgaria a uma andlise conjunta de trés camadas de regioes.
Optou-se em aplicar a transformacdo na combinacdo de mddulos dos gradientes para os trés

canais:

U(z,y) = VUr(x,9)? + Uy(z,y)* + Up(z, y)2. (4.5)
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(©) (d)

Figura 4.3: Tlustracdo da aplicac@o do filtro Sobel para aproximacio do gradiente no (a) canal de iluminacio para

deteccdo de bordas (b) horizontais e (c) verticais, (d) que sdo combinadas em uma soma euclidiana.

A utilizacdo de informacdes quanto as cores das imagens para a formacao das suas regioes,
reflete uma nova propriedade agregada a adaptagdao da SIFT para os grafos de regides. A ideia
parte dos campos receptivos presente no sistema visual humano, apresentados no Capitulo 2 e
que sdo inspiragdo para o algoritmo SIFT. Os campos receptivos se apresentam tanto para as
diferencas em iluminacio quanto para a oposicao de cores, verde em oposicao ao vermelho e azul

em oposicdo ao amarelo, enquanto que o SIFT utiliza apenas os aspectos de iluminacao [10].

A Figura 4.4 ilustra em (a) e (b) a oposi¢do de cores para a imagem da esquerda da Fi-
gura 4.2(a), oposi¢do fornecida pelo sistema CIELAB de cores. Na Figura, (a) exibe a oposi¢ao
de cores entre o verde e vermelho, e (b) a oposi¢do entre o azul e amarelo. Esses mapas sdo
registrados em valores que variam na faixa de [—100, 100]; o verde e o azul recebem os valores
negativos e o vermelho e o amarelo os valores positivos. A Figura 4.4 (c) e (d) mostra o médulo
do gradiente (equacdo (4.4)) para componentes vertical e horizontal aproximadas pelo filtro Sobel

aplicado nos mapas de oposicao de cores.
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(b)

©) (d)

Figura 4.4: Canais de cores no sistema CIELAB em (a) e (b), e seus respectivos médulos dos gradientes aproximados

por um filtro detector de bordas Sobel em (c) e (d).

4.2.2 Formacao de regioes pela watershed e definicao de suas propriedades

O agrupamento de pixels em regides (usualmente chamadas de superpixels) via watershed,
estd associado a uma reducdo de elementos, que pode ser observada na Figura 4.5: (a) quando
aplicada a combinac¢do de médulos do gradiente de uma imagem originalmente de dimensdes
385x288, 110592 pixels; (b) obtém-se uma imagem com 7784 regides, que € menos de um nono

da quantidade de pixels na imagem original.

A reducdo do nimero de regides em relacdo nimero de pixels para um valor abaixo de um
nono nao € arbitraria. O algoritmo de watershed adotado utiliza uma anélise de vizinhancga 8-
conectividade [41]. Na formacdo de uma inundacgdo a partir de um minimo local sdo necessarios
no minimo 8 pixels ao desse ponto para formacdo de uma represa. Isso limita a criacao de regides
em uma regido para cada composicao de 3x3 pixels analisada. Um método para uma reducio
mais relevante no nimero de elementos dentro de uma imagem de regides € apresentado neste

mesmo Capitulo.
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(a) 385 x 288 = 110592 pixels (b) N = 7784 regibes

Figura 4.5: Aplicacdo da watershed: (a) imagem fruto da combinagdo dos médulos do gradiente dos trés canais
de cores aproximados pelo filtro Sobel; (b) superpixels em branco delimitados pelas "barreiras"representadas pelas

linhas em preto.

O intuito de se representar uma imagem via grafos de regido € simplificar a anélise dessa ima-
gem com uma quantidade menor de elementos, de forma que esses essa redu¢do ainda represente
de maneira satisfatoria o problema. Essa simplificacdo também € valida para as propriedades de

cada agrupamento de pixels representado por uma regido S P.

Assim como um pixel, um superpixel i tem associado a ele uma posic¢do r; e um vetor de
componentes de cores I;. Além dessas duas caracteristicas comuns a um pixel, estd associada
a um superpixel ¢ uma area A;, que é a quantidade de pixels que a compde. A posicdo de um

superpixel é obtida pela posi¢do média dos pixels que o formam:

r, = — I, (4.6)

em que T, € a posi¢do (x,,y,) dos pixels que compdem a regido e A; a sua drea, que computa a

quantidade de pixels dentro desse superpixel SP;.

Na geracdo de um mapa de magnitude de uma imagem digital, a quantidade de f6tons que
atinge um receptor eletronico é convertido por uma funcdo de poténcia inversa de ~y antes de ser
registrada. Desta forma, para intensidade em regides € interessante considerar a soma de poténcias

de v, visto que:

~

1 1
X Z I(wpv yp) < Z Z I<xpa yp)’y ) “4.7)

' peR; ' pER;
para v > 1. A média simples das intensidades € menor que a raiz da média potencializada por ~,

que € a intensidade real capturada. Uma possibilidade € usar a popular norma quadratica para a
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média, de forma que:

1
L=, |+ > I ) (4.8)

¢ pESP;
em que /(x,,y,) € a magnitude de um canal de cores para o pixel p contido no superpixel SP;, o

processo entdo deve ser repetido para os 3 canais de cores.

Apesar da criacio das regides no sistema de cores CIELAB, o formato RGB foi utilizado para
obter a média de intensidades e cores das regides, evitando assim distor¢des causadas pela nio
linearidade do processo de conversao do sistema RGB para o CIELAB. A representacdo desse
valor médio para intensidades pode ser observado na Figura 4.6(a), em que as regides formadas

sdo divididas pelos contornos em preto.

A imagem da Figura 4.6(a) fornece uma boa visualizacdo dos pixels concatenados pelas res-
pectivas regides, entretanto, para fins praticos, cada regiao ¢ possui apenas trés propriedades, uma

posicéo r;, uma cor I; e uma drea A;, a qual pode ser convertida em um raio equivalente:

Ry =] —, 4.9)

tal simplificacdo € ilustrada na Figura 4.6(b).

Figura 4.6: Ilustracdo dos agrupamentos formados apds aplicagdo da watershed: (a) cada regido agrupa uma certa
quantidade de pixels que determina a sua drea A;, suas fronteiras sdo determinadas pelas linhas pretas e no interior é
representado pela cor média; (b) uma forma mais simplificada de se representar esses elementos que na andlise via
grafos se tornam vértices, pontos, é os representando por um circulo de drea A;, os cdlculos para gradiente e pesos

de ligagdes nos Capitulos futuros, dependerdo apenas desses trés atributos, posi¢éo ¥, cor Iedrea A.
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Quando representada por um grafo, cada regido da Figura 4.6(a) se torna um simples ponto,
um no. A Figura 4.6(b) ilustra esses nds com circulos dispostos nas posicdes calculadas para
cada regiao e com cores médias determinadas. Esses circulos tém raio igual ao raio equivalente
calculado pela equacao( 4.9), essa representacdo € interessante para o cdlculo de gradiente para a

constru¢do dos descritores que envolvem apenas essas trés propriedades.

4.2.2.1 Suavizacao e Limiar

A sobre-segmentacao oferecida pela watershed € essencial para se analisar um objeto por meio
do conjunto de diversas regides que o compde. Entretanto quando aplicada diretamente a imagem
de gradiente U(x,y), essa sobre segmentac¢do pode retornar uma quantidade de elementos ainda
indesejada. A forma encontrada para controlar essa produgdo de regides foi a suavizacdo da
imagem antes da aplicac@o do filtro detector de bordas e a determinacdo de um limiar 7" para

U(z,y) antes de se aplicar watershed.

A suavizacdo consiste na convolu¢do da imagem original, ainda no sistema de cores RGB,

com uma Gaussiana de desvio padrdo o:

L(x,y,0) = I(2,y) * G(r,y,0), (4.10)
onde:
1 :L'2 y2
G(z,y,0) = e_( e : 4.11)

Esse procedimento de suavizacdo pode ser comparado a uma desfocalizacdo da imagem que
chega a retina ou a densidade de receptores capazes de resolver essa imagem, que € aliado a uma

transformacao:

Ule.y) = U(z,y) caso U(z,y) >1T, 4.12)
7 0 caso U(x,y) <T.

da imagem U(x,y) a partir de um limiar 7. Elementos com magnitude menor que o limiar
definido sdo anulados, limitando a detec¢do de bordas e a formacao de regides a uma sensibilidade
T'. Quanto maior o seu valor, menor a capacidade de detec¢do de diferencas e, por consequéncia,

menor o nimero de regides.

A escolha do limiar 7" fica a critério do objeto de segmentagdo definido. No caso de objetos
que se destaquem em cor ou brilho em relacao a sua vizinhang¢a, um limiar alto promove uma boa
delimitagdo das regides objeto, sem se confundir com a vizinhan¢a. Ja no caso de objetos com
pouco contraste, tanto em intensidade quanto em cor, em relacdo a vizinhanca, sensibilidades
mais baixas sdo recomendadas. O valor de 7" estd limitado a escala de cores CIELAB da imagem

L(z,y) e ao filtro Sobel que da ganhos as variagdes de L para gerar U(x, y).
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o (desvio padréo)

N =2718 N =1611

T (limiar)

N =588 N =179

Figura 4.7: Relacdo entre suaviza¢do da imagem e aplicacdo de um limiar para o gradiente, antes de realizar um
agrupamento via watersehd. A suavizagdo € aplicada na imagem original, antes da determinacdo de seu gradiente,
por um filtro gaussiano de desvio padrdo o. O limiar é determinado para a imagem de gradiente U(x,y) que é a
combinag¢do do gradiente dos trés canais de cores no padrdo CIELAB. Nota-se quantidade de regides formadas, uma
relacdo inversa tanto para o crescimento do limiar quanto para o crescimento desvio padrio. A suavizagdo diminui a
relevancia das bordas detectadas, aquelas que formam as barreiras na watershed, e o limiar diminui a quantidade de

minimos locais dos quais as inundagdes sdo iniciadas.

Um aumento de 7" promove uma diminui¢do do nimero de regides formadas e, por con-
sequéncia, do ndmero de elementos para o grafo obtido final destinado a andlise. Essa relacdo de

decréscimo depende das caracteristicas da imagem em estudo (Figura 4.7).
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4.2.3 Agrupamento por Escalas

A relagdo entre suavizacdo e diminui¢do no nimero de regides aparenta ser uma relacdo di-
reta, alheia as caracteristicas da imagem (Figuras 4.7 e 4.8). Um borramento na imagem ne-
cessariamente altera as relacOes entre pixels de suas bordas, tornando transi¢des mais suave €

indiscrimindveis pelo limiar 7" adotado apds filtragem com a mascara Sobel.

(b)f=1;6=2; T=4— N=4097

(€)f=1;6=2V2;T=4—>N=827 (d)f=2;6=V2;T=4—>N=746

Figura 4.8: Técnica watershed aplicada a cena Teddy com um mesmo limiar 7" e diferentes graus de suavizag@o e
redimensionalizacdo: (a) quando aplicada a imagem sem borramento em seu tamanho original, mesmo na presenga
de um limiar, a watershed produz uma grande quantidade de elementos, comparada a; (b) e (c) versdes suavizadas em
tamanho original, quanto maior o desvio padrao ¢ do filtro gaussiano, menor a quantidade de regides; (d) entretanto
uma redu¢do na imagem original aliada a uma suavizagdo por um filtro gaussiano, retorna uma quantidade de regides
semelhante a uma versdo suavizada com maior o da imagem em seu tamanho original (c), implica um ganho de
homogeneidade nas regides formadas.

Um fator limitante na deteccao de uma borda usando uma mascara de Sobel (equagdo (4.1))
em uma imagem borrada, ou qualquer outra transicao naturalmente mais suave dentro de uma

imagem, é o tamanho dessa mdscara detectora, 3 x 3.

49



A Figura 4.8 ilustra como uma imagem suavizada por Gaussianas de desvios padrdes distintos,
o = +v2em (b) e 0 = 2v/2 em (c), promove uma significante redu¢io no nimero de regides em
relacdo a imagem sem suavizagdo, (a) para um mesmo limiar 7' = 4. Quando se aplica os mesmos
principios em uma imagem reduzida por um fator f = 2 (d), utilizando uma interpolac¢ao bicibica
e um filtro anti-aliasing [42], constata-se a produ¢do de um nimero menor de regides que nas

outras trés imagens, regides que estao distribuidas de maneira mais homogénea.

Diminuindo-se o tamanho da imagem, verifica-se a capacidade de versdes reduzidas produ-
zirem regides mais homogéneas (Figura 4.8 (d)), dada uma quantidade semelhante de regides
comparando-se versdes mais amplas apenas suavizadas. Entretanto, existe uma degradacao de
bordas oriunda da reduc@o da imagem e da perda de seus detalhes. Tal degradacao foi superada
combinando-se a watershed de imagens em seu tamanho original com suas versdes borradas ou
reduzidas e adaptando-se o algoritmo SLIC para fornecer um ajuste fino das bordas das regides
(Figura 4.9).

A Figura 4.9 esquematiza o funcionamento do agrupamento proposto, (a) em que as regioes
formadas pela aplicacao de watershed em uma imagem no seu tamanho original sdo (b) reagrupa-
das conforme as regides definidas pela watershed em uma imagem mais borrada ou reduzida, (h)
formando agrupamentos que aproveita a reducao e homogeneidade de regides de (b) e os detalhes

oferecidos pela watershed aplicada a imagem original em (a).

Primeiramente, determina-se quais sub-regides de (a) tém seu centro médio ¥ = (z,y), de-
terminado pela equagdo (4.6), concatenados por qual regido da imagem (b) apds um processo de
erosao (c). Nessa etapa espera-se classificar rapidamente um grande numero de elementos, defi-
nido se esses pertencem a uma regido e a qual regido somente pela sua posi¢do espacial. Esses

elementos espacialmente classificados sdo chamados concatenados, V. (Figura 4.9(d)).

Os elementos ndo concatenados V;,. (Figura 4.9(e)) sdo aqueles cujos centroides das regides
formadas por eles, se posiciona nas fronteiras, nas linhas na cor preta da imagem em (c). Por re-
tratarem as bordas das regides finais, essas sub-regides do conjunto V,, passam por um processo
de agrupamento mais sofisticado, o SLIC (Capitulo 3), para definir a qual regido pertencem. A
imagem de referéncia para a formacdo de novas regides (c) pode ser uma imagem no mesmo
tamanho da original, mas com um maior borramento, ou uma versao reduzida e borrada da ima-
gem original. Claramente, ao se comparar as posi¢oes das regides da imagem original com as
regides de uma versdo reduzida, hd a necessidade de um escalonamento nas posi¢des r = (z, )

da magnitude do fator de reducio f.
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Figura 4.9: Diagrama ilustrativo para o processo de agrupamento por escalas: (a) uma imagem em seu tamanho

original tem watershed aplicada a ela, para um o1 e T definidos; (b) deseja-se para um mesmo limiar 7', redistribuir
as regides de (a) pelas regides em menor nimero de uma imagem mais borrada oo > ¢ ou reduzida por um fator
f > 1, uma referéncia para a criagdo novos agrupamentos; (c) um processo de erosdo na imagem em (b) amplia
as fronteiras (linhas na cor preta) e diminui o alcance das regides, nas quais os elementos de (a) que tiverem seus
centroides I = (z, y) ali posicionados; (d) sdo rotulados como elementos concatenados V;,., com uma regido definida
pela sua localizacgdo espacial, dentro ou fora da regido; (e) os elementos ndo concatenados, V,,. sdo aquelas regides
de (a) que tém seus centros posicionados nas fronteiras definias em (c), as bordas na cor preta, regido de dividas;
(f) os elementos V,,. sdo agrupados por meio do algoritmo SLIC, uma restri¢do espacial para as regides em andlise
para cada agrupamento k é definida por uma vizinhanca Delaunay em torno da regido k£ em (b); (g) a quantidade
de elementos envolvidos no processo de agrupamentos via SLIC cai consideravelmente para a cada iteragdo em um
agrupamento k, o centroide inicial C} é definido pelos elementos concatenados V., esse centroide atualiza seus
valores de posigdo I, cor fZ e drea A} a cada iteracdo n; (h) o agrupamento das regides de (a) em relagdo as de (b)

produz as regides desejadas.
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4.2.3.1 Consideragdes para o SLIC em regides

Quando se aplica o SLIC em superpixels/regido, algumas consideracdes se fazem necessdrias,
uma vez que os elementos possuem tamanhos distintos, diferentemente do caso via pixels. A
divergéncia no tamanho de regides interfere na distancia D; , de um elemento ¢ a um centroide £,

para a equacdo (3.5) descrita no Capitulo 3 e utilizada na proposta original [15].

Neste trabalho, optou-se por eliminar o termo m, determinando a distancia de uma regido 7 a
um centroide k como:

ds;
Di’k = dCz"k_S#k_.
R + R;

Obtém-se uma expressdao na qual a distancia entre cores fica ponderada pela distancia espacial

(4.13)

normalizada pela soma entre os raios equivalentes do centroide k, R, = w/%, e da regido i,

R, =4/ A; Elimina-se uma varidvel de entrada, produzindo-se resultados satisfatorios.

A normalizagdo pela soma dos dois raios equivalentes coloca a distancia espacial ds;, em
termos das dimensdes do centroide e da regido. Considera-se um contato entre um centroide k
e uma regido 7, quando esta dista do centroide em magnitude menor ou igual a R; + R}, nessas
condigdes a distancia D; ;, € fortemente dependente da distancia entre cores dc; ;, €, para efeitos

de competicao, se torna independente da dimensdo das regides e dos centroides.

A normalizagdo pelos raios equivalentes assemelha-se aquela globalmente feita pelo termo S
(equacdo (3.5)), que é o tamanho da aresta do quadrado que fornece a drea esperada do superpixel
na ref. [15], sendo que a competicdo entre centroides se estende a uma drea quadrada 2.5 x 2.
Para o método proposto, a drea de atuacdo Sy de um centroide C', (Figura 4.9(f)) é determinado
pela vizinhanga Delaunay [43] da regido £ de origem (Figura 4.9(b)) do agrupamento, todas os
elementos ndo concatenados V,,. que t€ém seu centro dentro desta drea, ficam em disputa pelo

centroide k e por outros centroides que por ventura se sobreponham a essa drea.

Outra consideracao se refere a média dos centroides, que deve contabilizar a contribuicdo de
cada elemento ¢ € Cy, ou seja, sua drea A;. A drea de um centroide é a soma das dreas das regides
que o compoe:

Ay = Z A, (4.14)

1€C

Para a posicédo r; de um centroide k, por exemplo, é dado por:

, 1 "
fo= > AF, (4.15)

1€C

que ¢ a média ponderada entre as posi¢des das regides. Para o vetor de cores I, recorre-se no-

vamente ao sistema RGB para o célculo da norma quadritica média em cada componente de
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Cor:

1
L= | Y Ad(zi ) 4.1
k Ak ) (xuyz) ( 6)

1€C
Os valores de posicdo, cor e drea para os centroides sdo atualizados a cada iteracdo. O crité-
rio de parada de 4 iteragdes se mostrou suficiente para um bom reagrupamento das regides nao

concatenadas V..

4.2.4 Espaco de escalas

Os agrupamentos formados pela watershed de uma imagem em escalas distintas, ajustados
pelo algoritmo SLIC, permitem a criagdo de um espago de escalas semelhante ao adotado na ref.
[10] (Figura 4.10). O agrupamento por escalas proposto € definido por duas imagens, uma que
serve como referéncia para os novos agrupamentos (Figura 4.9(b)) de elementos oriundos de uma

versdo mais detalhada da imagem (Figura 4.9(a)).

No espacgo de escalas proposto, a imagem de regides detalhada é uma watershed aplicada a
imagem em seu tamanho original, que recebe um borramento de acordo com a oitava do agru-
pamento. Por exemplo, a primeira imagem de regides da primeira oitava ndo recebe suavizagao,
suas regides sao distribuidas por uma imagem de referéncia que é suavizada (equagdo 4.10) por
uma gaussiana de desvio padrdo ¢ > 0. Um exemplo de agrupamento por escala resultante desta

primeira oitava € exibido na primeira linha da Figura 4.10.

A transicdo de uma oitava para outra é determinada quando cria-se uma referéncia a partir
da imagem original redimensionada por um fator de reducdo f = V2, ou seja, as dimensoes da
imagem ficam menores por uma razio /2 e sua 4rea cai pela metade. Uma oitava n tem como

imagem de referéncia watersheds aplicadas a imagem original reduzida por um fator:
f(n) = (v2)("~ V. (4.17)

A imagem de referéncia da Figura 4.9(b) tem metade das dimensdes da imagem original, ou seja,
define uma terceira oitava, f(3) = \/5(3_1) = 2.

Para uma primeira oitava adota-se 0 = 0 (sem borramento), para uma oitava n > 1 o desvio
padrao da suavizagdo é dado por o = %if(n) (equacdo 4.11). O limiar 7" para todas as situagdes,
referéncia ou imagem destinada a novos agrupamentos, € o mesmo. O espaco de escalas ilustrado
na Figura 4.10 tem limiar 7" definido como 8 para todas as watersheds aplicadas no processo de
agrupamentos por escalas. Observa-se uma diminui¢do gradual no nimero de elementos com o

crescimento da escala e oitava.
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o (desvio padréo)

n (oitava)

N =243 N =186 N =139

Figura 4.10: Tlustragdo para o espaco de escalas definido pelo método de agrupamento por escalas proposto, o
crescimento da escala implica em um aumento dos agrupamentos. Uma nova oitava é determinada pela reducdo da
imagem original para aplicacdo da watershed e criagdo de uma imagem de regides, essa imagem reduzida é tomada

como referéncia para a formagdo de agrupamentos via SLIC.

Diferentemente da proposta original [10] que visa a determinacio de pontos-chave dentro de
um espaco de escalas, isto €, pontos especiais que se preservem diante de transformacdes na
escala, o espaco de escalas para o algoritmo proposto visa orientar a criacdo de regides, em nivel
de detalhamento e nimero de elementos. Na adaptacdo proposta, nao € utilizado todo o espectro
de imagens da escala para a criagdo dos descritores em seus pontos-chave, escolhida uma imagem
no espago de escalas, que satisfaca o usudrio em nimero de regides e grau de representatividade

do objeto de interesse, descritores sdo calculados para todas as regides dessa imagem.
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4.3 DESCRITOR LOCAL PROPOSTO

Para adaptacado do algoritmo SIFT para uma representacdo por superpixels, foi necessario de-
finir procedimentos que garantissem as mesmas proposi¢des do algoritmo original. A invariancia
as mudancgas de escala, intensidade e rotagdo devem ser preservadas pela nova expressao proposta

para o calculo de gradientes, bem como pela regiao na qual o descritor é construido.

4.3.1 Calculo do gradiente em regioes

O vetor gradiente indica a dire¢do e magnitude do crescimento em um ponto de uma fungao
de mais de uma varidvel. No caso de uma imagem digital, retrata a variacdo entre os valores dos
pixels vizinhos a esse ponto de andlise. Para a proposta original [10], o gradiente é aproximado
pela equacdo (2.10), em que sdo analisadas as diferencas de intensidade entre os vizinhos 4-
conectividade de um pixel. A diferenca entre os valores dos pixels imediatamente acima e abaixo
do pixel em andlise determina a componente vertical desse gradiente, e a diferenca horizontal

determina a componente nessa direcao.

As etapas adotadas para obter expressdo para o gradiente neste trabalho sdo detalhadas na
sequéncia com base na equagdo da proposta original (equagdo (2.10)), em que V! é a vizinhanca
4-conectividade do pixel ¢, cuja intensidade nao € levada em consideracdo para calculos. Em
geral, para os grafos de regides as vizinhancas nio sdo bem definidas, fazendo necesséria a escolha
de um outro tipo de vizinhanga para andlise. O gradiente obtido pela equacdo (2.10) € bastante

sensivel a ruido, que € superado pela constru¢do de histogramas [10].

No caso do algoritmo SIFT, os pontos-chave sdo selecionados e a dire¢cdo e magnitude asso-
ciados a eles é determinada pela selecdo de orientacdes de predilecdo, obtidos em histogramas
de orientacdo de uma regido ao redor do ponto. Para o descritor proposto, todos os as regides
formadas, sdo tratadas como pontos-chave. Optou-se que direcdo e magnitude associadas a uma

regido deveriam sair diretamente da expressao proposta.

Uma possibilidade para o célculo do vetor gradiente m; para um vértice ¢« de um grafo seria:
Lj—L;

I — il

—

m; = d; j, (4.18)

JEV
em que se considera a soma vetorial de todas as diferencas de intensidade L; — L; entre os
elementos j pertencentes ao grafo V', com o vértice i. A magnitude de cada contribui¢do na soma
¢ ponderada pela distncia ||I’; — ;|| entre o elemento ¢ e 0 j, e a direcdo ¢ dada pelo vetor unitério

que conecta os dois vértices, definido como:

= L. (4.19)
|75 — 13|
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A equacdo 4.18 € menos sensivel a ruidos, por levar em consideragdo todos os elementos
pertencentes ao grafo, ponderados por sua distancia até o ponto de andlise. A equagdo leva em
consideracdo a intensidade L; do ponto ¢ de andlise, entretanto ndo considera como as vizinhancas
desses elementos se interagem e nem a possibilidade da distincia ||f; — ;|| retornar um valor

proximo a zero.

Para expressdao adotada neste trabalho, adiciona-se na equacao (4.18) uma normaliza¢do na
distancia entre os elementos e um deslocamento unitario. Sendo L o canal luminancia da respec-
tiva regido:

iV (Rary Tl

m; = ) %ﬁ] (4.20)

(R
Ao se normalizar a distancia entre os elementos, I'; e T';, pela soma de raios equivalentes, R, + E,
obtém-se uma expressdo que tenta aproximar a interacao entre duas regides, pela proximidade dos
circulos que as representam, tendo dimensdes fornecidas pelos seus respectivos raios equivalentes

(Figura 4.11).

Como foi salientado, a simplificagdo de uma imagem em superpixels carrega consigo uma
simplificacdo nas relacdes de fronteira entre as regides. Cada regido ¢ passa a ser representada
por trés propriedades: uma posi¢do r; = (x;, y;), uma cor I, = (L;, a;,b;) (CIELAB) e uma éarea
A;.

Ao se normalizar a distancia entre elementos (equacao (4.20)), busca-se colocar a distancia
entre duas regides em termos de seus raios equivalentes. Uma unidade dessa distancia norma-
lizada representa um tangenciamento dos circulos que representam as regides (Figura 4.11(a)).
Valores menores que 1 para essa distancia, indicam que fronteiras as regides sdo muito préximas
(Figura 4.11(b)) e uma distancia normalizada maior do que 1 indica que as fronteiras das regides

se toquem em poucos pontos ou até estejam desconectadas (Figura 4.11(c)).

Para valores menores do que 1 para a distancia normalizada (Figura 4.11(b)), ainda ha a pos-
sibilidade de uma situagdo extrema em que ||[r; — T;|| =~ 0. Essa proximidade entre alguns dos
centroides das regides € fruto das suas conformacgdes geométricas. Nessa situagdo limite, a ex-
pressao (2.10) retorna valores muito altos, podendo diminuir a for¢a do descritor, visto que esta
singularidade pode ser oriunda de uma instabilidade na formagao das regides. Na equacao (4.20),

evita-se essa situacdo ao se somar uma unidade no denominador da equacio (2.10).

A normalizagdo efetuada também visa preservar a invariancia as mudancas de escala na ima-
gem, ou possiveis distanciamentos ou aproximagdes de objetos dentro de uma cena. Regides de
maior drea tém magnitude de gradiente maior que regides de menor drea, dada sua 4rea de atua-

¢do, e acabam servindo como pontos de referéncia na construcdo dos descritores proximos a ele.
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Figura 4.11: Normalizagdo pela soma dos raios equivalentes R; e R; da distancia ||T'; — T;|| entre dois elementos i e
J: (a) uma unidade dessa distdncia normalizada equivale a um tangenciamento entre os circulos que representam as
regides, circulos com dimensdes determinadas pelos raios equivalentes R; e R7j; (b) valores menores do que 1 indicam
uma proximidade e interacdo entre as fronteiras da regido; (c) valores maiores do que 1 indicam um distanciamento

entre as fronteiras das regides.

Além do canal de luminancia L (Figura 4.12(b)), o gradiente € calculado para os outros
dois canais de cores no sistema CIELAB, medindo o distanciamento do verde ao vermelho (Fi-
gura 4.12(c)) e do azul ao amarelo (Figura 4.12(c)). Na Figura 4.12, temos uma imagem dividida
em regides (a) que sdo representadas por circulos em seus trés canais, luminéncia (a), verde/-
vermelho (b), azul/amarelo(c). A simplificacdo em circulos, com dimensdes determinadas pelas
areas das regides e posicionados nos centroides das mesmas, exemplifica a ado¢ao de uma distan-

cia normalizada (equacdo (4.20)).
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Para o canal de luminancia (Figura 4.12(b)), por exemplo, as regides que fazem fronteira com
o setor esquerdo da estdtua, sdo mais escura que ela, os vetores de gradiente indicam isso com
sua orientacao nessa direcdo. Se fosse adotada uma distancia ndo normalizada (equagdo 4.18),
a magnitude da interacdo entre essas regides descritas seria menor, dada a dimensdo da regido

referente a parte esquerda da cabeca da estdtua e a distincia entre os elementos.

A utilizagdo dos canais de cores que representam a oposi¢cao de cores verde/vermelho (Fi-
gura 4.12(c)), azul/amarelo (Figura 4.12(d)), € um diferencial em relacdo ao SIFT que utiliza
apenas os mapas de magnitude das imagens. Assim como o SIFT, esse diferencial é baseado nos

campos receptivos presentes no sistema visual humano (Capitulos 2).

S

T—
E==

I

Figura 4.12: Representacdo em vetores para oo gradiente de regides: (a) a imagem original é dividida em regides
conforme as técnicas de agrupamento definidas neste Capitulo, a simplificacdo dessas regides por circulos; (b) podem
representar o gradiente para canal de luminancia; (c) de oposicdo das cores verde/vermelho e; (d) de oposigao das

cores azul/amarelo.
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Aplicando transformacgdes geométricas de mudanca de escala (Figura 4.13 (b)), orientagado
(Figura 4.13 (¢)), e de iluminag¢do (Figura 4.13 (d)), percebe-se a manutencao das orientagdes da
maior parte dos vetores gradiente em relagdo a imagem em seus aspectos originais (Figura 4.13
(a)), principalmente as orientacdes relacionadas a regides de grandes dreas. Isso indica robustez
do método de calculo de gradiente proposto, que dentro de mudangas em escala, intensidade e

orientacdo das imagens, preserva as caracteristicas nos vetores de gradiente.

l' "'i."ﬂ
0

Figura 4.13: Comparativo para o gradiente proposto diante de transformacdes geométricas e em iluminagdo, a ima-
gem no topo é aquela fornece as regides para defini¢do dos gradientes abaixo de cada imagem os gradientes dos trés
canais de cores no sistema CIELAB, todas regides definidas uma mesma oitava n, escala ¢ e limiar 7": (a) imagem
original; (b) antes do agrupamento em regides, a imagem original com uma redu¢do pela metade em suas dimensdes,
exibida no mesmo aspeto original para facilitar a visualiza¢do; (c) imagem em (a) é rotacionada em 60° no sentido
anti-horério; (d) imagem em (a) recebe uma reducdo atenuagdo seu mapa de magnitude, de forma que essa cai para
metade do valor.
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4.3.2 Regiao de definicao do descritor

Para dar uma orienta¢do ao ponto-chave, no SIFT é necessario buscar uma orientacdo e uma
magnitude vencedora dentro de um histograma de orienta¢des bem detalhado do mapa de gradi-
entes, em uma regido em torno dos pontos-chave. Diferentemente do algoritmo SIFT [10], todos
os vértices da imagem analisada sdo considerados pontos-chave, com orientacdo e magnitude
determinadas pelo proprio vetor de gradiente m;. No SIFT, além daqueles para determinar as
orientacOes dos pontos-chave, histogramas sao calculados ao longo de regides/setores ao redor do

ponto-chave, cujas componentes sdo combinadas para formar o descritor do ponto-chave.

Os histogramas que compdem o descritor na SIFT englobam a contagem de vetores em 8
direcdes distintas. Neste trabalho, foram adotadas 4 orientacdes para os histogramas, ¢, a 6,
(Figura 4.14(a)). A orientagdo ou ndo de um vetor de gradiente m; em relagdo a 6, é dada pela
funcao:

1, se m; estd orientado na diregdo de 6y,

e(m;, b;) = 4.21)

0, caso contrario

A fungdo O(m;, 0)) retorna o valor 1, quando a orientagdo mais préxima do vetor de gradiente

m; € 0, e 0 caso contrario.

03
@ (b)

Figura 4.14: Determinacdo das orientagdes e das regides para os cdlculo dos histogramas de orientacdes: (a) 4
orientacdes, 0, a 6,4, para as quais serdo criados histogramas em (b) cada setor de uma grade polar dividida em dois
raios e quatro quadrantes, totalizando 8 setores, B; a Bg. O raio da grade polar é determinado é proporcional a R,
definido pelas dimensdes da regifo para qual se calcula o descritor.

O célculo dos histogramas que compdem o descritor € feito por setores dentro de regides ao
redor do ponto-chave, entretanto, em vez da distribui¢do dos setores em uma regido retangular

[10], foi definida uma distribui¢@o de setores por uma grade polar (Figura 4.14(b)).
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A grade polar de analise € dividida em 4 quadrantes e dois raios, 2 e 2R (Figura 4.14(b)),
contabilizando 4 x 2 = 8 setores B, [ = {1,2,...,8}. O raio equivalente R; do superpixel 4, para
qual se estd calculando o descritor, determina o raio da grade, definiu-se R = 10R; uma vez que

tal propor¢do apresentou os melhores resultados em testes.

Antes de contabilizar os histogramas, deve-se alinhar o contador (Figura 4.15(a)) e a grade
polar (Figura 4.15 (b)) em relagdo ao vetor de gradiente m;, do superpixel i para o qual estd
sendo computado o descritor. A defini¢do da direcao dos vetores de gradiente (Figura 4.15 (a))
¢ feita ao se alinhar a dire¢ao 6; com m; (Figura 4.15 (b)). A grade polar é posicionada com o

centro convergente ao centro do superpixel ¢ e alinhada com o vetor m; (Figura 4.15 (c)).

Figura 4.15: Processo de criagdo do descritor: (a) mapa de gradientes do canal de luminancia (Figura 4.12) com um
vetor de gradiente (cor azul) em destaque; (b) os vizinhos a esse vetor tém nele uma direcdo de referéncia, 61; (c)

bem como a grade polar na qual sdo construidos histogramas de orientag¢do por setor.



Cada componente do histograma, de cada um dos 8 setores, computa a quantidade de vetores
orientados em uma das quatro possibilidades 61, 05, 03 e 6,. Uma vez definido como pertencente
a uma certa orientagdo, a contribui¢do de um vetor r;, da regido j dentro da grade polar de
constru¢do do descritor da regido 7, ¢ ponderada pela magnitude do gradiente e por uma Gaussiana

circular simétrica em torno da posi¢do r; de i:

Hfj—w)?

(0 B) = 3 O, 00) 1|l (o

1€B)

(4.22)
A orientagdo do setor de acordo com a orientacdo do vetor do elemento de referéncia, visa dar ao
descritor invariancia a rota¢cdo ou mudancas de orientagdo de objetos e cenas.

A ilustracao da Figura 4.16 mostra os histogramas das 4 orientagdes (a) para cada um dos 8
setores, suas componentes siao dispostos em um vetor (b) de tamanho 8 X 4 = 32 componentes.

Esse descritor da regido ¢ para um canal de cores pode ser escrito como:

ﬁi = [Ci(91731>7ci(92731)7 ---7Ci(93, 38)701'(94;()8)]7 (4.23)

(@) (b)

Figura 4.16: Representagdo do descritor em um vetor: (a) 8 histogramas posicionados em seus respectivos setores
que contabilizam para 4 orientacdes, os vetores de gradiente, as componentes desses histogramas, representados
pelas setas em cada setor; (b) sdo dispostos em um vetor que ao ser normalizado, representa o descritor D de um
canal de cor para uma regido.

O descritor final utilizado neste trabalho é formado por uma composi¢ao dos trés descritores,
com um tamanho 3 x 32 = 96, referentes aos seus respectivos canais de cor. Antes de serem
dispostos em um Uunico vetor, esses histogramas sdo individualmente normalizados, e quando
dispostos em um tnico vetor, esse vetor também € normalizado. Esse vetor de norma unitdria tem
contribui¢do peso de 1/3 para cada canal de cor. Esse procedimento de normalizagdo objetiva

fornecer ao descritor invariancia quanto a mudangas na ilumina¢do da imagem.
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4.4 DETERMINACAO DE REGIOES CORRESPONDENTES

Para determinagdo de regides correspondentes entre duas imagens com o descritor proposto,
optou-se por utilizar o produto interno em vez de uma distancia euclidiana, pela facilidade de
implementagdo ao se confrontar conjuntos de descritores de duas imagens por uma multiplicacdo
de matrizes e pelos valores nulos para os confrontos entre descritores ortogonais. Esse produto

interno revela correspondéncias de forma que:

jw(i) = argmax D; - ]3]-, (4.24)
J

sendo que ¢ a regido de uma imagem V7, e j,, () a regido de maior produto interno com ¢ dentro
dos elementos de uma segunda imagem V5. 7j,(7) s6 é considerado uma correspondéncia, se a

partir da relac@o inversa:

1

iw(j) = argmax I_jj - Dy, (4.25)

[Jw, 2] formam um par reciproco.

A Figura 4.17 ilustra os pares [1, 4] e [3, 7] como pares de correspondéncias. O produto interno

de i = 1 daimagem V) tem maior produto interno na imagem V5 com a regido 5 e a relag@o inversa

——]
o=

Figura 4.17: Tlustragdo para a determinacao de regides correspondentes entre duas imagens que tem regides con-

¢ respeitada.

K

v
I

e

frontadas com a aplicag¢do do descritor proposto. [1,4] e [3,7] configuram pares de correspondéncia, pois formam
um par reciproco na determinag@o do produto interno maximo no confronto de elementos da imagem V3 coma V5 e

vice-versa.

As Figuras 4.18, 4.19, 4.20 e 4.21 exibem o confronto de regides de imagens tratadas como
referéncia (a) e suas versdes em transformagdes geométricas de escala (b), orientagdo (c) e mu-
dancas na iluminacdo (d). Percebe-se uma boa convergéncia entre as regides da imagem original
(a) para com seus respectivos pares de vistas sob transformagdes. No proximo Capitulo € defi-
nido um método de célculo de fluxo 6ptico que refina esse confronto de regides com a inclusio

de informagdes de posi¢do e cor das regioes.

63



¥9

(c) rotacdo de 60° (d) magnitude reduzida em 2x

Figura 4.18: Confronto entre duas imagens da cena Stafue uma em seu aspecto original e a outra submetida a trés tipos de transformac@o: (a) uma vista em seus aspectos
originais com regides criadas pelo método de agrupamento proposto com pardmetros 7', n € ¢ que s@o mantidos para as imagens confrontadas, todas as regides recebem
uma cor que se mantém para as regioes correspondentes nas imagens confrontadas; (b) a segunda vista tem dimensdes reduzidas pela metade, exibida no tamanho original

para melhor visualizago; (c) aplicada uma rotagio de 60° e; (d) uma atenuag@o no seu mapa de magnitude na ordem de 2x.
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(c) rotagdo de 60° (d) magnitude reduzida em 2x

Figura 4.19: Confronto entre duas imagens da cena 7eddy uma em seu aspecto original e a outra submetida a trés tipos de transformagao: (a) uma vista em seus aspectos
originais com regides criadas pelo método de agrupamento proposto com parametros 7', n € ¢ que sd@o mantidos para as imagens confrontadas, todas as regides recebem
uma cor que se mantém para as regides correspondentes nas imagens confrontadas; (b) a segunda vista tem dimensdes reduzidas pela metade, exibida no tamanho original

para melhor visualizagdo; (c) aplicada uma rotagio de 60° e; (d) uma atenuag@o no seu mapa de magnitude na ordem de 2x.



(b) redimensionamento x%2

99

(c) rotacéo de 60° (d) magnitude reduzida em 2x

Figura 4.20: Confronto entre duas imagens da cena Cones uma em seu aspecto original e a outra submetida a trés tipos de transformac@o: (a) uma vista em seus aspectos
originais com regides criadas pelo método de agrupamento proposto com pardmetros 7', n € ¢ que s@o mantidos para as imagens confrontadas, todas as regides recebem
uma cor que se mantém para as regioes correspondentes nas imagens confrontadas; (b) a segunda vista tem dimensdes reduzidas pela metade, exibida no tamanho original

para melhor visualizago; (c) aplicada uma rotagio de 60° e; (d) uma atenuag@o no seu mapa de magnitude na ordem de 2x.
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Figura 4.21: Confronto entre duas imagens da cena Venus uma em seu aspecto original e a outra submetida a trés tipos de transformagdo: (a) uma vista em seus aspectos
originais com regides criadas pelo método de agrupamento proposto com pardmetros 7', n € ¢ que s@o mantidos para as imagens confrontadas, todas as regides recebem
uma cor que se mantém para as regides correspondentes nas imagens confrontadas; (b) a segunda vista tem dimensdes reduzidas pela metade, exibida no tamanho original

para melhor visualizago; (c) aplicada uma rotagio de 60° e; (d) uma atenuag@o no seu mapa de magnitude na ordem de 2x.



4.41 Ajuste fino de correspondéncias e estimativa de movimento

Foi desenvolvido um método que, a partir do descritor proposto, estima o movimento das
regides entre quadros, visando o aumento da exatiddo nas convergéncias determinadas. A téc-
nica utilizada se aproveita da capacidade do descritor em relacionar regides em diferentes graus
de transformagdo geométrica, ajustando e refinando os deslocamentos das regides em um pro-
cesso iterativo. O método iterativo proposto estd ilustrado na Figura 4.22, na qual estima-se os

deslocamentos das regides de um quadro de referéncia (a) em relagdo ao seu subsequente (b).

Criacgdo de
regides

Extracdo de
propriedades

v, :7,L, A D]
-

l Processo iterativo de calculo do vetor de movimento

e determinacdo de regides convergentes

Parar processo
iterativo

= e Sim—p

v

Para todos os vetores

Criacdo de regides Determinacéo dos NZo
e extracdo de vetores de movimento
propriedades parciais

Realizar nova
iteracdo e um
incremento em k

Espalhamento

(b)

Figura 4.22: Diagrama ilustrando o processo de estimativa de movimento entre regides: (a) uma imagem/quadro

¢ tomada como referéncia, V;; (b) o método proposto estima para um quadro subsequente, V. (ilustrado como
uma rotagdo do par estéreo da imagem de referéncia), o movimento em relacdo ao quadro de referéncia; (¢) Vg1
¢é representada por regides e pardmetros sdo extraidos delas, posicdes, dreas, cores e descritores, 0 mesmo € feito
para V; (d) o processo iterativo calcula e atualiza as correspondéncias e o vetor de movimento parcial das regides
do quadro subsequente; (e) a informagdo dos vetores de fluxo definidos pelas correspondéncias € espalhada para as
vizinhas a partir de uma filtragem; (f) apds cerca de 15 interagdes, as correspondéncias e; (g) os vetores permanecem
estaveis.
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Uma vez determinado o descritor D;, do elemento ¢ pertencente ao quadro V,, e o descritor
D;, do elemento 7 pertencente ao quadro subsequente V,;;, um vetor de ajuste, ou vetor de
movimento f;, é calculado para corrigir a posi¢do r; da regido/elemento j em relacdo ao vetor

posic¢do r; do elemento i. O vetor de fluxo f} € obtido por um processo iterativo.

Calcula-se inicialmente uma forca de conexdo F* entre os elementos para determinacdo das
correspondéncias, que sdo atualizadas a cada iteragdo. O produto interno que define essa forga
de conexdo entre os descritores, € entdo ponderado pela multiplicacdo de duas gaussianas, uma
referente a distdncia entre as componentes de cor, Ej e fj, e outra referente a distancia espacial

entre os elementos, T; e I';, ajustada pelo vetor de movimento ff na iteragdo k:

T R;

ei(w)ze_((k_ﬁiﬁj)@—@jﬁ]’mﬂ )2

(4.26)

A cada iteracdo, hd na equacao (4.26) um incremento de uma unidade em k, que € inicializado
como 1. Nesta inicializag¢do, k = 1, temos a seguinte aproximagao para Filj:

- (MEE 4.27)

J Y

2y

uma vez que os valores do produto interno de regides semelhantes D, -D ;j estdo proximos de 1,
quando subtrai-se £ = 1 por esse produto interno, o expoente da gaussiana referente a posicao
se aproxima de zero na equacdo (4.26), ou seja, na inicializa¢do as correspondéncias ndo siao
influenciadas pela posicao dos elementos, somente pela sua proximidade entre cores e descritores.

Para todo j € Vg4 , £0 & inicializado com valor 0.

Em uma primeira iteragdo, por exemplo, para imagem ou quadro de referéncia e as regioes
que a definem (Figura 4.22(a) e (b), respectivamente) determina-se para o quadro subsequente
(Figura 4.22(c)) correspondéncias parciais (Figura 4.22(e)). Essas correspondéncias parciais sao
determinadas como descrito para as equagdes (4.24) e (4.25), encontra-se um par vencedor [7, j| €

Viwp determinado para a fungdo F', que representa o produto interno de descritores ponderado.

Encontradas as correspondéncias parciais para os vencedores (Figura 4.22(c)) atualiza-se um

vetor de movimento parcial ff para um elemento j,, em relagc@o ao seu par ¢ como:

S r;, — T, se (2, j] €V,
A S [od) € Yy (4.28)
£, caso contrario

se [i, j] ndo representam um par vencedor, f]’-k toma o valor do vetor na iteracdo anterior ff‘l.

Na primeira iterac¢do (Figura 4.22(c)) ha uma atualizacao do vetor de fluxo apenas para as cor-
respondéncias, enquanto os elementos sem correspondéncias continuam com o argumento nulo.

A informacdo referente aos vencedores € difundida para os elementos proximos (Figura 4.22(f))
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e, por consequéncia, para elementos sem par de correspondéncia, calculando-se a média entre

todos os pontos dentro de uma vizinhancga:

fr= > £, )/ Y A (4.29)

Yuevy, Vuevy,

A equagdo (4.29) opera de maneira semelhante a um filtro média mével no dominio de uma
imagem de pixels. Obtém-se uma média dos elementos em uma vizinhancga, no caso da repre-
sentagdo por regides, utilizou-se a vizinhanga Vdjel, que sdo os elementos conectados a 7 por uma
triangulacdo Delaunay [43], incluindo o préprio j. Multiplicando-se cada vetor E’f por sua res-
pectiva area A,,, cria-se uma soma ponderada que é média de vetores dentro da vizinhanga; quanto

maior a drea da regido, maior sua contribui¢do .

O crescimento de k a cada iteracdo (equacdo 4.26) restringe espacialmente as possibilidades
de casamento. A gaussiana referente a distancia espacial entre os elementos ¢ e j, tendo j sua
posicdo ajustada por ff, determina essa restri¢do quando assume valores muito préximo de zero

para elementos mais afastados de :.

A mudancga nas correspondéncias passa a ser irrelevante a cada iteragao, bem como a mudanga
no vetor de movimento antes (Figura 4.22(g)) e depois da filtragem (Figura 4.22(h)). O processo é
encerrado quando de uma iteracdo para a outra, 0 maximo médulo do deslocamento dentre todos
os elementos j € V., € menor que €:

fk—1 ck
£ —£F]| <e, (4.30)

Vi€Vgs1

Um valor € unitdrio representa um deslocamento inferior a um pixel. Este valor foi adotado
por se mostrar um bom critério de parada. Valores menores do que 1 para o € se mostraram
inatingiveis em algumas situacdes, e valores maiores implicam em incoeréncias espaciais, ou
seja, correspondéncias erroneamente definidas. Os vetores final f tém valores iguais a f* na

ultima iteracao.

4411 Restricoes

Visando maior exatidao no casamento de correspondéncias e, por consequéncia, no vetor de
movimento determinado, duas restricdes para o casamento de regides foram empregadas. Tais
restri¢des t€m contribui¢do para a diminui¢do no tempo de execugdo do algoritmo, uma vez au-

mentado o grau de exatiddo para as primeiras iteracoes.

Foi determinada uma restricdo quanto a distancia entre a posi¢do dos i e j, T; e T';, em relacdo

a suas dimensdes, I?; e I?;. I na equagdo (4.26) assume valores nulos caso a seguinte condi¢ao
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seja respeitada:
[IF: = (F + )l = p(R: + Rj) > 0. (4.31)

A restri¢do em (4.31) visa eliminar casamentos de regides que tenham suas fronteiras muito dis-
tantes umas das outras. Estima-se a distincia entre as fronteiras subtraindo-se o vetor posi¢do
entre do centro das regides, I; e I; corrigido pelo vetor de fluxo f?’? na iteracdo k, pela soma dos
raios equivalentes, R; e Ej (Figura 4.23), multiplicada por um fator p. Adotou-se o valor p = 4,
por exibir uma boa captura de movimentos relevantes dos objetos, €, a0 mesmo tempo, excluir

falsos positivos que possam influenciar no cessar de iteragdes do processo.

Figura 4.23: Tlustracao para a restricdo espacial para casamento de regides, determinada pela equagdo 4.31. Apesar
de estarem representadas em um mesmo plano, as regides ¢ e j pertencem a dois quadros distintos V, e V1,
respectivamente. Apds a corre¢@o da posicdo de j com um vetor de fluxo ﬁk nota-se que as fronteiras da regiao ndo se
interceptam, indicando que regides ndo se tratam de correspondéncias. Uma forma de se aproximar e simplificar essa
relagdo de fronteiras € aproximando as regides por circunferéncias de raio igual ao equivalente R; e R;, representado
pelas circunferéncias tracejadas ao redor do centroide das regides.

Outra restri¢ao aplicada € para a mudanca de escala da regido, ou seja, um aumento ou dimi-
nuicdo de drea de um quadro para o outro que nio se adéqua a um padrdo estabelecido, leva a
fun¢do F' da equacdo (4.26) a valores nulos, pela condi¢ao:

A _A
A=Al (4.32)
Ai + A

Quando as dreas A; e A;, referentes as regides 7 e j, respectivamente, tém uma drea muito pré-
xima, o valor do lado esquerdo da inequacao (4.32) tente a 0, enquanto para dreas com grande

desproporcionalidade esse valor tende a 1.

Quando, por exemplo, a drea A; assume o dobro do valor de A;, A; = 2A;, ou A; assume o
dobro do valor de A;, o lado direito da inequagdo (4.32) assume valor 1/3. Adotou-se um v = 0, 4
que permite o casamente de regides que sofram deformag¢des maximas em area de aproximada-
mente 2,5 vezes. O valor visa contemplar as transformacdes em escala e a instabilidade gerada

pela segmentacao watershed.
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4.4.2 Correspondéncias e sementes

Para experimentos e testes dos métodos propostos, foi utilizado um algoritmo de segmentacao
de simples implementacdo, o GrowCut [44]. Esse método, apresentado no Capitulo 3, utiliza
sementes para inicializag@o e rotulacdo de elementos que sdo pertencentes a um objeto (OB) ou
ao fundo da imagem (BK). O método foi originalmente desenvolvido para ser aplicado em uma
imagem, em que as sementes s sdo pixels de inicializacdo, que ddo suporte ao agrupamento de

novos pixels a cada iteracdo, para a segmenta¢do do objeto de interesse.

Para este trabalho, as sementes t€ém origem no primeiro quadro da sequéncia a ser segmen-
tada, ou seja, todos os elementos do primeiro quadro possuem uma rotulagdo prévia, se pertence
ao conjunto OB ou ao BK. Essa rotulacdo € determinada pelo groud truth (GT) desse primeiro
quadro. A Figura 4.24 demonstra a propaga¢do das sementes relativas ao objeto (circulos verme-
lhos) e ao fundo (marcacdes ‘x’em azul), que tem origem no primeiro quadro (esquerda superior).
Como o rastreamento € feito quadro a quadro, essa propagacdo de sementes e as correspondéncias

indicadas pela padronizacdo de cores sdo exibidos em pares de quadros na (Figura 4.24).

Figura 4.24: Casamento de regides entre quadros, com correspondéncias atribuidas pelo algoritmo proposto. Os
circulos vermelhos e as marca¢des em ‘x’azul apontam as regides referentes as sementes, com origem no primeiro
quadro, que sdo perpetuados ao longo da sequéncia pelo casamento de regides. Nos pares de confronto, 1-2, 2-3
e 3-4, as regides correspondentes ganham o mesmo padrdao de cores. As regides sem correspondéncia no quadro
subsequente analisado, como regido escurecida referente ombro esquerdo do urso no quadro nimero 2 inferior,
recebem uma nova rétulo e uma nova coloragdo/rétulo. O GT de todos os quadros estd representado como uma
contorno esbranquicado em torno do urso.

Uma forma de se observar a propagacdo e casamento de regides ao longo de quadros (Fi-
gura 4.25) € a representagdo dessas regioes distribuidas em forma de volumes ao longo do tempo,
x X yx tempo (Figura 4.26). Ao contrério da Figura 4.24 a regides da sequéncia da Figura 4.25

ndo possuem regides escurecidas, que é uma forma de ilustrar no confronto regides sem cor-
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respondéncias para o quadro subsequente, todas as regides exibem um padrdao de cor. Com um
mesmo padrdo de cores para regides correspondentes (Figura 4.25) € possivel ilustrar o casamento

de regides em um volume espacoxtempo (Figura 4.26).

Figura 4.25: Tlustragdo do casamento de regides em duas sequéncias de 6 quadros, regides as quais recebem um
mesmo padrao de cores para representar uma correspondéncia: (a) sequéncia Traffic e; (b) sequéncia Rhino.

quadro
quadro

Figura 4.26: Representacdo 3D das regides que formam as sequéncias Traffic e Rhino da Figura 4.25(a) e (b), respec-
tivamente. Os volumes exibidos nas imagens (a) e (b), Traffic e Rhino, representam regides relevantes propagadas ao
longo do tempo.
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4.5 ESCALA MISTA ORIENTADA AO OBJETO

Aproveitando informagdes referentes ao posicionamento e tamanho do objeto fornecida pelo
primeiro quadro e seu GT, € possivel determinar regides mais robustas e extensas para pontos mais
afastados do objeto. Um processo inspirado na fisiologia do olho humano, que tem uma concen-
tracdo de receptores na regido da fovea (Figura 4.27(a)), forca uma distribuicao de elementos de
forma ndo uniforme, em que para objeto desejado ha uma concentra¢do maior de elementos/re-
gides por unidade de drea, enquanto para as vizinhangas desse objeto, uma concentracio menor

de regides € definida (Figura 4.27(b)) e regides mais amplas sdo formadas.

(b)

Figura 4.27: Escala mista aplicada a uma imagem (Football) com foco no capacete do jogador: (a) a combinagdo de

imagens borradas por Gaussianas de diferentes desvios padrdo, produz semelhante ao que se tem quando se foca um
objeto com o olhar, no caso, cabega e capacete de jogador; (b) aplicando em (a) os métodos para criacdo de regides
desenvolvidos no Capitulo 4, obtém-se uma alta concertacio no objeto de interesse € um maior nimero de elementos
para representar dreas afastadas do objeto.
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A técnica de escala mista consiste na adaptagdo de um passo dos métodos apresentados no

Capitulo 4, modificando-se a equacgdo (4.10) para a criagao das regides de forma que:

L(z,y,0) = H(:E,y)(](x, y) * G(z,y, 0)) + (1 — H(x,y)) ([(a:,y) x G(x,y, 20))), (4.33)

em que [ é uma mdscara Butterworth tal que:

H(z,y) = ! . (4.34)

2 2 6
I (':B xS) (y yS)

A equag@o (4.33) representa a filtragem de /(z,y) por gaussianas de diferentes desvios padrdes,
G(z,y,0) e G(x,y,20), que sdo combinadas por meio de uma janela Butterworth, H(x,y) (Fi-
gura 4.28(a)), e seu complemento, 1 — H(x,y) (Figura 4.28(b)). A filtragem pela gaussiana de
menor desvio padrio o é multiplicada pela Butterworth centrada em (x, ys ), ressaltando o objeto,
com detalhes menos desfocados que o fundo, para o qual o borramento € mais intenso e salientado

pelo complemento da Butterworth.

P 0.8
P 06 1
P 0.4+
04
L 02
02" 0
0=
04 a00
a00 A
mo 50 m T
@ H(xy) () 1-H(xY)

Figura 4.28: Janelas utilizadas para combinacdo de escalas: (a) Butterwoth relacionada a imagem da Figura 4.27(a),
ponto de méximo e amplitude da janela estdo vinculadas a posi¢cdo do objeto e sua drea em imagem, respectivamente;
(b) representacdo do complemento de (a), ou seja, uma fungdo constante 1 subtraida da Butterwoth.

Na equacdo (4.33) a posicado (s, ys) € uma estimativa para a localiza¢ao do centro do objeto.
No casamento de regides quadro a quadro adotada neste trabalho, apenas o primeiro quadro de
uma sequéncia tem esta localizac@o exata, determinada pelo GT. Nos demais quadros, estima-se
(zs,ys) pelo centroide formado pelas sementes referentes ao objeto de um quadro. No caso de
movimento, por exemplo, é como se o foco (regido mais bem resolvida) estivesse sempre em

atraso quanto a posi¢ao do objeto.
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O valor 2 que multiplica o raio equivalente R na equacio (4.34), aumenta a abrangéncia da
drea menos borrada, ou mais bem definida, de forma a compensar algum tipo de movimento
ou mudanca de dimensio do objeto. Fixou-se R = R, ao longo de toda sequéncia, onde 1y

representa o raio equivalente da drea do objeto para o GT do primeiro quadro.

Foi observado em testes que, para um objeto em movimento, as sementes vao se extinguindo
para ao longo de uma sequéncia de quadros (Figura 4.29 (a)), devido a falta de correspondéncias,
consequente das divergéncias entre as imagens conforme o movimento. O mesmo acontece para

as sementes referentes ao fundo (Figura 4.29 (b)), em maior volume devido a variacdo de escala.

quadro

quadro

(b)

Figura 4.29: A representacdo 3D do esquema de regides em uma imagem de escala mista (Figura 4.27(a)) pode

ser dividida nos conjuntos mais importantes para a segmentacao proposta neste trabalho: (a) sementes referentes ao
objeto (OB) propagadas ao longo de um grupo de quadros, verifica-se uma maior concentragdo de elementos para
este conjunto do que para: (b) conjunto formado por sementes do fundo (BK).
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4.5.1 Deslocamento nhormalizado do centroide

Nao foram definidas métricas especificas para avaliar a coeréncia espago-temporal do casa-
mento de regides ao longo dos quadros. Para avaliar como o movimento do objeto ao longo dos
quadros pode influenciar a sua segmentagdo, foram construidos graficos para o deslocamento nor-
malizado do GT do objeto nas cenas estudadas. As componentes do deslocamento normalizado
em termos absolutos do centroide (zc, yc) de objeto, segundo GT, entre dois quadros, ge ¢+ 1, é

calculado como:

(dzq, dyq) = (g1, yCqi1) — (Cq, ycy)] (4.35)

1
RMgr
em que RMqar é a média dos raios equivalentes das regides pertencentes ao GT:

RMer = ~— Z il (4.36)

O médulo do deslocamento normalizado do objeto de um quadro para o outro € a soma eucli-

diana das componentes do deslocamento.

dg = \/da?) + dy?, (4.37)

O objetivo desses deslocamentos normalizados € verificar o quanto em média as fronteiras das
regides estdo afastando, de acordo com o movimento do objeto. Quando se normaliza o desloca-
mento pela média dos raios equivalentes da regido do GT do objeto, RM¢r, esse deslocamento
fica em termos desse raio médio. Essas curvas de deslocamento, calculados para cada sequéncia,

sdo exibidos no Capitulo 6.
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5 MAPAS DE PESOS E SEGMENTACAO DE VIDEOS VIA
CORTES EM GRAFOS

5.1 INTRODUGCAO

Neste capitulo serdo apresentados os métodos utilizados para proceder a segmentacdo de ob-
jetos em video via corte de grafos. Para avaliar as contribuicdes do descritor proposto, serdo
detalhados quatro modos de organizacio e ponderacdo de grafos, que serdo aplicados em dois
modos de segmentacgdo, quadro a quadro e ao longo de um grupo de quados. A primeira forma de
conectar e ponderar vértices de um grafo, representa fornecendo-se peso as ligacdes a partir da
andlise das distancias entre posi¢des e cores de forma direta (ndo ajustado — NA), a segunda utiliza
o descritor proposto para realizar uma estimativa de movimento entre quadros (Ajustado — AJ),
a terceira conecta os vértices correspondentes reforcando-se suas ligagdes com um peso infinto

(Refor¢ado — RE); e a quarta agrupa as correspondéncias em vértices equivalentes (Equivalente —

EQ).

5.2 ORGANIZAGCAO DOS GRAFOS E DETERMINAGCAO DOS MAPAS DE PESOS

Por intermédio da sobre-segmentacdo em regides, obtida pelos métodos propostos no Capi-
tulo 4, e a defini¢do de regides correspondentes também pelos métodos propostos, um video pode
ser interpretado como grafo, cujas relagdes entre elementos serdo estudadas em favor da anélise

da contribuicdo do descritor local proposto para as regides.

A partir desse ponto, as regides sdo tratadas como vértices de um grafo que se estendem ao
longo do tempo, em que o peso das relacdes entre esses vértices € determinado por caracteristicas
dessas regides, como posicdo, cor, drea € um vetor de movimento, estimado de acordo com o

proposto no Capitulo 4.

Quatro tipos de grafos foram adotados para estudos, separados de acordo com organizacao
e pesos de conexdes entre as regides entre quadros: (1) sem ajuste de movimento entre regides
(NA) (Figura 5.1(a)); (2) com ajuste no movimento entre regides (AJ) (Figura 5.1(b)); (3) re-
gides correspondentes com pesos reforcados (RE) (Figura 5.1(c)); e (4) regides correspondentes

substituidas por elementos equivalentes (EQ) (Figura 5.1(d)).
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A Figura 5.1 exibe as quatro variantes de organizacdo de grafos, o grafo com elementos sem
ajuste de movimento entre regides, NA (Figura 5.1(a)), o grafo em que os elementos recebem um
ajuste de movimento, AJ (Figura 5.1(b)), definido pela estimativa de movimento determinada no
Capitulo 4. A ilustracdo exibe também o grafo no qual reforga-se ligagdes entre as correspondén-
cias, RE (Figura 5.1(c)), e aquele em se representa as correspondéncias por um tnico elemento
equivalente, EQ (Figura 5.1(d)).

(© (d)

Figura 5.1: Ilustragdo para os quatro modos de grafos aplicados as sequéncias de video estudadas: (a) o modo
sem ajuste (NA) relaciona as regides sem qualquer interferéncia na posi¢do espacial das mesmas; (b) no modo
ajustado (AJ), corrige-se a posicdo das regides de um quadro em relaciio ao antecessor, por meio da estimativa de
movimento proposta, tal correcdo ¢ ilustrada pela reorganizagdo da posi¢do dos elementos em cada quadro em relagio
a disposi¢do exibida em (a); (c) no grafo com pesos reforcados (RE), define-se uma ligacdo de peso infinito para as
correspondéncias determinadas pelo algoritmo proposto, essa representacdo é feita pelas linhas mais espessas que
ligam elementos de quados distintos; (d) para um grafo equivalente (EQ), as ligacdes triplas representam aqueles

elementos considerados como um s, definidos pelas correspondéncias encontradas pelo algoritmo proposto.

Os casos RE e EQ sdo construidos com base no mapa de pesos do grafo AJ. Uma vez corrigido
o movimento entre regides e determinada os pesos de ligagdo dessas regides, agora tratadas como
vértices de um grafo, o grafo RE € construido ao se criar um ligagdes de pesos infinito entre
aqueles elementos ditos correspondentes, pesos infinitos representados por linhas mais espessas

na Figura 5.1(c).

No caso do grafo EQ, em vez dos pesos infinitos, trata-se essas regides correspondentes como
um Uunico vértice, um vértice equivalente. Na Figura 5.1(d), por exemplo, as ligacdes triplas
conectam regides tratadas como um unico vértice em um grafo equivalente, que é um grafo com
menos elementos do que RE, mas que preserva suas propriedades para uma segmentacao via corte

de grafo.
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A intencdo da proposta dessas quatro formas de se organizar grafos € verificar a contribuicao
do descritor, uma vez que a ferramenta proposta € utilizada para se estimar o movimento das
regides entre quadros, podendo-se comparar uma segmentagdo aplicada a uma relacdo direta,
sem ajuste (NA), a uma relacdo na qual as posi¢des entre as regides de um quadro para outro sao

ajustadas (AJ), antes da determinacgdo da for¢a de ligacdo entre elas.

As outras duas formas de avaliar as contribui¢cdes do descritor, envolvem como ele € capaz de
relacionar as regides entre quadros por meio das correspondéncias. Utiliza-se o mapa de pesos
do grafo AJ, no qual diferencia-se a forca de ligacdo entre aquelas regides/vértices determina-
dos como correspondentes (RE), ou simplesmente agrupa-se essas correspondéncias em vértices

unicos, vértices equivalentes (EQ).

5.2.1 Grafos sem ajuste de movimento entre regioes

O principio bésico da segmentagdo de imagem/video via grafos € utilizar informagdes refe-
rentes a cor e a posi¢ao das dos elementos que a compde, pixels ou regides, para a formacao
dos mapas de ponderacdo. Em video, a contribuicdo da posi¢do dos elementos no mapa de pon-
deracdo pode ser feita de maneira direta, medindo-se a distancia euclidiana dos elementos intra
quadros, sem se levar em consideragdo movimento que um objeto pode ter sofrido na passagem

de um quadro para outro.

Em uma das quatro formas apresentadas neste trabalho para se relacionar as regides de um
video sobre-segmentado, ndo se corrige 0 movimento entre essas regioes (NA). A for¢a de ligacio
w{’VjA entre o elemento ¢, pertencente ao conjunto de regides de um quadro V,, € calculada em
relagdo ao elemento j, pertencentes quadro seguinte V. Utilizando-se no célculo elementos de
corLe posi¢do T, forma-se uma matriz de pesos com componentes fornecidas pela equagao:

IE—E,\2 _ (1FiE)?
e,( 7 ) e (§i+§j)

w%A: s S€ 26%636%4_1 ’ (51)

0, caso contrario

em que 7' € o limiar definido para a segmentagdo e determinacdo das regides do quadro (Capi-

tulo 4), R; e Tij sdo os raios equivalentes das regides, determinadas pela expressio R = /A, /.

A equacdo 5.1 tem valor determinado pela multiplicacdo de duas Gaussianas, caso os vértices
1 e j pertencam a dois quadros subsequentes, e zero, caso se tratem de regides/vértices de um
mesmo quadro. Regides de um mesmo quadro recebem pesos nulos entre si, partindo do principio
que o objeto ja € bem definido na sobre-segmentagdo realizada, e regides semelhantes devem ser
relacionadas ao longo dos quadros subsequentes. Esses pesos nulos representam uma grande

regido esparsa na matriz de pesos (Figura 5.2).
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Figura 5.2: Mapa de pesos do grafo NA representado como um mapa de magnitudes. A relacdo se restringe aos
conjuntos de elementos de dois quadros, V; e V41, entretanto a representacdo pode ser estendida para um mapa que
contemple elementos de toda uma sequéncia. O mapa possui valores nulos para conexdes de elementos no mesmo
quadro, as regides no mapa destacadas por retangulos com linhas pontilhadas representam as relagdes entre o quadro

V; € seu sucessor V1.

5.2.2 Grafo com ajuste de movimento entre regioes

Para exemplificar o processo, pode-se aproveitar o mesmo exemplo de cdlculo de vetor de
movimento exibido na Figura 4.22(g), que contém os vetores que representam deslocamento es-
timado das regides entre uma imagem e seu par estéreo rotacionado (Figura 5.3(a)). O efeito do
ajuste/correcdo da posicdo dos elementos de uma imagem a partir do vetor de movimento, pode
ser observado melhor em ilustracdo contendo esferas com raios iguais aos raios equivalentes R
das regides (Figura 5.3(b)), em mesma posi¢cdo. Pode-se tratar a imagem original como um qua-
dro de referéncia V,, em que o vetor de movimento f ajusta a posi¢ao dos elementos pertencentes

a imagem rotacionada, um quadro subsequente V. (Figura 5.3(c)).
Define-se pesos w;"‘jj para a matriz de ponderacdo do caso AJ como:

L o T —(F:+F; 2
WAl = ) eI e b

0, caso contrario

Se z'EqujEVZIH 7 (52)

em que as varidveis envolvidas sdo as mesmas que no caso NA da equagdo 5.1, com adicao do
vetor de movimento f; que corrige a posi¢do r; do elemento j € V,;; em relacdo a um quadro

de referéncia V;;. Uma vez ajustadas as posi¢des de acordo com o vetor de movimento estimado,
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Figura 5.3: Ilustragdo da corregio no movimento entre regides proposta: (a) regides sio definidas para um quadro V;, e

um quadro subsequente V1, ilustrados por duas vista de uma cena, uma em seu aspecto origina e outra rotacionada;
(b) representando as regides de cada quadro como esferas de raio proporcional ao seu raio equivalente R é observar
melhor o ajuste efetuado; (c) a correcdio na posigdo dos elementos de V11, os posiciona em convergéncia com

possiveis correspondéncias no quadro de referéncia V.

anula-se elementos que entre quais:

|7 — (¥ + Ff)H > 2(R; + R;). (5.3)

Considera-se desconectados aqueles elementos que a distincia das posigdes T; € I'j, mesmo
quando ajustados pelo vetor de movimento f}, estejam a uma distancia maior que duas vezes a
soma dos seus raios equivalentes R; e E Essa consideracdo visa desconectar regides ndo que
tenham suas fronteiras proximas, mesmo com uma corre¢ao pelo vetor de movimento. O mesmo
principio ndo pode ser aplicado para o caso NA, pois sem informa¢do quanto o movimento do

objeto, pode-se desconectar regides que ultrapassem qualquer limiar pré-definido.
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Quando ajustado o movimento percebe-se um aumento de intensidade na forca de ligacdo de
alguns elementos (Figura 5.4) em relacdo ao caso nao ajustado (Figura 5.2). Essa condicao esta
relacionado a uma melhor convergéncia das posicdes das regides aliado a sua proximidade em

componentes de cor.

20 40 60 80 100 120

V V

q g+l

Figura 5.4: Mapa de pesos de um grafo AJ representado como um mapa de magnitudes. As relagdes sdo as mesmas
para que as do mapa exibido na Figura 5.2, entretanto nota-se uma mudanga na magnitude das componentes do mapa,
oriunda da do ajuste na posi¢do das regides do quadro V1 em relacdo a V,, que implica na mudanga nos pesos em
relacdo ao mapa NA.

5.2.3 Correspondéncias com pesos reforcados

A partir do ultimo grupo de correspondéncias criadas para o célculo do vetor de movimento
(Figura 5.3(a)) pode-se determinar um grau maior de associagdo entre esse grupo de elementos.

Repete-se o mesmo método de célculo de pesos para o modelo AJ, substituindo-se os pesos dos

RE

pares de vencedores, ou agora, elementos equivalentes [7, j] € V¢, por pesos w;";” com valor muito

grande, tratados infinitos:
RE 00, se [i,j] € VL,

whiF = (5.4)

2y L .
w caso contrario

Este método de mapeamento de pesos cria uma forga de ligacao tal, que os elementos conec-
tados por esses pesos infinitos passam a representar um Unico elemento. Entretanto, esse aumento

no peso das ligacdes desses vértices ndo elimina as redundancias criadas.
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Figura 5.5: Mapa de pesos de um grafo RE representado como um mapa de magnitudes. Esse mapa tem em maior
parte das componentes com o mesmo valor do mapa para o caso AJ (Figura 5.4). A diferenca estd nos pares de
correspondéncia [i., je|, com i, € V, e i, € V, + 1, que recebem um valor de ponderag¢do muito alto, representando

uma ligacdo infinita que pode ser observada no mapa pelos pontos em vermelho escuro.

5.2.4 Correspondéncias substituidas por elementos equivalentes

Em vez de se determinar pesos infinitos aos vértices referentes a regides consideradas cor-
respondentes entre quadros em sequéncia, como no modo RE, pode-se emergir os vértices equi-
valentes [ic1, ie2, te3, .-y ten] € Ve a0 longo de varios n quadros em um tnico vértice I, tal que
[ie1, 062, 9e3, .-y ten] = I.. Na Figura 5.6, que estende a Figura 5.3(a), temos em (a) e em (b) duas
vistas do que retrata pares de elementos equivalentes emergidos, V., e aqueles vértices sem equi-
valéncia nos quadros V,, e V. Esse grafo equivalente pode ser visto como a combinagdo dos

dois quadros (Figura 5.3(c)).

E .
O mapa de pesos W% tem componentes w; ? determinadas com base nas componentes do

wrg =y wi, (5.5)

icl jeJ

mapa de pesos ajustado:

cada nova componente da matriz de pesos W% serd uma soma das relagdes de vizinhanga dos
seus elementos com referéncia ao mapa W47, A equacgdo (5.5), para formaciio de um mapa
de pesos equivalentes [45], tem como objetivo formar uma representacdo do grafo original que
permita a realizacdo de um corte/segmentacdo preservando as caracteristicas originais mesmo

com uma reduc¢ao no nimero de elementos em andlise.
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Para um corte em grafo que envolva matrizes de tamanho N x N a redu¢do no nimero de
elementos € a alternativa mais direta para redu¢do no curto computacional, sobressaltando o caso
de segmentacdo de videos em que esse nimero N pode crescer linearmente com a adicao de
quadros. Constata-se uma redu¢do no nimero de elementos para as matrizes para o caso EQ

(Figura 5.6) em relacdo ao mapa de pesos de origem dessa reducdo AJ (Figura 5.4).

(©)

Figura 5.6: Ilustragdo para a equivaléncia de regides referentes a Figura 5.3: (a) os quadros V,, e V1, regides/ele-

mentos na base e no topo, respectivamente, sao exibidos sem os elementos equivalentes, representando pelo conjunto
Ve ao centro; (b) outra vista para o apresentado em (a); (c) a correcdo de posicao e substituicdo de elementos corres-
pondentes por equivaléncias, permitem combinar dois quadros com caracteristicas muito préximas de forma a serem

tratados quase que como uma Unica imagem.
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Figura 5.7: Mapa de pesos para o grafo EQ representado como um mapa de magnitudes. Esse mapa tem como
base o mapa AJ, sendo que os elementos correspondentes sdo substituidos nés equivalentes. Isso elimina possiveis

redundancias (V11 — V¢) entre quadros, reduzindo o niimero de elementos submetidos a andlise.

5.3 DETERMINACAO DOS CORTES NOS GRAFOS

Oito formas de segmentacdo foram testadas neste trabalho, sendo separadas pelas 4 maneiras
que seus elementos/regides sdo agrupados e os 2 modos como o corte no grafo é aplicado. O
corte de grafo pode ser aplicado quadro a quadro (Figura 5.8(a)) ou na totalidade de quadros
(Figura 5.8(b)). O caso quadro a quadro envolve apenas um quadro e o subsequente, em uma

segmentacgdo feita em passos .

Apesar de envolver dois quadros, no modo de segmentacdo quadro a quadro apenas um quadro
¢ segmentado na prética a cada passo, enquanto o outro fornece sementes (fundo em azul e objeto
em vermelho, Figura 5.8). Para o primeiro quadro V; as sementes sdo determinadas por um GT,
para os passos seguintes, as sementes sdo obtidas a partir das segmentagdes. Por exemplo, no
passo 2 na (Figura 5.8(a)), o quadro segmentado V5 segmentado no primeiro passo (representado
por circulos coloridos), fornece sementes para a segmentacdo do terceiro quadro V5, o processo

se repete até todos os elementos da sequéncia passarem pelo corte.

A segunda forma de se segmentar um video € aplicando um corte de grafos em uma sequéncia
por completo (Figura 5.8(b)). Apds o processamento quadro a quadro destinado ao casamento de
regides e do cdlculo do vetor de movimento, aplica-se o corte no grafo contendo todos os elemen-
tos da sequéncia. O primeiro modo de corte, quadro a quadro, tem um esfor¢co computacional

menor do que o segundo modelo devido a quantidade de elementos agrupada.
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Figura 5.8: Ilustrag@o para os dois padrdes de segmentacdo adotados: (a) a segmentagdo quadro a quadro € procedida
em um par de quadros, o quadro de referéncia segmentado oferece sementes para a segmentacao de um quadro sub-
sequente (elementos coloridos em vermelho para o objeto e em azul para o fundo). O primeiro quadro é segmentado
a partir de um GT, os demais pelos métodos de corte de grafos proposto, a cada passo (esquerda para direita, de
cima para baixo) um novo quadro é segmentado; (b) a segmentagdo em uma sequéncia de quadros possui um quadro
como referéncia, o primeiro quadro segmentado com base no GT, que oferece sementes para a segmentagdo de toda
sequéncia em um tnico passo.

Para se diferenciar os oito métodos em nomenclatura, adotou-se NAQ para a segmentacao
quadro a quadro sem ajuste de movimento, AJQ para a segmentacido quadro a quadro com ajuste
de movimento, REQ para a segmentacdo quadro a quadro com pesos reforcados e EQQ para a
segmentacdo quadro a quadro com elementos equivalentes. O mesmo principio de nomenclatu-
ras pode ser definido para segmentagdes na totalidade de quadros de uma sequéncia testada, no

mesmo padrao definido anteriormente temos: NAT, AJT, RET e EQT.

O principio para a criagdo da matriz de pesos € semelhante para segmentacdo quadro a qua-
dro e para aquela que contempla todos os quadros da sequéncia. No caso quadro a quadro uma
imagem € segmentada a cada passo, mas duas imagens fornecem elementos para o grafo, um ja
segmentado fornecendo sementes e outro a ser segmentado. Quando se segmenta uma sequén-
cia por completo, utilizando-se elementos/regides de todos os quadros, que se transformam em

vértices do grafo. A constru¢do do mapa de pesos reflete a forca de ligacao desses vértices.
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5.3.1 Corte de grafo via GrowCut

O método utilizado para segmentar os grafos a partir de seus respectivos mapas de pesos
criados neste Capitulo, foi o GrowCut, proposto na ref. [44] e apresentado no Capitulo 3. Os pro-
cedimentos adotados neste trabalho sdo semelhantes aos descritos na ref. [44], sofrendo algumas

modificagdes para a aplicagdo no caso proposto.

Ao contrdrio do método original, quando aplica-se o GrowCut aos grafos utilizados neste
trabalho, ndo se adota uma vizinhanga de andlise. Os proprios mapas de peso utilizados se valem
de alguma informacgdo quanto a abrangéncia da vizinhanca de anélise, como aquelas regides que

se te fronteiras afastadas, ndo sendo consideradas como desconectadas (equagao (5.3)).

A cada iteracdo, o elemento ¢ € atacado por seus N — 1 vizinhos, sendo N o ndmero de vértices
do grafo a ser segmentado. O outro ponto de mudanca em relagao ao algoritmo original € a fungao
de custos adotada. Para a ref. [44] tem-se a seguinte funcdo:
G -TP

mam||f||2 ’

g(i,j) =1 (5.6)
em que I: ¢ a componente de cor RGB do elemento/pixel i e I; a componente RGB do elemento
j. Subtraindo-se 1 pela distancia euclidiana ao quadrado normalizada pela distancia mixima ao
quadrado entre as componentes de cor dos elementos, cria-se uma funcdo mondtona decrescente.

A normalizagdo limita o valor dessa fung¢@o ao intervalo [0, 1].

Na equacao (5.6), sua caracteristica decrescente aumenta o custo de se excluir dois elementos
com cores proximas. No método proposto, essa fungdo de custos deve envolver a magnitude dos
pesos de ligacao entre os elementos dos grafos, que € por si sO fruto de uma funcdo monotonica-
mente crescente e com valores dentro do intervalo [0, 1]. A fung¢do de custos para os elementos i

e 7 nos grafos estudados é dada por:
9(i,5) = w(i, j), (5.7)

em que w(7, j) sdo as componentes do mapa de ponderacao W.

5.4 METRICAS PARA ACURACIA E ERRO DE SOBRE-SEGMENTACAO

Os métodos utilizados para medir acurdcia da segmentacao e erros de sobrestimacao nos re-
sultados oferecidos pelo algoritmo proposto, sdo baseadas na ref. [2], que utiliza o volume de
supervoxels segmentados em relagdo a um ground truth para estimar o volume corretamente seg-

mentado.
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No caso estudado, a partir de uma segmentagdo SG' (Figura 5.9(b)) a acuricia para um quadro
¢ dada pelo niimero de pixels corretamente segmentados (Figura 5.9(c)) em relacdo a um ground
truth (GT) (Figura 5.9(a)), dividido pelo nimero de elementos (pixels) deste GT. A sobrestimagao
(SE) segue o mesmo principio, entretanto mede-se a quantidade de pixels segmentados que nao

pertencem a segmenta¢do manual (Figura 5.9(d)).

Para a acurécia associada a um dnico quadro, divide-se o nimero de elementos contidos na
intersec¢do entre a segmentacio proposta SG e GT', pelo nimero de elementos de GT:

_ n(SGNGT)

AC = T GT) (5.8)

em que n(-) é a fungdo que conta o nimero de pixels ndo nulos dentro da imagem bindria. A
proporc¢do de pixels que ultrapassa a segmentacdo ground truth em um quadro € calculada como:

 n(SG - GT))

SE = — GT) (5.9)

Define-se também uma acuricia no volume 3D no espago x X yx tempo, para todos os ele-

mentos corretamente segmentados ao longo de um trecho de ny quadros, como:

" n(SGy N GTy)

ACsp =
3D " n(GTy)

(5.10)

a porcentagem de pixels que ultrapassa a segmentacdo ground truth de referéncia ao longo do

trecho € calculada como: ng
- GT,
SEyp = 2t M5Gk — OTi) (5.11)
k I’l(GTk)
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(@) GT (b) SG
() SG N GT (d) SG-GT

Figura 5.9: Tlustracdo representando a acuracia (AC') e sobrestimacdo (S E) do quadro 4 da sequéncia Panda exibida
na Figura 4.24: (a) a segmentacdo manual do urso, ou chamado ground truth (GT) do objeto; (b) ao ser intersec-
cionado pela segmentacéo (SG) proposta, no caso as regides oriundas de sementes do primeiro quadro; (c) geram
um conjunto de elementos/pixels, SG N GT', corretamente segmentados, que quando contabilizados e divididos pela
soma de elementos do GT fornecem a AC'; (d) quando se subtrai os elementos do conjunto GT" do conjunto SG,
obtém-se a quantidade de pixels que ultrapassam a segmentacdo de ideal (GT'), ao se dividir a soma desses ele-
mentos que ultrapassam uma segmentacdo de referéncia, pela soma dos elementos dessa segmentacao de referéncia,
obtém-se o erro de sobrestimacdo SE.
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6 RESULTADOS

6.1 INTRODUGCAO

Neste capitulo serdo apresentados e discutidos os resultados obtidos, quanto ao rastreamento e
segmentacdo de videos a partir dos métodos propostos. Primeiramente, € discutida a contribui¢io
do algoritmo proposto para o casamento de regides e para o rastreamento de objeto e fundo ao
longo dos quadros. Em um segundo passo, discute-se a influéncia desse casamento de regides na
reducdo da quantidade de elementos para os grafos. Por fim, avalia-se as segmenta¢des quadro a
quadro ou ao longo da sequéncia, por meio do corte de grafos GrowCut para os tipos de mapas
propostos NA, AJ, RE e EQ. Esses mapas foram pensados de forma a se avaliar a contribui¢do
do descritor proposto no ajuste na posi¢ao das regides (AJ), no reforco de pesos entre regides
correspondentes (RE) e na definicdo de equivaléncias para essas regides correspondentes (EQ),
todos em relacdo a forma mais simples e difundida de anélise, comparando-se as posi¢des e cores
das regidao (NA).

6.2 SEQUENCIAS TESTADAS

As sequéncias de 9 quadros testadas foram: Stefan, Angelfish, Trainer, Mobile e Panda,
apresentadas visualmente na Figura 6.1. A resolug@o natural das sequéncias Stefan e Mobile é
352x288, que podem ser obtidas, bem como seus ground truth para os objetos de interesse (Fi-
gura 6.2), na ref. [46]. O restante das sequéncias e suas segmentacdes manuais sao encontradas
na ref. [47], sendo que a resolucao natural dos quadros dessas sequéncias € 320x200. Os quadros
iniciais f; de cada sequéncia foram definidos de forma que, ao longo dos 8 quadros subsequentes,

houvesse um movimento constante do objeto em anélise e poucas deformacdes.

Para cada sequéncia, o limiar 7’ foi aplicado antes da segmentagdo watershed para a formacao
das regides (Capitulo 4), escolhido de forma a criar regides estaveis ao longo dos quadros. A
Figura 6.3 apresenta graficos para os deslocamentos normalizados dos centroides dos objetos de
interesse nas sequéncias testadas. Esses deslocamentos sdo obtidos com base no GT da sequéncia

e nas dimensdes das regides que o compde, esses graficos ajudam a avaliar os resultados.
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Figura 6.1: Quadros iniciais das sequéncias de 9 quadros utilizadas para teste. f; define a posicdo desse quadros
iniciais na sequéncias originais encontradas em [46] e [47] . Abaixo das figuras define-se os pardmetros utilizados
para a criacdo de regides, a oitava n e o limiar 7. As sequéncias sdo: (a) Stefan; (b) Angelfish; (c) Trainer; (d) Mobile
e; (e) Panda.
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(a) Stefan (b) Angelfish

(¢) Trainer (d) Mobile

-~}

(e) Panda

Figura 6.2: Segmentacdo ground truth aplicada ao objeto de interesse para o primeiro quadro de cada uma das
sequéncias testadas, esse GT do primeiro quadro fornece as sementes que sdo base para os processos de segmentagcdo
implementados: (a) na sequéncia Stefan, objeto de interesse € o tenista; (b) na Angelfish é o peixe de cores azul e
amarela; (c) na Trainer é o individuo que orienta cachorro; (d) na Mobile envolve o conjunto calendério, bola e trem

de brinquedo; (e) na Panda
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Figura 6.3: Griéfico dos deslocamentos normalizados entre quadros do centroide dos GT dos objetos para todas as

sequéncias.

6.2.1 Espaco de escalas

Utilizou-se cinco escalas distintas nas cinco sequéncias estudadas, escalas as quais determi-
nam a segmentagdo de regides e, por consequéncia, os descritores dessas regides (Capitulo 4).
As cinco sequéncias, Stefan, Angelfish, Trainer, Mobile e Panda, estdo distribuidas em escalas
distintas de forma a cobrirem 5 oitavas no processo, indicadas pelo indice n na Figura 6.1. O
desvio padrdo que define a posi¢cdo da escala na oitava (equagdo 4.33), foi fixado o0 mesmo para

todas as sequéncias, o = 2.

O intuito de representar as sequéncias em escalas ou oitavas distintas € verificar o nivel de
representatividade que uma escala pode fornecer para os objetos, oferecendo resultados satisfato-
rios e ao mesmo tempo reduzindo o esfor¢co computacional relacionado a processamento em um
nivel de escala baixo. Também tem-se interesse em analisar a contribuicdo de diferentes niveis de

escala para futuros trabalhos envolvendo segmentagdo hierarquica.
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6.3 RASTREAMENTO DE REGIOES E DE OBJETOS

Nao foram determinadas métricas especificas para se estimar espacialmente a precisdo do
rastreamento fornecida pelo algoritmo proposto, ou seja, uma forma de se avaliar os desloca-
mentos das regides e sua coeréncia espacial. Avaliou-se neste trabalho a contribui¢do do casa-
mento/rastreamento de regides para a segmentagdo do objeto ao longo de uma sequéncia, isto €,
erros de casamento de regides dentro do objeto, ou para o fundo, nao foram levadas em conside-
racdo. Por exemplo, para o tenista na sequéncia Stefan, o erro quanto ao casamento de uma perna
esquerda em um quadro com uma perna direta de outro quadro € ignorado, pois ambos elementos

pertencem ao objeto de desejo.

A andlise do rastreamento fornecido pelo algoritmo proposto focou na contribui¢do que esse
tem na segmentagdo das sequéncias. Verifica-se a acurdcia e a sobrestimacao para uma segmen-
tacdo levando-se em consideracdo apenas o casamento de regides, sem o corte de grafo. Essa
andlise € feita de duas maneiras: (1) avalia-se o nivel de conexao entre dois quadros subsequentes
ao se utilizar o GT para definir as regides corretamente casadas no outro, para objeto (OBQ) e
fundo (BKQ); (2) rastreando as sementes fornecidas pelo primeiro quadro para toda a sequéncia,

avalia-se o nivel de mudancas do objeto dentro da sequéncia a partir do primeiro quadro, para
objeto (OBT) e fundo (BKQ).

Pode-se exemplificar as duas formas de andlise do rastreamento com a sequéncia Angelfish na
Figura 6.4. O padrao de cores que se repete de um quadro para o outro, representa o casamento
de regides ao longo da sequéncia, sendo que uma nova cor € atribuida a cada nova area sem
correspondéncia. Regides escuras representam elementos sem correspondéncia dentro do par de
confronto. A cada par de confrontos, 1-2, 2-3, 3-4 e assim por diante, a manuten¢do de um mesmo
padrdo de cor para uma regidao dentro do objeto ou fora dele, no caso o peixe, determina se ha
um erro ou ndo de rastreamento quadro a quadro. As regides coloridas em quadros subsequentes
(inferiores) que convergem com regides dentro do GT (contorno esbranquicado) na imagem de

referéncia (superiores) representam o acerto de rastreamento quadro a quadro.

Os circulos vermelhos na Figura 6.4 representam as sementes do objeto determinadas pelo o
GT do primeiro quadro, que se propagam ao longo da sequéncia pelo confronto de regides. Os
marcadores em ‘x’na cor azul representam a mesma propagacdo de sementes para o fundo, com
base no GT da primeira imagem da sequéncia. Essas sementes propagadas a partir do primeiro
quadro, sdo base para segmentacdes ao longo de toda a sequéncia, aproveitando as correspondén-

cias nos mapas de peso, RET e EQT.

Os gréficos exibidos na Figura 6.5 registram as taxas de acerto AC' (equagado (5.8)) e erro de

sobrestimacdo S E (barras verticais) por quadro para as sequéncias estudadas. As curvas OBQ re-
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Figura 6.4: Rastreamento de sementes e convergéncia de regides para a sequéncia Angelfish. Sado exibidos pares
de confronto, par 1-2 e 0 8-9. A manutengdo do padrao de cores dentro do par indicam um casamento de regides,
as regides escuras sdo regides sem correspondéncia dentro do par de confronto. As circunferéncias vermelhas e as
marcagdes em ‘X’azuis representam sementes, para objeto e fundo, respectivamente, que tem base no GT do primeiro
quadro e sdo propagadas ao longo do sequéncia por meio do algoritmo de rastreamento proposto.

gistram um nivel de semelhanga do objeto para quadro o seu antecessor, da mesma maneira temos
as curvas BKQ que medem a porcentagem do fundo pode ser encontrada no quadro antecessor
por meio do confronto de regides. As curvas OBT e BKT relacionam a drea do objeto e fundo de
um quadro, com as regides que o objeto e do fundo no primeiro quadro. Essa relacdo € fruto do

casamento de regides do primeiro propagadas até o quadro de desejo.

Os resultados para o rastreamento aparentam indicar uma correlagdo do movimento entre qua-
dros (Figura 6.3) com capacidade do algoritmo proposto em achar correspondéncias para o objeto
ao longo de uma sequéncia (Figura 6.5). Tal comportamento era esperado, pois movimentos ou
distor¢Oes nas regides e nas suas vizinhangas provocam uma queda no desempenho do descritor.
Além do movimento, a escala pode ser um fator que influencia nessa queda de desempenho, pois
quanto menores os agrupamentos dentro da imagem, menor a sua representatividade e singulari-
dade, da mesma forma que o algoritmo original se propde a eliminar pontos irrelevantes, deixando

apenas os chamados pontos-chave.

Ao se acumular uma taxa de acerto (equagdo (5.10)) ou de sobrestimacdo (equacdo (5.11)) do
primeiro quadro ao quadro final da sequéncia, pode-se analisar o desempenho do algoritmo de
rastreamento dentro do volume x X yx tempo. A Tabela 6.1 exibe essa representacao de erro no

volume.
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Figura 6.5: Grificos para acurdcia (AC) e erro de sobrestimacao (SE, barras verticais) para o rastreamento de
regides ao longo dos quadros. OBQ e BKQ sdo curvas que representam a por¢do de regides que sdo encontradas em
um quadro originadas de um quadro antecessor pelo processo de casamento de regides. OBT e BKT representam as
porcdes de drea referentes ao objeto e ao fundo no primeiro quadro que sdo encontradas nos quadros seguintes pelo
processo de rastreamento proposto.
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Tabela 6.1: Tabela para acurdcia (AC3p) e erro sobrestimacéo (S F3p) no volume composto pelo objeto rastreado ao
longo 9 dos quadros das sequéncias. OBQ retrata um nivel de casamento entre quadros, a por¢do de drea dos quadros
que tem origem em um quadro antecessor. OBT relaciona a por¢do do volume formado por regides do objeto na
primeiro propagadas pelos demais quadros pelo rastreamento proposto.

Sequéncia Percentual OBQ OBT

Stefan ACsp 76,79 54,15
SEsp 1,62 0,8

Angelfish ACsp 80,33 56,53

SFEsp 3,07 1,73

Trainer ACsp 91,97 82,14
SEsp 3,22 2,4

Mobile ACsp 95,63 90,91

SE3p 1,96 1,85

Panda ACsp 87,37 75,97
SEsp 4,43 4.4

Para o rastreamento de regides, as sequéncias Stefan e Angelfish t€m os piores desempenhos
para as duas situacdes, no casamento quadro a quadro e na propagacao de sementes do objeto no
primeiro quadro. O movimento de ambos em relagdo a dimensdes das regides que os compode
¢ mais relevante que para as outras sequéncias. Para Stefan (Figura 6.3) o deslocamento entre
quadros, dg, se mantém acima de uma unidade, enquanto a sequéncia mais estdvel e de melhor

desempenho, Mobile (d), nao ultrapassa esse valor em nenhuma situacao.

A hipétese de que a escala é um fator de influéncia no casamento e rastreamento de regides é
reforcada quando se compara o casamento de regides nas sequéncias Stefan e Trainer (Figuras 6.6
e 6.7, respectivamente). Apesar de apresentarem o mesmo padrdo de movimento para os indivi-
duos em cenas (Figuras 6.6 e 6.7, mapa de movimento), um movimento lateralizado da camera
que produz um deslocamento de objeto e fundo, o rastreamento para a sequéncia Trainer (n = 3,
terceira oitava) apresenta melhor desempenho na andlise quadro a quadro, acurdcia de 91,97%
contra 76,79%. Ao longo dos 9 quadros o volume das regides rastreadas do objeto a partir do pri-
meiro quadro (OBT) representa 82,14% do individuo em Trainer, enquanto para mesma situacao

tem-se 54,15% para a sequéncia Stefan.

Em termos de sobrestimacdo, a sequéncia Trainer tem um desempenho mais baixo que a
Stefan, ultrapassando as fronteiras da segmentacdo GT de maneira mais acentuada que o ras-
treamento na sequéncia Stefan. Atribui-se esse comportamento a escala/oitava, quanto maior as
regides formadas no processo de agrupamentos, maior a drea relacionada a um erro de rastrea-

mento ou sobrestimacao.
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Figura 6.6: Pares de confronto e casamento de regides dos quadros 3-4, 4-5 e 5-6 da sequéncia Stefan (pares de
imagem superiores). Regides correspondentes tem um mesmo rétulo e recebem uma mesma cor, regides escuras
representam regides sem correspondéncia para o par de confronto. Circunferéncias vermelhas e os marcadores ‘x’em
azul sdo as sementes referentes ao objeto e ao fundo, respectivamente, propagadas ao longo dos quadros pelo processo
de rastreamento proposto. Abaixo de cada par de confronto encontra-se o respectivo mapa de movimento, calculado
em conjunto com o casamento de regides.
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Figura 6.7: Pares de confronto e casamento de regides dos quadros 5-6, 6-7 e 7-8 da sequéncia Trainer (pares de
imagem superiores). Regides correspondentes tem um mesmo rétulo e recebem uma mesma cor, regides escuras
representam regides sem correspondéncia para o par de confronto. Circunferéncias vermelhas e os marcadores ‘x’em
azul sdo as sementes referentes ao objeto e ao fundo, respectivamente, propagadas ao longo dos quadros pelo processo
de rastreamento proposto. Abaixo de cada par de confronto encontra-se o respectivo mapa de movimento, calculado
em conjunto com o casamento de regides.
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A Tabela 6.2 apresenta valores de acuracia (AC3p) e erro de sobrestimagdo (S FE3p) para a
segmentac¢do dos objetos ao longo do volume formado pelos 9 quadros nas 5 sequéncias testadas.
Na Tabela, BKQ* e BKT* sdo os percentuais de acurécia e sobrestimacao BKQ e BKT com base
no volume do GT do objeto.

Tabela 6.2: Resultados para acurdcia (AC3p) e erro sobrestimacio (S Fsp) no volume composto pelo fundo rastreado
ao longo 9 dos quadros das sequéncias. BTQ retrata um nivel de casamento entre quadros, a por¢do de drea dos
quadros que tem origem em um quadro antecessor. BKT relaciona a por¢do do volume formado por regides do fundo

na primeiro propagadas pelos demais quadros pelo rastreamento proposto. BTQ* e BKT* t€ém como referéncia o

objeto, ou seja, a por¢do do fundo rastreada em relagdo ao tamanho do objeto de interesse.

Sequéncia Percentual BKQ BKT BKQ* BKT*

Stefan ACsp 93,9 87,65 1.349 1.260
SEsp 0,61 0,52 8,76 7,46

Angelfish ACsp 97,16 92,21 4.049 3.843
SFEsp 0,1 0,1 3,69 1,97

Trainer ACsp 95,17 82,68 1.504 1.305
SEsp 0,22 0,18 3,44 2,87

Mobile ACsp 90,27 80,37 76,34 67,96
SEsp 0,68 0,68 0,58 0,57

Panda ACsp 88,74 67,93 4545 3479
SEsp 0,9 0,73 4,61 3,74

A anélise do casamento de regides relacionadas ao fundo (BK) retorna aspectos importantes
para a segmentacao do objeto. O movimento do objeto dentro de uma cena, revela regides oclusas
que podem ser casadas com regides que pertencem ao objeto, configurando um erro de sobresti-
macdo. Os erros de sobrestimacio para o casamento de elementos BK, limitam a acurdcia para a

segmentacdo do objeto.

Essa limitag¢do pode ser observada com maior relevancia para a sequéncia Stefan, uma vez que
a Tabela 6.2 exibe para essa sequéncia um erro de sobrestimacdo de cerca de 8%, para os dois
casos BKQ* e BKT*. Isto €, ao se segmentar uma imagem a partir do corte em grafos em um
mapas de pesos do tipo RE ou EQ, que t€m ponderacdes ou equivaléncias baseados no casamento
de regides, a acuricia ndo ultrapassard os 92%, pois 8% do objeto foi incorretamente relacionado
a uma regido pertencente ao fundo. Essa sobrestimacao também pode estar relacionada a uma ma

defini¢do dos contornos das regides em relagdao ao GT.

Ao contrédrio do rastreamento de regides para o objeto, a taxa de acerto para o casamento
de regides relacionadas ao fundo foi menor em agrupamentos oriundos de escalas maiores. As
sequéncias Mobile (n = 4, quarta oitava, Figura 6.8) e Panda (n = 5, quinta oitava, Figura 6.9)

tém as maiores quedas em taxa de acerto para o casamento de regides BK.
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Figura 6.8: Pares de confronto e casamento de regides dos quadros 3-4, 4-5 e 5-6 da sequéncia Mobile (pares de
imagem superiores). Regides correspondentes tem um mesmo rétulo e recebem uma mesma cor, regides escuras
representam regides sem correspondéncia para o par de confronto. Circunferéncias vermelhas e os marcadores ‘x’em
azul sdo as sementes referentes ao objeto e ao fundo, respectivamente, propagadas ao longo dos quadros pelo processo
de rastreamento proposto. Abaixo de cada par de confronto encontra-se o respectivo mapa de movimento, calculado

em conjunto com o casamento de regides.
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Figura 6.9: Pares de confronto e casamento de regides dos quadros 5-6, 6-7 e 7-8 da sequéncia Panda (pares de

imagem superiores). Regides correspondentes tem um mesmo rétulo e recebem uma mesma cor, regides escuras

representam regides sem correspondéncia para o par de confronto. Circunferéncias vermelhas e os marcadores ‘x’em
azul sdo as sementes referentes ao objeto e ao fundo, respectivamente, propagadas ao longo dos quadros pelo processo
de rastreamento proposto. Abaixo de cada par de confronto encontra-se o respectivo mapa de movimento, calculado

em conjunto com o casamento de regides.
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6.3.1 Reducao no niumero de elementos em grafos via equivaléncias

Uma contribui¢do importante para o casamento de regides € a possibilidade da reducao de
elementos para a constru¢do de um grafo, procedimento aplicado neste trabalho para a criagio
dos mapas tipo EQ. O numero total de regides/elementos N dentro dos 9 quadros para cada
sequéncia estudada, pode ser distribuido em uma média por quadros N; ou uma média por pares

de quadros N.

O ntimero de elementos £ I dentro de um grafo do tipo EQ retrata a quantidade de elementos
com a qual é possivel se representar um grafo primordial, no caso, os grafos do tipo AJ. Para
uma andlise em termos normalizados, a média de elementos por quadro N serve de base para
medir-se um nivel de compressdo fornecida por um grafo equivalente, criado a partir do casa-
mento de regides. Compara-se a quantidade média de elementos a cada dois quadros, N, com o
nimero de elementos para sua versdo comprimida, equivalente, N E,. Mesma comparagio pode
ser feita entre o total de regides/elementos na sequéncia, N, com o nimero de elementos da versao
equivalente NV E. Esses dados, para as 5 sequéncias, estdo expressos na Tabela 6.3.

Tabela 6.3: Relacdo de elementos em valores absolutos e normalizados. A normalizagdo se d4 pelo nimero médio de
elementos por quadro N1, calculado com base no niimero total de elementos/regides dentro da sequéncia N dividido
uniformemente pelos seus 9 quadros. N5 é o nimero médio de elementos a cada dois quadros e N E5 o nimero

de elementos equivalentes entre dois quadros, determinado pelos casamentos de regides. O mesmo principio de
equivaléncia pode ser adotado para toda a sequéncia com o nimero de elementos N E.

Sequéncia  Valor N, Ny, NE, N NE
Stefan absoluto  434,6 869,1 5729 3.911 1.577
normalizado 1 2 1,32 9 3,63

Angelfish  absoluto 67,89 1358 90,13 611 238
normalizado 1 2 1,33 9 3,01

Trainer absoluto 115 230 145,1  1.035 350
normalizado 1 2 1,26 9 3,04

Mobile absoluto  355,7 711,3 416,3 3.201 845
normalizado 1 2 1,17 9 2,38

Panda absoluto 1287 257,3 1579 1.158 352

normalizado 1 2 1,23 9 2,74

O nimero médio de elementos por quadro N, é uma boa referéncia, por se tratar da quantidade
média de regides envolvida no processo de cdlculo de descritores. As sequéncia que envolvem o
maior esfor¢co computacional nesse processo sao a Stefan e Mobile, com uma média de 434.,6 e
355,7 elementos por quadro. No corte quadro a quadro, que envolve grafos que relacionam dois

quadros, a sequéncia Mobile sofre a maior compressao de elementos. Ao invés de mapas de peso,
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com dimensdo média de 711x711, pode-se representar pares de quadros na sequéncia Mobile

com mapas reduzidos para uma dimensao 416x416.

No caso de grafos construidos com elementos de toda a sequéncia, a compressao € signifi-
cativa, ao invés de um crescimento no nimero de componentes de 9?x, 81 vezes, na matriz de
pesos, em relacdo a média por quadros, tem-se mapas de peso equivalentes com um crescimento
de maximo 3,65 x, cerca de 13 vezes, em relacio a um mapa construido com a N, elementos.

Os descritores propostos s@o calculados utilizando matrizes com dimensao N1 X Nj.

6.4 SEGMENTACAO DE OBJETOS

Os resultados da segmentacdo estdo dispostos de acordo com a forma que o corte de grafos
¢ aplicado, quadro a quadro ou na sequéncia por completo. As duas modalidades de corte sdo
divididas em quatro formas de se ponderar as ligacdes do grafo, NAQ, AJQ, REQ e EQQ para os
casos quadro a quadro e NAT, AJT, RET e EQT para a segmentacdo em um grupo de quadros.

Os graficos da Figura 6.10 exibem a taxa de acerto por quadro (AC) e erro de sobrestima-
cdo (SF) representado pelas barras verticais, para segmentagdes efetuadas em cortes quadro a
quadro nas 5 sequéncias estudadas. Nota-se que, quando nao aplicado um ajuste nas posi¢oes
dos elementos de um quadro para o outro, caso NAQ, as duas sequéncias segmentadas a partir
de agrupamentos em escalas menores, Stefan e Angelfish, apresentam um baixo desempenho em

relac@o aos outros casos que utilizam um vetor de movimento para corre¢do de deslocamentos.

Os gréficos da Figura 6.11 registram a taxa de acerto por quadro para o corte de grafo aplicado
a todos 9 os quadros das sequéncias estudadas. Os modos de organizagdo e ponderagdo das liga-
coes dos grafos sdo separados em NAT, AJT, RET e EQT. Para as sequéncias Stefan e Angelfish ha
uma queda de desempenho em relagao aos mesmo padrdes de ponderagdo para um corte efetuado

quadro a quadro.

Comparando o corte quadro a quadro (Figura 6.10) com o efetuado ao longo de toda a sequén-
cia (Figura 6.11), ao se observar o resultado para as sequéncias com regides agrupadas em na
quarta e na quinta oitava, Mobile (d) e Panda (e), respectivamente, nota-se uma certa manutenc¢ao
no desempenho para ambos os casos, tendo a sequéncia Panda um aumento na sobrestimagado

(barras verticais) do caso quadro a quadro em relacdo aquele aplicado em toda a sequéncia.

Como esperado, os cortes que operam com o casamento de regides, sejam por uma ligacao
reforcada entre essas (REQ ou RET) ou a emersdo de um grupo de elementos em um tnico n6

equivalente (EQQ ou EQT) t€ém comportamentos semelhantes para as sequéncias. As curvas
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para esses casos se super posicionam em quase todas as taxas de erro por quadro (Figura 6.10
e 6.11), destacando-se a sequéncia Trainer na qual o corte no mapa no padrao EQT tem melhor
desempenho do que o RET (Figura 6.11(c)) e o melhor desempenho entre todas a formas de mapa

€ corte.
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Figura 6.10: Taxa de acerto (AC) e erro sobrestimacdo (SFE, barras verticais) por quadro para as segmentacdes
aplicadas aos grafos no modo quadro a quadro nas sequéncias estudadas. NAQ representa acurécias para o corte em
em um grafo no qual nfo ha corre¢do de movimento de um quadro para outro para atribuicdo e pesos de ligagdo.
AJQ representa o grafo cujas relagdes de vizinhanga recebem a corre¢do do vetor de movimento proposto. REQ é
tem o mesmo mapa que AJQ com reforcos de ligacdo nos nds/regides correspondentes. EQQ s@o as curvas para a
segmentacido em um grafo equivalente, onde emerge-se nds correspondentes em um mesmo elemento.
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Figura 6.11: Taxa de acerto (AC) e erro sobrestimacéo (SF, barras verticais) por quadro para as segmentacoes
aplicadas aos grafos compostos por elementos dos 9 quadros das sequéncias estudadas. NAT representa acuracias
para o corte em em um grafo no qual nio ha corre¢do de movimento de um quadro para outro para atribuicdo e pesos
de ligacdo. AJT representa o grafo cujas relagdes de vizinhanca recebem a corre¢@o do vetor de movimento proposto.
RET € tem o mesmo mapa que AJT com reforcos de ligacao nos nés/regides correspondentes. EQT sa@o as curvas
para a segmentacdo em um grafo equivalente, onde emerge-se nds correspondentes em um mesmo elemento.
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A Tabela 6.4 registra os valores para AC5p e S E5p, taxas de acerto e de erro de sobrestimacao,

para o volume formado pelo conjunto de 9 quadros.

Tabela 6.4: Resultados para acurdcia (AC5p) e erro sobrestimagio (S F3p) no volume referente ao objeto segmen-
tado apds aplicacdo do corte de grafos. Sdo exibidos resultados para 4 tipos de mapa de pesos no corte quadro a
quadro, NAQ, AJQ, REQ e EQQ, e para os 4 tipos de mapa no corte de grafo aplicado em todo grupo de quadros,
NAT, AJT, RET e EQT.

Mapa de pesos
Sequéncia Percentual NAQ AJQ REQ EQQ NAT AJT RET  EQT
Stefan AC3p 72,56 86,1 85,86 85,24 43,33 77,33 82,47 80,89

SEsp 4,15 739 792 774 149 299 501 394

Angelfish ~ ACsp 80,87 94,07 85,61 8561 54,03 82,72 77,78 78,66
SEsp 51 644 933 933 259 3,18 479 482

Trainer ACsp 9533 9523 8839 8839 91,73 94,78 88,07 959
SEsp 355 96 923 923 496 6,13 397 538

Mobile ACsp 99,14 99,15 99,15 99,15 9854 9921 9921 99,1
SEsp 2,13 222 222 223 316 221 212 224

Panda ACsp 9459 94,59 94,17 94,17 93,85 94,74 943 94,84
SEsp 5,14 514 501 501 982 842 787 938

Uma discussdo aliada a uma inspecao visual nos resultados pode ajudar a entender melhor os
dados da Tabela 6.4. No corte de grafos quadro a quadro em baixas escalas, Stefan (Figura 6.12)
e Angelfish (Figura 6.13), o ajuste nas posicdes da regides entre quadros, elevou a acuricia de
72,56% (NAQ) para 86,1% (AJQ) em Stefan (Figura 6.12) e de 80,87% (NAQ) para 94,07%
(AJQ) em Angelfish (Figura 6.12). Nos grafos com pesos refor¢cados (REQ) e equivalente EQQ
ha um desempenho superior do caso sem ajuste, NAQ, entretanto abaixo do grafo com de ajuste

pelo vetor de movimento, AJQ.

Ainda para as duas sequéncias Stefan e Angelfish, ao se realizar um corte de grafos ao pelas
regides formadas pelos 9 quadros, o desempenho sem ajuste, NAT, fica abaixo dos 50% para
Stefan, retratando uma acuricia nula para os quadros finais (Figura 6.12 (a)). O corte no grafo
equivalente da sequéncia Stefan apresenta taxa de acerto abaixo de AJQ, 80, 89% contra 86,1%, o
maior para a sequéncia, entretanto, hd uma redu¢do na sobrestimacgao (Figuras 6.12(b) e 6.14(b))
e na quantidade de elementos entre os dois tipos de grafos, de 3911 nés para 1577 (Tabela 6.3),
representa uma troca de operagdes com matriz de pesos de 15.295.921 componentes por uma de
2.486.029. Essa troca entre esfor¢o computacional, taxa de acerto e sobrestimacdo pode ser uma

discussdo para trabalhos futuros.
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(b)

Figura 6.12: Comparacdo de segmentagdo, do 5° ao 7° quadro da sequéncia Stefan relativos as segmentacdes NAQ
(a) e AJQ (b). Observa-se uma maior acuricia para 0 mapa com posicdes ajustadas, AJQ, bem como uma maior

sobrestimacao.

Figura 6.13: Comparag@o de segmentagdo, do 7° ao 9° quadro da sequéncia Angelfish relativos as segmentagdes NAQ
(a) e AJQ (b). Observa-se uma maior acurdcia para 0 mapa com posicdes ajustadas, AJQ.

Para uma oitava intermedidria, como € o caso da sequéncia Trainer, destaca-se o comporta-
mento para os grafos equivalentes, EQQ (Figura6.15(a)) e EQT (Figura6.15(b)). No corte quadro

a quadro, NAQ tem o melhor desempenho, com taxa de acerto de 95,33% dentro dos 9 quadros
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(b)

Figura 6.14: Comparacao de segmentacao, do 7° ao 9° quadro da sequéncia Stefan relativos as segmentagdes NAT (a)
e EQT (b). Observa-se uma baixa acurdcia para a aplicagc@o do corte de grafos formado por toda a sequéncia com um
mapa de pesos obtido sem uma correcéo de movimento, NAT. Um mapa equivalente, EQT, que leva em consideragio

o movimento entre quadros, promove uma melhor segmentacio com razodvel acuricia e baixa sobrestimacdo.

(Tabela 6.4), superando o caso ajustado AJQ, com uma melhor acurdcia e com uma menor so-
brestimacdo. REQ juntamente a EQQ tém os piores desempenhos dentro da segmentacao quadro
a quadro, entretanto quando aplicado ao longo de toda a sequéncia, o corte em um grafo equi-
valente apresenta o melhor acurécia entre todos os casos, tendo uma sobrestimacdo cerca de 2%

maior que NAQ.

Explorando novamente a troca entre a redu¢do no nimero de elementos do grafo utilizado
para corte e o desempenho da segmentacdo, tem-se para a sequéncia Trainer as maires acuracias
para todos os casos em NAQ e EQT, 95,33% e 95,9%, respectivamente, € uma redugdo de 1035
elementos para 350 (Tabela 6.3). Ao invés de operacdes de corte efetuadas em uma matriz de
1.071.225 componentes, um grafo equivalente pode ser segmentado com uma matriz de 122.500

componentes, cerca de 9 X menor.

Ressalta-se novamente a necessidade de estudos futuros relacionados ao trade off entre, es-
forco computacional, acuricia e sobrestimacdo. Apesar da compressdo fornecida pelos grafos
equivalentes, deve-se atentar ao fato de que a constru¢do dos vetor de movimento, em conjunto
com o casamento de regides, € feita a partir de operagcdes de matrizes com aproximadamente N?

elementos, no caso da sequéncia Trainer, matrizes em média com 13.225 componentes para se
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rastrear o objeto e se calcular o vetor de movimento. Para escalas menores, ou grandes desloca-
mentos entre regides (Figura 6.3), a correcdo de movimento pelo vetor de movimento se mostrou

importante para o aumento na acuracia.

(b)

Figura 6.15: Comparagdo de segmentacdo, do 7° ao 9° quadro da sequéncia Trainer relativos as segmentacdes EQQ
(a) e EQT (b). Observa-se uma maior acurdcia para o mapa equivalente construido por regides de toda a sequéncia,
EQT. No caso quadro a quadro, EQT, além de uma acurdcia mais baixa, observa-se uma sobrestimacao relevante.

As sequéncias mais estaveis, como um movimento relativo entre regides menos acentuadas
(Figura 6.3), sdo as de maior escala, Mobile (4* oitava) e Panda (5% oitava). Nessas duas sequén-
cias hd uma relacdo inversa a apresentada para a Mobile e Panda, a segmentacdo quadro a quadro
promove uma menor sobrestimacao do que o corte aplicado em toda a extensdo de quadros. Mo-
bile e Panda mantém valores de acurdcia proximas aos 99% e 94%, respectivamente, para todos

0s mapas e tipos de corte.

Um bom desempenho dos mapas sem correcdo de movimento, NAQ e NAT, nas sequéncias
Mobile e Stefan, indicam uma ndo necessidade de rastreamento e cédlculo de vetor de movimento
para situagdes de pouco movimento e distor¢ao entre quadros. Entretanto, trabalhos futuros po-
dem averiguar melhor a relagcdo entre esforco computacional e desempenho, pode-se determinar
uma quantidade de quadros ideal para uma corte ao longo de uma sequéncia longa e espera-se
que diante de pouco movimento o nimero de iteragdes para o cdlculo de vetor de movimento e

rastreamento de regides seja baixo.
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Figura 6.16: Comparacao de segmentagdo, do 7° ao 9° quadro da sequéncia Mobile relativos as segmentacdes EQQ
(a) e EQT (b). Os resultados para sequéncia Mobile sdo bastante préximos, nos dois casos destacados, trabalha-se

com grafos equivalentes, que comprimem os mapas de peso para segmentacgio, preservando o resultado final.

(b)

Figura 6.17: Comparagdo de segmentagdo, do 5° ao 7° quadro da sequéncia Panda relativos as segmentacdes EQQ

(a) e EQT (b). Observa-se um maior nivel de sobrestimacao para o corte aplicado em toda a sequéncia, EQT.
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7 CONCLUSAO

O presente trabalho apresentou uma proposta de algoritmo que generaliza conceitos da trans-
formacdo SIFT para grafos de regides, visando aplicacdo em representagdes de uma imagem com
relacdes de vizinhanga menos triviais que a proporcionada por pixels. O descritor local proposto
tem como objetivo o casamento de regides entre quadros de video para a segmentacao de objetos
ao longo de cenas, simplificando a andlise de um volume de video (espago xtempo) ao se eliminar

redundéncias espacias e temporais.

No processo de desenvolvimento do algoritmo de criagdo de descritores locais para as regioes,
foi desenvolvido um método de agrupamento que alia velocidade e automaticidade da técnica
de watershed com a velocidade e precisdo do algoritmo SLIC. Esse método de agrupamento
de regides se mostrou eficaz no propdsito de conservar caracteristicas de um objeto e cenas no
decorrer de quadros de um video, caracteristicas importantes para a estabilidade dos descritores e

a sua eficdcia no casamento de regides e importante para a segmentacdo de objetos em cenas.

O descritor proposto conseguiu conservar as propostas do SIFT, realizando o casamento de
regides mediante transformagdes geométricas nas cenas e nos objetos, como mudangas na escala
das imagens, sua orientacao e transformacgdes no seu nivel de intensidade. Nao foram realizados
testes especificos para avaliacdo direta da eficdcia do descritor, ficando inicialmente restrita a uma

avaliacdo perceptual.

As contribui¢des do descritor proposto foram analisadas de maneira indireta, com a compa-
racdo das segmentacdes em grafos que utilizam ou n@o o descritor proposto para um ajuste de
posicdo dos elementos antes da determinacao da forca de ligacdo entre esses de um quadro para

um quadro subsequente.

Outra forma de avaliagcdo se baseou na andlise da melhora na acuracia das segmentagdes em
trechos de video, ao se inserir informagdes nos grafos a respeito daqueles elementos que sdo
correspondentes ao longo do trecho, quando ndo atribuidas forcas de ligacdo mais altas, cada
elemento e suas correspondéncias foram representados por um unico n6 dentro de um grafo equi-

valente destinado a segmentacao.

Os resultados se mostraram favordveis a utilizagdo do algoritmo proposto na segmentacao
de videos via grafo, principalmente em situagdes de grande movimento relativo entre regides
de um objeto. Apesar dos testes terem sido aplicados em trechos curtos de video, 9 quadros,

em um ndmero baixo de sequéncias, alguns resultados significativos foram encontrados, como
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a necessidade da correcdo de movimento em uma segmentacao realizada simultaneamente em
todos os quadros da sequéncia. Essa correcao € promovida por um fluxo 6ptico obtido por meio

do algoritmo proposto.

7.1 CONSIDERAGCOES FINAIS

Foi apresentada uma proposta de algoritmo que traz conceitos da transformacio SIFT para o
dominio dos grafos de regido, criando descritores para as regides que aumentam a discriminacdo
entre elas, objetivando o rastreamento de objetos ao longo de cenas. Esse rastreamento se mos-
trou eficiente no aprimoramento da segmentacdo de objetos ao longo de cenas, ao ser utilizado
na correcdo do movimento entre as regioes. O estudo do casamento de regides para a criagdo de
grafos equivalentes, com uma quantidade reduzida de elementos, apresentou resultados promis-
sores para a utilizagdo do algoritmo proposto em trabalhos futuros, visando a redu¢do do esforco

computacional na segmentacdo em volumes de video.

7.2 TRABALHOS FUTUROS

Para trabalhos futuros espera-se aperfeicoar o descritor e sua forma de aplicacdo em videos,
avaliando a eficiéncia para sua utilizacdo comparado a outros trabalhos. A principio, deve-se
melhorar a técnica de agrupamentos propostas. A unido das técnicas watershed e SLIC para a
criacdo de regides/superpixels se mostrou resultados promissores, entretanto, se faz necessario
a definicdo mais precisa dos pardmetros para essa adaptacdo. O método de agrupamentos por
escalas pode ser utilizado para segmentacdes em hierarquia, aproveitando as caracteristicas da

imagem em diferentes estagios.

Os ganhos da adi¢@o de informag¢des quanto os canais de cores no descritor proposto, um dife-
rencial em relacdo ao SIFT, pode ser detalhadamente explorados. O descritor pode ser submetido
a testes mais objetivos quanto o confronto de caracteristicas entre cenas, com outras propostas
de transformagdes entre imagens. Assim como os pontos-chave algoritmo SIFT, podem ser defi-
nidas regides-chave, um grupo restrito de regides para quais serdo calculados os descritores que

fornecem um melhor casamente de regioes.

No campo da segmentacao, novas formas de organizar os grafos podem ser definidos, e outras
técnicas de cortes em grafos aplicadas. A andlise principal recai na definicdo de um equilibrio

entre esforco computacional, acurécia e erros sobre-segmentagdo na anélise de volumes de video.

114



REFERENCIAS BIBLIOGRAFICAS

[1] VAZQUEZ-REINA, A. et al. Multiple hypothesis video segmentation from superpixel flows.
In: Computer Vision—-ECCV 2010. [S.1.]: Springer, 2010. p. 268-281.

[2] XU, C.; CORSO, J. J. Evaluation of super-voxel methods for early video processing. In:
IEEE. Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. [S.1.],
2012. p. 1202-1209.

[3] NAGAHASHI, T.; FUJIYOSHI, H.; KANADE, T. Video segmentation using iterated graph
cuts based on spatio-temporal volumes. In: Computer Vision-ACCV 2009. [S.1.]: Springer,
2010. p. 655-666.

[4] YANG, FE; LU, H.; YANG, M.-H. Robust superpixel tracking. Image Processing, IEEE Tran-
sactions on, IEEE, v. 23, n. 4, p. 1639-1651, 2014.

[S] GRUNDMANN, M. et al. Efficient hierarchical graph-based video segmentation. In: IEEE.
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. [S.1.], 2010. p.
2141-2148.

[6] HICKSON, S. et al. Efficient hierarchical graph-based segmentation of rgbd videos. In: IEEE.
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. [S.1.], 2014. p.
344-351.

[7]1 CHANG, J.; WEI, D.; FISHER, J. A video representation using temporal superpixels. In:
IEEE. Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on. [S.1.],
2013. p. 2051-2058.

[8] WANG, W.; NEVATIA, R. Robust object tracking using constellation model with superpixel.
In: Computer Vision-ACCV 2012. [S.1.]: Springer, 2013. p. 191-204.

[9] BRENDEL, W.; TODOROVIC, S. Video object segmentation by tracking regions. In: IEEE.
Computer Vision, 2009 IEEE 12th International Conference on. [S.1.], 2009. p. 833-840.

[10] LOWE, D. G. Distinctive image features from scale-invariant keypoints. International jour-

nal of computer vision, Springer, v. 60, n. 2, p. 91-110, 2004.

[11] TANG, E.; TAO, H. Object tracking with dynamic feature graph. In: IEEE. Visual Sur-
veillance and Performance Evaluation of Tracking and Surveillance, 2005. 2nd Joint IEEE
International Workshop on. [S.1.], 2005. p. 25-32.

115



[12] BATTIATO, S. et al. SIFT features tracking for video stabilization. In: IEEE. Image Analysis
and Processing, 2007. ICIAP 2007. 14th International Conference on. [S.1.], 2007. p. 825-830.

[13] SONG, Y.-Z. et al. Robust visual tracking using structural region hierarchy and graph mat-
ching. Neurocomputing, Elsevier, v. 89, p. 12-20, 2012.

[14] ZHAO, Y. et al. Experts-shift: Learning active spatial classification experts for keyframe-
based video segmentation. In: IEEE. Applications of Computer Vision (WACV), 2011 IEEE
Workshop on. [S.1.], 2011. p. 622-627.

[15] ACHANTA, R. et al. SLIC superpixels compared to state-of-the-art superpixel methods.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, IEEE, v. 34, n. 11, p. 2274—
2282, 2012.

[16] BEAR, M. F.; CONNORS, B. W.; PARADISO, M. A. Neuroscience. [S.l.: s.n.].

[17] GUYTON, A. C.; HALL, J. E. Textbook of medical physiology. 11. ed. [S.1.]: Elsevier Saun-
ders, 2006. 613—-637 p. Hardcover. ISBN 0721602401.

[18] GONZALEZ, R. C.; WOODS, R. E. Digital image processing. [S.1.]: Prentice Hall Upper
Saddle River, NJ, 2002.

[19] SOUZA, G. d. S. et al. A visdo através dos contrastes. estudos avancados, SCiELO Brasil,
v.27,n. 77, p. 45-60, 2013.

[20] WIESEL, T. N.; HUBEL, D. H. et al. Single-cell responses in striate cortex of kittens depri-
ved of vision in one eye. J Neurophysiol, v. 26, n. 6, p. 1003-1017, 1963.

[21] EDELMAN, S. Receptive fields for vision: From hyperacuity to object recognition. 1995.

[22] LINDEBERG, T. Scale-space theory: A basic tool for analyzing structures at different sca-
les. Journal of applied statistics, Taylor & Francis, v. 21, n. 1-2, p. 225-270, 1994.

[23] BONDY, J. A.; MURTY, U. S. R. Graph theory with applications. [S.1.]: Macmillan London,
1976.

[24] STAWIASKI, J. Mathematical morphology and graphs: Application to interactive medi-
cal image segmentation. Tese (Doutorado) — Ph. D. dissertation, Paris School Mines, Paris,
France, 2008.

[25] HARARY, F. Graph theory. [S.1.]: Addison-Wesley, Reading, MA, 1969.

[26] DUNNE, P. Looking for consistency in the construction and use of Feynman diagrams.
Physics Education, I0P Publishing, v. 36, n. 5, p. 366, 2001.

116



[27] HOLDSWORTH, J. Feynman diagram. 2008. https://en.wikipedia.org/wiki/
Feynman_diagram. [Online; Acesso em 30/12/2015].

[28] ROBINSON, I.; WEBBER, J.; EIFREM, E. Graph databases. [S.1.]: "O’Reilly Media, Inc.",
2013.

[29] MISLOVE, A. et al. Measurement and analysis of online social networks. In: ACM. Proce-
edings of the 7th ACM SIGCOMM conference on Internet measurement. [S.1.], 2007. p. 29-42.

[30] KIM, M.; LESKOVEC, J. Modeling social networks with node attributes using the multipli-
cative attribute graph model. arXiv preprint arXiv:1106.5053, 2011.

[31] BACKSTROM, L. et al. Four degrees of separation. In: ACM. Proceedings of the 4th Annual
ACM Web Science Conference. [S.1.], 2012. p. 33-42.

[32] CAO, L.; KRUMM, J. From gps traces to a routable road map. In: ACM. Proceedings of
the 17th ACM SIGSPATIAL international conference on advances in geographic information
systems. [S.1.], 2009. p. 3—12.

[33] GONZALEZ, H. et al. Adaptive fastest path computation on a road network: a traffic mining
approach. In: VLDB ENDOWMENT. Proceedings of the 33rd international conference on
Very large data bases. [S.1.], 2007. p. 794-805.

[34] SONKA, M.; HLAVAC, V.; BOYLE, R. Image processing, analysis, and machine vision.
[S.1.]: Cengage Learning, 2014.

[35] LINDEN, R. Técnicas de agrupamento. Revista de Sistemas de Informagcdo da FSMA, v. 1,
n. 4, p. 18-36, 2009.

[36] NAJMAN, L.; COUPRIE, M. Watershed algorithms and contrast preservation. In: SPRIN-
GER. Discrete geometry for computer imagery. [S.1.], 2003. p. 62-71.

[37] MEYER, F. Topographic distance and watershed lines. Signal processing, Elsevier, v. 38,
n. 1, p. 113-125, 1994.

[38] BOYKOV, Y. Y.; JOLLY, M.-P. Interactive graph cuts for optimal boundary & region seg-
mentation of objects in nd images. In: IEEE. Computer Vision, 2001. ICCV 2001. Proceedings.
Eighth IEEFE International Conference on. [S.1.], 2001. v. 1, p. 105-112.

[39] SHI, J.; MALIK, J. Normalized cuts and image segmentation. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, IEEE, v. 22, n. 8, p. 888-905, 2000.

117


https://en.wikipedia.org/wiki/Feynman_diagram
https://en.wikipedia.org/wiki/Feynman_diagram

[40] FORD, A.; ROBERTS, A. Colour space conversions. Westminster University, London,
v. 1998, p. 1-31, 1998.

[41] ROERDINK, J. B.; MEIJSTER, A. The watershed transform: Definitions, algorithms and
parallelization strategies. Fundamenta informaticae, 10S Press, v. 41, n. 1, p. 187-228, 2000.

[42] WOLBERG, G. Sampling, reconstruction, and antialiasing. Citeseer, 2004.

[43] SHEWCHUK, J. R. Delaunay refinement algorithms for triangular mesh generation. Com-
putational geometry, Elsevier, v. 22, n. 1, p. 21-74, 2002.

[44] VEZHNEVETS, V.; KONOUCHINE, V. GrowCut - Interactive multi-label N-D image seg-
mentation by cellular automata. In: CITESEER. proc. of Graphicon. [S.1.], 2005. p. 150-156.

[45] GALASSO, F. et al. Spectral graph reduction for efficient image and streaming video seg-
mentation. In: IEEE International Conference on Computer Vision and Pattern Recognition

(CVPR). [S.l: s.n.].

[46] BAIJIC, 1. V. Segmented foreground objects. http://www.sfu.ca/~ibajic/#data.
[Online; Acesso em 12/01/2016].

[47] VIDEO Object Co-Segmentation. https://www.ece.nus.edu.sg/stfpage/
eleclf/video_coseg.html. [Online; Acesso em 12/01/2016].

118


http://www.sfu.ca/~ibajic/#data
https://www.ece.nus.edu.sg/stfpage/eleclf/video_coseg.html
https://www.ece.nus.edu.sg/stfpage/eleclf/video_coseg.html

	Sumário
	Lista de figuras
	Lista de tabelas
	Introdução
	Contexto
	Apresentação do problema e justificativa
	Métodos propostos
	Apresentação do manuscrito

	Sistema visual humano e o algoritmo SIFT
	Introdução
	Visão humana
	Estrutura dos olhos e formação da imagem na retina
	Cones, bastonetes e a transdução do sinal luminoso
	Distribuição dos fotorreceptores na retina

	Campos receptivos
	Modulação centro-periferia

	Resposta neurológica
	Seletividade quanto à orientação

	O algoritmo SIFT
	Espaço de escalas
	Detecção de extremos e seleção de pontos-chave
	Determinação da orientação dos pontos-chave
	Criação dos descritores

	Confronto e Casamento de Correspondências

	Grafos e segmentação de imagens
	Introdução
	Grafos
	Histórico
	Definições e notações

	Imagens representadas como grafos
	Grafo de pixels
	Grafo de regiões

	Segmentação de imagens
	Técnicas de agrupamento
	Cortes em grafos


	Proposta para construção de regiões em imagens e seus descritores locais
	Introdução
	watershed em um espaço de escalas
	Aproximação do gradiente
	Formação de regiões pela watershed e definição de suas propriedades 
	Agrupamento por Escalas
	Espaço de escalas

	Descritor local proposto
	Cálculo do gradiente em regiões
	Região de definição do descritor

	Determinação de regiões correspondentes
	Ajuste fino de correspondências e estimativa de movimento
	Correspondências e sementes

	Escala mista orientada ao objeto
	Deslocamento normalizado do centroide


	Mapas de pesos e segmentação de vídeos via cortes em grafos
	Introdução
	Organização dos grafos e determinação dos mapas de pesos
	Grafos sem ajuste de movimento entre regiões
	Grafo com ajuste de movimento entre regiões
	Correspondências com pesos reforçados
	Correspondências substituídas por elementos equivalentes

	Determinação dos cortes nos grafos
	Corte de grafo via GrowCut

	Métricas para acurácia e erro de sobre-segmentação

	Resultados
	Introdução
	Sequências testadas
	Espaço de escalas

	Rastreamento de regiões e de objetos
	Redução no número de elementos em grafos via equivalências

	Segmentação de objetos

	Conclusão
	Considerações finais
	Trabalhos futuros

	REFERÊNCIAS BIBLIOGRÁFICAS



