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Abstract—More than 70 percent of all the consumer mobile
Internet traffic will be mobile video transmissions by 2019.
The development of wireless video transmission technologies
have been boosted by the rapidly increasing demand of video
streaming applications. Although more and more videos are
delivered for video analysis (e.g., object detection/tracking, action
recognition, etc.), most of existing wireless video transmission
schemes are developed to optimize human perception quality,
and are sub-optimal for video analysis. In mobile surveillance
networks, a cloud server collects videos from multiple moving
cameras and detects suspicious persons in all the camera views.
Camera mobility in smartphones or dash cameras, implies that
video is to be uploaded through bandwidth-limited and error-
prone wireless networks, which may cause quality degradation
of the decoded videos and jeopardize the performance of video
analyses. In this paper, we propose an effective rate allocation
scheme for multiple moving cameras in order to improve human
detection (content) performance. Therefore, the optimization
criterion of the proposed rate allocation scheme is driven by
quality-of-content (QoC). Both video source coding and appli-
cation layer forward error correction (APP-FEC) coding rates
are jointly optimized. Moreover, the proposed rate allocation
problem is formulated as a convex optimization problem and can
be efficiently solved by standard solvers. Plenty of simulations
using high efficiency video coding (HEVC) standard compression
of video sequences and the deformable part model (DPM) object
detector are carried and the results demonstrate the effectiveness
and favorable performance of our proposed QoC-driven scheme
under different pedestrian densities and wireless conditions.

Index Terms—Quality-of-content (QoC), rate allocation,
application-layer forward error correction (APP-FEC), video
analysis, human detection, visual surveillance, convex optimiza-
tion

I. INTRODUCTION

It is predicted that by 2019, 72 percent of all the consumer

mobile Internet traffic will be video, up from 55 percent in
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2014 [1]. Moreover, the compound annual growth rate (CAGR)

of mobile data traffic is predicted to be 57 percent, which is

about three times faster than the growth of fixed IP traffic.

However, the bandwidth-limited and error-prone nature of

wireless communication environements creates challenges for

the bandwidth-consuming and delay-sensitive wireless video

streaming applications [2]–[4]. High packet loss/error rate,

large delay and jitter experienced in wireless networks can

cause tremendous quality degradation of received videos.

The exponentially increasing demand of video streaming

services has boosted the developement of wireless video

transmission technologies [5]. In most of the existing studies,

the optimization targets for wireless video delivery are ei-

ther quality-of-service (QoS) [5]–[7] or quality-of-experience

(QoE) [8]–[14]. For QoS-based design, the transmission

scheme is optimized for network parameters such as packet

loss rate, delay, jitter, etc [15]–[19]. For QoE-based design,

QoS measures are mapped to users’ perception and experience

of decoded videos so that video transmission parameters

can be adjusted to improve users’ satisfaction [20]. Both

subjective and objective video quality measures can be applied

to quantify the QoE-based system design [21].

The Internet of Things (IoT) became a new paradigm in

modern wireless telecommunications [22]–[24]. Video-based

IoT, which integrates image processing, computer vision and

network frameworks, is a new challenging scientific research

area at the intersection of video and network technologies [25].

Such research areas include surveillance system, automatic

behavior analysis, event detection, etc. [25]. In fact, more

and more videos are transmitted for video analytics purposes

rather than human consumption. In [26], [27], vehicle tracking

and identification systems with static surveillance cameras are

developed based on robust vehicle model construction. In [28],

an unsupervised learning of camera link models for tracking

humans across nonoverlapping static cameras is presented.

Based on human detectors, pedestrian tracking systems in

single moving cameras are proposed [29], [30]. A system of

on-road pedestrian tracking across multiple moving cameras is

studied in [31]. An occupancy detection and tracking system

is developed for automatic monitoring and commissioning

of a building [32], where image-based depth sensor and a

programmable pan-tilt-zoom (PTZ) cameras are used. An

innovative multiple-kernel adaptive segmentation and tracking

system is presented in [33], which dynamically controls the

decision thresholds of segmentation around the adaptive kernel

regions based on the preliminary tracking results to improve
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the robustness of tracking. Due to the large computational

cost of video analysis applications and the inter-cooperating

properties among multiple cameras, video sequences are re-

quired to be uploaded to a cloud server through wired and/or

wireless networks. However, transmitting video optimized for

QoS or QoE based on existing designs are no longer optimal

if the videos is delivered for video analytics. Therefore, it

is necessary to develope more efficient video transmission

schemes specifically for video analysis and computer vision

applications.

Mobile surveillance network with multiple moving cam-

eras, which have more flexible camera views comparing to

traditional surveillance systems with static closed circuit tele-

vision (CCTV), is introduced for better crime investigations

and tragedy prevention [31]. In mobile surveillance systems,

videos are recorded by driving recorders (dash cameras) or

smartphone cameras, and uploaded to remote cloud servers for

further automated video analysis. Due to the mobility nature

of moving cameras, wireless wide area networks (WWAN)

have to be used for video transmissions. Therefore, efficient

video compression, error protection and resource allocation are

needed because of the bandwidth-limited and the error-prone

nature of wireless networks.

In mobile surveillance networks, in order to recognize and

track suspicious people, several video analytics technologies

need to be applied such as human detection, human tracking,

action recognition, behavior understanding, etc.. Among these

technologies, human detection is the first step and the perfor-

mances of other human-related video analytics applications

are critically affected by the human detection results [31].

Although plenty of studies have been conducted to improve

the object detector in the computer vision field [34]–[36], few

studies can be found in wireless video transmission when

the performance degradations caused by video compression

and the wireless transmission errors are considered. In [37], a

saliency-based rate control system for human detection with

a single camera is proposed. To improve the human detection

accuracy, this scheme adaptively adjusts the quantization pa-

rameters (QPs) to preserve regions with small contrast from

excessive smoothing based on a properly designed saliency

map. Video encoders can be modified to transmit videos while

maintaining useful features for video analytics [38]. In [39],

[40], image/video features instead of the full video sequences

are uploaded to the cloud servers for video analyses. Although

transmitting features can save wireless resources, they are

not suitable for surveillance purposes since the full video

sequences are requried to be archived in the server for future

investigations. In [41], a video source encoding rate allocation

scheme is proposed when multiple moving cameras compete

for limited wireless resources. This scheme adequately allocate

the wireless resource to each moving camera based on its pre-

vious human detection results. Since the optimization objective

is to improve human detection performance, this scheme is

called a quality-of-content (QoC)-based design.

In this paper, we extend the work in [41] by considering

packet losses in wireless networks. Among several tech-

niques of improving the reliability of data transmissions, we

adopt the application layer forward error correction (APP-

FEC) code since it can provide certain correction capability

without retransmissions, which is suitable for delay-sensitive

real-time video streaming applications [2], [42], [43]. With

APP-FEC, well-designed redundant packets are transmitted

along with data packets. By receiving enough subset of

data and redundant packets, all of the original data packets

can be recovered [42]. The correction capability increases

with the number of redundant packets in a coding block.

In mobile surveillance networks, each mobile node (moving

camera) is allocated a certain amount of wireless resources

for video encoding and APP-FEC encoding. Nevertheless,

the number of transmitted packets is limited by the total

available data rate. With higher/lower source encoding rate,

the video analysis performance becomes better/worse with

the cost of weeker/stronger APP-FEC protection. Therefore, a

QoC-driven joint source coding and APP-FEC rate allocation

scheme is proposed in this paper. Instead of considering human

perception in traditional video streaming design, the proposed

scheme optimizes the human detection performance at the

cloud server when multiple mobile nodes compete for the

limited wireless resource and upload vidoes via WWAN with a

total data rate constraint. The detected human density is used

as the content information for the proposed rate allocation

algorithm. Ideally, the proposed algorithm allocates more data

rates to the mobile nodes located in the places with higher

human densities. The proposed scheme can be formulated as

a convex optimization problem [44] and can be solved by

convex optimization toolbox such as CVX [45]. To the best of

our knowledge, there is no QoC-driven work conducted when

both video compressions and wireless transmission errors are

considered.

The rest of this paper is organized as follows. In Section

II, scenario and system structure of the mobile surveillance

network is described. In Section III, the effects of source

coding rate on the human detection performance are studied.

Detailed description about the APP-FEC is given in Section IV.

The proposed joint source and channel coding rate allocation

scheme is given in Section V. Simulation results are shown

in Section VI, followed by the conclusion remarks in Section

VII.

Notations: The list of symbols used in this paper is sum-

marized in Table I.

II. SCENARIOS AND SYSTEM STRUCTURE

In a mobile surveillance network, multiple mobile nodes are

randomly distributed, moving around in the area with different

pedestrian densities as illustrated in Fig. 1. Each mobile node

can capture, encode and upload videos via a WWAN to a

cloud server for video analyses such as human detection. The

proposed system structure is shown in Fig. 2. The captured

camera view of each node is encoded with the high efficiency

video coding (HEVC) [46] encoder with different encoding

data rates. The parameter estimation module determines the

necessary parameters required by the cloud server. The en-

coded packets of video data and corresponding parameters of

a single group of pictures (GoP) are then fed into the APP-FEC

encoder, which generates certain amount of redundant packets
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TABLE I: List of symbols

Symbol Definition

q Quantization parameter (QP)

P (·) Human detection accuracy model

n Application layer forward error correction (APP-FEC)
block size

k Number of source packets in an APP-FEC block

t Correction capability of an APP-FEC block

ǫ Reception overhead efficiency of APP-FEC

p Probability of packet losses

f (·) APP-FEC block correction rate

Φ (·) Cumulative distribution function of the standard Gaus-
sian distribution

M Total number of mobile nodes in the system

T (GoP) Group of pictures (GoP) time period

S Packet size

Nm Number of detected people in the view of the mobile
node m

R(T) Total data rate target of the system

R(min) Minimum data rate requirement of each mobile node

N Set of natural numbers

c
(1)
m , c

(2)
m Parameters in QP-rate model of the mobile node m

r
(S)
m Source coding rate target of the mobile node m

r
(B)
m Transmission data rate target of the mobile node m

c
(3)
m , c

(4)
m Parameters in a rate-distortion model of the MSE-driven

rate allocation scheme in the control group.

dm (·) Distortion measured by the MSE in a rate-distortion
model of the MSE-driven rate allocation scheme in the
control group.

P (req) FEC block correction rate requirement of the MSE-
driven rate allocation scheme in the control group.

and forms an APP-FEC block [47], [48]. The concept of GoP-

level APP-FEC encoding is shown in Fig. 3. The cloud server

receives the transmitted APP-FEC block with some packet

loss due to either wireless transmission errors or network

congestion. In this paper, the packet loss rate of each mobile

node is assumed to be perfectly known by a standard real-time

protocol (RTP) and real-time control protocol (RTCP) [49],

[50]. The APP-FEC decoder decodes the APP-FEC block and

fed the video packets to the video decoder. The undecodable

video frames are dropped. The video decoder can conceal the

lost video frames by copying the last successfully decoded

video frame. After decoding the video, an object detection

module performs the human detections and sends the detection

results (content information) to the rate allocation module.

Since the pedestrian density is different in the view of each

mobile node, the human detection result (content information)

is therefore different. Based on the content information and the

necessary parameters delivered by the mobile nodes, the rate

allocation module jointly optimizes the source coding rate and

the APP-FEC coding rate for each mobile node under a pre-

determined total data rate constraint, which is assumed to be

affordable by the wireless network. The rate allocation result

is then fed back to the mobile nodes for the video encoding

and transmission of the next GoP. Note that the rate allocation

results are targets for the mobile nodes and the actural source

1
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Fig. 1: Scenario of mobile surveillance network.
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Fig. 2: Proposed system structure.

coding and APP-FEC rates can be slightly different to the

targets.

III. HUMAN DETECTION AND THE EFFECT OF VIDEO

QUALITY ON HUMAN DETECTION PERFORMANCE

Plenty of object detection schemes have been developed in

existing literatures. A human detector based on the histogram

of oriented gradient (HOG) feature, which can effectively

represent the shape of human, is proposed in [34]. In [35],

the implicit shape model (ISM) is proposed, which applies a

voting scheme based on multi-scale interest points to create

plenty of detection hypotheses, and a codebook is used to

preserve the trained features. In [36], authors extended the

idea in [34] and proposed the deformable part model (DPM),

which uses a root and several part models to describe different

partitions of an object. The part models are spatially connected

with the root model based on a predefined geometry so

that the object can be accurately depicted. Among these

object detection methods, the DPM is a well-accepted, robust

and computationally efficient scheme. Therefore, the DPM is

adopted as the human detection scheme in this paper.

Since the DPM object detector is based on the HOG

feature, it can be affected by the artifacts created from
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Fig. 3: GoP-level APP-FEC encoding [47].

(a) Video clip: LOEWENPLATZ in the ETHZ dataset [51]. Left:
QP=15; Right: QP=39

(b) Video clip: BAHNHOF in the ETHZ dataset [51]. Left: QP=15;
Right: QP=39

Fig. 4: Comparisons of Human Detection Performance of the

DPM with Different Video Encoding Qualities.

video encoders at different compression ratios [37]. In mobile

surveillence systems, human detection is performed in the

cloud server based on compressed videos, which may affect

the human detection performance. A comparison example of

the DPM detection results are shown in Fig 4. The video

clips “LOEWENPLATZ” and “BAHNHOF” in the ETHZ

dataset [51] are encoded by two different QPs. When the

QP is large, the artifact caused by higher compression ratio

significantly distorts the original HOG information, which

leads to noticeable human detection performance degradation.

Figure 5 shows the human detection accuracy with respect

to different video encoding qualities in terms of the QPs.

Six video clips in the ETHZ dataset [51] are encoded by

the HEVC encoder [52] with 11 different QPs from 15 to

45. The detection results are compared to the ground-truth
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Fig. 5: Human detection accuracy with different QPs. The solid

line is based on a human detection accuracy model given in

Eq. (1). The RMSE of this curve-fitting is 1.104%

labels provided in the ETHZ dataset. An object is considered

as correct detection if the overlapped area of the detection

result and the corresponding ground-truth is larger than 50
percent of the ground-truth area [36]. Obviously, the higher

the quality (lower QP), the higher the detection accuracy.

But the rate of increasing becomes small when the video

quality is high enough since the artifacts created by video

compression are negligible. By adopting curve-fitting, the

human detection accuracy model as a function of QP (i.e.,

q) can be approximated as:

P (q) = −0.0098 · 20.1206·q + 0.6049. (1)

The solid line in Fig. 5 is based on Eq. (1). The root mean

square error (RMSE) of the curve-fitting in Fig. 5 is 1.104%.

IV. APP-FEC AND BLOCK CORRECTION RATE

APP-FEC can provide reliable end-to-end streaming appli-

cations with packet level protection [43]. Suppose a source

block with k packets is encoded into an APP-FEC block

consisting of n (n ≥ k) packets by adding n − k redundant

packets. The APP-FEC rate of an (n, k) code is defined as

the k/n. An ideal APP-FEC code, with correction capability

t = n− k, can reconstruct the original k source packets from

any k out of n received packets [43]. The Reed-Solomon (RS)

code, which operates on non-binary symbols, is a well-known

APP-FEC scheme with ideal correction capability. However,

the block size of the RS code is constrained by the symbol size,

which limits the flexibility of parameter selections in practice.

For instance, in the most commonly used RS code with 8 bits

per symbol, the total number of packets in an APP-FEC block

is constrained by 255, i.e., k ≤ n ≤ 255. Furthermore, the

non-binary operations of the RS code may cause high com-

putational complexity in software implementation [43]. Such

drawbacks make the RS code unattractive to high definition

(HD) video streaming applications. With the development of

APP-FEC, more practical schemes have been introduced. One
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of the attractive APP-FEC solutions for HD video streaming

services is the Raptor code [53], which has flexible parameters

selection and linear decoding cost. Unlike the RS code, the

correction capability of the Raptor code is nonideal, given by

t = n−(1 + ǫ) k, where ǫ is the reception overhead efficiency.

Nevertheless, the reception overhead efficiency of standardized

Raptor code is very low and close to ideal correction capability

[43]. In this paper, the APP-FEC scheme with ideal correction

capability is assumed for simplicity.

An APP-FEC block can be successfully decoded if the

number of packet loss/error is not more than the correction ca-

pability t. If the packet losses are independent and identically

distributed (i.i.d.), the block correction rate (BCR) of an (n, k)
ideal APP-FEC code is given by a cumulative distribution

function (CDF) of a binomial distribution [54]:

f (t, n; p) =

t
∑

j=0

(

n

j

)

pj (1− p)
n−j

, (2)

where p is the packet loss rate. When n is sufficiently large,

np and n (1− p) are much greater than 1, the CDF of

a binomial distribution can be approximated by a CDF of

Gaussian distribution with mean np and variance np (1− p)
[55]. Therefore, Eq. (2) can be approximated as:

f (t, n; p) ≈ Φ

(

t− np
√

np (1− p)

)

− Φ

(

−np
√

np (1− p)

)

, (3)

where Φ (·) is the CDF of the Gaussian distribution with 0
mean and unit variance. If n · p is large enough, The second

term in Eq. (3) is approximately 0, and the BCR in Eq. (2)

can be further approximated as:

f (k, n; p) ≈ Φ

(

n− k − np
√

np (1− p)

)

= Φ

(√
n (1− p)− k√

n
√

p (1− p)

)

.

(4)

When the APP-FEC block is generated every GoP time period

(e.g., 0.5− 1 second), the APP-FEC block size n is normally

large enough with the available data rate to transmit HD

videos in modern wireless network (e.g., 10 Mbps) and a

reasonable packet size (e.g., 600 bytes). With a typical packet

loss rate in wireless networks without any other protection or

retransmission schemes (e.g., 0.1%− 2%), the approximation

in Eq. (4) is valid.

V. PROPOSED JOINT SOURCE CODING AND APP-FEC

RATE ALLOCATION SCHEME

Since the wireless resoures are limited, multiple moving

nodes have to compete for the total available data rate.

Moreover, for each moving node, part of the allocated data

rate needs to be used for APP-FEC redundant packet in order

to protect the source packets from possible losses. Therefore,

it is necessary to design an efficient rate allocation scheme for

both video and APP-FEC encodings. Unlike previous studies,

which optimize the video decoding quality, the objective of

our proposed scheme is to maximize the human detection

performance at the cloud server. Suppose M is the number of

mobile nodes in the system, k is an M × 1 vector with each

element km representing the number of source packets of the

mobile node m in an APP-FEC block, n is an M × 1 vector

with each element nm representing the APP-FEC block size

of the mobile node m, and Nm is the total number of detected

objects of the mobile node m in the last GoP time period, the

proposed scheme maximizes the overall true-positive human

detection probability under a total data rate constraint and

minimum data rate requirements for each moving node, i.e.,

max
k,n

M
∏

m=1

(

P

(

qm

(

km · S
T (GoP)

))

f (km, nm; pm)

)Nm

subject to

M
∑

m=1

nm · S
T (GoP)

≤ R(T),

km · S
T (GoP)

≥ R(min), ∀m,

nm ≥ km, ∀m,

k,n ∈ N
M×1,

(5)

where T (GoP) is the GoP time period, R(T) is the total available

data rate, S is the packet size. R(min) is the minimum data rate

requirement so that the minimum detection capability can be

reached for each mobile node. The minimum allocated data

rates for the mobile nodes are independent of the previous

detection results so that the system is more robust to detection

failures caused by wireless transmission errors. P (·) is the

human detection accuracy in Eq. (1). f (·) is the APP-FEC

BCR in Eq. (4). The QP of the mobile node m is denoted

as qm (·), which is a function of source encoding rate r(S)
m =

km ·S/T (GoP). In this paper, we adopt the following model to

fit the QP with respect to the source coding rate, i.e.,

qm

(

r(S)
)

=
1

c
(2)
m

log

(

r(S)

c
(1)
m

)

, (6)

where c(1)m ≥ 0 and c(2)m ≤ 0 are two model parameters to

be estimated by the parameter estimation module in Fig. 2.

Figure 6 illustrates the source coding rate vs. QP curves with

the HEVC encoder. In total 6 videos with VGA (640× 480)
resolution in the ETHZ dataset [51] and 2 videos with 720p

(1280× 720) resolution recorded in the University of Wash-

ington (UW) are tested. And the QP vs. source coding rate

model can be accurately fitted with the measurements by

properly adjusting the two parameters.

The first constraint in Eq. (5) means that in one GoP

time period, the sum of the transmission data rate of each

mobile node is limited by the total system data rate. The

second constraint indicates that the source coding data rate

of each mobile node should not be smaller than a pre-defined

minimum data rate requirement. Please note that even though

human detection is considered as the only video analytics

application in this paper, similar idea can be applied to other

applications by replacing the human detection accuracy model

P (·) in Eq. (1) with other video analytics performance models.

The optimization problem in Eq. (5) is hard to be efficiently

solved since k and n are positive integers. By eliminating the

last constraint in Eq. (5) and taking logarithm of the objective

function, the original problem in Eq. (5) can be reformulated
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Fig. 6: Curve-fitting result of the model in Eq. (6) with

different videos of VGA and 720p resolutions.

as:

max
k,n

M
∑

m=1

Nm

(

log

(

P

(

qm

(

kmS

T (GoP)

)))

+log (f(km,nm; pm))

)

subject to

M
∑

m=1

nm ≤ R(T)T (GoP)

S
,

km ≥ R(min)T (GoP)

S
, ∀m,

nm ≥ km, ∀m.
(7)

By applying the APP-FEC BCR approximation in Eq. (4) and

substituting the optimization variables ñm =
√
nm and k̃m =

√

km for all m, The optimization problem becomes:

max
k̃,ñ

M
∑

m=1

Nm · log
(

P

(

qm

(

k̃2m · S
T (GoP)

)))

+
M
∑

m=1

Nm log



Φ





ñm (1− pm)− k̃2
m

ñm

√

pm (1− pm)









subject to

M
∑

m=1

ñ2
m ≤ R(T)T (GoP)

S
,

k̃m ≥
√

R(min)T (GoP)

S
, ∀m,

ñm ≥ k̃m, ∀m,

(8)

which can be shown as a convex optimization problem [44]

(see Appendix A) and can be solved by convex optimization

tools such as CVX [45]. In the objective function of Eq.

(8), the first line is for source coding rate allocation and the

second line is for APP-FEC rate allocation. The rate allocation

of each mobile node is also proportional to the number of

detected people Nm, which reflects the pedestrian density

in the camera view of the mth mobile node. Note that the

TABLE II: Video Resolutions and Human Densities

Video Resolution Human Density

UW 1 1280× 720 Low

UW 2 1280× 720 Medium

LINTHESCHER 640× 480 High

LOEWENPLATZ 640× 480 High

Fig. 7: The sample frames of the four videos. Top left:

“UW 1”; Top right: “LINTHESCHER”; Bottom left: “UW

2”; Bottom right: “LOEWENPLATZ”.

optimized solutions k
∗ and n

∗ do not need to be converted to

integers since the source coding rate r(S)
m = k∗m ·S/T (GoP) and

the transmission data rate r(B)
m = n∗

m ·S/T (GoP) of the mobile

node m are the corresponding encoding targets for the next

round, which may slightly differ from the encoding rates due

to the rate-control mechanism of the encoder. However, the

numbers of transmitted source and the total packets (including

both source coding and redundancy packets) are chosen as the

largest integers smaller than the coresponding source coding

and transmission rates respectively.

VI. SIMULATION RESULTS

In this section, the proposed QoC-driven rate allocation

scheme is evaluated by plenty of simulations. In total four

video clips are used to compete for the limited wireless

resources: two videos “LINTHESCHER” and “LOEWEN-

PLATZ” from the ETHZ data set [51] and two videos recorded

in the UW campus. Table II summarizes the resolutions and

pedestrian densities of the four videos. The HEVC (X265

implementation) [52] is used as the video encoder. The frame

rate and GoP are set as 25 fps and 16 respectively for all the

videos. Hence the GoP period (T (GoP)) is 0.64 s. The encoding

pattern in each GoP block is one I-frame followed by 15 P-

frames. 25 GoPs (400 frames) are simulated for each video.

Figure 7 shows sample video frames of the four videos. The

packet size (S) is set as 600 bytes.

Table III summarizes the proposed and other rate allocation

schemes in the control group. We compare the proposed

scheme with other three schemes. The first one is driven by

video distortion measured by the mean-squared-error (MSE).
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TABLE III: Simulated rate allocation schemes

Rate Allocation

Scheme

Source Coding Rate APP-FEC Rate

Proposed Adaptive, QoC-driven Adaptive, QoC-driven

MSE Adaptive, MSE-driven Adaptive, driven by
pre-determined targets

Equal (0.5) Fixed, 50% of total
available throughput

Fixed, 50% of total
available throughput

Equal (0.8) Fixed, 80% of total
available throughput

Fixed, 20% of total
available throughput

We adopte a rate-distortion model in [56] as:

dm (r) = c(3)m rc
(4)
m , (9)

where dm (r) is the distortion in terms of MSE for the mobile

node m. c(3)m and c(4)m are two parameters to be determined

by curve-fitting. The MSE-driven rate allocation problem is

expressed as:

min
k̃,ñ

M
∑

m=1

dm

(

k̃2m · S
T (GoP)

)

subject to

M
∑

m=1

ñ2
m ≤ R(T)T (GoP)

S

k̃m ≥
√

R(min)T (GoP)

S
, ∀m,

ñm ≥ k̃m, ∀m

log Φ





ñm (1− pm)− k̃2
m

ñm

√

pm (1− pm)



 ≥ log(P (req)), ∀m,

(10)

where P (req) is a pre-defined BCR requirement, which is set

as 0.99 [47] in this paper. The MSE-driven rate allocation

problem is also convex (similar proof as Eq. (8)) and can be

solved by the CVX [45]. The minimum data rate requirement

R(min) in our proposed scheme and the MSE-driven rate

allocation scheme are both set as 200 Kbps.

In the first simulation scenario, the packet loss rates of all

the testing video sequences are set to 1%. When the packet

loss rates are the same for all the videos, the only cause of data

rate allocations is either content or distortion for the proposed

content-driven scheme or the traditional distortion-driven

scheme, respectively. Figure 8 shows the instantaneous source

coding data rate (Kbps) of each video when the total trans-

mission data rate constraint is 2800 Kbps. For the proposed

content-driven scheme, more source coding data rates are allo-

cated to the video sequences with higher pedestrian densities.

Note that the rate allocation algorithm of the proposed content-

driven scheme depends on the detected pedestrian densities

of the previous GoP. For instance, the data rate allocated to

the video sequence “LOEWENPLATZ” significantly increases

from the 11th GoP to the 13th GoP. This is because of the

increase of detected pedestrian densities as illustrated in Fig.

9. For the distortion-driven scheme, more data rate is allocated

to the video sequence with more frame details (i.e., UW 1).

The full video sequences with detection results are available

at http://allison.ee.washington.edu/xchen/TCSVT-QoC/ .
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Fig. 8: Instantaneous source coding data rate (Kbps) of each

video under total transmission data rate: 2800 Kbps. Packet

loss rate of each video is 1%.

Fig. 9: The sample frames of the video sequence “LOEWEN-

PLATZ” of different pedestrian densities. Left: a sample video

frame of the 10th GoP; Right: a sample video frame of the 12th

GoP.
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Fig. 10: Average source coding data rate (Kbps) of each video

under different transmission data rate constraints. Packet loss

rate of each video is 1%.
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Fig. 11: Average data rate (Kbps) of APP-FEC redundancy

under different transmission data rate constraints. Packet loss

rate of each video is 1%.

Figure 10 shows the average source coding data rate (Kbps)

of each video sequence under different transmission data rate

constraints. It is clear that larger source coding data rate is

allocated to all the video sequences when the total data rate

constraint increases. For the proposed content-driven scheme,

the data increasing rates (slopes) of the videos with higher

pedestrian densities (e.g., “LOEWENPLATZ”) are higher than

those with less pedestrian densities (e.g., “UW 1”). While for

the distortion-driven scheme, the data increasing rates do not

depend on the pedestrian densities. For instance, the data rate

allocated to “UW 1” are higher than the other vidoes even

though “UW 1” has the lowest human density. As shown in

Fig. 11, more data rates are allocated to APP-FEC redundan-

cies for better protections of the transmitted videos when the

overall transmission data rate constraint increases. Similar to

the source coding rate allocation, the proposed content-driven

scheme allocates more FEC protections to the video sequences

with more pedestrian densities, which is not the case for the

distortion-driven scheme. The average APP-FEC rates of each

video under different total transmission data rate constraints

are plotted in Fig. 12. Most of the FEC rates slightly increase

with available data rate for transmissions since the increase

of source coding rates are higher than that of the APP-

FEC redundancies. However, for the proposed content-driven
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Fig. 12: Average APP-FEC rate of each video under different

transmission data rate constraints. Packet loss rate of each

video is 1%.
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Fig. 13: Average true-positive detection probability under

different transmission data rate constraints. Packet loss rate

of each video is 1%.
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Fig. 14: Average false-alarm probability under different trans-

mission data rate constraints. Packet loss rate of each video is

1%.

scheme, the APP-FEC rate of the video sequence “UW 1” has

a decreasing trend, which is due to the fact that few source

coding data rate is allocated even when more total data rate

is available (shown in Fig. 10). This is because of the smaller

pedestrian densities in the video scene.

The average true-positive detection probability and the

average false-alarm probability for each rate allocation scheme

are plotted in Fig. 13 and Fig. 14 respectively. The proposed

content-driven scheme more effectively allocates both of the

source coding rate and the APP-FEC rate and can achive

higher true-positive detection probability and less false-alarms.

In the second simulation scenario, the packet loss rates of

the video sequences “UW 1” and “LOEWENPLATZ” are set

as 3% while that of the other two are set as 1%. Figure

15 shows the source coding rates of each video. Still, the

proposed scheme allocates more data rates to the videos with

higher pedestrian densities. The average data rates of APP-

FEC redundancy are plotted in Fig. 16. For the proposed

content-driven scheme, comparing to Fig. 11, more APP-FEC

redundancy is allocated to the video sequence “LOEWEN-

PLATZ”, which has higher packet loss rate (3%) than the other

video sequences (1%). However, the APP-FEC redundancy

allocated to the video sequence “UW 1” is not significantly

increased even though its packet loss rate is also 3%. This

is because the pedestrian density of “UW 1” is low, and the

proposed content-driven scheme allocates more data rates to

the videos with more contents (i.e, pedestrian densities). Figure

17 shows the average APP-FEC rate of each video. Note that

the APP-FEC rate of the video sequence “LOEWENPLATZ”

is much lower than that in Fig. 12 because more redundancy is

allocated. The average true-positive detection probability and

the false-alarm probability are plotted in Fig. 18 and Fig. 19

respectively. It can be easily noted that the proposed content-

driven scheme has better performance than the other schemes.
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Fig. 15: Average source coding data rate (Kbps) of each video

under different transmission data rate constraints. Packet loss

rates of video “UW 1” and “LOEWENPLATZ” are 3%, and

that of video “UW 2” and “LINTHESCHER” are 1%.
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Fig. 16: Average data rate (Kbps) of APP-FEC redundancy

under different transmission data rate constraints. Packet loss

rates of video “UW 1” and “LOEWENPLATZ” are 3%, and

that of video “UW 2” and “LINTHESCHER” are 1%.
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Fig. 17: Average APP-FEC rate of each video under different

transmission data rate constraints. Packet loss rates of video

“UW 1” and “LOEWENPLATZ” are 3%, and that of video

“UW 2” and “LINTHESCHER” are 1%.
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Fig. 18: Average true-positive detection probability under

different transmission data rate constraints. Packet loss rates

of video “UW 1” and “LOEWENPLATZ” are 3%, and that of

video “UW 2” and “LINTHESCHER” are 1%.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a QoC-driven joint source coding and APP-

FEC rates allocation scheme for video analysis purposes in

mobile surveillance network with multiple moving cameras is

proposed. Different to the previous wireless video transmission

studies, which focus on improving traditional QoS or QoE

measures to meet the wireless network conditions or the

users’ perception satisfactions, the proposed scheme tries to

optimize the wireless resource usage so that more accurate

human detections can be performed at the cloud server based
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Fig. 19: Average false-alarm probability under different trans-

mission data rate constraints. Packet loss rates of video “UW

1” and “LOEWENPLATZ” are 3%, and that of video “UW

2” and “LINTHESCHER” are 1%.

on the received videos. This study is conducted with HEVC

video codec and the DPM object detector. We have evaluated

the human detection model with different QPs of the HEVC

encoder. The APP-FEC is used for more reliable wireless data

deliveries. Also, our proposed joint source encoding and APP-

FEC rate allocation problem can be formulated as a convex

optimization problem, which can be efficiently solved by stan-

dard solvers. Plenty of simulations with different pedestrian

densities and wireless conditions show the effectiveness of

our proposed scheme and its favorable performance comparing

to the equal rate allocation and MSE-driven rate allocation

schemes.

The proposed scheme only considers human detection as

the video analytics purpose, which is the first step for more

sophisticated systems such as human tracking, behavior un-

derstanding etc. Therefore, plenty of furture studies can be

conducted in computer vision, video compression and video

transmission areas. In computer vision area, more robust video

analytics and computer graphics technologies, including object

detection/tracking, pose and event recognitions, 3-D scene

reconstructions etc., are required when video compression and

transmission errors exist. In video compression, traditional

designs are developed to improve the rate-distortion properties

so that more bit rate can be saved while keeping as much

as the original video quality. However, more efficient video

compression schemes could be developed if video quality is

sacrificed instead of more useful features for video anayltics.

In wireless video transmission, transmission protocols and

strategies can be re-evaluated if the video sequences are

transmitted for video analytics rather than human perceptions.

APPENDIX A

CONVEXITY OF THE OBJECTIVE PROBLEM IN EQ. (8)

For the first half of the objective function in Eq.

(8), qm (.) is convex and non-increasing if c(2)m ≤ 0.
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Therefore, qm

(

k̃2m · S/T (GoP)
)

is convex by the compo-

sition rule [44]. Since P (·) is concave and decreas-

ing, P
(

qm

(

k̃2m · S/T (GoP)
))

is concave by the com-

position rule. Also, log (·) is concave and increasing,

log
(

P
(

qm

(

k̃2m · S/T (GoP)
)))

is therefore concave. For the

second half of the objective function in Eq. (8), g
(

k̃m, ñm

)

=

k̃2m/ñm is a quadratic-over-linear function, which is convex if

ñm > 0 [44].

h
(

k̃m, ñm

)

=
ñm (1− pm)− k̃2

m

ñm

√

pm (1− pm)
(11)

is concave. Furthermore, Φ (·) is log-concave [44] and non-

decreasing. log
(

Φ
(

h
(

k̃m, ñm

)))

is concave. Since Nm

is non-negative, the objective function in Eq. (8) is non-

negative sums of concave functions, which is also concave

[44]. Therefore, the optimization problem in Eq. (8) is a

convex optimization problem since the objective function is

concave and the feasible set determined by all the constraints

is convex.

REFERENCES

[1] “Cisco Visual Networking Index: Forecast and Methodology, 2014-
2019,” 2015.

[2] X. Chen, J.-N. Hwang, J. A. Ritcey, C.-N. Lee, and F.-M. Yeh, “Quality-
driven joint rate and power adaptation for scalable video transmissions
over MIMO systems,” IEEE Trans. on Circuits and Systems for Video

Technology, 2016.

[3] X. Chen, J.-N. Hwang, C.-N. Lee, and C.-W. Hwang, “An efficient
CQI feedback resource allocation scheme for wireless video multicast
services,” in Proc. of IEEE Global Telecommunications Conf., Atlanta,
GA, December 9-13 2013, pp. 1663–1668.

[4] X. Chen, J.-N. Hwang, P.-H. Wu, H.-J. Su, and C.-N. Lee, “Adaptive
mode and modulation coding switching scheme in MIMO multicasting
system,” in Proc. of IEEE Intl. Symp. on Circuits and Systems, Beijing,
China, May 19-23 2013, pp. 441–444.

[5] J.-N. Hwang, Multimedia Networking: From Theory to Practice. Cam-
bridge University Press, 2009.

[6] S. Ehsan and B. Hamdaoui, “A survey on energy-efficient routing tech-
niques with QoS assurances for wireless multimedia sensor networks,”
IEEE Communications Surveys & Tutorials, vol. 14, no. 2, pp. 265–278,
2012.

[7] S. Koli, R. Purandare, S. Kshirsagar, and V. Gohokar, “QoS-optimized
adaptive multi-layer (OQAM) architecture of wireless network for high
quality digital video transmission,” Journal of Visual Communication

and Image Representation, vol. 26, pp. 210–221, 2015.

[8] X. Chen, J.-N. Hwang, C.-N. Lee, and S.-I. Chen, “A near optimal QoE-
driven power allocation scheme for scalable video transmissions over
MIMO systems,” IEEE Journal of Selected Topics in Signal Processing,
vol. 9, no. 1, pp. 76–88, 2015.

[9] X. Chen, J.-N. Hwang, C.-Y. Wang, and C.-N. Lee, “A near optimal
QoE-driven power allocation scheme for SVC-based video transmissions
over MIMO systems,” in Proc. of IEEE Intl. Conf. on Communications,
Sydney, NSW, June 10-14 2014, pp. 1675–1680.

[10] X. Chen, H. Du, J.-N. Hwang, J. A. Ritcey, and C.-N. Lee, “A QoE-
driven FEC rate adaptation scheme for scalable video transmissions
over MIMO systems,” in Proc. of IEEE Intl. Conf. on Communications,
London, UK, 2015, pp. 6953–6958.

[11] R. Schatz, T. Hoßfeld, L. Janowski, and S. Egger, “From packets to
people: quality of experience as a new measurement challenge,” in Data

traffic monitoring and analysis. Springer, 2013, pp. 219–263.

[12] E. Yaacoub, F. Filali, and A. Abu-Dayya, “QoE enhancement of SVC
video streaming over vehicular networks using cooperative LTE/802.11 p
communications,” IEEE Journal of Selected Topics in Signal Processing,
vol. 9, no. 1, pp. 37–49, 2015.

[13] X. Chen, “Quality-driven cross layer design of video transmissions over
mimo systems,” Ph.D. dissertation, University of Washington.

[14] J. Park, X. Chen, and J.-N. Hwang, “Optimum power allocation and
rate adaptation for scalable video streaming over multi-user MIMO
networks,” in Proc. of IEEE Global Telecommunications Conf., San
Diego, CA, December 6-10 2015.

[15] C. Wei, H. Chen, M. Song, M.-T. Sun, and K. Lau, “A capture-to-display
delay measurement system for visual communication applications,” in
Proc. of Signal and Information Processing Association Annual Summit

and Conference, Kaohsiung, Taiwan, 2013, pp. 1–4.

[16] H. Chen, C. Wei, M. Song, M.-T. Sun, and K. Lau, “Capture-to-display
delay measurement for visual communication applications,” APSIPA

Trans. on Signal and Information Processing, vol. 4, 2015.

[17] H. Chen, C. Zhao, M.-T. Sun, and A. Drake, “Adaptive intra-refresh for
low-delay error-resilient video coding,” Journal of Visual Communica-

tion and Image Representation, vol. 31, pp. 294–304, 2015.

[18] Y. Yang and S. Roy, “PMU deployment for optimal state estimation per-
formance,” in Proc. of IEEE Global Communications Conf., Anaheim,
CA, December 3-7 2012, pp. 1464–1468.

[19] ——, “PMU deployment for three-phase optimal state estimation per-
forman,” in Proc. of IEEE Intl. Conf. on Smart Grid Communications,
Vancouver, BC, October 21-24 2013, pp. 342–347.

[20] M. Fiedler, T. Hossfeld, and P. Tran-Gia, “A generic quantitative
relationship between quality of experience and quality of service,” IEEE

Network, vol. 24, no. 2, pp. 36–41, 2010.

[21] A. K. Moorthy, K. Seshadrinathan, R. Soundararajan, and A. C. Bovik,
“Wireless video quality assessment: A study of subjective scores and
objective algorithms,” IEEE Trans. on Circuits and Systems for Video

Technology, vol. 20, no. 4, pp. 587–599, 2010.

[22] L. Atzori, A. Iera, and G. Morabito, “The Internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[23] Y. Yang and S. Roy, “Grouping based MAC protocols for EV charging
data transmission in smart metering network,” IEEE Journal on Selected

Areas in Communications, vol. 49, no. 7, pp. 1328–1343, 2014.

[24] ——, “PCF scheme for periodic data transmission in smart metering
network with cognitive radio,” in Proc. of IEEE Global Communications

Conf., San Diego, CA, December 6-10 2015.

[25] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(IoT): A vision, architectural elements, and future directions,” Future

Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[26] K.-H. Lee, J.-N. Hwang, and S.-I. Chen, “Model-based vehicle localiza-
tion based on three-dimensional constrained multiple-kernel tracking,”
IEEE Trans. on Circuits and Systems for Video Technology, vol. 25,
no. 1, pp. 38–50, 2015.

[27] H.-Y. Wang and H.-C. Shih, “A robust vehicle model construction and
identification system using local feature alignment,” in Proc. of IEEE

International Symposium on Consumer Electronics (ISCE). IEEE, 2013,
pp. 57–58.

[28] C.-T. Chu and J.-N. Hwang, “Fully unsupervised learning of camera
link models for tracking humans across nonoverlapping cameras,” IEEE

Trans. on Circuits and Systems for Video Technology, vol. 24, no. 6, pp.
979–994, 2014.

[29] K.-H. Lee, J.-N. Hwang, G. Okopal, and J. Pitton, “Driving recorder
based on-road pedestrian tracking using visual SLAM and constrained
multiple-kernel,” in Proc. IEEE International Conf. Intelligent Trans-

portation System (ITSC), 2014, pp. 2629–2635.

[30] L. Hou, W. Wan, K.-H. Lee, J.-N. Hwang, G. Okopal, and J. Pitton,
“Deformable multiple-kernel based human tracking using a moving
camera,” in Proc. of IEEE Intl. Conf. on Acoustics, Speech and Signal

Processing, 2015.

[31] K.-H. Lee and J.-N. Hwang, “On-road pedestrian tracking across multi-
ple driving recorders,” submitted to IEEE Trans. on Multimedia, 2015.

[32] H.-C. Shih, “A robust occupancy detection and tracking algorithm for
the automatic monitoring and commissioning of a building,” Energy and

Buildings, vol. 77, pp. 270–280, 2014.

[33] Z. Tang, J.-N. Hwang, Y. Lin, and J. Chuang, “Multiple-kernel adaptive
segmentation and tracking (mast) for robust object tracking,” in Proc. of

IEEE Intl. Conf. on Acoustics, Speech and Signal Processing, Shanghai,
China, March 20-25 2016.

[34] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection.” IEEE, 2005, pp. 886–893.

[35] B. Leibe, A. Leonardis, and B. Schiele, “Robust object detection with
interleaved categorization and segmentation,” International Journal of

Computer Vision, vol. 77, no. 1-3, pp. 259–289, 2008.

[36] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,” Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on, vol. 32,
no. 9, pp. 1627–1645, 2010.



12

[37] S. Milani, R. Bernardini, and R. Rinaldo, “A saliency-based rate control
for people detection in video,” in Proc. of IEEE Intl. Conf. on Acoustics,

Speech and Signal Processing, 2013, pp. 2016–2020.
[38] J. Chao, R. Huitl, E. Steinbach, and D. Schroeder, “A novel rate

control framework for SIFT/SURF feature preservation in H.264/AVC
video compression,” IEEE Trans. on Circuits and Systems for Video

Technology, vol. 25, no. 6, pp. 958–972, 2014.
[39] B. Girod, V. Chandrasekhar, D. M. Chen, N.-M. Cheung, R. Grzeszczuk,

Y. Reznik, G. Takacs, S. S. Tsai, and R. Vedantham, “Mobile visual
search,” IEEE Signal Processing Magazine, vol. 28, no. 4, pp. 61–76,
2011.

[40] A. Redondi, M. Cesana, and M. Tagliasacchi, “Rate-accuracy optimiza-
tion in visual wireless sensor networks,” in Proc. of IEEE Intl. Conf. on

Image Processing, 2012, pp. 1105–1108.
[41] X. Chen, J.-N. Hwang, K.-H. Lee, and R. L. de Queiroz, “Quality-

of-content (QoC)-driven rate allocation for video analysis in mobile
surveillance networks,” in Proc. of IEEE Intl. Workshop on Multimedia

Signal Processing, 2015.
[42] D. Jurca, P. Frossard, and A. Jovanovic, “Forward error correction for

multipath media streaming,” IEEE Trans. on Circuits and Systems for

Video Technology, vol. 19, no. 9, pp. 1315–1326, 2009.
[43] M. Luby, T. Stockhammer, and M. Watson, “Application layer FEC in

IPTV services,” IEEE Communications Magazine, vol. 46, no. 5, pp.
94–101, 2008.

[44] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[45] M. Grant and S. Boyd. CVX: MATLAB software for disciplined convex
programming. [Online]. Available at http://stanford.edu/∼boyd/cvx.

[46] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. on Circuits

and Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668, 2012.
[47] J. Wu, Y. Shang, J. Huang, X. Zhang, B. Cheng, and J. Chen, “Joint

source-channel coding and optimization for mobile video streaming
in heterogeneous wireless networks,” EURASIP Journal on Wireless

Communications and Networking, vol. 2013, no. 1, pp. 1–16, 2013.
[48] E. Baccaglini, T. Tillo, and G. Olmo, “Slice sorting for unequal loss

protection of video streams,” Signal Processing Letters, IEEE, vol. 15,
pp. 581–584, 2008.

[49] C. Perkins, RTP Audio and Video for the Internet. Addison Wesley,
2003.

[50] X. Chen, J.-N. Hwang, C.-J. Wu, S.-R. Yang, and C.-N. Lee, “A QoE-
based APP layer scheduling scheme for scalable video transmissions
over Multi-RAT systems,” in Proc. of IEEE Intl. Conf. on Communica-

tions, London, UK, 2015, pp. 6779–6784.
[51] A. Ess, B. Leibe, K. Schindler, and L. V. Gool, “A mobile vision system

for robust multi-person tracking,” 2008, pp. 1–8.
[52] The X265 website. [Online]. Available at

http://bitbucket.org/multicoreware/x265/wiki/home.
[53] A. Shokrollahi, “Raptor codes,” IEEE Trans. on Information Theory,

vol. 52, no. 6, pp. 2551–2567, 2006.
[54] C.-W. Huang, S.-M. Huang, P.-H. Wu, S.-J. Lin, and J.-N. Hwang,

“OLM: Opportunistic layered multicasting for scalable IPTV over mo-
bile WiMAX,” IEEE Trans. on Mobile Computing, vol. 11, no. 3, pp.
453–463, 2012.

[55] H. Stark and J. Woods, Probability, Statistics, and Random Processes

for Engineers. Prentice Hall, 2011.
[56] Y.-H. Huang, T.-S. Ou, P.-Y. Su, and H. H. Chen, “Perceptual rate-

distortion optimization using structural similarity index as quality met-
ric,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 20,
no. 11, pp. 1614–1624, 2010.

[57] Y. Yang, X. Wang, and X. Cai, “On the number of relays for
orthogonalize-and-forward relaying,” in Proc. of IEEE Intl. Conf.

on Wireless Communications and Signal Processing, Nanjing, China,
November 9-11 2011, pp. 1–5.

[58] H.-C. Shih and K.-C. Yu, “Spiral aggregation map (SPLAM): A new
descriptor for robust template matching with fast algorithm,” Pattern

Recognition, vol. 48, no. 5, pp. 1707–1723, 2015.
[59] Y. Yang, “Contributions to smart metering protocol design and data

analytics,” Ph.D. dissertation, University of Washington.
[60] H. Chen and B. Zeng, “New transforms tightly bounded by DCT and

KLT,” IEEE Signal Processing Letters, vol. 19, no. 6, pp. 344–347,
2012.

[61] H. Chen, Y. Chen, M.-T. Sun, A. Saxena, and M. Budagavi, “Improve-
ments on intra block copy in natural content video coding,” in Proc. of

IEEE Intl. Symp. on Circuits and Systems, 2015.

Xiang Chen received the B.S. degree in electronic
engineering from City University of Hong Kong,
Hong Kong, in 2009 and the M.S. degree in elec-
trical and computer engineering from University of
Florida, Gainesville, in 2011, and the Ph.D. degree
in electrical engineering from University of Wash-
ington in 2015. He is currently with Tupl Inc., a
startup big data company for telecom operators. His
research interests include multimedia networking,
wireless communication and MIMO techniques.

Jenq-Neng Hwang (F’01) received the B.S. and
M.S. degrees, both in electrical engineering from the
National Taiwan University, Taipei, Taiwan, in 1981
and 1983 separately. He then received his Ph.D.
degree from the University of Southern California. In
the summer of 1989, Dr. Hwang joined the Depart-
ment of Electrical Engineering of the University of
Washington in Seattle, where he has been promoted
to Full Professor since 1999. He is currently the
Associate Chair for Research in the EE Department.
He has written more than 300 journal, conference

papers and book chapters in the areas of multimedia signal processing,
and multimedia system integration and networking, including an authored
textbook on ”Multimedia Networking: from Theory to Practice,” published by
Cambridge University Press. Dr. Hwang has close working relationship with
the industry on multimedia signal processing and multimedia networking.

Dr. Hwang received the 1995 IEEE Signal Processing Society’s Best Journal
Paper Award. He is a founding member of Multimedia Signal Processing
Technical Committee of IEEE Signal Processing Society and was the Society’s
representative to IEEE Neural Network Council from 1996 to 2000. He is
currently a member of Multimedia Technical Committee (MMTC) of IEEE
Communication Society and also a member of Multimedia Signal Processing
Technical Committee (MMSP TC) of IEEE Signal Processing Society. He
served as associate editors for IEEE T-SP, T-NN and T-CSVT, T-IP and Signal
Processing Magazine (SPM). He is currently on the editorial board of ETRI,
IJDMB and JSPS journals. He was the Program Co-Chair of ICASSP 1998
and ISCAS 2009.

De Meng received the B.S. degree in electrical engi-
neering from Zhejiang University, Hangzhou, China,
in 2009 and the M.S. degree in applied mathematics
in 2014 from the University of Washington, Seattle,
WA, where he is currently pursuing the Ph.D. de-
gree in electrical engineering. His research interests
include convex optimization, distributed and online
optimization, machine learning and data analysis.

Kuan-Hui Lee received the B.S. degree in the
Department of Electrical Engineering from National
Taiwan Ocean University in 2003, and the M.S.
degree in the Institute of Computer and Commu-
nication Engineering from National Cheng Kung
University in 2005. He has been in HTC Corporation
for developing multi-media applications on smart
phone from 2007 to 2009. In 2015, he received
his Ph.D. degree in the Department of Electrical
Engineering from University of Washington. His
current research interests are in computer vision,

image processing, and machine learning.



13

Dr. Ricardo L. de Queiroz received the Engineer
degree from Universidade de Brasilia , Brazil, in
1987, the M.Sc. degree from Universidade Estadual
de Campinas, Brazil, in 1990, and the Ph.D. degree
from The University of Texas at Arlington , in 1994,
all in Electrical Engineering.

In 1990-1991, he was with the DSP research
group at Universidade de Brasilia, as a research
associate. He joined Xerox Corp. in 1994, where
he was a member of the research staff until 2002.
In 2000-2001 he was also an Adjunct Faculty at

the Rochester Institute of Technology. He joined the Electrical Engineering
Department at Universidade de Brasilia in 2003. In 2010, he became a
Full Professor (Professor Titular) at the Computer Science Department at
Universidade de Brasilia. He was a Visiting Professor at the University of
Washington, in Seattle, during 2015. Dr. de Queiroz has published over 160
articles in Journals and conferences and contributed chapters to books as
well. He also holds 46 issued patents. He is a past elected member of the
IEEE Signal Processing Society’s Multimedia Signal Processing (MMSP) and
the Image, Video and Multidimensional Signal Processing (IVMSP) Technical
Committees. He is a an editor for IEEE Transactions on Image Processing and
a past editor for the EURASIP Journal on Image and Video Processing, IEEE
Signal Processing Letters, and IEEE Transactions on Circuits and Systems for
Video Technology. He has been appointed an IEEE Signal Processing Society
Distinguished Lecturer for the 2011-2012 term.

Dr. de Queiroz has been actively involved with the Rochester chapter of the
IEEE Signal Processing Society, where he served as Chair and organized the
Western New York Image Processing Workshop since its inception until 2001.
He helped organizing IEEE SPS Chapters in Brazil. He was the General Chair
of ISCAS’2011, and MMSP’2009, and is the General Chair of SBrT’2012.
He was also part of the organizing committee of ICIP’2002, ICIP’2012,
ICIP’2014 and ICIP’2016. His research interests include image and video
compression, multirate signal processing, and color imaging. Dr. de Queiroz is
a Senior Member of IEEE and a member of the Brazilian Telecommunications
Society.

Fu-Ming Yeh received the Ph.D. in 1997 in elec-
trical engineering from National Taiwan University.
He is a CTO of Broadband Wireless Department
at Gemtek Technology Co., Ltd. He was a deputy
head at the Electronic System Research Division of
Chung-Shan Research Institute of Science and Tech-
nology from 1997 to 2006. His research interests
include LTE Small Cell system development, DSP
system design, hardware verification, VLSI testing,
and fault-tolerant computing.


