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Abstract—More than 70 percent of all the consumer mobile
Internet traffic will be mobile video transmissions by 2019.
The development of wireless video transmission technologies
have been boosted by the rapidly increasing demand of video
streaming applications. Although more and more videos are
delivered for video analysis (e.g., object detection/tracking, action
recognition, etc.), most of existing wireless video transmission
schemes are developed to optimize human perception quality,
and are sub-optimal for video analysis. In mobile surveillance
networks, a cloud server collects videos from multiple moving
cameras and detects suspicious persons in all the camera views.
Camera mobility in smartphones or dash cameras, implies that
video is to be uploaded through bandwidth-limited and error-
prone wireless networks, which may cause quality degradation
of the decoded videos and jeopardize the performance of video
analyses. In this paper, we propose an effective rate allocation
scheme for multiple moving cameras in order to improve human
detection (content) performance. Therefore, the optimization
criterion of the proposed rate allocation scheme is driven by
quality-of-content (QoC). Both video source coding and appli-
cation layer forward error correction (APP-FEC) coding rates
are jointly optimized. Moreover, the proposed rate allocation
problem is formulated as a convex optimization problem and can
be efficiently solved by standard solvers. Plenty of simulations
using high efficiency video coding (HEVC) standard compression
of video sequences and the deformable part model (DPM) object
detector are carried and the results demonstrate the effectiveness
and favorable performance of our proposed QoC-driven scheme
under different pedestrian densities and wireless conditions.

Index Terms—Quality-of-content (QoC), rate allocation,
application-layer forward error correction (APP-FEC), video
analysis, human detection, visual surveillance, convex optimiza-
tion

I. INTRODUCTION

It is predicted that by 2019, 72 percent of all the consumer
mobile Internet traffic will be video, up from 55 percent in
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2014 [1]. Moreover, the compound annual growth rate (CAGR)
of mobile data traffic is predicted to be 57 percent, which is
about three times faster than the growth of fixed IP traffic.
However, the bandwidth-limited and error-prone nature of
wireless communication environements creates challenges for
the bandwidth-consuming and delay-sensitive wireless video
streaming applications [2]-[4]. High packet loss/error rate,
large delay and jitter experienced in wireless networks can
cause tremendous quality degradation of received videos.

The exponentially increasing demand of video streaming
services has boosted the developement of wireless video
transmission technologies [5]. In most of the existing studies,
the optimization targets for wireless video delivery are ei-
ther quality-of-service (QoS) [5]-[7] or quality-of-experience
(QoE) [8]-[14]. For QoS-based design, the transmission
scheme is optimized for network parameters such as packet
loss rate, delay, jitter, etc [15]-[19]. For QoE-based design,
QoS measures are mapped to users’ perception and experience
of decoded videos so that video transmission parameters
can be adjusted to improve users’ satisfaction [20]. Both
subjective and objective video quality measures can be applied
to quantify the QoE-based system design [21].

The Internet of Things (IoT) became a new paradigm in
modern wireless telecommunications [22]-[24]. Video-based
IoT, which integrates image processing, computer vision and
network frameworks, is a new challenging scientific research
area at the intersection of video and network technologies [25].
Such research areas include surveillance system, automatic
behavior analysis, event detection, etc. [25]. In fact, more
and more videos are transmitted for video analytics purposes
rather than human consumption. In [26], [27], vehicle tracking
and identification systems with static surveillance cameras are
developed based on robust vehicle model construction. In [28],
an unsupervised learning of camera link models for tracking
humans across nonoverlapping static cameras is presented.
Based on human detectors, pedestrian tracking systems in
single moving cameras are proposed [29], [30]. A system of
on-road pedestrian tracking across multiple moving cameras is
studied in [31]. An occupancy detection and tracking system
is developed for automatic monitoring and commissioning
of a building [32], where image-based depth sensor and a
programmable pan-tilt-zoom (PTZ) cameras are used. An
innovative multiple-kernel adaptive segmentation and tracking
system is presented in [33], which dynamically controls the
decision thresholds of segmentation around the adaptive kernel
regions based on the preliminary tracking results to improve



the robustness of tracking. Due to the large computational
cost of video analysis applications and the inter-cooperating
properties among multiple cameras, video sequences are re-
quired to be uploaded to a cloud server through wired and/or
wireless networks. However, transmitting video optimized for
QoS or QoE based on existing designs are no longer optimal
if the videos is delivered for video analytics. Therefore, it
is necessary to develope more efficient video transmission
schemes specifically for video analysis and computer vision
applications.

Mobile surveillance network with multiple moving cam-
eras, which have more flexible camera views comparing to
traditional surveillance systems with static closed circuit tele-
vision (CCTYV), is introduced for better crime investigations
and tragedy prevention [31]. In mobile surveillance systems,
videos are recorded by driving recorders (dash cameras) or
smartphone cameras, and uploaded to remote cloud servers for
further automated video analysis. Due to the mobility nature
of moving cameras, wireless wide area networks (WWAN)
have to be used for video transmissions. Therefore, efficient
video compression, error protection and resource allocation are
needed because of the bandwidth-limited and the error-prone
nature of wireless networks.

In mobile surveillance networks, in order to recognize and
track suspicious people, several video analytics technologies
need to be applied such as human detection, human tracking,
action recognition, behavior understanding, etc.. Among these
technologies, human detection is the first step and the perfor-
mances of other human-related video analytics applications
are critically affected by the human detection results [31].
Although plenty of studies have been conducted to improve
the object detector in the computer vision field [34]-[36], few
studies can be found in wireless video transmission when
the performance degradations caused by video compression
and the wireless transmission errors are considered. In [37], a
saliency-based rate control system for human detection with
a single camera is proposed. To improve the human detection
accuracy, this scheme adaptively adjusts the quantization pa-
rameters (QPs) to preserve regions with small contrast from
excessive smoothing based on a properly designed saliency
map. Video encoders can be modified to transmit videos while
maintaining useful features for video analytics [38]. In [39],
[40], image/video features instead of the full video sequences
are uploaded to the cloud servers for video analyses. Although
transmitting features can save wireless resources, they are
not suitable for surveillance purposes since the full video
sequences are requried to be archived in the server for future
investigations. In [41], a video source encoding rate allocation
scheme is proposed when multiple moving cameras compete
for limited wireless resources. This scheme adequately allocate
the wireless resource to each moving camera based on its pre-
vious human detection results. Since the optimization objective
is to improve human detection performance, this scheme is
called a quality-of-content (QoC)-based design.

In this paper, we extend the work in [41] by considering
packet losses in wireless networks. Among several tech-
niques of improving the reliability of data transmissions, we
adopt the application layer forward error correction (APP-

FEC) code since it can provide certain correction capability
without retransmissions, which is suitable for delay-sensitive
real-time video streaming applications [2], [42], [43]. With
APP-FEC, well-designed redundant packets are transmitted
along with data packets. By receiving enough subset of
data and redundant packets, all of the original data packets
can be recovered [42]. The correction capability increases
with the number of redundant packets in a coding block.
In mobile surveillance networks, each mobile node (moving
camera) is allocated a certain amount of wireless resources
for video encoding and APP-FEC encoding. Nevertheless,
the number of transmitted packets is limited by the total
available data rate. With higher/lower source encoding rate,
the video analysis performance becomes better/worse with
the cost of weeker/stronger APP-FEC protection. Therefore, a
QoC-driven joint source coding and APP-FEC rate allocation
scheme is proposed in this paper. Instead of considering human
perception in traditional video streaming design, the proposed
scheme optimizes the human detection performance at the
cloud server when multiple mobile nodes compete for the
limited wireless resource and upload vidoes via WWAN with a
total data rate constraint. The detected human density is used
as the content information for the proposed rate allocation
algorithm. Ideally, the proposed algorithm allocates more data
rates to the mobile nodes located in the places with higher
human densities. The proposed scheme can be formulated as
a convex optimization problem [44] and can be solved by
convex optimization toolbox such as CVX [45]. To the best of
our knowledge, there is no QoC-driven work conducted when
both video compressions and wireless transmission errors are
considered.

The rest of this paper is organized as follows. In Section
II, scenario and system structure of the mobile surveillance
network is described. In Section III, the effects of source
coding rate on the human detection performance are studied.
Detailed description about the APP-FEC is given in Section I'V.
The proposed joint source and channel coding rate allocation
scheme is given in Section V. Simulation results are shown
in Section VI, followed by the conclusion remarks in Section
VIIL.

Notations: The list of symbols used in this paper is sum-
marized in Table I.

II. SCENARIOS AND SYSTEM STRUCTURE

In a mobile surveillance network, multiple mobile nodes are
randomly distributed, moving around in the area with different
pedestrian densities as illustrated in Fig. 1. Each mobile node
can capture, encode and upload videos via a WWAN to a
cloud server for video analyses such as human detection. The
proposed system structure is shown in Fig. 2. The captured
camera view of each node is encoded with the high efficiency
video coding (HEVC) [46] encoder with different encoding
data rates. The parameter estimation module determines the
necessary parameters required by the cloud server. The en-
coded packets of video data and corresponding parameters of
a single group of pictures (GoP) are then fed into the APP-FEC
encoder, which generates certain amount of redundant packets



TABLE I: List of symbols

mobile node

wireless
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Fig. 1: Scenario of mobile surveillance network.

Symbol Definition

q Quantization parameter (QP)

P() Human detection accuracy model

n Application layer forward error correction (APP-FEC)
block size

k Number of source packets in an APP-FEC block

t Correction capability of an APP-FEC block

€ Reception overhead efficiency of APP-FEC

p Probability of packet losses

fe APP-FEC block correction rate

P ( Cumulative distribution function of the standard Gaus-
sian distribution

M Total number of mobile nodes in the system

7(GoP) Group of pictures (GoP) time period

S Packet size

N, Number of detected people in the view of the mobile
node m

RM Total data rate target of the system

R(min) Minimum data rate requirement of each mobile node

N Set of natural numbers

cﬁ,{), cﬁi) Parameters in QP-rate model of the mobile node m

ri,i) Source coding rate target of the mobile node m

rg ) Transmission data rate target of the mobile node m

cg) s cﬁi) Parameters in a rate-distortion model of the MSE-driven
rate allocation scheme in the control group.

dm (¥) Distortion measured by the MSE in a rate-distortion
model of the MSE-driven rate allocation scheme in the
control group.

plrea) FEC block correction rate requirement of the MSE-
driven rate allocation scheme in the control group.

and forms an APP-FEC block [47], [48]. The concept of GoP-
level APP-FEC encoding is shown in Fig. 3. The cloud server
receives the transmitted APP-FEC block with some packet
loss due to either wireless transmission errors or network
congestion. In this paper, the packet loss rate of each mobile
node is assumed to be perfectly known by a standard real-time
protocol (RTP) and real-time control protocol (RTCP) [49],
[50]. The APP-FEC decoder decodes the APP-FEC block and
fed the video packets to the video decoder. The undecodable
video frames are dropped. The video decoder can conceal the
lost video frames by copying the last successfully decoded
video frame. After decoding the video, an object detection
module performs the human detections and sends the detection
results (content information) to the rate allocation module.
Since the pedestrian density is different in the view of each
mobile node, the human detection result (content information)
is therefore different. Based on the content information and the
necessary parameters delivered by the mobile nodes, the rate
allocation module jointly optimizes the source coding rate and
the APP-FEC coding rate for each mobile node under a pre-
determined total data rate constraint, which is assumed to be
affordable by the wireless network. The rate allocation result
is then fed back to the mobile nodes for the video encoding
and transmission of the next GoP. Note that the rate allocation
results are targets for the mobile nodes and the actural source
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Fig. 2: Proposed system structure.

coding and APP-FEC rates can be slightly different to the
targets.

III. HUMAN DETECTION AND THE EFFECT OF VIDEO
QUALITY ON HUMAN DETECTION PERFORMANCE

Plenty of object detection schemes have been developed in
existing literatures. A human detector based on the histogram
of oriented gradient (HOG) feature, which can effectively
represent the shape of human, is proposed in [34]. In [35],
the implicit shape model (ISM) is proposed, which applies a
voting scheme based on multi-scale interest points to create
plenty of detection hypotheses, and a codebook is used to
preserve the trained features. In [36], authors extended the
idea in [34] and proposed the deformable part model (DPM),
which uses a root and several part models to describe different
partitions of an object. The part models are spatially connected
with the root model based on a predefined geometry so
that the object can be accurately depicted. Among these
object detection methods, the DPM is a well-accepted, robust
and computationally efficient scheme. Therefore, the DPM is
adopted as the human detection scheme in this paper.

Since the DPM object detector is based on the HOG
feature, it can be affected by the artifacts created from
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(a) Video clip: LOEWENPLATZ in the ETHZ dataset [51]. Left:
QP=15; Right: QP=39

(b) Video clip: BAHNHOF in the ETHZ dataset [S1]. Left: QP=15;
Right: QP=39

Fig. 4: Comparisons of Human Detection Performance of the
DPM with Different Video Encoding Qualities.

video encoders at different compression ratios [37]. In mobile
surveillence systems, human detection is performed in the
cloud server based on compressed videos, which may affect
the human detection performance. A comparison example of
the DPM detection results are shown in Fig 4. The video
clips “LOEWENPLATZ” and “BAHNHOF” in the ETHZ
dataset [51] are encoded by two different QPs. When the
QP is large, the artifact caused by higher compression ratio
significantly distorts the original HOG information, which
leads to noticeable human detection performance degradation.

Figure 5 shows the human detection accuracy with respect
to different video encoding qualities in terms of the QPs.
Six video clips in the ETHZ dataset [51] are encoded by
the HEVC encoder [52] with 11 different QPs from 15 to
45. The detection results are compared to the ground-truth
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Fig. 5: Human detection accuracy with different QPs. The solid

line is based on a human detection accuracy model given in
Eq. (1). The RMSE of this curve-fitting is 1.104%

labels provided in the ETHZ dataset. An object is considered
as correct detection if the overlapped area of the detection
result and the corresponding ground-truth is larger than 50
percent of the ground-truth area [36]. Obviously, the higher
the quality (lower QP), the higher the detection accuracy.
But the rate of increasing becomes small when the video
quality is high enough since the artifacts created by video
compression are negligible. By adopting curve-fitting, the
human detection accuracy model as a function of QP (i.e.,
q) can be approximated as:

6]

The solid line in Fig. 5 is based on Eq. (1). The root mean
square error (RMSE) of the curve-fitting in Fig. 5 is 1.104%.

P (q) = —0.0098 - 2012969 1. 0.6049.

IV. APP-FEC AND BLOCK CORRECTION RATE

APP-FEC can provide reliable end-to-end streaming appli-
cations with packet level protection [43]. Suppose a source
block with k packets is encoded into an APP-FEC block
consisting of n (n > k) packets by adding n — k redundant
packets. The APP-FEC rate of an (n,k) code is defined as
the k/n. An ideal APP-FEC code, with correction capability
t = n — k, can reconstruct the original k source packets from
any k out of n received packets [43]. The Reed-Solomon (RS)
code, which operates on non-binary symbols, is a well-known
APP-FEC scheme with ideal correction capability. However,
the block size of the RS code is constrained by the symbol size,
which limits the flexibility of parameter selections in practice.
For instance, in the most commonly used RS code with 8 bits
per symbol, the total number of packets in an APP-FEC block
is constrained by 255, i.e., & < n < 255. Furthermore, the
non-binary operations of the RS code may cause high com-
putational complexity in software implementation [43]. Such
drawbacks make the RS code unattractive to high definition
(HD) video streaming applications. With the development of
APP-FEC, more practical schemes have been introduced. One



of the attractive APP-FEC solutions for HD video streaming
services is the Raptor code [53], which has flexible parameters
selection and linear decoding cost. Unlike the RS code, the
correction capability of the Raptor code is nonideal, given by
t = n—(1+ €) k, where ¢ is the reception overhead efficiency.
Nevertheless, the reception overhead efficiency of standardized
Raptor code is very low and close to ideal correction capability
[43]. In this paper, the APP-FEC scheme with ideal correction
capability is assumed for simplicity.

An APP-FEC block can be successfully decoded if the
number of packet loss/error is not more than the correction ca-
pability ¢. If the packet losses are independent and identically
distributed (i.i.d.), the block correction rate (BCR) of an (n, k)
ideal APP-FEC code is given by a cumulative distribution
function (CDF) of a binomial distribution [54]:

t
n\ n—j
f(tm;p)Z(.)pJ(lp) 7 2)
— \J
J
where p is the packet loss rate. When n is sufficiently large,
np and n (1l —p) are much greater than 1, the CDF of
a binomial distribution can be approximated by a CDF of
Gaussian distribution with mean np and variance np (1 — p)
[55]. Therefore, Eq. (2) can be approximated as:

t—np> _ P (—np) . (3)
np (1 —p) np (1 —p)

where @ (-) is the CDF of the Gaussian distribution with 0
mean and unit variance. If n - p is large enough, The second
term in Eq. (3) is approximately 0, and the BCR in Eq. (2)
can be further approximated as:

Flhmip) ~® (n—’f—np>

f@mm%¢<
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When the APP-FEC block is generated every GoP time period
(e.g., 0.5 — 1 second), the APP-FEC block size n is normally
large enough with the available data rate to transmit HD
videos in modern wireless network (e.g., 10 Mbps) and a
reasonable packet size (e.g., 600 bytes). With a typical packet
loss rate in wireless networks without any other protection or
retransmission schemes (e.g., 0.1% — 2%), the approximation
in Eq. (4) is valid.

V. PROPOSED JOINT SOURCE CODING AND APP-FEC
RATE ALLOCATION SCHEME

Since the wireless resoures are limited, multiple moving
nodes have to compete for the total available data rate.
Moreover, for each moving node, part of the allocated data
rate needs to be used for APP-FEC redundant packet in order
to protect the source packets from possible losses. Therefore,
it is necessary to design an efficient rate allocation scheme for
both video and APP-FEC encodings. Unlike previous studies,
which optimize the video decoding quality, the objective of
our proposed scheme is to maximize the human detection
performance at the cloud server. Suppose M is the number of

mobile nodes in the system, k is an M x 1 vector with each
element k,,, representing the number of source packets of the
mobile node m in an APP-FEC block, n is an M x 1 vector
with each element n,, representing the APP-FEC block size
of the mobile node m, and IV, is the total number of detected
objects of the mobile node m in the last GoP time period, the
proposed scheme maximizes the overall true-positive human
detection probability under a total data rate constraint and
minimum data rate requirements for each moving node, i.e.,

(o (522 )

max
k,n
m=1
M - S
SubjeCt to Z W < R(T)7
m=1
km - S ;
m (min)
T(GoP) >R ,Vm,
Ny 2> km, VM,
k.n e N]\/[Xl

4)
where T(%°P) is the GoP time period, R is the total available
data rate, S is the packet size. R(Mi") ig the minimum data rate
requirement so that the minimum detection capability can be
reached for each mobile node. The minimum allocated data
rates for the mobile nodes are independent of the previous
detection results so that the system is more robust to detection
failures caused by wireless transmission errors. P () is the
human detection accuracy in Eq. (1). f(-) is the APP-FEC
BCR in Eq. (4). The QP of the mobile node m is denoted
as ¢m (+), which is a function of source encoding rate rﬁs) =
km - S/ T(CP) T this paper, we adopt the following model to
fit the QP with respect to the source coding rate, i.e.,

1 r(
®)) = — I
m (T ) @ log<cgi)>7 (©)

where C;P > 0 and cg) < 0 are two model parameters to
be estimated by the parameter estimation module in Fig. 2.
Figure 6 illustrates the source coding rate vs. QP curves with
the HEVC encoder. In total 6 videos with VGA (640 x 480)
resolution in the ETHZ dataset [51] and 2 videos with 720p
(1280 x 720) resolution recorded in the University of Wash-
ington (UW) are tested. And the QP vs. source coding rate
model can be accurately fitted with the measurements by
properly adjusting the two parameters.

The first constraint in Eq. (5) means that in one GoP
time period, the sum of the transmission data rate of each
mobile node is limited by the total system data rate. The
second constraint indicates that the source coding data rate
of each mobile node should not be smaller than a pre-defined
minimum data rate requirement. Please note that even though
human detection is considered as the only video analytics
application in this paper, similar idea can be applied to other
applications by replacing the human detection accuracy model
P (+) in Eq. (1) with other video analytics performance models.
The optimization problem in Eq. (5) is hard to be efficiently
solved since k and n are positive integers. By eliminating the
last constraint in Eq. (5) and taking logarithm of the objective
function, the original problem in Eq. (5) can be reformulated
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By applying the APP-FEC BCR approximation in Eq. (4) and
substituting the optimization variables 7., = /N, and k=
\/E for all m, The optimization problem becomes:
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which can be shown as a convex optimization problem [44]
(see Appendix A) and can be solved by convex optimization
tools such as CVX [45]. In the objective function of Eq.
(8), the first line is for source coding rate allocation and the
second line is for APP-FEC rate allocation. The rate allocation
of each mobile node is also proportional to the number of
detected people N,,, which reflects the pedestrian density
in the camera view of the m™ mobile node. Note that the

TABLE II: Video Resolutions and Human Densities

Video Resolution | Human Density

UW 1 1280 x 720 Low

UW 2 1280 x 720 Medium
LINTHESCHER 640 x 480 High
LOEWENPLATZ 640 x 480 High

Fig. 7: The sample frames of the four videos. Top left:
“UW 17; Top right: “LINTHESCHER”; Bottom left: “UW
2”; Bottom right: “LOEWENPLATZ”.

optimized solutions k* and n* do not need to be converted to
integers since the source coding rate 78 = k* . S/T(°F) and
the transmission data rate %) = n?, - S/T(CP) of the mobile
node m are the corresponding encoding targets for the next
round, which may slightly differ from the encoding rates due
to the rate-control mechanism of the encoder. However, the
numbers of transmitted source and the total packets (including
both source coding and redundancy packets) are chosen as the
largest integers smaller than the coresponding source coding
and transmission rates respectively.

VI. SIMULATION RESULTS

In this section, the proposed QoC-driven rate allocation
scheme is evaluated by plenty of simulations. In total four
video clips are used to compete for the limited wireless
resources: two videos “LINTHESCHER” and “LOEWEN-
PLATZ” from the ETHZ data set [51] and two videos recorded
in the UW campus. Table II summarizes the resolutions and
pedestrian densities of the four videos. The HEVC (X265
implementation) [52] is used as the video encoder. The frame
rate and GoP are set as 25 fps and 16 respectively for all the
videos. Hence the GoP period (T(%°P)) is 0.64 s. The encoding
pattern in each GoP block is one I-frame followed by 15 P-
frames. 25 GoPs (400 frames) are simulated for each video.
Figure 7 shows sample video frames of the four videos. The
packet size (.5) is set as 600 bytes.

Table III summarizes the proposed and other rate allocation
schemes in the control group. We compare the proposed
scheme with other three schemes. The first one is driven by
video distortion measured by the mean-squared-error (MSE).



TABLE III: Simulated rate allocation schemes

Rate Allocation | Source Coding Rate APP-FEC Rate

Scheme

Proposed Adaptive, QoC-driven Adaptive, QoC-driven

MSE Adaptive, MSE-driven Adaptive, driven by

pre-determined targets

Equal (0.5) Fixed, 50% of total | Fixed, 50% of total
available throughput available throughput

Equal (0.8) Fixed, 80% of total | Fixed, 20% of total
available throughput available throughput

We adopte a rate-distortion model in [56] as:

dm (1) = cg)rcw,

€))

where d,, (r) is the distortion in terms of MSE for the mobile
node m. cg) and cﬁ;) are two parameters to be determined
by curve-fitting. The MSE-driven rate allocation problem is
expressed as:

subject to

(min)7(GoP)
N RT’ Vim,

>k, Vm

> log(P"9), ¥m,

(10)
where P9 is a pre-defined BCR requirement, which is set
as 0.99 [47] in this paper. The MSE-driven rate allocation
problem is also convex (similar proof as Eq. (8)) and can be
solved by the CVX [45]. The minimum data rate requirement
R™™) in our proposed scheme and the MSE-driven rate
allocation scheme are both set as 200 Kbps.

In the first simulation scenario, the packet loss rates of all
the testing video sequences are set to 1%. When the packet
loss rates are the same for all the videos, the only cause of data
rate allocations is either content or distortion for the proposed
content-driven scheme or the traditional distortion-driven
scheme, respectively. Figure 8 shows the instantaneous source
coding data rate (Kbps) of each video when the total trans-
mission data rate constraint is 2800 Kbps. For the proposed
content-driven scheme, more source coding data rates are allo-
cated to the video sequences with higher pedestrian densities.
Note that the rate allocation algorithm of the proposed content-
driven scheme depends on the detected pedestrian densities
of the previous GoP. For instance, the data rate allocated to
the video sequence “LOEWENPLATZ” significantly increases
from the 11 GoP to the 13™ GoP. This is because of the
increase of detected pedestrian densities as illustrated in Fig.
9. For the distortion-driven scheme, more data rate is allocated
to the video sequence with more frame details (i.e., UW 1).
The full video sequences with detection results are available
at http://allison.ee.washington.edu/xchen/TCSVT-QoC/ .
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Fig. 8: Instantaneous source coding data rate (Kbps) of each
video under total transmission data rate: 2800 Kbps. Packet
loss rate of each video is 1%.

Fig. 9: The sample frames of the video sequence “LOEWEN-
PLATZ” of different pedestrian densities. Left: a sample video
frame of the 10" GoP; Right: a sample video frame of the 120
GoP.
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Fig. 10: Average source coding data rate (Kbps) of each video
under different transmission data rate constraints. Packet loss
rate of each video is 1%.
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Fig. 11: Average data rate (Kbps) of APP-FEC redundancy
under different transmission data rate constraints. Packet loss
rate of each video is 1%.

Figure 10 shows the average source coding data rate (Kbps)
of each video sequence under different transmission data rate
constraints. It is clear that larger source coding data rate is
allocated to all the video sequences when the total data rate
constraint increases. For the proposed content-driven scheme,
the data increasing rates (slopes) of the videos with higher
pedestrian densities (e.g., “LOEWENPLATZ”) are higher than
those with less pedestrian densities (e.g., “UW 1”). While for
the distortion-driven scheme, the data increasing rates do not
depend on the pedestrian densities. For instance, the data rate
allocated to “UW 1” are higher than the other vidoes even
though “UW 17 has the lowest human density. As shown in
Fig. 11, more data rates are allocated to APP-FEC redundan-
cies for better protections of the transmitted videos when the
overall transmission data rate constraint increases. Similar to
the source coding rate allocation, the proposed content-driven
scheme allocates more FEC protections to the video sequences
with more pedestrian densities, which is not the case for the
distortion-driven scheme. The average APP-FEC rates of each
video under different total transmission data rate constraints
are plotted in Fig. 12. Most of the FEC rates slightly increase
with available data rate for transmissions since the increase
of source coding rates are higher than that of the APP-
FEC redundancies. However, for the proposed content-driven
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Fig. 12: Average APP-FEC rate of each video under different
transmission data rate constraints. Packet loss rate of each
video is 1%.
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Fig. 13: Average true-positive detection probability under
different transmission data rate constraints. Packet loss rate
of each video is 1%.
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Fig. 14: Average false-alarm probability under different trans-
mission data rate constraints. Packet loss rate of each video is

1%.

scheme, the APP-FEC rate of the video sequence “UW 1” has
a decreasing trend, which is due to the fact that few source
coding data rate is allocated even when more total data rate
is available (shown in Fig. 10). This is because of the smaller
pedestrian densities in the video scene.

The average true-positive detection probability and the
average false-alarm probability for each rate allocation scheme
are plotted in Fig. 13 and Fig. 14 respectively. The proposed
content-driven scheme more effectively allocates both of the
source coding rate and the APP-FEC rate and can achive
higher true-positive detection probability and less false-alarms.

In the second simulation scenario, the packet loss rates of
the video sequences “UW 17 and “LOEWENPLATZ” are set
as 3% while that of the other two are set as 1%. Figure
15 shows the source coding rates of each video. Still, the
proposed scheme allocates more data rates to the videos with
higher pedestrian densities. The average data rates of APP-
FEC redundancy are plotted in Fig. 16. For the proposed
content-driven scheme, comparing to Fig. 11, more APP-FEC
redundancy is allocated to the video sequence “LOEWEN-
PLATZ”, which has higher packet loss rate (3%) than the other
video sequences (1%). However, the APP-FEC redundancy
allocated to the video sequence “UW 17 is not significantly
increased even though its packet loss rate is also 3%. This
is because the pedestrian density of “UW 17 is low, and the
proposed content-driven scheme allocates more data rates to
the videos with more contents (i.e, pedestrian densities). Figure
17 shows the average APP-FEC rate of each video. Note that
the APP-FEC rate of the video sequence “LOEWENPLATZ”
is much lower than that in Fig. 12 because more redundancy is
allocated. The average true-positive detection probability and
the false-alarm probability are plotted in Fig. 18 and Fig. 19
respectively. It can be easily noted that the proposed content-
driven scheme has better performance than the other schemes.
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Fig. 15: Average source coding data rate (Kbps) of each video
under different transmission data rate constraints. Packet loss
rates of video “UW 1”7 and “LOEWENPLATZ” are 3%, and
that of video “UW 2” and “LINTHESCHER” are 1%.
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that of video “UW 2” and “LINTHESCHER” are 1%.
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Fig. 17: Average APP-FEC rate of each video under different
transmission data rate constraints. Packet loss rates of video
“UW 17 and “LOEWENPLATZ” are 3%, and that of video
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VII. CONCLUSIONS AND FUTURE WORK

In this paper, a QoC-driven joint source coding and APP-
FEC rates allocation scheme for video analysis purposes in
mobile surveillance network with multiple moving cameras is
proposed. Different to the previous wireless video transmission
studies, which focus on improving traditional QoS or QoE
measures to meet the wireless network conditions or the
users’ perception satisfactions, the proposed scheme tries to
optimize the wireless resource usage so that more accurate
human detections can be performed at the cloud server based
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Fig. 19: Average false-alarm probability under different trans-
mission data rate constraints. Packet loss rates of video “UW
1”7 and “LOEWENPLATZ” are 3%, and that of video “UW
2” and “LINTHESCHER” are 1%.

on the received videos. This study is conducted with HEVC
video codec and the DPM object detector. We have evaluated
the human detection model with different QPs of the HEVC
encoder. The APP-FEC is used for more reliable wireless data
deliveries. Also, our proposed joint source encoding and APP-
FEC rate allocation problem can be formulated as a convex
optimization problem, which can be efficiently solved by stan-
dard solvers. Plenty of simulations with different pedestrian
densities and wireless conditions show the effectiveness of
our proposed scheme and its favorable performance comparing
to the equal rate allocation and MSE-driven rate allocation
schemes.

The proposed scheme only considers human detection as
the video analytics purpose, which is the first step for more
sophisticated systems such as human tracking, behavior un-
derstanding etc. Therefore, plenty of furture studies can be
conducted in computer vision, video compression and video
transmission areas. In computer vision area, more robust video
analytics and computer graphics technologies, including object
detection/tracking, pose and event recognitions, 3-D scene
reconstructions etc., are required when video compression and
transmission errors exist. In video compression, traditional
designs are developed to improve the rate-distortion properties
so that more bit rate can be saved while keeping as much
as the original video quality. However, more efficient video
compression schemes could be developed if video quality is
sacrificed instead of more useful features for video anayltics.
In wireless video transmission, transmission protocols and
strategies can be re-evaluated if the video sequences are
transmitted for video analytics rather than human perceptions.

APPENDIX A
CONVEXITY OF THE OBJECTIVE PROBLEM IN EQ. (8)

For the first half of the objective function in Eq.

(8), gm (.) is convex and non-increasing if cﬁ,%) < 0.



Therefore, ¢y, <l~€72n -5/ T(GOP))
sition rule [44]. Since P(-) is concave and decreas-
ing, P (qm (k:?n : S/T(G"P)))
position rule. Also, log(-) is concave and increasing,
log (P (qm (l%fn -8/T(CP)

is convex by the compo-
is concave by the com-

)) is therefore concave. For the

second half of the objective function in Eq. (8), g (l%m, fzm> =

k2, /7 is a quadratic-over-linear function, which is convex if

fim > 0 [44].
B T (1 = pp) — 2.
h(kmnn) _m {7 Pm) 7 (11)
DPm (1 _pm)

is concave. Furthermore, ® (-) is log-concave [44] and non-

7.2

decreasing. log <<I> (h (l%m,ﬁm is concave. Since N,,
is non-negative, the objective function in Eq. (8) is non-
negative sums of concave functions, which is also concave
[44]. Therefore, the optimization problem in Eq. (8) is a
convex optimization problem since the objective function is
concave and the feasible set determined by all the constraints
is convex.
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