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Iterative Side-Information Generation in a Mixed
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Abstract—We propose a mixed resolution framework based on
full resolution key frames and spatial-reduction-based Wyner—
Ziv coding of intermediate nonreference frames. Improved rate-
distortion performance is achieved by enabling better side-
information generation at the decoder side and better rate-
allocation at the encoder side. The framework enables reduced
encoding complexity by low resolution encoding of the nonrefer-
ence frames, followed by Wyner-Ziv coding of the Laplacian
residue. The quantized transform coefficients of the residual
frame are mapped to cosets without the use of a feedback channel.
A study to select optimal coding parameters in the creation of the
memoryless cosets is made. Furthermore, a correlation estimation
mechanism that guides the parameter choice process is proposed.
The decoder first decodes the low resolution base layer and
then generates a super-resolved side-information frame at full
resolution using past and future key frames. Coset decoding is
carried using side-information to obtain a higher quality version
of the decoded frame. Implementation results are presented for
the H.264/AVC codec.

Index Terms—Distributed video coding, reversed-complexity,
scalable video coding, side-information generation.

I. INTRODUCTION

ISTRIBUTED SOURCE CODING (DSC) has its roots

in the works of Slepian and Wolf [1] for the lossless case
and Wyner and Ziv [2] for the lossy case. It is the focus of
different kinds of video coding schemes [3]-[12]. Currently,
digital video standards have highly complex encoders [13],
mainly due to motion estimation (ME). On the other hand,
the decoder complexity is low, following a broadcast-oriented
model. However, for real-time encoding with limited power
the distributed video coding (DVC) paradigm is preferred.
DVC operates with reverse complexity, which means that the
encoder complexity is shifted to the decoder.

In realistic mobile video communications, it may not be
necessary for the video encoder to always operate in a
reversed-complexity mode. This mode may be turned on only
when available battery power drops. Besides, while reducing
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complexity is important, it should not be achieved at a
substantial cost in bandwidth, i.e., the amount of complexity
reduction should be adaptive in the interest of a better rate-
distortion (RD) trade-off. Furthermore, video communicated
from one mobile device may be played back in real-time at
another mobile device. Hence, the decoder must support a
mode where at least a low quality version of the bit-stream
can be decoded with low complexity. Offline processing may
be conducted for retrieving the higher quality version. If not
the case, a transcoder inserted into the network may enable
low complexity at both ends [14]. While many works in DVC
[4], [11], [15] require a feedback channel, we consider the
more practical blind case, where the decoder is not necessarily
required to attempt distributed decoding immediately after
reception. In most real-time communication situations, the
latency constraints may be too stringent, anyway, to make
application-level feedback effective. Therefore, our framework
does not employ a feedback channel. This scenario allows
DVC coding across all power-constrained devices. However,
it increases the difficulty in choosing the correct WZ coding
parameters in order to approach the Slepian—Wolf frontier.
With a feedback channel, the decoder may ask for more
information depending on the quality of the side-information
(SI) generated. In the blind case, this is not possible. Therefore,
estimation of the correlation noise and the signal statistics is
necessary in order to send the exact amount of information.
We propose a method for correlation statistics estimation and
coding parameter selection for the memoryless cosets [16].
Typically, reversed-complexity schemes use periodic
INTRA-coded key frames with multiple motion-free Wyner—
Ziv (WZ) frames in between [4]. Then, without ME, the
encoder is substantially less complex than the decoder.
However, this framework limits the RD efficiency, due to
occlusions and complex motion. In order to generate an
accurate enough SI at the decoder, frequent key frames are
required. One way to improve efficiency is to replace key
frames (I) with conventional P-frame or B-frame. In that case,
the nonkey frames should be nonreference frames to avoid
drifting errors. However, the quality of SI would still limit the
performance. In order to improve the quality of the SI, a vari-
ation of this class of methods [5], [17] transmits an auxiliary
information for each coded block to help the block matching
process. Nevertheless, the rate needed for the hash is often
prohibitive. Another approach [18] uses a highly compressed
version of each WZ frame, with zero-motion vectors, as a
frame-hash to improve the SI. However, the performance of
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all these methods, in the no-feedback-channel case, is heavily
dependent on the accuracy of the rate-allocation mechanism.
Typically, there is no information shared between the hash
layer and the WZ bit-stream. Some studies have addressed the
rate-allocation problem for the motion-free WZ architecture
when a feedback channel is not employed [19]-[21]. A rate-
allocation mechanism have been proposed for a pixel-domain
[19] and transform domain [20] distributed video codec. In
both cases, a difference between pixel values of the original
frame and a reference frame is used to predict the bit error
probabilities. Also, an adaptive rate-allocation technique for
a multiuser video coding system has been presented [21].

An alternative is to use spatial-reduction-based DVC [22]-
[24]. We call this system mixed resolution DC or MR-DVC. In
the particular case [22] that we explore in this paper, the key
frames are conventional I, P, or reference-B frames coded at
full resolution. The intermediate nonreference WZ frames are
coded in two layers: a base layer coded at reduced resolution,
followed by an enhancement layer that uses WZ coding of the
Laplacian residue. The low resolution (LR) base layer of the
WZ frames can be regarded as an efficiently compressed hash
for the frame [18]. MR-DVC [22] can be implemented as an
optional coding mode to any existing video codec standard
[13], [25]. At the decoder, if full resolution key frames along
with only the low resolution base layers of the WZ frames
are decoded, we would have achieved low complexity but
low quality decoding. For decoding the enhancement layer,
we propose a motion-based multihypothesis SI generation
method that uses information from full resolution key frames
along with information from the LR base layer. Other works
have used iterative SI generation techniques [26]-[28]. All of
them assume key frames are intra coded and the intermediate
frames are entirely WZ coded. In [27], previously decoded
bitplanes are used to improve SI. In [26] the SI is generated
by aggressively replacing LR blocks by blocks from the key
frames.

In this paper, a method for estimating the correlation
statistics is proposed. An optimal parameter choice mecha-
nism in the creation of memoryless cosets [23] is presented.
The decoded WZ frame is obtained iteratively by alternating
multiframe super-resolution reconstruction and memoryless
coset decoding processes. More complex channel codes may
improve the performance. However, it has been recently shown
[29] that without a feedback channel, when the likelihood of
channel mismatch is high, memoryless coset codes can be
more robust than other codes. In an independently developed
work [30], spatial resolution reduction has also been used
as a means for complexity reduction. There, the LR base
layer uses zero-motion vector. Our approach has a moderate
complexity reduction target and allows for regular motion
search at reduced resolution, thereby substantially improving
RD performance. Note that the correlation estimation and
parameter choice can be applied with minor modifications
to other frameworks [18], [30]. DVC with spatio-temporal
scalability has been previously addressed [9]. The use of
spatial scalability for coding the key frames may degrade
the RD performance at full spatial resolution. Also, layered
Wyner-Ziv codecs with similar results to the MPEG-4/H.264
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Different uses of NRWZ frames. (a) One B-like NRWZ frame
between reference frames. (b) Two B-like NRWZ frames. (c) One P-like
NRWZ frames.

Fig. 1.

FGS have been proposed [7], [8] based on recent theoretical
results on successive refinement of Gaussian sources for WZ
coding [31].

For the SI generation problem, an RD analysis of motion-
based SI estimators has been addressed [32], [33]. Another
work [34] uses mode-aided motion compensation to generate
the SI. Such studies are relevant to our spatial-reduction
framework as well.

The paper is organized as follows. The framework is de-
scribed in Section II. In Section III, the generation of the SI
is introduced and in Section IV we show how the parameters
for the coset generation are chosen based on the estimated
variances. We describe how the variances are estimated in
Section V. Finally, the implementation results of the proposed
method using the H.264/AVC codec are presented in Section
VI, followed by the conclusions in Section VIIL.

II. MR-DVC FRAMEWORK

Our scalable framework is based on nonreference WZ
frames (NRWZ) [22], [23]. The complexity reduction is
applied only to nonreference frames. Since the reference
frames are coded exactly as in a conventional codec as I-frame,
P-frame, or reference B-frame, there are no drifting errors.
This feature also enables the receiver to immediately playback
a lower quality version of the video with a conventional
decoder, leaving full decoding of the NRWZ frames to offline
processing. The framework does not limit the number of
nonreference frames between the reference frames. Ideally,
the number of NRWZ frames can be varied dynamically based
on the complexity reduction required and on the target quality.
Fig. 1 depicts typical frame configurations. In Fig. 1(a), the
B frames of a conventionally coded sequence have been
converted into NRWZ B-like frames, while Fig. 1(b) shows
a similar sequence with lower complexity. Fig. 1(c) shows a
low delay case where NRWZ frames are used like P-frames.
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Fig. 2. Three encoding scenarios. (a) Temporal scalable framework. (b)
Temporal and spatial scalable framework that can be implemented in
H.264/SVC. (c) MR-DVC.

Note that our framework is significantly different from
H.264/SVC [35]. The SVC coder has a scalable bit-stream
composed of several substreams which are valid bit-streams
for some target decoder. It allows temporal, spatial and SNR
scalability. However, the SVC scalability does not focus on
reduction of encoding complexity. Fig. 2(a) illustrates the
frame layer configuration for a temporal scalable codec. The
first layer is formed by the Hy frames, the second layer by
the Hy and H; fames, and the third layer by all the frames.
For hybrid video codecs, such as H.264/AVC, temporal
scalability can be enabled by restricting motion-compensated
prediction to reference frames of the same or lower layer.
Fig. 2(b) represents a combination of temporal and spatial
scalability as can be implemented in H.264/SVC. Note
that both high and low resolution layers are conventionally
encoded. Motion estimation is performed in both layers.
Therefore, the encoding complexity increases proportionally
to the number of layers. Nevertheless, each layer is fully
decodable except when there is interlayer prediction. Fig. 2(c)
represents the spatial scalability of the proposed framework.
The encoder only performs motion estimation for the NRWZ-
frames and reference frames at the low resolution layer, thus
reducing encoding complexity. The high frequency content
is WZ coded. Hence, the high resolution layer is actually
an enhancement layer for the LR layer and it is not a valid
bit-stream on its own nor represents a meaningful video.

A. MR-DVC Encoder Architecture

In general, a frame can be predicted based on multiple
reconstructed reference frames in the frame-store, as well as
on their corresponding original versions. The syntax element
object for reference frames include motion/mode information
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Fig. 3.

Architecture for the NRWZ coding mode.

used for Direct-B prediction for B-frames, and generation of
motion vector predictors for fast motion estimation.

In the NRWZ coding mode, shown in Fig. 3, all the frames
in the reference lists and the current frame are decimated by
a factor of 2" x 2", where n can be selected based on a
complexity reduction target. Then, the low resolution current
frame is encoded, generating a reduction in the computational
complexity and creating the LR layer bit-stream. The quanti-
zation parameter used is the same as that corresponding to the
target quality for the frame. Note that the syntax element object
list for reference frames is also transformed into an appropriate
form for reduced resolution encoding. This operation consists
in reducing the resolution of the motion vector field and/or
mode decisions for the reference frames. This enables not
only direct-B prediction for B-frames but also fast motion
estimation at reduced resolution. The decoder must duplicate
the same process to decode the direct-B modes appropriately.
In order to create the enhancement layer, i.e., the WZ layer, the
encoder computes the difference between the full resolution
original frame and the interpolated reconstruction of the LR
coded frame, denoted the Laplacian residue. This residual
frame is sent to the decoder using a WZ coder. It is easy to see
that the encoder complexity for the NRWZ frame is reduced
proportionally to the decimation factor (with proper overhead
due to decimation, interpolation, and WZ coding operations).

B. MR-DVC Decoder Architecture

The decoder architecture is presented in Fig. 4. First, the LR
image is decoded and interpolated with the same interpolator
used at the encoder, generating the decoded base layer. Note
that even though decoding only the base layer generates big
PSNR variations between frames, it does allow for real-time
decoding on power-constrained devices without drop in frame
rate, something that is not feasible in traditional temporal
Wyner-Ziv coding.

The optional process of enhancement begins with the gener-
ation of the SI that will be used to decode the WZ information.
In the enhancement process, the decoded interpolated frame
and the reference frames are used to create what we call
the semi super-resolution (SSR) version of the current frame
[22]. Except for the current frame, the other frames used
are already at high resolution. Note that the performance of
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Fig. 4. Architecture for the NRWZ decoder.

any WZ encoder is heavily dependent on the efficiency of
the generation of the SI. Once the SSR frame is generated,
the interpolated LR decoded frame is subtracted from it. The
resulting residual frame is the actual SI frame to be used in
the WZ decoder. The WZ decoder decodes the WZ bit-stream
layer with the SI residual frame acting as a noisy version of
the original transmitted residual frame. The decoded residual
frame is finally added to the interpolated LR frame to obtain
the final decoded frame.

C. Wyner—Ziv Coder

The Wyner—Ziv codec used here works in the block trans-
form domain on the Laplacian residue frame. In a codec
where multiple transforms can be used, for example, AVC
fidelity range extensions [36], the largest transform size is
preferred but any one can be used. The model assumes that
the block transform coefficients, denoted by random variable
X, are Laplacian distributed with standard deviation oy.
The corresponding coefficient in the SI frame is denoted Y.
After the block-transform of the residual frame is computed,
the coefficients X are quantized with a uniform deadzone
quantizer. The random variable that represent the quantized
coefficients is denoted by Q, which takes values from the set
Qo = {—Gmaxs —qmax+15 - —1,0, 1, ..., Gmax—1, gmax}. Cosets
are next computed on Q with modulus M to obtain the coset
random variable C as follows:

C=9(Q, M)
_Jo-—MLO/M], Q-M|Q/M] < M/2
Q-M|Q/M]-M, Q—-M|Q/M|= M/2.

ey

The values of C are taken from the set Q¢ =
{l—-M —-1)/2],..,—1,0,1,..., (M —1)/2]}. In the im-
plemented reversed-complexity coding mode, the parameters
QP and M are different for each frequency (i, j) of coefficient
x;j, and can be varied from macroblock-to-macroblock. The
QP and M coding parameters are chosen based on an
estimate of the noise statistics between the SI block and
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the original one, based on a chosen model (see Section IV).
In this paper, a combination of the number of bits spent to
code the corresponding residual block in the LR layer and an
edge activity measure in the coded block is used to estimate
the model parameters (see Section V). Also, only some
low-to-mid frequency coefficients are mapped to cosets and
sent for each block, while the rest are forced to 0. The number
of coefficients transmitted in zigzag scan order is determined
based on the noise level estimation. The DC coefficient is sent
without coset computation. More details about the parameter
selection mechanism are provided in Section IV.

If the quantization bin ¢ corresponds to interval
[xl(q),xh(q)], then the probability of the bin g € ¢, and
the probability of a coset index ¢ € Q¢ are given by the
probability mass functions

Xn(q)
p(g) = / Sx(x)dx 2
x1(q)

CENED SN R SR |

4€Q0.¥(Q. M)=c 4€Q0.9(0, M)=c Y 1@

xn(q)

fx(x)dx  (3)

where fx(x) is the pdf of X. Because the distribution p(c)
is symmetric for odd M, has 0 as its mode, and decays with
increasing magnitude, the entropy coder for Q that already
exists in the conventional codec can be reused for C. We note
however that a special entropy coder designed specifically for
coset indices should be more efficient. While in this paper,
we reuse the same entropy coder as in H.264/AVC in order to
minimize the modifications needed to the conventional codec,
in the future we will investigate special entropy coding for
block cosets.

If Y corresponds to the unquantized SI available only for
decoding, then at the decoder, the minimum MSE reconstruc-
tion function X yc(y, ¢) based on SI y and received coset index
c, is given by

XYC(y’ C)
= EX|Y =y, C=0)

X1 (q)
- qeﬂgvde(:Q,M):c Jutgy *fxir (v, y)dx @

> x(q) '
(]EQQ,!//(Q,M):C ,fxl(q) fX|Y(-x1 )’)dx

In the decoder, the same estimate for the model parameters
based on bit rate at the LR layer and edge activity, is
obtained. These model parameters not only yield the same
QP and M parameters applied during encoding, but are
also used to obtain the optimal reconstruction based on (4).
Because the exact computation of (4) is difficult, approxima-
tions and interpolations on various precomputed tables can be
useful.

III. SEMI SUPER-RESOLUTION FRAME GENERATION
AND WZ DECODING

Our method, which is an improvement on [24], iteratively
computes the SSR frame followed by WZ decoding in multiple
passes. A block diagram of the process is shown in Fig. 5.
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Fig. 5. SI generation. Iterate between SI generation and WZ decoding.

Let the interpolated LR reconstructed frame be Fy. Let
SS(F, FS) denote the SSR operation to yield a higher res-
olution version FHR of F based on the stored frames FS.
Also, let Dyz(RF, byz) denote the WZ decoding operation
yielding a corrected version of the residual frame based on
our noisy version RF using the WZ layer bit-stream by .
Then, iterative decoding comprises the following steps for
i=0,1,2,...,N—1:

F/'% = SS(F,;, FS) ()

Fis1 = Dyz(F™® — Fy, bwz) + Fo. (6)

In the first iteration, similar to an example-based algorithm
[37], we seek to restore the high frequency information of an
interpolated block through searching in previously decoded
key frames for a similar block, and by adding the high
frequency of the chosen block to the interpolated one.

The past and future reference frames in the frame-store are
low pass filtered. The low pass filter is implemented through
down-sampling followed by an up-sampling process (using
the same decimator and interpolator applied to the nonkey
frames). The high frequency of the reference frames is the
residue between the original frame and its filtered version. If
F denotes a frame then F = L + H, where L is the decimated
and interpolated (filtered) version of F, while H is the residue,
or its high frequency.

A block-matching algorithm as described below, is applied
on the current decoded frame F;, fori=0,1,2,...,N—1, to
obtain the SSR frame F/’R. For every 8 x 8 block in F;, the
best subpixel motion vectors in the past and future frames
are computed to minimize the sum of absolute differences
(SAD) between it and low pass filtered versions of past and
future frames, respectively. If the best low pass predictor
blocks are denoted as L, and L, in the past and future
filtered frames respectively, several candidate predictors are
calculated as oL, + (1 — )L s. The mixing factor o assumes
values between O and 1, and in our implementation we used
a € {0.0,0.25,0.5,0.75, 1.0}. The best mixing factor o* is
chosen to be the one that yields the least SAD between the
current block and its predictor.

Next, if the SAD of the best predictor computed for a
block is lower than a threshold 7, the block is updated in
the SSR frame F/® as follows. Let H, and Hy denote the
high-frequency components of the best predictor blocks in
the past and future frames, respectively. Then in the first
iteration, a*H, + (1 — o*)H is added to the corresponding
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Fig. 6. Semi super-resolution for nonreference WZ frames. Filtered frames
are used for motion estimation, but unfiltered frames are used for motion
compensation.

block in the decoded interpolated frame F; to obtain the
corresponding block in the super-resolved version FJ/. In
subsequent iterations, the block in the current decoded frame
F; is completely replaced by the unfiltered version of its best
predictor: a*(H, + L,) + (1 — «*)(Hy + L) to obtain the
corresponding block in F/R If the best SAD is larger than
a threshold 7, then the block in F/#® is just copied from the
corresponding block in F;.

During the first iteration when only high-frequencies are
added, we need to be careful not to add spurious noise in
cases where no close matches are found with the low pass-
based matching operation. Hence, we use a confidence factor
based on the best SAD to scale the high frequency component
before adding to the decoded interpolated block. We assume
that the lower the SAD, the higher the confidence we have,
and thus the more high frequency information is added.

From iteration to iteration three things are changed: 1) the
strength of the low pass filter used prior to block-matching
is gradually reduced; 2) the grid of the block matching is
offset; and 3) the threshold 7T is gradually reduced. In practice,
the low pass filtering operation for the reference frames prior
to block-matching is eliminated after one or two iterations
as the frame becomes more and more accurate. The grid
for block matching is offset at each iteration to smooth out the
blockiness and to add spatial coherence. For example, for 8 x 8
blocks, the shifts used in four passes can be (0, 0), (4, 0), (0, 4)
and (4, 4). The value for the threshold was empirically found
based on performance over a limited training video sequences
and then used for all test sequences in the simulations. In our
implementation, we used 7; = {500, 80, 60, 20, 5} for 8§ x 8
blocks, where i indicates the number of the iteration. This
process is illustrated in Fig. 6, not necessarily to any particular
offset. In [38] comparisons between different SI generators
including the proposed iterative method are presented

IV. CHOOSING CODING PARAMETERS

In order to make an optimal choice of the quantization and
modulus parameters {Q P, M}, we assume a general enough
statistical model: Y = pX + Z [16], [39], where X is a
Laplacian distributed transform coefficient with S.D. oy, Z
is additive Gaussian noise uncorrelated with X with S.D. o,
and 0 < p < 1 is an attenuation factor expected to decay
at higher frequencies. While this is a generalization of the
simpler model: Y = X + Z considered in [22], [23], rewriting
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as Y/p = X+ Z/p the same known estimation procedure [23],
[40] can be applied, simply replacing o2 with (o7/p)* and Y
with Y/ p during decoding. In the rest of this section, we review
the optimal parameter choice mechanism for the ¥ = X + Z
model, emphasizing that in order to use it for the ¥ = pX +Z
model, oz needs to be replaced with (oz/p), and Y by Y/p.

A. Memoryless Coset Codes Followed by Minimum MSE
Reconstruction With SI

The first step is to obtain expressions for expected rate and
distortion functions for the memoryless coset codes described
in Section II, for a given {Q P, M} pair. Let Ryc be the rate
assuming an ideal entropy coder for the coset indices, and let
Dyc be the distortion given SI y and coset index c. It can be
shown (see Appendix Section A) that their expected values
are given by

E(Ryc)

-y

ceQe

>

qeQo:Y(Q,M)=c

>

q€Qop(Q, M)=c

(@) = m (x(@))

x log,

m (@) = m§ (@)

)
EDo=at- [ 4
- CEQC
(qEQQ:l%:Q,M):C [m()}\)y(xh(q)v y) — mx|y(xl(CI) y)])
(yesrgsicpoane S 1@, ») = m Q) ), 101
x fr(y)dy ®)

where we defined m'(x) = [
ffoo V fxy (v, y)dv.

A viable coding choice is to just use zero-rate coding, where
no information is transmitted (i.e., QP — oo or M = 1). Then
the rate is 0 and it can be shown (see Appendix Section B),
that the expected distortion based on optimal reconstruction
using Y alone is given by

[ee) 00 2
E(Dy)= o — / ( / (. y)dx) Fr()dy

o] —0Q

V fx(v)dv and m()?ly(x, y) =

=0y — / mg\)y(ooy Y fr(y)dy. 9

B. Laplacian Source With Additive Gaussian Noise

Using the model of a Laplacian source, X, with additive
Gaussian noise, Z, we have

fx(x) =

10
«/_ox {10

1 1
fZ(Z)_ mo_ze -

an
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Defining B(x) = exp[(~/2x)/(0y)], we have
B(x)

— x=0
my) (x) = |
-, X
2B(x)
sz(\/_x —0y),x<0
m(x) = . (12)
- (V2 s 0
2ﬁﬂ(x)(\/_x+0) x>

The above moments will be used in the calculation of E(Ryc)
in (7). Further defining

xAt 2 2
yi(0) = erf (%)
o.x + /202
= _= 13
nx)=erf < N ) (13)
and
erf(x) = 2 / S e (14)
VT
then, since Y = X + Z, we have
fr0= [ frortr s
oo G)%
2
1.0 — B(y)? -1.0
=3 238000 ﬁ( o 2y + B (r2(») )]
(15)
Sxir(x, y)
_ Sxr(x, y)
fr(»)
_ V2B(y) e : (16)

Vo, i)+ 1.0 = B (2(y) — 1.0

Given fxy(x,y), the moments m le(x y) can now be
calculated and used for computing E(Dy¢) in (8) by numerical
integration. The erf() function can be evaluated based on a 9th
order polynomial approximation [41]. All the expected rate
and distortion values for a memoryless coset code followed by
minimum MSE reconstruction can be evaluated based on these
results in conjunction with numerical integration of fy(y).

C. Optimal Parameter Choice and Model Prediction

The above results can be used to compute the RD points for
the set of all allowable {Q P, M} combinations, using (7) and
(8) given the source and correlation statistics ox and oz. In
Fig. 7, we present the RD points so obtained for a deadzone
quantizer, for the specific case of ox = 1 and ox = 0.4. In
Fig. 7(a), each RD curve depicted as “Const M RD Points”
is generated by fixing M and changing QP at finely sampled
intervals of 0.05. However, the following discussion assumes
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Fig. 7. RD curves obtained by varying QP and M forox =1 and 07 =0.4,

given by equation along with the corresponding Pareto-optimal and the convex
hull set of points. (a) RD curves depicted for constant M and varying Q P.
(b) RD curves depicted for constant Q P and varying M.

QP to be continuous. The case when QP — oo for any M
corresponds to the zero-rate case, and yields the RD point
{0, E(Dy)} where all the curves start, with E(Dy) given by
(9). Alternatively, this point can also be viewed as the M = 1
curve that degenerates to a point. Fig. 7(b) shows exactly
the same results using constant Q P curves and changing M,
starting from 1 upward. As M — oo, the coder becomes the
same as a regular encoder not using cosets but still using
Optimal Reconstruction based on SI Y. In the figure, the
curve for regular encoding Q using Optimal Reconstruction is
depicted as “EC(Q)+Opt recon,” where EC indicates entropy
coded (equations can be found in the Appendix section D).
The curve corresponding to ideal Slepian—Wolf coding of the
quantization indices (Q) followed by optimal reconstruction is
also shown (“SW(Q)+ Opt recon’), for details, see Appendix
Section C. Note that this curve is also the lower convex hull
of the RD points obtained by ideal Slepian—Wolf coding of
the cosets C for all {Q P, M} combinations, and represents the
theoretical upper-bound performance of this framework.
From figure, it is obvious that not all choices for Q P and M
are necessarily good codes, since they may not outperform reg-
ular coding followed by Optimum reconstruction based on Y.
However, as it can also be seen from the figure, if {Q P, M} are
correctly chosen, coset coding can outperform regular entropy
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coding of Q with Optimal Reconstruction. The suboptimal
choices for the {Q P, M} combination can be pruned out by
finding the Pareto-optimal set, wherein each point is such that
no other point is superior to it, i.e., yields a lower or equal
distortion at a lower or equal rate. These points are marked as
“x” in Fig. 7(a) and (b). One strategy for parameter choice
is to choose the closest Pareto-optimal point to a given target
distortion D,. However, the strategy that yields superior RD
performance is to operate on the lower convex hull of the set
of points generated by all {Q P, M} combinations. This set of
points, called the convex hull set, is a subset of the points in
the Pareto-optimal set and is generally much sparser. These
points are marked as “o” in Fig. 7(a) and (b). In order to
accurately match the distortion to a given target D,, ideally the
samples should be multiplexed in the right proportion between
two nearest codes from the convex hull set. In this paper,
however, we simply chose the closest Pareto-optimal point.
Note, that there is still room for improvement since there is
a gap between coset coding and ideal Slepian—Wolf coding.
This is expected because the ideal Slepian—Wolf coder is
working at the conditional entropy of H(Q|Y) while the coset
coding curves are based on the entropy rate of H(C). However,
since we are considering the no-feedback-channel case, it is
expected that the Slepian—Wolf bound would not be reached.

D. Distortion Target Matching

The goal of the distortion-matched parameter choice process
can now be expressed in terms of (7) and (8). If QP; is the
target quantization step-size of regular encoding, used for key
frames, we note that it is advantageous, in our framework, to
specify the target distortion D; in terms of Q P;. The expected
distortion from regular encoding followed by MSE reconstruc-
tion without SI is given by (see the Appendix for details)

E(Dy)
xn(q) 2
—o2 - Z (fxl(ql)] xfx(x)dx)
G (f;?;;n fX(x)dx)
2
(m§' () = m @)

(mP () — mP @)

. (17

q€82o

From (17), we obtain D, for a given Q P,. Thereafter, we
search for the optimal code with distortion closest to Dy,
but not exceeding it. In practice, this mapping from QP; to
{Q P, M} can be precomputed and stored in a normalized table
for a given oz and ox = 1, for a range of Q P, values in small
incremental steps. The QP values are also typically rounded
to the same precision as Q P;. To use it for an arbitrary oy,
the values of QP; and QP in a normalized table need to be
appropriately scaled before and after table-lookup. A limited
set of such normalized tables can be stored in a codec for a
range of oz values at small increments. Further details about
how to generate these tables can be found elsewhere [23], [40].

Reverting back to our ¥ = pX + Z model, the following
look-up procedure based on a set of normalized tables is used
to obtain the {Q P*, M} combination corresponding to a given
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QP;, if the model parameters {p, oy, oz} are known. We
simply have to 1) evaluate o7/(p.0x) to find the normalized
look-up table to consult from a set; 2) find the closest entry in
it corresponding to target Q P, = Q P} /ox; 3) read off Q P and
M, and 4) scale QP to obtain the final QP* = QP x ox. The
set of allowable QP values will depend on the conventional
codec used (H.264 in our implementation).

V. CORRELATION STATISTICS ESTIMATION

In this section, we propose a mechanism to estimate the
parameters {p, oy, oz} in the encoder and decoder for our
Y = pX + Z model within the proposed spatial scalability
framework [16], [39]. The estimated parameters will be used
to obtain the coding parameters {Qp, M} as described in the
previous section.

The model parameters are estimated per frequency band
(FB) within a block, where an FB is defined as a diagonal in
a transform block as illustrated in Fig. 8. Note that the correla-
tion statistics between a coefficient X and the corresponding SI
coefficient Y is obviously dependent on the target quantization
step-size Q P; for the reference frames and the LR layer of
Wyner-Ziv frames. Besides, other vital information such as
edge activity measure (see Section V-A) and normalized LR
layer rate (see Section V-C) can be conveniently extracted
from the LR layer to direct the estimation process. Since
any data from the LR layer is available to both decoder
and encoder, no overhead bits are needed to convey this
information. An alternative approach might explicitly transmit
some statistical information, but in this paper we adopt a
no-overheads approach.

In the following, we describe the specifics of the estimation
models used for estimating the parameters {p, ox, 0z}. These
models are trained based on (X, Y) pair training data collected
from a set of training video sequences for each FB and QP,,
by running the base layer encoder and SSR processing at the
decoder for different values of Q P; in small increments.

A. Estimation of o%-Variance of Laplacian
Residual Coefficients

The variance of a Laplacian residual coefficient (0}2() varies
from block to block within a frame. It not only depends on
QP, and FB, but also on the high frequency content within
the block. If the original frame has a high edge content it is
likely that the error between the decoded interpolated version
and the original one would be larger. Even though the exact
high frequency content in an original frame is not available at
the decoder, an edge activity measure, denoted E, computed
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on the reconstructed LR block can be used as an indicative
parameter to estimate o%. E is computed as the accumulated
sum of the absolute difference between adjacent pixels along
lines and columns of a macroblock in the decoded interpolated
LR frame. It is intuitive to think of the energy at the high
frequencies of the Laplacian residual as correlated with E,
whereas the energy of the low frequencies in the Laplacian
residual is more related to quantization noise introduced by
Q P,. In general, the estimated 0)2( can be modeled as a function
of QP,, FB and E. That is

ox = fi(QP,, FB, E). (18)

We next assume o to be proportional to QP?. Further,
analysis of the training data reveals that that it suffices to
linearly model the variation of o*f( with E for each FB, so that

0% = (ki ppE + ko, pp) Q P?

where k; pp are constants that vary for each frequency band.
These parameters are estimated by training based on the
training data.

19)

B. Estimation of the correlation parameter

In order to estimate p, we use a simplified model assuming
that it only depends on Q P; and FB

p = f(QPF, FB).

If TSrg, op represents the training data set for a given Q P,
and FB, we estimate

(X,Y)ETSrp op,

(20)

PrB.QP, = argmin, (1Y — pX|1%) . @1

Note that the higher the QP;, the less the correlation be-
tween X and Y. The values of p for each Q P, and FB obtained
from the training data set can be stored as precalculated tables
at both encoder and decoder.

C. Estimation of the Variance of the Gaussian Noise

We conjecture that 0% for a macroblock in the enhancement
layer is well indicated by the residual error rate R used
to code a co-located 8 x 8 block in the LR base layer. A
higher rate in the LR base layer indicates greater inaccuracy
of motion estimation at reduced resolution, and therefore the
multiframe super-resolution process is also expected to yield
a less accurate estimate of the high-resolution frame at the
decoder, leading to an increase in o%. Besides, we also assume
o2 to depend on QP,, FB and E. Now, we can model o2
as

o= f3(QP:, FB, E, R). (22)

Since R above depends on QP,, we can use normalized
rate R, = R x QP,2 in order to remove the effect of Q P,. We
also assume o2 to be proportional to 0% for a given FB and
R,, and the effect of QP, and E to be subsumed within 0,2(.
Further, the variation of o% with R, is linearly modeled for
each FB, so that the estimation model is simplified to

03 = (ks rp Ry + k4 rp)o. (23)
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TABLE I
ENCODING TIME (S) COMPARISON FOR Foreman CIF SEQUENCE

IpPpP IBPBP IBIBI
H.264 | DVC H.264 | DVC H.264 | DVC
Total time || 254.7 162.7 || 303.1 173.7 156.3 | 64.2
ME time 198.3 125.9 || 234.0 133.7 1250 | 329
TABLE I

DECODER TIME EVOLUTION WITH THE NUMBER OF ITERATIONS

Foreman CIF Sequence (Mode IBPBP)
One Iteration (s) | Two Iterations (s) | Three Iterations (s)

901.34 1680.42 2342.47

Constants k3 gp and k4 pp are estimated by training based
on the training data, where for each (X, Y) training pair, the
corresponding Z is computed as ¥ — pX.

VI. RESULTS

The described framework and the proposed SI generation
method were implemented on the KTA software for extensions
to the state-of-the-art standard H.264/AVC [42]. Results for the
H.263+ version can be found elsewhere [16], [22]-[24]. For
the simulations of the MR-DVC and regular H.264/AVC we
used fast motion estimation, along with the CAVLC entropy
coder, without RD optimization (RDO) and without rate con-
trol. We also used search range of 16, 2 reference frames, and
spatial direct mode type for B-frames. The decimation factor
used for the NRWZ frames was 2 x 2 (half resolution). The
training for the estimation models for {oy, 0z, p} described in
Section V, is carried using 20 frames from each of the CIF
sequences: Silent, Foreman, and Mobile. The results presented
use all 300 frames for sequences: Foreman, Coastguard,
Akiyo, Mobile, Silent, Hall monitor, Soccer, and Mother-and-
Daughter.

In the simulations, it is only necessary to select one Q P;
depending on the target distortion and desired rate. This Q P;
will be used for the base layer coded at low resolution. Once
the values of {ox, 0z, p} have been estimated, the mechanism
described in Section IV-C will choose the appropriate {Q P, M}
pair yielding a decoded quality similar to that of a conventional
codec coded with QP,.

In Table I, a comparison of the encoding time between
the conventional H.264/AVC and the proposed MR-DVC is
presented. All the coding tests were made on an Intel®
Pentium® D 915 2.80 GHz Dual Core with Windows® OS.
The WZ mode was set to operate in /bPbP, IpPpP and IbIbl
modes where b frames indicate NRWZ B-like frames at half
resolution and p is a disposable NRWZ P-like frame, also at
half resolution. For conventional H.264/AVC, p frames refer
to disposable P frames [13]. It can be seen that the mixed
resolution Ip PpP mode reduces the total encoding time by
36% compared with conventional encoding in Ip Pp P mode.
Note that if encoding of an NRWZ p frame at half-resolution
is exactly quarter of a disposable p frame for conventional
H.264/AVC, the complexity reduction would be 37.5%. This
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Fig. 9. PSNR results for the ¥ component of Foreman CIF sequence using
an /BPBP GOP. (a) We compare conventional H.264; the LR base layer after
up-sampling; the key frames along with first SI generated; and the MR-DVC
after 3 iterations. (b) We compare the performance of the MR-DVC after 1,
2, and 3 iterations, and with fixed coding parameters.

shows that the overhead in Wyner-Ziv coding is limited.
For the IbPbP mode we achieved a 42% reduction in total
encoding time over conventional /BPBP. Even though NRWZ
b frames demand quarter the complexity of conventional
B-frames, the overall reduction is higher since a conventional
B-frame is more expensive to encode than a P-frame. Even
lower encoding complexity can be achieved using intra key
frames, e.g., in a IbIbI mode, where a reduction of 59% is
achieved over conventional /BIBI.

At the decoder, the most complex operation is the semi
super-resolution SI generation process. In principle, the com-
plexity of SI generation per iteration is of the same order
as that of encoding of a regular B-frame. More iterations
proportionally increase the decoding time. In Table II, we
present the actual decoding times for multiple iterations of the
same (Foreman) sequence. Note, however, that these decoding
times are quite high since our SI generation implementation
is not optimized.

In Fig. 9(a), we show the coding performance of: 1) the
reversed-complexity codec (after three iterations) operating in
Ib PbP mode; 2) conventional H.264/AVC codec operating in
IBPBP mode; 3) LR layer that is formed by just up-sampling
the NRWZ-frames and the key frames; and 4) the key frames
of the LR layer with the NRWZ frames replaced by the SI

Authorized licensed use limited to: IEEE ASSOCIATED EDITORS Signal Processing. Downloaded on October 15, 2009 at 12:11 from IEEE Xplore. Restrictions apply.



1418

ai Coastguard CIF: IBP (one non-reference B-frame)

38 -
a7 -
o 36 -
T 35
£ 34 -
-4
75 33 - ” !
32 é,c‘f e o 00T : ——FRegular H.264/AVE |
31 - Pt ; ; < LR layer
P o =&-LR layer + 51
30 " i i ~MR-DVC ot
600 800 1000 1200 1400 1600 1800 2000 2200
Rate (Kbps) @ 30 fps
(a)
- Mobile CIF: IBP (one non-reference B-frame)
35 | : ! i !
34
33 -
o 32
T 31
= 30
I:I“.i 29
> 28 : ]
27 —:f::;:rru.zwwc_ i
26 - ; -G-LR layer + S|
25 . ¥ ;i MR-DVC
24 | i i i i i }
0 500 1000 1500 2000 2500 3000
Rate (Kbps) @ 30 fps
(b)

Fig. 10. PSNR results for ¥ component at /BPBP mode. Comparing:
conventional H.264; the LR base layer after up-sampling; the key frames
of the base layer along with first SI generated; and the MR-DVC, for (a)
Coastguard CIF, (b) Mobile CIF.

generated during the first iteration and without WZ decoding.
The PSNR is computed from the luminance component as the
arithmetic mean of the PSNR values for each frame [43]. It can
be seen that the first SI already outperforms the regular spatial
interpolation of the LR layer. For low rates, the key frames
with the first SI and the WZ modes outperform conventional
coding. At high rates, conventional encoding outperforms WZ
coding. However, the WZ layer yields an improvement when
compared to the first SI applied to the LR layer. In Fig. 9(b)
we show the performance of: 1) the reversed-complexity codec
after one, two, and three iterations operating in /b PbP mode;
and 2) the reversed-complexity codec without the mechanism
for choosing coding parameters (Q P is fixed to the same value
as the base layer and M = 15). The difference between each
iteration is around 0.1 dB. For this particular sequence more
iterations would not reflect in any more gains. Even though
the PSNR difference at each iteration is small the subjective
difference is significant. Also, we can see that the reversed-
complexity coding mode, with fixed values of {Q P, M} is out-
performed by the same mode using the proposed mechanism
for choosing coding parameters.

Additional results for the same Ib PbP mode are presented
in Figs. 10 and 11 for Coastguard, Mobile, Akiyo and Silent
sequences. It can be observed that the reversed-complexity
WZ mode is competitive. For Akiyo and Silent sequences the
coding mechanism only sends limited information for the WZ
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Fig. 11. PSNR results for ¥ component at /BPBP mode. Comparing:
conventional H.264; the LR base layer after up-sampling; the key frames
of the base layer along with first SI generated; and the MR-DVC, for (a)
Akiyo CIF, (b) Silent CIF.

layer because it predicts that sending more information is not
helpful. That is the reason why there is not a significant gap
between the WZ mode and the curve using only the first SI.
Our worst results are for the Mobile CIF sequence, where
there is the largest gap between conventional WZ coding. This
is due to the high edge content and because the amounts of
nontranslational motion were higher than our SI generation
process is able to restore. The conventional H.264/AVC coder
has an advantage in this regard since it can adaptively use
small block sizes up to 4 x 4 for motion estimation. Our SI
generation process, however, currently works only with 8 x 8
blocks.

In Fig. 12, we compare the performances of our MR-DVC
in Ip Pp P mode (where p frames are at half resolution) against
a conventional H.264 codec in IpPpP mode for Foreman
and Mother-and-Daughter sequences. We find that for the
Foreman CIF sequence, the gain of the WZ layer is significant
when compared to using only SI. It can be observed that,
at low rates for many sequences, the SI and especially the
WZ modes outperform conventional H.264/AVC in average
PSNR, mainly due to accurate SI generation applied to the
mixed resolution framework. The MR-DVC scheme can be
viewed as an interpolative coding scheme which is known for
good performance at low bit-rates. Other interpolative coding
schemes have been used in image compression with better
performance than regular compression for low rates [44]. One
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Fig. 12. PSNR results for ¥ component at Ip PpP mode. Comparing con-
ventional H.264 at IpPpP mode, the low resolution base layer, the base
layer along with the SI and the MR-DVC. (a) Foreman. (b) Mother-and-
Daughter.

caveat of our scheme is the potentially high PSNR variation
among key and SI frames. Depending on the quality of the SI,
the PSNR variation can be as small as 0.3 dB or as large as
6 dB. Generally, for low motion sequences like Silent, Akiyo,
and Mother-and-Daughter the maximum PSNR variation is
low. For high motion sequences such as Coastguard or Mobile,
the PSNR variation is high.

For a final comparison, in Fig. 13, we compare MR-
DVC, working in IbIbl and IbPbP modes, against one of
the most popular WZ architectures: the DISCOVER codec
[45]. As mentioned before, our WZ mode does not use RD
optimization. The simulations for the DISCOVER codec were
carried with and without RDO, with fast motion estimation,
CAVLC entropy coder, and working in /ZIZ] mode where
Z means a WZ frame coded entirely by a Wyner—Ziv coder.
It is also important to note that the DISCOVER codec uses
sequence dependent QP tables, not to maximize the RD
performance, but to have a uniform subjective quality through
the whole sequence. Also, it uses a feedback channel which
is not used by the MR-DVC. In terms of complexity, using
RDO, the DISCOVER codec takes about 165 seconds to
encode the key frames of an entire C/F sequence in average,
which makes the encoding complexity comparable to our
scheme without RDO in IbPbP mode. However, without
RDO, the DISCOVER codec can encode the key frames in
approximately 20 seconds. The MR-DVC architecture does not

1419
a Foreman CIF sequence
o s
T o
= 5
[
o
>.
{~#- DISCOVER with RDO in IZIZ mode
| -A- DISCOVER without RDO in 1ZIZ mode -
| -5~ MR-DVC IbPbP mode
{-&-MR-DVC Ibibl mode
30 : : E—l—oovonlloc?am.zwnvc I.BPB mode
0 1000 2000 3000 4000 5000 6000
Rate (Kbps) @ 30 fps
(a)
46 Hall Monitor CIF sequence
a4 - { ; { . ; e o
% 42 | . ; ,, .
E‘ 40 : i : __,../'.
> Tl /{
= i " - 1 ; g / ]
36 - 5@ ! Lok —#-DISCOVER with RDO in 1212 mede
¢ 4 -A-DISCOVER without RDO in 1ZIZ mode
3 o f 5-MA-DVG o o
LR —+Coventional H.264/AVC IBPB made
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Rate (Kbps) @ 30 fps
(b)
42 Soccer CIF sequence
Ll : *
40 - i
& 39 -
38
S a7
% 36
a 35
> 34
33 i i i I
32 . |~ DISCOVER without RDO in IZIZ mode -:
31 - | -&- DISCOVER with RDO in 12IZ mode
MR-DVC IbPbP mode
30 - | -6~ MR=DVC Iblbl mode I
29 - - | =+ Coventional H.264/AVC IBPB mode -
y 0 500 1000 1500 2000 2500 3000

Rate (Kbps) @ 30 fps
(c)

Fig. 13.  PSNR results for ¥ component. Comparing MR-DVC with other
WZ architecture. (a) Foreman CIF. (b) Hall Monitor CIF. (c) Soccer CIF.

achieve such low encoding complexity as indicated in Table I.
In the least-complexity (/bIbI) mode, the encoding time was
about 64 seconds. Nevertheless, as it can be seen in Fig. 13,
the MR-DVC achieves better RD performance for Foreman
and Hall Monitor CIF sequences. The Hall Monitor sequence
can be consider a low motion sequence where inter coding
is very efficient. SI generation process using temporal frame
interpolation, as in the DISCOVER, can achieve good results
for low motion sequences. However, our scheme can generate
a more accurate SI since the high frequency components can
be recovered effectively from the key frames. For the Soccer
CIF sequence DISCOVER outperformed our MR-DVC only
in IbIbI mode, even with a better SI [38], the MR-DVC
apparently did not selected correctly the coding parameters
in this particular case.
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VII. CONCLUSION

In this paper, we have presented a mixed resolution Wyner—
Ziv video coding framework, and proposed a motion-based
semi super-resolution SI generation mechanism, and a mech-
anism for selecting coding parameters based on a statistical
correlation estimation. The SI generation and Wyner—Ziv layer
decoding are iteratively carried in order to allow for better
performance of the Wyner—Ziv decoder. The SI generation
process is critical to the efficiency and robustness of the
codec. Our Wyner—Ziv coding mode does not use a feedback
channel. Hence, a correlation estimation method was proposed
in order to choose the right coding parameters. The results
show that MR-DVC is competitive and allows reduction of
encoding complexity, irrespective of the implementation of the
core encoder. It may even outperform regular coding for slow
motion sequences at low bit rates. The work in this coder is
evergreen. We are continuously working on improving the SI
generation process. Improved channel codes and entropy codes
for the WZ layer are also being explored.

APPENDIX
R-D CHARACTERIZATION

A. Memoryless Coset Codes Followed by
Minimum MSE Reconstruction

Assuming an ideal entropy coder for the coset indices as
show in Fig. 14(a), the expected rate would be the entropy of
the source C, given by

E(Ryc) = H(C)= = Y pe(c)log, pe(c)

CEQC

>

4€QoY(Q.M)=c 7 11(@)

>

q€Q0:9(Q, M)=c  ¥1(9)

xXn(q)
fx(x)dx

--¥

ceQc

xn(q)

x log, Sx(x)dx
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That can be rewritten as

E(Ryc)=—Y

ceQe

D

qeQo:Y(Q,M)=c

>

q€Qo:Y(Q,M)=c

[ Cent92) = m Pt

x log, Q) = m§ (@)

where m{(x) = LV Fx()dv.

Assuming the minimum MSE reconstruction function in (4),
the expected distortion Dy, given y and c, is given by

E(DyclY =y,C=c¢)=E(X — Xyc(y, o)l |Y =y,C=¢)
=EX*|Y =y,C=c¢)— Xyc(y, ¢)?

where Xyc(y,¢) = E(X|Y = y,C = ¢). Marginalizing over y
and c yields

E(Dyc)

= E(X*) — / {Z Xye(y, ©)*pey(C =clY = )’)} Sr(y)dy.

ceQc
That can be expressed as

E(Dyc)
Xn(q)

%) Z f
—o2 — Z 4€Q0:Y(0.M)=c Jx(q)
X Z xn(q)

T | eee quQn//(Q,M)=cfx1(q)

xfxy(x, y)dx

Sxiy(x, y)dx

X pey(C=clY =y) o fr(y)dy

where pcy(C = c|Y = y) is the conditional probability mass
function of C given Y, that is

Xr(q)

Fxiy(x, y)dx. (24)

pey(C=clY=y)= > /

4EQ Y (Q. M)y=c Y X1(@)

Then, we have

E(Dyc) = oy
2
xn(q)
/Oo Z (QEQQ:X%:Q.MFC fxl?q) fo‘Y(x’ y)dx)
xn(q)
T | eec (quQ:g(IQ,MFC fm?q;{ leY(x’ y)dx)
x fr(y)dy.

Defining

X

v fxy (v, y)dv (25)

e = [
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we can rewrite E(Dyc) as bin given the SI y and bin index g. This reconstruction function
}A(yQ(y, q) is given by

o0

EDo=at - [ {3

xn(q)
% J5D x ey (x, y)dx
% | ceQe Xvo(y, ) =EX|Y=y,0=q) = xi(q)

(@ )
Sty Txiv(x, y)dx

> ) ) )2
(qeﬂgtw(Q,M)# Uiy (n(@), ) = mixy (@), V) The above equation can be rewritten as

> ) ()
(4 e 5 i) ) = iy . ) il (@), ) — i (). y)

| Xro(y @) = :
x fr(y)dy T D @) ) — MOy, )

B. Zero Rate Encoder With Minimum MSE Using this reconstruction, the expected distortion (Dyg) with
Reconstruction With SI noise-free quantization bins is given by
A viable coding choice is to just use zero-rate coding
[Fig. 14(b)], where no information is transmitted (i.e., QP — E(Dyp)
oo or M = 1). In this case, the decoder performs the minimum 2
MSE reconstruction function X r() oo ( f xf(q) xfxy(x, y)dx>
2 x1(q)
0 =0x — / > e P Frdy
Xy()=EX|Y =y) = / xXfxy(x, y)dx o |geag  Jutg Sxiv(e y)dx
—0Q
_ 2
= myy(c0, ) =0x
2
Then, the expected zero-rate-distortion Dy is given by /‘X’ Z (m()éfy(xh(Q), y) - m(;\)y(xl(CI), y))
o [ : —o0 mQy (xn(q). y) — mYy (xi(q). y)
B0 =0} - | < | aurts y)dx> fr()dy w=ae "X |
X fr(y)dy] .

o0
=0y — / myly (00, ) fr(y)dy.

D. Regular Encoding Followed by Minimum MSE

C. Ideal Slepian-Wolf Coding Followed by Reconstruction With and Without SI

MSE Reconst ruction With SI . . L Lo
Now, we consider the rate and distortion if no distributed

_N ext., we cons.i der the expe?ted rate and dist(?rti(?n Wh_en coding on the quantization bins were done at the encoder [see
using ideal Slepian-Wolf codl.ng for the qgantlzanon ,bms Fig. 14(d)]. In this case, the expected rate is just the entropy
[Fig. 14(c)]. Note, that the optimal set of point for Slepian— of O

Wolf coding of C will be when M — oo, i.e., when

Slepian—Wolf coding is applied directly on the quantization E(R) = H _ |
bins. Then, the ideal Slepian—Wolf coder would use a rate no (Ro) (@ Z Po(q)1og; po(q)

larger than H(Q|Y). Then, the expected rate is given by 1<%
= — > {ImY Cen(@) — m§ (xi(g)]
E(Ryg) = H(QY) q€Q0
S x log[m'(x(@)) = m (xi(@)]}.
=—/ Z poir(Q =4qlY = y)log, poiy(Q =4qlY =)
Rl S o The decoder can still use distributed decoding if SI Y
X fy(y)dy. is available. In this case, the reconstruction function and
the corresponding expected distortion are given by the same
That can be rewritten as X vo(y,q) and E(Dyg) used for ideal Slepian—Wolf coding
followed by minimum MSE reconstruction with SI, respec-
E(Ryo) tively. If there is no SI available, the expected distortion Dy
o0 is the distortion incurred by a minimum MSE reconstruction
= / Z [m())(\y(xh (@, y) — m())qy(xi(CI)v ) function just based on the bin index g. Such function, XQ(q),
% ae2e is then given by
x Tog, [my (1(9), ) — my (u(g), 1 ¢ fr(dy. (@) = BUX/Q = g = S ST
¢ S f ()
The expected distortion Dy is the distortion incurred by a _ mgp(xh(q)) - m(;ﬁ)(xz(q))
minimum MSE reconstruction function within a quantization - mQ (@) — mP (xi(q))
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and the expected distortion is given by

(1]

(2]

3

=

[4]

(51
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[7
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[8
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[9

—

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

2

foh(q) fo(x)dx

E(Do) =03 = > ( IZ)@ )
(fxl(q) fX(x)dx)

q€Qp

2
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_ 2
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