
1

Video Super-Resolution Using Codebooks Derived

From Key Frames
Edson M. Hung, Ricardo L. de Queiroz, Fernanda Brandi, Karen F. Oliveira and Debargha Mukherjee

Abstract—Example-based super-resolution (SR) is an attractive
option to Bayesian approaches to enhance image resolution.
We use a multiresolution approach to example-based SR and
discuss codebook construction for video sequences. We match
a block to be super-resolved to a low-resolution version of the
reference high-resolution image blocks. Once the match is found,
we carefully apply the high-frequency contents of the chosen
reference block to the one to be super-resolved. In essence, the
method relies on “betting” that if the low-frequency contents of
two blocks are very similar, their high-frequency contents also
might match. In particular, we are interested in scenarios where
examples can be picked up from readily available high-resolution
images that are strongly related to the frame to be super-resolved.
Hence, they constitute an excellent source of material to construct
a dynamic codebook. Here, we propose a method to super-resolve
a video using multiple overlapped variable-block-size codebooks.
We implemented a mixed-resolution video coding scenario, where
some frames are encoded at a higher resolution and can be used
to enhance the other lower-resolution ones. In another scenario,
we consider the framework where the camera captures video at
a lower resolution and also takes periodic snapshots at a higher
resolution. Results indicate substantial gains over interpolation
and over fixed-codebook SR and significant gains over previous
works as well.

Index Terms—Example-based super-resolution, video process-
ing.

I. INTRODUCTION

IMAGE super-resolution (SR) is the process of increasing

the image resolution using information from other images

[1]–[3]. Those other images can be different shots of the

same scene, different frames of the same video, or they

might simply compose a reference database. SR fundamentally

differs from image interpolation as the latter generally uses

information from neighbor pixels to estimate the missing

ones. In interpolation, the information is local and local

structures dictate how the missing information is filled, so that

interpolation methods rarely introduce any new high frequency

information. In SR, however, one looks at different images of

the same object or similar contents and try to infer what the
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high frequency information might have been. In a sense, SR

is much more aggressive than interpolation, being capable of

recovering some of the missing high-frequency information,

while risking introducing spurious artifacts.

Bayesian methods are widely used in SR [4], [5] as the

problem of finding a high-resolution image Xh based on a

lower resolution image Xl, i.e. finding Xh that maximizes

P (Xh|Xl), is ill-posed. As in a typical Bayesian approach,

one tries to maximize P (Xl|Xh)P (Xh)/P (Xl) instead, since

quantities can then be estimated by training. Of course, dealing

with whole images at a time is not tractable, and all the many

works on Bayesian approaches to SR have to do with how

one breaks the image, what features or parts of Xl and Xh

are considered for training or processing, and so on.

Iterative SR algorithms such as those using back-projection

[6]–[8] can efficiently minimize the reconstruction error.

Other iterative SR algorithms use projection onto convex sets

(POCS) [9], [10]. In those, the super-resolved image can be

iteratively improved by projecting it onto constrained sets

derived from low-resolution observed images. In related works

[11]–[14], algorithms are proposed assuming that the super-

resolved image is a sparse representation of raw patches,

achieving substantial improvements over bicubic interpolation.

In that model, each patch of the image that we want to

super-resolve can be represented by a linear combination

of a few dictionary elements. In [15], an algorithm based

on the multichannel sampling theorem was proposed. A

hybrid method that combines maximum likelihood with prior

information was developed in [16]. A robust variation [17]

has also been suggested. In [18], the authors generalized a

denoising method, called non-local-means, amounting to a SR

method without explicit motion estimation. Such a work was

extended in [19]. Approaches using maximum a posteriori

formulation to solve SR problems can be found in [20], [21].

In recent works [22]–[26], the authors address the SR problem

in the context of a maximum a posteriori framework, using

multichannel image priors, achieving significant improvements

for both compressed and uncompressed data. A set of non-

stationary hierarchical priors and observation models were also

proposed.

Frequency-domain approaches can be found in [8], [27]–

[31]. The work in [8] proposes a technique to estimate the

homography between multiple frames in a sequence and a

reconstruction algorithm based on wavelets. The result is a

robust SR method without significantly sacrificing efficiency.

Example-based SR [32] is a simplification of all the pre-

viously described processes. A database of reference images

{Xi
h} is assembled along with their associated low-resolution
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Fig. 1. General diagram of our example-based super-resolution approach.

versions {Xi
r}. For a given image (or portion thereof) Xl, a

match is sought over {Xi
r} and when a given match Xn

r is

found, the associated high-frequency information (contained

in Xn
h ) is applied to Xl.

Different from the traditional SR problem, where higher-

resolution images are reconstructed from multiple low-

resolution samples, in this work, we use sparsely distributed

high-resolution frames to super-resolve the low-resolution

ones. In this way, the training is replaced by a search over

a database (codebook). Of course, this is an overly simplified

view of the process for the sake of the explanation.

Related works can be found in [33]–[36] where the

example-based SR is applied to mixed-resolution video, i.e.,

video with different resolutions along the time. In [36], the

authors propose a hybrid SR technique that combines motion

compensation and an on-the-fly training dictionary.

In the case of video frames, SR approaches are basically

divided into three classes: (i) applying image SR techniques

to each frame independently; (ii) using motion information

and multiple views of the same object along frames to provide

the SR information; and (iii) using high-frequency information

from key frames in mixed-resolution-video approaches. This

last approach and application will be explained in detail in a

later Section.

Section II explains our approach to example-based SR,

while Sec. III describes our method for video SR using direct

examples. The frameworks wherein the described methodol-

ogy can be applied are described and tested in Sec. IV. Finally,

the conclusions of this work are presented in Sec. V.

II. SR USING MULTIRESOLUTION EXAMPLES

In this section, we present our flavor of an example-based

SR algorithm [33]–[35] based on Freeman et al. [32]. In this

paper, we extend the example-based SR by including multiple-

example overlapped patches and the combination of multiple

high-frequency information. The proposed SR is tested in

different application scenarios.

The general approach is depicted in Fig. 1. There is an

image to be super-resolved, which is divided into blocks of

N × N pixels. Assume one wants to increase the resolution

of a block X by a factor of L, so that each super-resolved

block X̂ would have LN × LN pixels and is found by

adding some high-frequency information Xh to the upsampled

version of X , Xu, as X̂ = Xh + Xu. Let M = LN .

We construct a database of B “example” blocks {Yi} of

M × M pixels, compiled over many reference images. B
can be very large, in the order of hundreds of thousands or

even millions. Each example block Yk is low-pass filtered

yielding Y l
k = F1(Yk) and its respective high-pass version

Y h
k = Yk −Y l

k . It is preferred the filter F1 be the decimation-

interpolation operation by a factor of L, i.e. pre-filtering,

down-sampling by L, upsampling by L, and post-filtering.

The SR process works as follows. Block X is interpolated

to form Xu, so that Xu is compared to each Y l
k under some

distance metric D, and we pick ν = mink D(Xu, Y
l
k), i.e. Y l

ν

is picked. The high-frequency information associated with Y l
ν

is Y h
ν so that we make Xh = Y h

ν and the super-resolved block

is X̂ = Xu + Y h
ν .

The method is simple, yet efficient. Nevertheless, in such a

basic form it is left with many challenges. Most importantly,

it may incorporate noise along with plausible high-frequency

information, when the match is not very good. In our approach,

we can significantly reduce noise by using multiple codebooks.

All the examples in the database form a codebook of exam-

ple blocks. In essence, we have a codebook of high-frequency

patterns from which to choose one to incorporate into the block

to be super-resolved. If we populate the database with Ni

images of Nr×Nc pixels, the examples can be all overlapping

blocks in those images, so that B ≈ NiNrNc. As in any vector

quantization process, the larger the codebook, the better the

chances of good results, but the slower the implementation.

Thus, populating the codebook with meaningful blocks is

crucial to the algorithm performance. The match may improve

if we use a combination of example blocks.

Let we compose K codebooks, each perhaps derived from

different sources or images with different characteristics.

Let the n-th codebook contain blocks {Yi(n)}, with their

respective low- and high-pass versions {Y l
i (n)} and {Y h

i (n)}.

Let also ν(n) be the index of the best match for the n-th

codebook. We search for

min
{αn}

D

(
Xu,

K∑

n=1

αnY
l
ν(n)(n)

)
, (1)

so that

Xh =
K∑

n=1

αnY
h
ν(n)(n). (2)

In order to calculate αn, let Ŷ h
ν be the enhancement (block

with missing high-frequency information) of a block estimated

from the fusion of multiple information and let Y h
ν be an

enhancement block prediction at the n-th reference (forward

or backward) codebook. Also, let Y h be the ideal enhancement

of the block and ǫn be spatial noise from the n-th reference

key-frame-based codebook. The predicted enhancement block

can be modeled as

Y h
ν(n) = Y h + ǫn, ǫn ∼ N(0, σ2

n), (3)

assuming that the noise signals (ǫn) are i.i.d..

Let Y
h

K
be a set of predicted enhancement blocks, that

is, Yh

K
= [Y h

ν(1), ..., Y
h
ν(K)]. We assume that the probability
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density function (PDF) of Y h is modeled by a Gaussian

distribution with local mean µ0 and local variance σ2
0 . The

PDF of the predicted enhancement block, conditioned to

the ideal enhancement block, p(Yh

K
|Y h), is normal with

mean µ0 and covariance ΓK = diag[σ2
1 , σ

2
2 , ..., σ

2
K ]. Hence,

using the Gaussian function formula and the Bayes’ the-

orem, the PDF p(Yh

K
) is normal with mean µ0 and co-

variance C = ΓK + σ2
0 . The a posteriori PDF on Y h,

given the predicted data Y
h

K
, i.e. p(Y h|Yh

K
) is also normal

with mean
(
ΓK

−1 + 1
σ2

0

)−1 (
ΓK

−1
Y

h

K
+ µ0

σ2

0

)
and covari-

ance
(
ΓK

−1 + 1
σ2

0

)−1

. One way to fuse these predictions

based on the maximum a posteriori (MAP) criterion is

Ŷ h
ν = arg

Y h max
(
ln
(
p(Y h|Yh

K
)
))

. (4)

The MAP-predicted enhancement block fusion estimate is

simply the a posteriori mean

Ŷ h
ν =

(
ΓK

−1 +
1

σ2
0

)−1(
ΓK

−1
Y

h

K
+

µ0

σ2
0

)
. (5)

For K prediction blocks, we get, in scalar notation:

Ŷ h
ν =

(
K∑

n=1

Y h
ν(n)

σ2
n

+
µ0

σ2
0

)(
K∑

n=1

1

σ2
n

+
1

σ2
0

)−1

. (6)

The ML fusion estimate can be recovered from (6) by

assuming a flat prior, i.e. σ2
0 → ∞, so the final form is:

Ŷ h
ν =

(
K∑

n=1

Y h
ν(n)

σ2
n

)(
K∑

n=1

1

σ2
n

)−1

. (7)

Observe that in (7) the variances σ2
n are related to the

confidence of a predicted high-frequency block information.

However, this information is not measurable. Here, we propose

an SSD-based distortion (Dn) in order to measure the distance

between blocks at the non-key frames (Y l) and key-frames

(Xu). We then use Dn as a replacement for σ2
n and rewrite

(7) as:

Ŷ h
ν =

(
K∑

n=1

Y h
ν(n)

Dn

)(
K∑

n=1

1

Dn

)−1

. (8)

Finally, we calculate αn as:

αn =

(
1

Dn

)( K∑

n=1

1

Dn

)−1

. (9)

In Eq. (9) we calculate the weights for the predicted

high-frequency information block
(
Y h
ν(n)

)
from a set of K

codebooks. The term 1/Dn implies that the weight of Y h
ν(n)

is inversely proportional to the distortion Dn

(
Xu, Y

l
ν(n)

)
,

normalized by

(
K∑

n=1
1/Dn

)−1

. In the search over the code-

books if, D
(
Xu, Y

l
ν(n)

)
≫ D

(
Xu, Y

l
ν(m)

)
, we may expect

αm ≫ αn. If that happens for all blocks, then the n-th

codebook is completely dominated by the m-th one and it

becomes irrelevant.

In modern video coding [37], [38], block partitions in

motion estimation are found after a rate-distortion analysis.

In our block SR case, we only have distortion available and

it has been shown [34] that the 16 × 16-pixel blocks yield

better overall results than its partitions. Differently from the

coding case, we are not only interested in the minimization of

the prediction error, but also in the detection of scene objects

to be super-resolved. Thus, with larger block sizes, the object

structures are more easily identified than in partitioned blocks.

With partitioned blocks we can also look for smaller content

details to be super-resolved. Hence, using variable block sizes

we can take advantage of both characteristics. The problem is

that the motion estimation using 16×16-pixels macroblocks is

a subset of that using partitioned blocks of 8×8-pixels. Thus,

we suggest a penalty factor (pF ) to multiply the partitioned-

block prediction error.

In a search for the best penalty factor, Fig. 2 depicts the

system performance as we change pF . In it, the 1st and 30th

frames of a sequence are used as key-frames (codebooks)

while we super-resolve the 28 non-key-frames in between

them. For each frame, we varied pF and observed the PSNR of

the super-resolved frame. In Fig. 2, we normalized the PSNR

values to their maximum. We can see that better performance

is reached around 1.3 < pF < 2.2.

1 1.5 2 2.5 3 3.5 4 4.5 5
0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

Block partition penalty factor that multiplies the distortion

N
o

rm
a

liz
e

d
 P

S
N

R

Testing multiple penalty factor in a few frames of sequence Shields

Fig. 2. SR performance as we vary the partition penalty factor applied to
the non-key-frames. The 1st and 30th frames are key-frames, while the other
frames in between them are the non-key ones. PSNR was normalized to their
maximum values.

In order to effectively explore the temporal image cor-

relation, we use variable-block-size motion estimation and

overlapped-block motion compensation (OBMC) [39]–[41]. A

virtual re-partition [41] of the blocks allows for different block

sizes in OBMC. In this case, the blocks are partitioned until the

smallest size permitted to the quadtree partition [37], [38] is

achieved. That enables an equivalent fixed-block-size scheme

as illustrated in Fig. 3.

Fig. 4 illustrates overlapped blocks in OBMC. We use only

2-pixels-wide overlap to minimize the blocking effect, while

keeping the most of the high-frequency information of the
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(a) (b)
Fig. 3. The 16 × 16 and 8 × 8 blocks in (a) were “virtually re-partitioned”
in (b) i. e., they are partitioned and the new blocks inherit the motion vectors.

block interior. The proposed OBMC scheme is also compatible

with fast motion estimation algorithms [42]–[45].

Overlap

Overlap

Block Block

Block Block

Block

Block

Block Block Block

Block

Composing a set of
overlapped blocks

Fig. 4. Overlapped block window in OBMC.

The proposed algorithm is as follows. First, in order to make

the codebooks, select blocks {Yi(n)}, 1 ≤ i ≤ B, 1 ≤ n ≤
K and for each one compute Y l

i (n) = F2(F1(Yi(n))) and

Y h
i (n) = Yi(n)−Y l

i (n), where F1 and F2 are the downsizing

and upsizing filters.

In order to increase the resolution of one block:

• Input X and interpolate it by a factor of L to make Xu.

• For each codebook n find ν(n) = mink D(Xu, Y
l
k(n))

• Solve {αn} as in (9).

• Compute Ŷ h
ν as in (8).

• The super-resolved block is X̂ = Xu + Ŷ h
ν .

The described algorithm is performed for each block of a

frame in order to super-resolve the whole image. In this paper,

we apply these techniques in different application scenarios

described in Section III.

III. VIDEO SR USING KEY FRAMES

Getting good examples for the images to be super-

resolved is crucial to achieve good performance. The examples

in SR are the codebook entries. Good examples lead to

good matches, thus, good results. By applying the proposed

distortion-based codebook weights, we can find dominant

codebooks. That can be used to keep good codebook examples

and discard the unsimilar ones. In image SR, one might look

for other images at higher resolution with similar content.

Fortunately, in some video coding applications, there are

cases where high-resolution frames of the same sequence are

available. These frames may have contents that would be very

High-resolution frame
(key frame)

Low-resolution frame
(non-key frame)}

Group of pictures

Fig. 5. A mixed resolution video format.

similar to the frame to be super-resolved. The images which

are similar to the frame to be resolved are used as examples

rather than a pre-chosen or offline-trained codebook.

A. A mixed-resolution framework

In the mixed-resolution coding approach, there are key

frames at high resolution and non-key frames at a lower

resolution in order to save bit-rate and to reduce encoding

complexity [46], [47]. The approach is depicted in Fig. 5,

where key frames are interspersed periodically among the non-

key frames. The non-key (low-resolution) frames can be super-

resolved using the high-resolution key frames as codebook

source. If the period of key-frames or group of pictures (GOP)

is g frames, then for every non-key frame to be super-resolved,

there is a key-frame at most g/2 frames away. Typically, the

closest-key and non-key frames will be very similar.

In Fig. 6, we show the diagram that describes the process

of super-resolving the video sequence using the information

of the key-frames. In it, the first step is to distinguish

the key-frames from the non-key ones. The key-frames are

downsampled and upsampled with a Lanczos pre- and pos-

filter generating an interpolated version of the key-frame.

We perform bidirectional motion estimation [35] between the

interpolated version of the key-frames and the interpolated

non-key frame, which yields better performance then if motion

estimation were carried between the key-frame and the inter-

polated non-key one. With motion estimation, we dynamically

populate the codebook with the contents of the key-frame that

may correspond to the block being processed. The process

of searching the codebook would be equivalent to block-

match motion estimation over a w × w-pixel search window

in the key frame. This would reduce the codebook size and

avoid searching over the whole image and over many images

(NiNrNc block comparisons). Even with full search, there are

w2 block comparisons. Window sizes in motion estimation

are typically in the order of w = Nc/8 or w = Nr/8,

which makes the speed up in the order of 64Ni. With fast

motion estimation techniques [42]–[45], this speed up may

largely increase. We use a variable block size (16 × 16- and

8 × 8-pixels) OBMC in order to improve temporal prediction.

The high-frequency layer is the registered high-frequency

information that is extracted from the key frame. The super-

resolved frame is obtained by adding the high-frequency layer

into the interpolated low-resolution frame.
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Fig. 6. General diagram of our example-based super-resolution approach for the mixed resolution scheme.

High-resolution frame
(key frame)

Low-resolution frame
(non-key frame)}

Group of pictures

Fig. 7. The multi-recording (video plus photos) video format.

B. Video with redundant snapshots

In another application, the camera captures and compresses

the video at lower resolution, but takes periodic snapshots at

a higher resolution, e.g. one JPEG per second, as illustrated

in Fig. 7. The high-resolution pictures are used to increase the

resolution of the video sequence. This high-resolution image

can be used to populate the codebook and serves just like

the key-frames in the mixed-resolution approach. In other

words, we can use motion estimation techniques to explore

temporal redundancies and to reduce the codebook size as

well. Differently from the previously described application

scenario, we have redundant key-frame and non-key-frame in

the same temporal instance, which simplifies the extraction of

the high-frequency information of a frame. In this case, we are

also using different coding standards: one is a video encoder

and the other is an image encoder.

In Fig. 8, we illustrate the process of super-resolving the

video sequence using snapshots. We associate the simultane-

ously captured key-frames (snapshots) and non-key frames. In

order to extract the high-frequency information we calculate

the difference between the snapshot and the interpolated non-

key frame that was captured at the same instance. We also

down- and up-sample the snapshot to create an interpolated

version of the key-frame as input to the motion estimation. We

adaptively populate the codebook with the contents of the key-

frame that may correspond to the block being super-resolved

through motion estimation. The high-frequency information is

compensated, using OBMC, to fit the low-resolution frame.

The high-frequency layer is the registered high-frequency

information that is extracted from the key frame. The super-

resolution frame is obtained by adding the high-frequency

layer to the interpolated low-resolution frame.

Related high-resolution
pictures

Low-resolution frame
(non-key frame)

Fig. 9. Video and correlated photographs.

High-resolution frame
(key frame)

Low-resolution frame
(non-key frame)

Fig. 10. Video and redundant low-resolution frames for error concealment.

C. Other application scenarios

Another application would be to compress the video at a

lower resolution and then, off-line, to search databases for

high-resolution pictures of similar scenes, as illustrates Fig.

9. There may contain different illumination among the video

and the pictures. This is a variation of example-based super

resolution, applied frame-by-frame [32]. The pictures can be

used to populate the codebook without any criteria to define

a GOP, as in previously described frameworks. The related

picture must be well selected (we could use photos with the

same geotagging position, similar compass direction and a

few criteria based on the picture energy, histogram, etc.). The

problem is that we can add errors to the video when we apply

mismatched high-frequency information.

The last application example, illustrated in Fig. 10, is

error concealment, where a video sent through a channel is

compressed at a high resolution, while low-resolution frames

(thumbnails) are also sent as redundant information using

another reliable channel. The low-resolution information is

used when an error at the high resolution occurs [48].
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Fig. 8. Architecture of our example-based super-resolution approach applied to a sequence with snapshots.

IV. EXPERIMENTAL RESULTS

The performance of the SR method is determined by the

correlation between the low-quality video with the undeci-

mated frame. For example, we made a test with the Foreman

sequence originally in CIF format and downsized it into

QCIF (176 × 144 pixels). We interpolated the low-resolution

sequence using a bilinear algorithm and obtained a given

reconstructed frame yielding a PSNR of 28.97 dB. When we

populate a codebook with the image Lena (512× 512 pixels)

and apply the SR we obtain a PSNR of 29.01 dB. However,

our results show that, if we populate a codebook with highly

correlated information, we can achieve much better results.

We first compare the performance of the proposed usage of

multiple codebooks and also the variable block size OBMC

with pF = 2. Then, we perform the SR in the mixed resolution

and the video-plus-snapshots scenarios. Finally, we compare

the proposed SR method with some previous works [11], [13],

[36].

In Fig. 11, we illustrate the subjective performance of the

weighted enhancement fusion in (8). In the experiment, the 1st

and 31st frames of sequence Foreman are key-frames, while

we try to super-resolve the 16th frame. Using only the 1st

frame in the codebook, we obtain a PSNR of 34.89 dB in the

resulting frame in Fig. 11(a). Observe that a few mismatches

at the motion estimation process occur in the SR. In Fig. 11(b),

it is shown the SR result using a codebook based only on the

31st frame, for which we achieve 35.80 dB. If we use both

codebooks and simply choose the block with smaller error we

obtain a super-resolved image yielding 36.39 dB. However, in

Fig. 11(c), we show the result fusing the best information of

both codebooks, yielding a PSNR of 37.03 dB.

In order to compare the regular motion compensation with

OBMC, we performed SR at the 16th frame of sequence News,

using both 1st and 31st frames as key ones. The PSNR of the

SR using OBMC is 38.81 dB, while the regular case achieves

38.50 dB. Both frames can be observed in Figs. 12(a) and

12(b), respectively. Figure 12(c) shows the difference of the

SR results.

As described in Section III, the SR method could be applied

in many applications scenarios. The tests were performed with

300 frames of the video sequences: Foreman, Mobile, Hall

Monitor, Mother & Daughter and News at CIF (352 × 288
pixels) and Shields, Mobcal and Parkrun at 720p (1280× 720
pixels) formats.

The videos were encoded using H.264 (JM 15.1) and the

set of {22, 27, 32, 37} quantization parameters (QP) in order

to compare rate-distortion curves [49]. At the SR process, a

motion estimation window of 32× 32 pixels is used for low-

resolution frames and a 64 × 64-pixel window is used for

high-definition video. The tests were performed to simulate a

mixed-resolution framework using QCIF (176 × 144 pixels)

and CIF frame sizes. We also mixed 360p (640× 360 pixels)

and 720p resolutions as well. Figure 13 shows the SR result

using GOP lenght of 2. Here, we can achieve up to 4dB

gains over the interpolated case. In Table I, we can observe

significant objective gains of the proposed SR method in

comparison to the interpolated case.

TABLE I
PSNR COMPARISON [49] BETWEEN INTERPOLATED VIDEO WITH

LANCZOS FILTER AND THE SR USING THE PROPOSED CODEBOOKS.

Sequence PSNR gains

Foreman 2.47 dB
Mobile 2.28 dB

Mother and Daughter 1.23 dB
Shields 1.30 dB
Parkrun 1.66 dB
Mobcal 1.73 dB

In order to test the low-resolution-video plus snapshots sce-

nario, we used a video sequence in quarter-resolution encoded

with H.264 and picked one redundant full-resolution frame

per second, resulting in a GOP length of 30. The snapshot

was encoded with JPEG using uniform quantization matrices.

The rate-distortion curves are presented in Fig. 14, comparing

the proposed SR technique against plain interpolation. Plots

for the interpolation-based framework were shown for the

cases including or not the snapshots in the rate and distortion

computation. Other objective results are shown in Table II.

TABLE II
PSNR COMPARISON [49] BETWEEN INTERPOLATED VIDEO WITH

LANCZOS FILTER AND THE SR USING THE SNAPSHOTS AS CODEBOOKS.

Sequence PSNR gains

Foreman 1.97 dB
Shields 1.89 dB
Parkrun 0.93 dB
Mobcal 3.21 dB

Stockholm 0.71 dB

In Table III we compare our results to the frameworks

described in [11], [13], [36]. The tests were performed without

compression. We super-resolved the 16th frame using the 1st

and 31st frames as key ones. We directly used the results

reported in [36].

In order to test the SR in [11] and [13], we used the key-

frames as training sets. Each training image is downsized with

a bicubic filter by a factor of two and the feature extraction
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(a) (b) (c)

Fig. 11. Illustration of the performance of weighted SR using multiple frames. The 1st and 31st frames are key-frames. The SR of the 16th frame of Foreman
sequence using a 32 × 32 search window: (a) using the 1st frame, (b) using the 31st frame and (c) using both 1st and 31st frames as codebooks.

(a) (b) (c)

Fig. 12. SR results of the 16th frame of the News sequence: (a) using OBMC and (b) regular block-based motion compensation. (c) Difference between (a)
and (b).
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Fig. 13. Comparison among the interpolated video and super resolution method applied to sequences: (a) Foreman, (b) Shields and (c) Parkrun, in the mixed
resolution scenario.

is performed by using gradient and Laplacian filters. Here,

we used 1000 patch-pairs to compose the dictionary that was

used to super-resolve the frame. For instance, using an Intel

Core 2 Duo P8600 at 2.4 GHz with 4GB of RAM to train

the dictionary and then super-resolve a 720p resolution video

took about 12 minutes using [13] and a few hours with [11].

Our SR took less then a couple of minutes to perform the

proposed SR. Note that none of the implementations involved

were optimized for speed in any sense. Nevertheless, we just

want to highlight the potential speed-up the reduced search

can provide.

Figure 15 shows further examples of the interpolated and

the super-resolved frames. We can use the original image in

Fig. 15(a) to subjectively compare the quality enhancement.
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Fig. 14. Rate-distortion-based comparison between our proposed SR and plain interpolation for the video-plus-snapshots case. Low-resolution H.264-coded
video is super-resolved with the aid of periodic JPEG-compressed pictures. The values QN imply that a uniform quantizer with all step values of N are
used for JPEG compressing the snapshots. For the interpolation case, plots may or may not include the snapshots in the rate or distortion computations. (a)
Foreman, (b) Shields and (c) Parkrun.

TABLE III
PSNR [DB] COMPARISON AMONG INTERPOLATION AND SR METHODS.

Sequence Bicubic Lanczos SR in SR in MSR HSR Our SR
[36] [11] [13] [36] [36]

Container 27.9 27.4 23.6 30.7 31.9 33.2 36.0

Hall 29.1 28.2 24.2 32.6 37.4 38.0 41.1
Mobile 22.9 22.8 20.4 25.5 24.5 25.5 27.1
News 29.4 30.1 24.6 34.1 31.9 36.1 38.8

Mobcal 27.7 27.8 24.2 29.8 30.9 31.0 35.0

Shields 31.1 33.1 27.4 34.9 31.4 32.7 36.0

We also compare the subjective performance of different

interpolation kernels: the bicubic shown in Figure 15(b) was

used in [11], [13] and the Lanczos was used in our SR can be

found in Figure 15(c). The SR proposed in [11], [13] and our

algorithm are shown respectively in Figures 15(d), 15(e) and

15(f).

V. CONCLUSIONS

In this paper, we propose a few scenarios that allows for

the use of correlated and dynamically populated codebooks

for example-based SR techniques. We propose a method

to use, discard or mixture the high-frequency information

from a set of codebooks, obtaining significant objective and

subjecive gains. An improved performance occurs when we

apply the OBMC, which also contributes to objective gains

and blocking-effect reduction. The PSNR improvement over

the interpolated video is up to 3 dB for both mixed-resolution

framework and video-plus-snapshot architectures. In the first

scenario, we can achieve encoding complexity reduction by

decreasing the efforts of the motion estimation process (that

are performed at low-resolution frames).

In the mixed resolution approach, the proposed SR method

has shown to provide better objective and subjective perfor-

mance compared to previous works. In the other example ap-

plication, where pictures (snapshots) are taken while the video

recording is performed, the proposed SR has shown superior

objective and subjective performance. The proposed method

can effectively improve the video resolution by extracting the

high-frequency information from the snapshots in order to

super-resolve the video sequence. As future work, we plan to

study the reduction of information due to the down-sampling

process. That may enable an estimation of the amount of high-

frequency information to be added within the SR process.

REFERENCES

[1] S. Chaudhuri, Super-Resolution Imaging, Kluwer, 2001.

[2] S.C. Park, M.K. Park, and M.G. Kang, Super-resolution image
reconstruction: a technical overview, IEEE Signal Processing
Magazine, vol. 20, no. 3, pp. 2136, May 2003.

[3] A. K. Katsaggelos, R. Molina and J. Mateos, “Super Resolution
of Images and Video”. Synthesis Lectures on Image, Video, and
Multimedia Processing. Morgan and Claypool Publishers, 2007.

[4] C. A. Segall, A. K. Katsaggelos, R. Molina and J. Mateos,
“Bayesian resolution enhancement of compressed video”. IEEE
Transactions on Image Processing, vol. 13, no. 7, 2004.

[5] M. E. Tipping and C. M. Bishop. “Bayesian image super-
resolution”. Advances in Neural Information Processing Systems,
Volume 15, pp. 13031310, 2002.

[6] M. Irani and S. Peleg, “Motion analysis for image enhancement:
resolution, occlusion and transparency”, Journal of Visual Com-
munication and Image Representation, Vol. 4, No. 4, Pages 324-
335, December 1993.

[7] S. Dai, M. Han, Y. Wu, and Y. Gong, “Bilateral back-projection
for single image super resolution,” IEEE International Confer-
ence on Multimedia and Expo, Beijing, China, July 2-5, 2007,
pp. 1039-1042.

[8] H. Ji and C. Fermuller, “Robust wavelet-based super-resolution
reconstruction: theory and algorithm”, IEEE Trans. on Pattern
Analysis and Machine Intelligence, 31 (4), April 2009.



9

(a) (b) (c)

(d) (e) (f)

Fig. 15. A region of the 16th frame of sequence Shields: (a)original, (b) interpolated with Bicubic filter, (c) interpolated with Lanczos filter, (d) super-resolved
with [11] (e) super-resolved with [13] and (f) super-resolved with the proposed methods.

[9] H. Stark and P. Oskoui, “High-resolution image recovery from
image-plane arrays using convex projections,” Journal of the
Optical Society of America, Series A, vol. 6, pp. 1715-1726, Nov.,
1989

[10] F. W. Wheeler, R. T. Hoctor, and E. B. Barrett, “Super-
resolution image synthesis using projections onto convex sets
in the frequency domain”, IS&T/SPIE Symposium on Electronic
Imaging, Conference on Computational Imaging, Vol. 5674, San
Jose, pp. 479-490, January, 2005.

[11] J. Yang, J. Wright, T. S. Huang and Y. Ma, “Image super-
resolution as sparse representation of raw image patches,” IEEE
Computer Vision and Pattern Recognition (CVPR), June 23-28.
2008, pp. 1-8.

[12] M. Protter and Michael Elad, “Image sequence denoising via
sparse and redundant representations”, IEEE Trans. on Image
Processing, Vol. 18, No. 1, Pages 27-36, January 2009.

[13] R. Zeyde, M. Elad, and M. Protter, “On single image scale-
up using sparse-representations,” Curves & Surfaces, Avignon-
France, June 24-30, 2010.

[14] J. Yang, J. Wright, T. S. Huang and Y. Ma, “Image super-
resolution via sparse representation,” in IEEE Transactions on
Image Processing, vol. 19, issue 11, pp. 2861-2873, Nov. 2010.

[15] H. Ur and D. Gross, “Improved resolution from sub-pixel shifted
pictures,” CVGIP:Graph. Models Image Processing, vol. 54, no.

181186, Mar. 1992.

[16] M. Elad and A. Feuer, “Restoration of single super-resolution
image from several blurred, noisy and down-sampled measured
images,” IEEE Trans. Image Processing, vol. 6, no. 12, pp.
16461658, Dec. 1997.

[17] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and
robust multiframe super resolution,” IEEE Trans. Image Process.,
vol. 13, no. 10, pp. 13271344, Oct. 2004.

[18] M. Protter, M. Elad, H. Takeda, and P. Milanfar, “Generalizing
the non-local-means to super-resolution reconstruction”, IEEE
Transactions on Image Processing, vol. 18, no. 1, pp. 36-51 ,
Jan. 2009.

[19] M. Protter and M. Elad, “Super-resolution with probabilistic
motion estimation”, IEEE Transactions on Image Processing, Vol.
18, No. 8, Pages 1899-1904, August 2009.

[20] R. R. Schultz and R. L. Stevenson, “Extraction of high-
resolution frames from video sequences,” IEEE Transactions on
Image Processing, vol. 5, no. 6, pp. 9961011, Jun. 1996.

[21] H. Shen, L. Zhang, B. Huang, and P. Li, “A MAP approach
for joint motion estimation, segmentation, and super resolution,”
IEEE Transactions on Image Processing, vol. 16, no. 2, pp.
479490, Feb. 2007.

[22] S. P. Belekos, N. P. Galatsanos, and A. K. Katsaggelos, “Maxi-
mum a posteriori video super-resolution with a new multichannel



10

image prior,” in Proc. EUSIPCO 2008, Lausanne, Switzerland,
August 25-29. 2008, pp. 25-29.

[23] S. Belekos, N. Galatsanos, S. D. Babacan, and A. K. Kat-
saggelos, “Maximum a posteriori super-resolution of compressed
video using a new multichannel image prior,” IEEE International
Conference on Image Processing, Cairo, Egypt, November 2009,
pp. 2797-2800.

[24] S. P. Belekos, N. P. Galatsanos, and A. K. Katsaggelos, “Maxi-
mum a posteriori video super-resolution using a new multichannel
image prior,” IEEE Trans. on Image Processing, vol. 19, issue 6,
pp.1451-1464, June 2010.

[25] S. P. Belekos, N. P. Galatsanos, and A. K. Katsaggelos, “Max-
imum a posteriori super-resolution of compressed video with a
novel multichannel image prior and a new observation model,”
European Signal Processing Conference (EUSIPCO), Barcelona,
Spain, August 2011.

[26] S. P. Belekos, J. Jeon, J. Lee, J. Paik, and A. K. Kat-
saggelos, “Region-based super-resolution reconstruction using
parallel programming,” International Technical Conference on
Circuits/Systems, Computers and communications (ITC-CSCC),
Gyeongju, Korea, June 2011.

[27] R. Y. Tsai and T. S. Huang, “Multi-frame image restoration and
registration,” Adv. Comput. Vis. Image Process., vol. 1, no. 1, pp.
317339, 1984.

[28] R. Chan, T. Chan, L. Shen, and Z. Shen. “Wavelet deblurring
algorithms for spatially varying blur from high-resolution image
reconstruction.” Linear Algebra and its Applications, pp. 139155,
2003.

[29] R. Chan, S. Riemenschneider, L. Shen, and Z. Shen. “High-
resolution image reconstruction with displacement errors: a
framelet approach.” International Journal of Imaging System and
Technology, 14:91104, 2004.

[30] R. Chan, S. Riemenschneider, L. Shen, and Z. Shen. “Tight
frame: An efficient way for high-resolution image reconstruc-
tion.” Applied and Computational Harmonic Analysis, 17:91115,
2004.

[31] P. Vandewalle, S. E. Ssstrunk, and M. Vetterli, “A frequency
domain approach to registration of aliased images with applica-
tion to superresolution,” EURASIP J. Appl. Signal Process., vol.
2006, pp. 114, 2006.

[32] W.T. Freeman, T.R. Jones, and E.C. Pasztor, “Example-based
super-resolution,” IEEE Computer Graphics and Applications,
Vol. 22, pp. 56-65, 2002.

[33] F. Brandi, R. de Queiroz, D. Mukherjee, “Super resolution of
video using key frames,”, Proc. IEEE Intl. Symp. on Circuits and
Systems, Seattle, USA, May 2008.

[34] F. Brandi, R. L. de Queiroz, and D. Mukherjee, “Super-
resolution of video using key-frames and motion estimation,”
Proc. IEEE Intl. Conf. on Image Processing, ICIP, San Diego,
CA, USA, Oct. 2008.

[35] K. F. Oliveira, F. Brandi, E. M. Hung, R. L. de Queiroz and
D. Mukherjee, “Bipredictive video super–resolution using key–
frames,” Proc. IS&T/SPIE Symp. on Electronic Imaging, Visual
Information Processing and Communication, San Jose, CA, USA,
SPIE Vol. 7543, Jan. 2010.

[36] B. C. Song, S. C. Jeong and Y. Choi, “Video super-resolution
algorithm using bi-directional overlapped block motion com-
pensation and on-the-fly dictionary training”, IEEE Trans. On
Circuits & Systems for Video Technology, vol. 12, No. 3, March
2011.

[37] T. Wiegand, G. Sullivan, G. Bjoontegaard and A. Luthra,
“Overview of the H.264 video coding standard,” IEEE Trans-
actions on Circuits and Systems for Video Technology, v. 13, pp.
560–576, Jul 2003.

[38] I. E. Richardson, H.264 and MPEG-4 Video Compression: Video
Coding for Next Generation Multimedia. Wiley, 2003.

[39] E. M. Hung and R. L. de Queiroz, “Blocking-effect reduction
in a reversed-complexity video codec based on a mixed-quality
framework,” Intl. Telec. Symp., ITS, Manaus, Brazil, Sep. 2010.

[40] S. Nogaki and M. Ohta, “An overlapped block motion compen-
sation for high quality motion picture coding”, Proc. IEEE Int.
Symp. Circuits Systems, v. 1, pp. 184-187, 1992.

[41] J. Zhang, M. O. Ahmad and M. N. S. Swamy, “Overlapped
variable size block motion compensation,” Proc. IEEE Intl. Conf.
on Image Processing, ICIP, Santa Barbara, CA, USA, Oct 1997.

[42] R. Li, B. Zeng, and M.L. Liou, “A new three-step search
algorithm for block motion estimation,” IEEE Trans. on Circuits
and Systems for Video Technology, vol. 4, no. 4, pp. 438-42, Aug.
1994.

[43] S. Zhu and K.K. Ma, “A new diamond search algorithm for
fast block matching motion estimation,” Proc. of Int. Conf. Infor-
mation, Communications and Signal Processing, vol.1, pp.292-6,
1997.

[44] J.Y. Tham, S. Ranganath, M. Ranganath, and A.A. Kassim, “A
novel unrestricted center-biased diamond search algorithm for
block motion estimation,” IEEE Trans. On Circuits & Systems
for Video Technology, vol.8, pp.369-77, Aug. 1998.

[45] A. Tourapis, O. C. Au, and M. L. Liou, Highly efficient predic-
tive zonal algorithm for fast block-matching motion estimation,
IEEE Trans. Circuits and Systems for Video Technology, vol. 12,
pp. 934-947, Oct. 2002.

[46] D. Mukherjee, “A robust reversed complexity Wyner-Ziv video
codec introducing sign-modulated codes,” HP Labs Technical
Report, HPL-2006-80, May 2006.

[47] D. Mukherjee, B. Macchiavello and R. L. de Queiroz, “A simple
reversed complexity Wyner-Ziv video coding mode based on a
spatial reduction framework,” Proc. SPIE Visual Communications
and Image Processing, VCIP, Jan 2007.

[48] C. Yeo, W. T. Tan, D. Mukherjee, “Receiver error concealment
using acknowledge preview (RECAP) - An approach to resilient
video streaming,” Proc. Int. Conference on Acoustics, Speech and
Signal Processing, Taiwan, April 2009.

[49] G. Bjontegaard, “Calculation of Average PSNR Differences
between RD curves”, ITU-T SC16/Q6, 13th VCEG Meeting,
Austin, Texas, USA, April 2001, Doc. VCEG-M33.


