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Abstract—Example-based super-resolution (SR) is an attractive
option to Bayesian approaches to enhance image resolution.
We use a multiresolution approach to example-based SR and
discuss codebook construction for video sequences. We match
a block to be super-resolved to a low-resolution version of the
reference high-resolution image blocks. Once the match is found,
we carefully apply the high-frequency contents of the chosen
reference block to the one to be super-resolved. In essence, the
method relies on “betting” that if the low-frequency contents of
two blocks are very similar, their high-frequency contents also
might match. In particular, we are interested in scenarios where
examples can be picked up from readily available high-resolution
images that are strongly related to the frame to be super-resolved.
Hence, they constitute an excellent source of material to construct
a dynamic codebook. Here, we propose a method to super-resolve
a video using multiple overlapped variable-block-size codebooks.
We implemented a mixed-resolution video coding scenario, where
some frames are encoded at a higher resolution and can be used
to enhance the other lower-resolution ones. In another scenario,
we consider the framework where the camera captures video at
a lower resolution and also takes periodic snapshots at a higher
resolution. Results indicate substantial gains over interpolation
and over fixed-codebook SR and significant gains over previous
works as well.

Index Terms—Example-based super-resolution, video process-
ing.

I. INTRODUCTION

MAGE super-resolution (SR) is the process of increasing

the image resolution using information from other images
[1]-[3]. Those other images can be different shots of the
same scene, different frames of the same video, or they
might simply compose a reference database. SR fundamentally
differs from image interpolation as the latter generally uses
information from neighbor pixels to estimate the missing
ones. In interpolation, the information is local and local
structures dictate how the missing information is filled, so that
interpolation methods rarely introduce any new high frequency
information. In SR, however, one looks at different images of
the same object or similar contents and try to infer what the
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high frequency information might have been. In a sense, SR
is much more aggressive than interpolation, being capable of
recovering some of the missing high-frequency information,
while risking introducing spurious artifacts.

Bayesian methods are widely used in SR [4], [5] as the
problem of finding a high-resolution image X} based on a
lower resolution image X, i.e. finding X} that maximizes
P(Xp|X;), is ill-posed. As in a typical Bayesian approach,
one tries to maximize P(X;|X,)P(X})/P(X;) instead, since
quantities can then be estimated by training. Of course, dealing
with whole images at a time is not tractable, and all the many
works on Bayesian approaches to SR have to do with how
one breaks the image, what features or parts of X; and X},
are considered for training or processing, and so on.

Iterative SR algorithms such as those using back-projection
[6]-[8] can efficiently minimize the reconstruction error.
Other iterative SR algorithms use projection onto convex sets
(POCS) [9], [10]. In those, the super-resolved image can be
iteratively improved by projecting it onto constrained sets
derived from low-resolution observed images. In related works
[11]-[14], algorithms are proposed assuming that the super-
resolved image is a sparse representation of raw patches,
achieving substantial improvements over bicubic interpolation.
In that model, each patch of the image that we want to
super-resolve can be represented by a linear combination
of a few dictionary elements. In [15], an algorithm based
on the multichannel sampling theorem was proposed. A
hybrid method that combines maximum likelihood with prior
information was developed in [16]. A robust variation [17]
has also been suggested. In [18], the authors generalized a
denoising method, called non-local-means, amounting to a SR
method without explicit motion estimation. Such a work was
extended in [19]. Approaches using maximum a posteriori
formulation to solve SR problems can be found in [20], [21].
In recent works [22]-[26], the authors address the SR problem
in the context of a maximum a posteriori framework, using
multichannel image priors, achieving significant improvements
for both compressed and uncompressed data. A set of non-
stationary hierarchical priors and observation models were also
proposed.

Frequency-domain approaches can be found in [8], [27]-
[31]. The work in [8] proposes a technique to estimate the
homography between multiple frames in a sequence and a
reconstruction algorithm based on wavelets. The result is a
robust SR method without significantly sacrificing efficiency.

Example-based SR [32] is a simplification of all the pre-
viously described processes. A database of reference images
{X}} is assembled along with their associated low-resolution
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versions {X!}. For a given image (or portion thereof) X;, a
match is sought over {X’} and when a given match X" is
found, the associated high-frequency information (contained
in X}}) is applied to Xj.

Different from the traditional SR problem, where higher-
resolution images are reconstructed from multiple low-
resolution samples, in this work, we use sparsely distributed
high-resolution frames to super-resolve the low-resolution
ones. In this way, the training is replaced by a search over
a database (codebook). Of course, this is an overly simplified
view of the process for the sake of the explanation.

Related works can be found in [33]-[36] where the
example-based SR is applied to mixed-resolution video, i.e.,
video with different resolutions along the time. In [36], the
authors propose a hybrid SR technique that combines motion
compensation and an on-the-fly training dictionary.

In the case of video frames, SR approaches are basically
divided into three classes: (i) applying image SR techniques
to each frame independently; (ii) using motion information
and multiple views of the same object along frames to provide
the SR information; and (iii) using high-frequency information
from key frames in mixed-resolution-video approaches. This
last approach and application will be explained in detail in a
later Section.

Section II explains our approach to example-based SR,
while Sec. III describes our method for video SR using direct
examples. The frameworks wherein the described methodol-
ogy can be applied are described and tested in Sec. I'V. Finally,
the conclusions of this work are presented in Sec. V.

II. SR USING MULTIRESOLUTION EXAMPLES

In this section, we present our flavor of an example-based
SR algorithm [33]-[35] based on Freeman et al. [32]. In this
paper, we extend the example-based SR by including multiple-
example overlapped patches and the combination of multiple
high-frequency information. The proposed SR is tested in
different application scenarios.

The general approach is depicted in Fig. 1. There is an
image to be super-resolved, which is divided into blocks of
N x N pixels. Assume one wants to increase the resolution
of a blgck X by a factor of L, so that each super-resolved
block X would have LN x LN pixels and is found by

adding some high-frequency information X7, to the upsampled
version of X, X,, as X = X, + X,. Let M = LN.
We construct a database of B “example” blocks {Y;} of
M x M pixels, compiled over many reference images. B
can be very large, in the order of hundreds of thousands or
even millions. Each example block Y} is low-pass filtered
yielding Y}! = F1(Y}%) and its respective high-pass version
Y =Y, — Y}l It is preferred the filter F; be the decimation-
interpolation operation by a factor of L, i.e. pre-filtering,
down-sampling by L, upsampling by L, and post-filtering.
The SR process works as follows. Block X is interpolated
to form X, so that X, is compared to each Yl under some
distance metric D, and we pick v = miny, D(Xu7 Y}, ie. Y}
is picked. The high-frequency information associated with Y,,l
is Yh so that we make X, = Y,” and the super-resolved block
is X X, + Y]

The method is simple, yet efficient. Nevertheless, in such a
basic form it is left with many challenges. Most importantly,
it may incorporate noise along with plausible high-frequency
information, when the match is not very good. In our approach,
we can significantly reduce noise by using multiple codebooks.

All the examples in the database form a codebook of exam-
ple blocks. In essence, we have a codebook of high-frequency
patterns from which to choose one to incorporate into the block
to be super-resolved. If we populate the database with N;
images of N, x N, pixels, the examples can be all overlapping
blocks in those images, so that B ~ N; N, N.. As in any vector
quantization process, the larger the codebook, the better the
chances of good results, but the slower the implementation.
Thus, populating the codebook with meaningful blocks is
crucial to the algorithm performance. The match may improve
if we use a combination of example blocks.

Let we compose K codebooks, each perhaps derived from
different sources or images with different characteristics.
Let the n-th codebook contain blocks {Y;(n)}, with their
respective low- and high-pass versions {Y;(n)} and {Y;*(n)}.
Let also v(n) be the index of the best match for the n-th
codebook. We search for
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In order to calculate o, let }A’Vh be the enhancement (block
with missing high-frequency information) of a block estimated
from the fusion of multiple information and let Y;* be an
enhancement block prediction at the n-th reference (forward
or backward) codebook. Also, let Y be the ideal enhancement
of the block and €, be spatial noise from the n-th reference
key-frame-based codebook. The predicted enhancement block
can be modeled as

Y =Y"+¢,, € ~ N(0,02), 3)

’ n
assuming that the noise signals (e,,) are i.i.d..

Let Y be a set of predicted enhancement blocks, that
is, YR = [Yuh(l)7 "'qu(K)] We assume that the probability



density function (PDF) of Y" is modeled by a Gaussian
distribution with local mean o and local variance o3. The
PDF of the predicted enhancement block, conditioned to
the ideal enhancement block, p(YX|Y™"), is normal with
mean o and covariance T'x = diag|o?, 03, ...,0%]. Hence,
using the Gaussian function formula and the Bayes’ the-
orem, the PDF p(YL) is normal with mean p and co-
variance C = Tk + o2. The a posteriori PDF on Y,
given the predicted data YL, i.e. p(Y"|YR) is also normal

with mean (I‘Kfl + 012)_ (I‘Kle{l( + %) and covari-
0 0
1

ance (I‘Kf1 + ﬁ) . One way to fuse these predictions
0

based on the maximum a posteriori (MAP) criterion is
yh = argy; max (ln (p(ﬁ\Y%))) . 4)

The MAP-predicted enhancement block fusion estimate is
simply the a posteriori mean
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For K prediction blocks, we get, in scalar notation:
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The ML fusion estimate can be recovered from (6) by
assuming a flat prior, i.e. 08 — 00, so the final form is:

R K yh K -1
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Observe that in (7) the variances o2 are related to the

confidence of a predicted high-frequency block information.
However, this information is not measurable. Here, we propose
an SSD-based distortion (D,,) in order to measure the distance
between blocks at the non-key frames (Y!) and key-frames
(Xy). We then use D, as a replacement for o2 and rewrite

(7) as: !
> SV ) (- L -
o) ()
Finally, we calculate «, as:
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In Eq. (9) we calculate the weights for the predicted

h

high-frequency information block (Yu(n) from a set of K

codebooks. The term 1/D,, implies that the weight of Yyh(n)

is inversely proportional to the distortion D, (XU,YVl(n)),
-1

K
normalized by (Z 1/ Dn) . In the search over the code-
n=1

books if, D (X,, V() > D (Xu, ¥, ), we may expect

v

Qm > . If that happens for all blocks, then the n-th

codebook is completely dominated by the m-th one and it
becomes irrelevant.

In modern video coding [37], [38], block partitions in
motion estimation are found after a rate-distortion analysis.
In our block SR case, we only have distortion available and
it has been shown [34] that the 16 x 16-pixel blocks yield
better overall results than its partitions. Differently from the
coding case, we are not only interested in the minimization of
the prediction error, but also in the detection of scene objects
to be super-resolved. Thus, with larger block sizes, the object
structures are more easily identified than in partitioned blocks.
With partitioned blocks we can also look for smaller content
details to be super-resolved. Hence, using variable block sizes
we can take advantage of both characteristics. The problem is
that the motion estimation using 16 x 16-pixels macroblocks is
a subset of that using partitioned blocks of 8 x 8-pixels. Thus,
we suggest a penalty factor (pr) to multiply the partitioned-
block prediction error.

In a search for the best penalty factor, Fig. 2 depicts the
system performance as we change pr. In it, the 1st and 30th
frames of a sequence are used as key-frames (codebooks)
while we super-resolve the 28 non-key-frames in between
them. For each frame, we varied pr and observed the PSNR of
the super-resolved frame. In Fig. 2, we normalized the PSNR
values to their maximum. We can see that better performance
is reached around 1.3 < pp < 2.2.
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Fig. 2. SR performance as we vary the partition penalty factor applied to

the non-key-frames. The 1st and 30th frames are key-frames, while the other
frames in between them are the non-key ones. PSNR was normalized to their
maximum values.

In order to effectively explore the temporal image cor-
relation, we use variable-block-size motion estimation and
overlapped-block motion compensation (OBMC) [39]-[41]. A
virtual re-partition [41] of the blocks allows for different block
sizes in OBMC. In this case, the blocks are partitioned until the
smallest size permitted to the quadtree partition [37], [38] is
achieved. That enables an equivalent fixed-block-size scheme
as illustrated in Fig. 3.

Fig. 4 illustrates overlapped blocks in OBMC. We use only
2-pixels-wide overlap to minimize the blocking effect, while
keeping the most of the high-frequency information of the
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Fig. 3. The 16 x 16 and 8 x 8 blocks in (a) were “virtually re-partitioned”
in (b) i. e., they are partitioned and the new blocks inherit the motion vectors.

block interior. The proposed OBMC scheme is also compatible
with fast motion estimation algorithms [42]-[45].
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Fig. 4. Overlapped block window in OBMC.

The proposed algorithm is as follows. First, in order to make
the codebooks, select blocks {Y;(n)}, 1 <i < B,1<n <
K and for each one compute Y}(n) = Fy(Fy(Y;(n))) and
Y/ (n) = Yi(n) — Y} (n), where F; and F} are the downsizing
and upsizing filters.

In order to increase the resolution of one block:

o Input X and interpolate it by a factor of L to make X,,.

« For each codebook n find v(n) = miny, D(X,, Y} (n))

e Solve {an/} as in (9).

« Compute Y, as in (8). R R

o The super-resolved block is X = X, + Y.

The described algorithm is performed for each block of a
frame in order to super-resolve the whole image. In this paper,
we apply these techniques in different application scenarios
described in Section III.

III. VIDEO SR USING KEY FRAMES

Getting good examples for the images to be super-
resolved is crucial to achieve good performance. The examples
in SR are the codebook entries. Good examples lead to
good matches, thus, good results. By applying the proposed
distortion-based codebook weights, we can find dominant
codebooks. That can be used to keep good codebook examples
and discard the unsimilar ones. In image SR, one might look
for other images at higher resolution with similar content.
Fortunately, in some video coding applications, there are
cases where high-resolution frames of the same sequence are
available. These frames may have contents that would be very

High-resolution frame

>  (key frame)

Low-resolution frame
71— (non-key frame)

[\
Group of pictures

Fig. 5. A mixed resolution video format.

similar to the frame to be super-resolved. The images which
are similar to the frame to be resolved are used as examples
rather than a pre-chosen or offline-trained codebook.

A. A mixed-resolution framework

In the mixed-resolution coding approach, there are key
frames at high resolution and non-key frames at a lower
resolution in order to save bit-rate and to reduce encoding
complexity [46], [47]. The approach is depicted in Fig. 5,
where key frames are interspersed periodically among the non-
key frames. The non-key (low-resolution) frames can be super-
resolved using the high-resolution key frames as codebook
source. If the period of key-frames or group of pictures (GOP)
is g frames, then for every non-key frame to be super-resolved,
there is a key-frame at most g/2 frames away. Typically, the
closest-key and non-key frames will be very similar.

In Fig. 6, we show the diagram that describes the process
of super-resolving the video sequence using the information
of the key-frames. In it, the first step is to distinguish
the key-frames from the non-key ones. The key-frames are
downsampled and upsampled with a Lanczos pre- and pos-
filter generating an interpolated version of the key-frame.
We perform bidirectional motion estimation [35] between the
interpolated version of the key-frames and the interpolated
non-key frame, which yields better performance then if motion
estimation were carried between the key-frame and the inter-
polated non-key one. With motion estimation, we dynamically
populate the codebook with the contents of the key-frame that
may correspond to the block being processed. The process
of searching the codebook would be equivalent to block-
match motion estimation over a w X w-pixel search window
in the key frame. This would reduce the codebook size and
avoid searching over the whole image and over many images
(N;N,. N, block comparisons). Even with full search, there are
w? block comparisons. Window sizes in motion estimation
are typically in the order of w = N./8 or w = N,/8,
which makes the speed up in the order of 64N;. With fast
motion estimation techniques [42]-[45], this speed up may
largely increase. We use a variable block size (16 x 16- and
8 x 8-pixels) OBMC in order to improve temporal prediction.
The high-frequency layer is the registered high-frequency
information that is extracted from the key frame. The super-
resolved frame is obtained by adding the high-frequency layer
into the interpolated low-resolution frame.



High-resolution frames

Down/up

motion

(key frames) @

Sequence with

sampling and Motion

high-frequency > estimation

vectors

Overlapped block i/
motion compensation| | i -

-

Super-resolved

mixed resolution frames extraction

e —

Low-resolution frames

@ (non-key frames)

Up-sampling L

| [Weighted bidirectional
' estimation
sequence
Addition of high- ﬁ

Bkttt e

frequency information

Fig. 6. General diagram of our example-based super-resolution approach for the mixed resolution scheme.

High-resolution frame
(key frame)

jﬂ
=

Low-resolution frame
1 (non-key frame)

Group of pictures

Fig. 7. The multi-recording (video plus photos) video format.

B. Video with redundant snapshots

In another application, the camera captures and compresses
the video at lower resolution, but takes periodic snapshots at
a higher resolution, e.g. one JPEG per second, as illustrated
in Fig. 7. The high-resolution pictures are used to increase the
resolution of the video sequence. This high-resolution image
can be used to populate the codebook and serves just like
the key-frames in the mixed-resolution approach. In other
words, we can use motion estimation techniques to explore
temporal redundancies and to reduce the codebook size as
well. Differently from the previously described application
scenario, we have redundant key-frame and non-key-frame in
the same temporal instance, which simplifies the extraction of
the high-frequency information of a frame. In this case, we are
also using different coding standards: one is a video encoder
and the other is an image encoder.

In Fig. 8, we illustrate the process of super-resolving the
video sequence using snapshots. We associate the simultane-
ously captured key-frames (snapshots) and non-key frames. In
order to extract the high-frequency information we calculate
the difference between the snapshot and the interpolated non-
key frame that was captured at the same instance. We also
down- and up-sample the snapshot to create an interpolated
version of the key-frame as input to the motion estimation. We
adaptively populate the codebook with the contents of the key-
frame that may correspond to the block being super-resolved
through motion estimation. The high-frequency information is
compensated, using OBMC, to fit the low-resolution frame.
The high-frequency layer is the registered high-frequency
information that is extracted from the key frame. The super-
resolution frame is obtained by adding the high-frequency
layer to the interpolated low-resolution frame.
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Low-resolution frame
(non-key frame)

Fig. 9.

Video and correlated photographs.
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Fig. 10. Video and redundant low-resolution frames for error concealment.

C. Other application scenarios

Another application would be to compress the video at a
lower resolution and then, off-line, to search databases for
high-resolution pictures of similar scenes, as illustrates Fig.
9. There may contain different illumination among the video
and the pictures. This is a variation of example-based super
resolution, applied frame-by-frame [32]. The pictures can be
used to populate the codebook without any criteria to define
a GOP, as in previously described frameworks. The related
picture must be well selected (we could use photos with the
same geotagging position, similar compass direction and a
few criteria based on the picture energy, histogram, etc.). The
problem is that we can add errors to the video when we apply
mismatched high-frequency information.

The last application example, illustrated in Fig. 10, is
error concealment, where a video sent through a channel is
compressed at a high resolution, while low-resolution frames
(thumbnails) are also sent as redundant information using
another reliable channel. The low-resolution information is
used when an error at the high resolution occurs [48].
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IV. EXPERIMENTAL RESULTS

The performance of the SR method is determined by the
correlation between the low-quality video with the undeci-
mated frame. For example, we made a test with the Foreman
sequence originally in CIF format and downsized it into
QCIF (176 x 144 pixels). We interpolated the low-resolution
sequence using a bilinear algorithm and obtained a given
reconstructed frame yielding a PSNR of 28.97 dB. When we
populate a codebook with the image Lena (512 x 512 pixels)
and apply the SR we obtain a PSNR of 29.01 dB. However,
our results show that, if we populate a codebook with highly
correlated information, we can achieve much better results.

We first compare the performance of the proposed usage of
multiple codebooks and also the variable block size OBMC
with pr = 2. Then, we perform the SR in the mixed resolution
and the video-plus-snapshots scenarios. Finally, we compare
the proposed SR method with some previous works [11], [13],
[36].

In Fig. 11, we illustrate the subjective performance of the
weighted enhancement fusion in (8). In the experiment, the 1st
and 31st frames of sequence Foreman are key-frames, while
we try to super-resolve the 16th frame. Using only the 1st
frame in the codebook, we obtain a PSNR of 34.89 dB in the
resulting frame in Fig. 11(a). Observe that a few mismatches
at the motion estimation process occur in the SR. In Fig. 11(b),
it is shown the SR result using a codebook based only on the
31st frame, for which we achieve 35.80 dB. If we use both
codebooks and simply choose the block with smaller error we
obtain a super-resolved image yielding 36.39 dB. However, in
Fig. 11(c), we show the result fusing the best information of
both codebooks, yielding a PSNR of 37.03 dB.

In order to compare the regular motion compensation with
OBMC, we performed SR at the 16th frame of sequence News,
using both 1st and 31st frames as key ones. The PSNR of the
SR using OBMC is 38.81 dB, while the regular case achieves
38.50 dB. Both frames can be observed in Figs. 12(a) and
12(b), respectively. Figure 12(c) shows the difference of the
SR results.

As described in Section III, the SR method could be applied
in many applications scenarios. The tests were performed with
300 frames of the video sequences: Foreman, Mobile, Hall
Monitor, Mother & Daughter and News at CIF (352 x 288
pixels) and Shields, Mobcal and Parkrun at 720p (1280 x 720
pixels) formats.

The videos were encoded using H.264 (JM 15.1) and the
set of {22,27,32,37} quantization parameters (QP) in order
to compare rate-distortion curves [49]. At the SR process, a

Architecture of our example-based super-resolution approach applied to a sequence with snapshots.

motion estimation window of 32 x 32 pixels is used for low-
resolution frames and a 64 x 64-pixel window is used for
high-definition video. The tests were performed to simulate a
mixed-resolution framework using QCIF (176 x 144 pixels)
and CIF frame sizes. We also mixed 360p (640 x 360 pixels)
and 720p resolutions as well. Figure 13 shows the SR result
using GOP lenght of 2. Here, we can achieve up to 4dB
gains over the interpolated case. In Table I, we can observe
significant objective gains of the proposed SR method in
comparison to the interpolated case.

TABLE I
PSNR COMPARISON [49] BETWEEN INTERPOLATED VIDEO WITH
LANCZOS FILTER AND THE SR USING THE PROPOSED CODEBOOKS.

Sequence PSNR gains
Foreman 2.47 dB
Mobile 2.28 dB
Mother and Daughter 1.23 dB
Shields 1.30 dB
Parkrun 1.66 dB
Mobcal 1.73 dB

In order to test the low-resolution-video plus snapshots sce-
nario, we used a video sequence in quarter-resolution encoded
with H.264 and picked one redundant full-resolution frame
per second, resulting in a GOP length of 30. The snapshot
was encoded with JPEG using uniform quantization matrices.
The rate-distortion curves are presented in Fig. 14, comparing
the proposed SR technique against plain interpolation. Plots
for the interpolation-based framework were shown for the
cases including or not the snapshots in the rate and distortion
computation. Other objective results are shown in Table II.

TABLE II
PSNR COMPARISON [49] BETWEEN INTERPOLATED VIDEO WITH
LANCZOS FILTER AND THE SR USING THE SNAPSHOTS AS CODEBOOKS.

Sequence | PSNR gains
Foreman 1.97 dB
Shields 1.89 dB
Parkrun 0.93 dB
Mobcal 3.21 dB
Stockholm 0.71 dB

In Table III we compare our results to the frameworks
described in [11], [13], [36]. The tests were performed without
compression. We super-resolved the 16th frame using the 1st
and 31st frames as key ones. We directly used the results
reported in [36].

In order to test the SR in [11] and [13], we used the key-
frames as training sets. Each training image is downsized with
a bicubic filter by a factor of two and the feature extraction
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Fig. 13. Comparison among the interpolated video and super resolution method applied to sequences: (a) Foreman, (b) Shields and (c) Parkrun, in the mixed

resolution scenario.

is performed by using gradient and Laplacian filters. Here,
we used 1000 patch-pairs to compose the dictionary that was
used to super-resolve the frame. For instance, using an Intel
Core 2 Duo P8600 at 2.4 GHz with 4GB of RAM to train
the dictionary and then super-resolve a 720p resolution video
took about 12 minutes using [13] and a few hours with [11].
Our SR took less then a couple of minutes to perform the

proposed SR. Note that none of the implementations involved
were optimized for speed in any sense. Nevertheless, we just
want to highlight the potential speed-up the reduced search
can provide.

Figure 15 shows further examples of the interpolated and
the super-resolved frames. We can use the original image in
Fig. 15(a) to subjectively compare the quality enhancement.
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Fig. 14. Rate-distortion-based comparison between our proposed SR and plain interpolation for the video-plus-snapshots case. Low-resolution H.264-coded

video is super-resolved with the aid of periodic JPEG-compressed pictures.

The values QN imply that a uniform quantizer with all step values of N are

used for JPEG compressing the snapshots. For the interpolation case, plots may or may not include the snapshots in the rate or distortion computations. (a)

Foreman, (b) Shields and (c) Parkrun.

TABLE III
PSNR [DB] COMPARISON AMONG INTERPOLATION AND SR METHODS.

Sequence | Bicubic | Lanczos | SRin | SRin | MSR | HSR | Our SR
[36] [11] [13] [36] | [36]

Container 279 27.4 23.6 30.7 31.9 332 36.0
Hall 29.1 28.2 24.2 32.6 374 | 38.0 41.1
Mobile 229 22.8 20.4 25.5 24.5 25.5 27.1
News 29.4 30.1 24.6 34.1 31.9 36.1 38.8
Mobcal 27.7 27.8 24.2 29.8 30.9 31.0 35.0
Shields 31.1 33.1 274 349 314 | 327 36.0

We also compare the subjective performance of different
interpolation kernels: the bicubic shown in Figure 15(b) was
used in [11], [13] and the Lanczos was used in our SR can be
found in Figure 15(c). The SR proposed in [11], [13] and our
algorithm are shown respectively in Figures 15(d), 15(e) and

15(h).

V. CONCLUSIONS

In this paper, we propose a few scenarios that allows for
the use of correlated and dynamically populated codebooks
for example-based SR techniques. We propose a method
to use, discard or mixture the high-frequency information
from a set of codebooks, obtaining significant objective and
subjecive gains. An improved performance occurs when we
apply the OBMC, which also contributes to objective gains
and blocking-effect reduction. The PSNR improvement over
the interpolated video is up to 3 dB for both mixed-resolution
framework and video-plus-snapshot architectures. In the first
scenario, we can achieve encoding complexity reduction by
decreasing the efforts of the motion estimation process (that
are performed at low-resolution frames).

In the mixed resolution approach, the proposed SR method
has shown to provide better objective and subjective perfor-
mance compared to previous works. In the other example ap-
plication, where pictures (snapshots) are taken while the video
recording is performed, the proposed SR has shown superior
objective and subjective performance. The proposed method
can effectively improve the video resolution by extracting the

high-frequency information from the snapshots in order to
super-resolve the video sequence. As future work, we plan to
study the reduction of information due to the down-sampling
process. That may enable an estimation of the amount of high-
frequency information to be added within the SR process.
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