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Gamut Mapping to Preserve Spatial Luminance Variations

Raja Bala,* Ricardo deQueiroz, Reiner Eschbach,* and Wencheng Wu#
Xerox Research & Technology, Wabstar, New York

A zpatial gamut mapping technique is proposed to overcome the shortcomings encountered with standard pointwise gamuot
mapping algorithms by preserving spatially local luminance variations in the criginal image. It does so by first processing the
image through o standard pointwise gamut-mapping algorithm, The difference between the original image luminance ¥ and
gamut mapped image luminance ¥ is caleulated. A spatial filter is then applied to this difference signal, whose output is added
back to the gamut mapped signal ¥ The filtering aperation can cause some pixel colors that lie near the gamut boundary to be
meved outside of the gamut, hence a second gamul mapping step is required to move these pixel colors back into the pamut.
Finally, all pixels are processed through a eolor correction function for the output device, and rendered for that device, The
algorithm is designed to reduce many of the artifacts arising from standard pointwise techniques, Psychophysical experiments

indicated an ohserver preference for the proposed algorithm,
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Introduction

Gamut mapping is an important problem in color man-
agement, and has been one of the most active areas of
color research. '~ The optimal gamut mapping strategy
tor a given application depends on input and output gam-
uts, image content, user intent and preference, The de-
gsign of the optimal technigue thus involves a suitable
trade-off among image attributes such as contrast, lu-
minance detail, vividness, and smoothness. A plethora
of gamul mapping algorithms has been proposed in the
literature, optimized for different applications, and with
different trade-ofls, An overview of the work in this area
along with an extensive list of references, can be found
in the manuscripts by Morovic! and Braun.?

Cme might classifly gamut-mapping algorithms into
three basic categories, The first category comprises de-
vice dependent algorithms, wherein the gamut mapping
is a function of the input (usually computer dizsplay) and
output {usually printer) gamuts, These algorithme are
independent of inpul image content. Most well-known
gamut mapping algorithms fall in this category, 1+

The second category consists of image dependent al-
gorithms, wherein the gamut mapping is a funetion of
the input image statistics, and of the cutput device
gamut. These algorithms are generally expected Lo per-
form better than image independent algorithms because
they can adapt to image content®?s at added computa-
tional cost.
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In these first two categories, the gamut mapping is a
pointwise speration from an input point to an cutput point
in an appropriate (usually perceptual) 3D color space. One
of the fundamental attributes of pointwise operations is
that they do not take spatial neighborhood effects into
aceount, In certain situations, these neighborhood effects
ean be of high importanee. For example, consider an im-
age composed on the computer display (CRT), with black
text against a blue background. The text is easily distin-
guished against the background. However, when both are
mapped toa printer’s gamut with an algorithm that maps
out-of-gamut colors to the nearest surface color, the CRT
blue maps to a much darker hlue in the printer’s gamut.
On the other hand, the CRT black maps to a lighter printer
black. This is illustrated in Fig. 1, where the dotted and
solid gamuts represent the CRT and printer respectively,
and the nearest point mapping is labeled GM1. As a re-
sult of this gamut mapping, much of the luminance dis-
tinction is lost belween text and background, and the
legibility of the text is diminished. A comparison of lumi-
nanece profiles of the input and resulting printed images
is shown in Fig, 2. Note that such a gamut mapping fune-
Lion 15 considered aptimal when rendering large areas of
black or blue in iselation, so that the problem is only en-
countered when the two regions are juxtaposed. One can
alleviate Lthis problem by adopting a different pointwise
gamui-mapping algorithm that preserves luminance (la-
beled GM2 in Fig. 1) Now the visibility of the text will
greatly improve, but luminance preservation usually
comes at the cost of significant loss in chroma, and this
will likely be unacceptable in a different image or even
different image area. Hence, all pointwise algorithms are
heavily constrained by such trade-offs, making it diffi-
cult to develop a common algorithm that achieves high
quality for a large variety of images and gamuts,

The third category of gamut mapping algorithms,
which is the focus of this article, consists of algorithms
that take into account Lthe spatial characteristies in ad-
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Figure 1. Mapping of black text and blue background from CRT
gamut (dashed line) Lo print gamut (solid),

dition to color characteristics of the image, We believe
not many algorithms exist in this class, With such algo-
rithms, two pixels of the same color in an input image
might map to different ecolors in the output image, de-
pending on the spatial characteristics in their respec-
tive spatial neighborhood. A few researchers have
proposed technigues in this category. Meyer and Barth?
used homomorphic filtering to separate low and high
spatial frequency channels, and then to apply global
dynamic range compression only to the low frequency
channel. & potential problem with such approaches that
separate spatial from color transformations is that they
are susceptible to noise amplification. Kasson! proposed
a blending of two gamut mapping algorithms, one pre-
serving luminance and one preserving chrominance. The
blending is a function of distance from gamut, and spa-
tial frequency, with luminanee being preserved at high
frequencies, and chrominance preserved at low frequen-
cies, MeCann!! used the principles of Retinex theory to
develop an iterative gamut mapping which altempts to
preserve ratios of colors at adjacent pixels.

In this article, we propose a spatial gamut mapping
technique, which is intended to mitigate the trade-off
between luminanee and chrominance preservation by in-
corporating the pixel neighberheod into the mapping.
This article is a more complete description of a recent
conference proceeding.'?

This article is organized as follows, In the next sec-
tion, the spatial gamut-mapping algorithm is described.
In the following section, a psvchophysical experiment is
presented that evaluates the spatial algorithm in com-
parison to standard pointwise technigues, This is fol-
lowed by an analysis of the results, and concluding
remarlks,

Gamut Mapping with Spatial Feedback

In this section, we describe a spatially dependent
gamut mapping algorithm based on the principle that it
is more important to preserve luminance at high spatial
frequencies, while it is generally desirable to preserve
chrominance at low spatial frequencies.® Our proposed
method tightly couples the spatial and eolor transfor-
mations in a corrective feedback mechanism, resulting
in a rabust framework for gamut mapping.

In the following discussion, the term “luminance™ is
used generically encompassing the strict definitions of
luminance, i.e., the ¥ component in X¥Z, and lightness,
i, the LY component in CIELAB. The chrominance com-
ponents C, and O, are likewize a generic representation
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Figure 2. Spatial luminance profile of the pamut mapping
shown in g 1,

of opponent color signals, Gamut mapping operations

take place in such a device independent luminance—

chrominance space.

A bloek disgram of the proposed algorithm is shown
in Fig, 3. Let us define (7, as a pointwise gamut clipping
algorithm thal emphasizes preservation of chroma over
luminance, Let &, be another pointwise gamut clip-
ping algerithm that emphasizes preservation of lumi-
nance over chroma. First G, is applied to the input
colors, and an error image AY is computed between the
luminances of the inpul signal ¥ and gamut mapped
signal 7. A spatial filter F is applied to the error im-
age, resulting in image AY'. Here, I has high-pass
frequency characteristics, i.e., it preserves the high spa-
tial frequencies while suppressing the low spatial fre-
guency componants of the signal AY, The ervor image,
which comprises only the high frequency errors inlro-
duced by gamut mapping, is then added back to the
gamut mapped signal ¥ to yield signal ¥, The feed-
back step may move some pixel colors (Y C,' C,) out of
the gamut, and hence, a second gamut mapping opera-
tion O, is applied to limit all colors to the intended
gamul. The propesed algorithm exhibits the following
characteristics:
= If a region in the image is completely within the

gamut, then &, is an identity function; AY = AY = 0;
and (7, is an identity function. Hence this region of
the image is unaltered,

= If aregion in the image is outside the gamut, and is
smoothly varying (i.e. of low frequency), G, will re-
strict colors to the gamut; AY will be a low frequency
signal, therefore its high frequency component, AY
will be close lo zero; and G, will be essentially an
identity Munetion. Thus, the overall mapping in this
region is predominantly (7,

* If a region in the image iz outzide the gamut, and
contains high [requency detail, then AY will contain
some high requency components; these components
will be extracted by the filter as AY"; the feedback
will move eolors oul of gamut; and the second pamut
mapping &y will take effect. Hence in this case, the
overall mapping is predominantly G,.

In summary, the proposed scheme leads to the preser-
vation of the characteristics of G| in low spatial frequen-
cies and those of (7, in high spatial frequencies. Hence
the strengths of both algorithms are exploited in the ap-
propriate spatial frequency bands, and the trade-offs
that one must face with pointwise algorithms are now
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Figure 3. Block diagram of propozcd spatial gamut mapping algorithm.
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Figure 4. Cusp gamut clipping algorithm shown at a fixed hue
angle (CIELAB H = 40}. ' is the cusp al the given hue plane, F
is the neutral focal point for all pamut mapping vectors in the
given hue plane, The input gamul is that of a Xerox
DocuColorl2 xerographic printer, and the oulput pamut is that
of a Xerox Xpress inkjet printer,

significantly mitigated. All the aperations up to this
point constitute the overall spatial gamut-mapping al-
gorithm, performed in a device independent luminance—
chreminanee space. The final step is to convert deviee
independent color to device dependent color (i.e., CMYK)
via a printer color correction transform.™ To reduce the
overall computational complexity of the algorithm, (7
can be implemented using a 3-D lookup table, and A
can be concatenated with the printer color correction
transform from CIE color to CMYE,

The design of &) and ¢, and the spatial filter F can
depend on many factors, ineluding global and local im-
age characteristics, device characteristics, rendering
intent and preference. We will describe an initial imple-
mentalion in this arlicle, recognizing that more research
will be needed to further optimize the algorithm para-
meters. For this article, the gamut mapping G, was cho-
sen to map out-of-gamut colors to the nearest surface
point of the same hue. This mapping generally favors
preservation of chroma over luminanee, For G, the cusp
algorithm was chosen where aut-of-gamut colors are
mapped to the surface in a direction towards a neutral
point whose luminance is that of the cusp color.! {The
ensp is defined as the point of maximum chroma in a
given hue slice.) Figure 4 is an illustration of the eusp
algorithm for the input and cutput gamuts aclually used
in the experiments. This algorithm tends to emphasize
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luminance over chroma preservation, especially for
points close to the gamut surface. Another alternative
for (3, is a mapping that clips out-of-gamut colors to sur-
face colors of the same luminance. In our initial experi-
ments, we found that this yielded results very similar
to ensp elipping when used in the framework of Fig. 3.
Moreover, one may wish, for cost or performance consid-
erations, to disable the spatial component of the gamut
mapping (namely G, and F in Fig. 3}, and apply only G,
for gamut mapping. We found that in this case, cusp clip-
ping does not desaturate the image as much as constant-
luminance clipping, and is hence preferable. For these
reasons, cusp clipping was finally chosen for G..

Both (7, and (7, leave in-gamut colors unaltered. While
the chosen (4, yields high-chroma reproductions, it is sus-
ceptible to the “lightning rod effect”, where-in several
image colors map to one point, especially near black and
at the gamut cusp. In the propesed technique, if these
image colors are from a high spatial frequency region,
the filtered feedback will redistribute their luminance
values, and G, will retain luminanee distinetion, thus
eliminating the problem.

Figure § demonstrates what happens at various
points in the algorithm for the example of blue text on
black background (see Figs. | and 2). Adding the fil-
tered error AY’ to the gamut mapped luminance ¥"
vields the signal ¥, which retaings the characteristics
of the original input image ¥ near the edge while re-
taining the characteristics of the pamut mapped image
¥" in smooth regions (see Fig. 2). This signal, in com-
bination with the chrominance signals ;" and ', must
be remapped to the gamut surface with the transform
(35, to yield a luminance profile ¥ which may be some-
what different from Y. In this example, ¥ contains
luminances that are below the minimum luminance
achievable by the printer, hence these values met
clipped. However, even with this limitation, the algo-
rithm restores the edge information that was dimin-
ished in the pointwise algerithm (shown as a dashed
line in the rightmost plot in Fig. 5). The extent and
spatial footprint of the enhancement is dependent di-
rectly on the characteristies of the high-pass filter F.
In this article, we have chosen a simple linear filter
whose operation at pixel { is given hy:

3
AY; =kfaﬂ--%2ﬂ’_;}, (1)
i N J=8
where, £ is the filter gain, N is the filter size, and S is
an N x N neighborhood around pixel i. Eq. 1 says that
the filter is subtracting a low frequency component (i.e.,
the & = N neighborhood average) from the signal, and
thus retaining the remaining high frequency compo-
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Figure 5. Spatial luminance profile of black text and blue background of Figs, 1 and 2 at the various stages in the proposed

algorithm,

nents. With these characleristics, the overall gamut
mapping, with spatially filtered feedback, will approxi-
mately reproduce the variations in Y at high spatial fre-
quencies, while reducing to the pointwise mapping G,
at low spatial frequencies,

As might be expected, the filter gain & and filter size
N will dictate the cutcome and efficacy of this spatial
pamut mapping Ltechnique, With a high gain in filter F,
the luminance ¥ at the regions of high spatial frequencies
15 preserved or even enhanced. However, this comes at the
cost of strongly distorting the chrominances at those re-
gions. If a low filter gain is used, the effect of luminance
preserving at the regions of high spatial frequencies
might be unnoticeable. The filter size N determines the
cut-off frequency between high and low spatial frequen-
cice as well as the spatial extent of the ltering eflect,
The optimal & generally depends on the image type. For
images with soft or noisy edges, e.g. scanned pictorials,
a relatively large filter size, such as N = 15 {(at 600 dpi),
is regquired for noticeable improvement. On the other
hand, for images that have strong edges and low noise,
e.g. computer generated business graphics, a large fil-
ter size produces distinet halo effects around edges;
hence a smaller {ilter size, such as N =3 {at 600 dpi), is
preferable. In general, if the image type is known a
priori, the algorithm should use this information to
switeh between the small and large filter sizes. If this is
not the case, an adaptive scheme can be applied to ac-
complish the selection of the filter size. Preliminary wark
on adaptive filtering was described in a previous article.1?
The main focus of this manuscript, however, is spatial
gamut mapping of scanned pictorial imagery. From our
experiments on a Xerox DocuColorl2 xerographic CMYEK
printer with 600 dpi resolution, a filter gain k = 1 and a
filter size N = 15 was empirically chosen, Aulomatic opti-
mization of & and N as a functien of image iype, image
resolution, ele, is an area of ongoing research,

Psychophysical Evaluation of Spatial Gamut
Mapping

The ultimate goal of gamut mapping is to create an out-
pul image that is a visually preferred rendition of the
original, Il is important, thus, to ensure that human
abservers evaluate the performance of the gamut map-
ping technigue. To thiz end, a visual experiment was
conducted to compare the spatial gamut mapping tech-
nigue with a selected set of previously published algo-
rithms on a set of pictorial images.

Description of the Algorithms

The spatial gamut mapping was compared with two
standard pointwise techniques, which were: (i) elipping
to the nearest point on the gamut surface while preserv-
ing hue; and (i) nonlinear L* compression using the in-
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verse-gamma-inverse (IGI) techniguet followed by cusp
clipping. These algorithms have been reported as suc-
cessful peintwise technigues in previous experiments. !4
The IGI mapping is described by the equation:

&
T

= 10001 = {1 = L* /1007), (23

where 15 chosen to map a certain percentage of the in-
put L® dynamic range Lo the same percentage of the out-
put L® dynamic range. For our experiments, the
percentage chosen was 95%, Figure 6 is a plot of the IGI
function for v= 1.25, In general, IGI brings a fraction of
the dark colors into the gamut, and preserves or enhances
mid-tone contrast. The reader is referred to the work by
Braun et al.® for further details on this function.

Because the spatial gamut mapping is an extension of
the pointwise gamut mapping, the proposed method can
be used in conjunetion with commen pointwise methods,
Thus, two versions of the spatial gamut mapping method
were tested, The first version was exactly as depicted in
Fig, 3, with the operations 7, 75, and F implemented
as described in the previous section. Because the im-
ages were all pictorials, the filter size was chosen Lo be
N = 15, CIELAB was used as the luminance—chrami-
nance space, Because &, 15 identical to nearest-point
mapping (NP1, this first version 15 in effect a spatial
extension of NP In the second version, IGI L¥ compres-
sion was applied in addition to the spatial operation.
There are several possible locations in Fig. 3 where L*
compression can be applied, These are shown in Fig. 7
as dashed gray blocks. The compression can be applied
as a preprocessor before the proposed algorithm (e, Lk
Alternatively it can be applied just prior to &, (1.e., Ly},
in which case its effect is ineluded in the error image
caleulation. Finally, it can be applied just prior to G,
(i.e., Lo). The second alternative can lead to potentially
undesirable interactions between L* compression of in-
gamut pixel colors and the spatial filter F. Intuitively,
the third alternative is unappealing sinece the spatial
feedback is applied with no knowledge of a subsegquent
global color adjustment (i.e., IGD. Hence, the first alter-
native was chosen, i.e., IGI was applied at location L, as
a global preprocessing step, followed by spatial gamul
mapping, which is a correction that is local in hoth spa-
tial and color coordinates.

For convenience, we adopt the following symbols for
the four algorithms: NP, IGI_CUSP, SGM, 1GI_SGM.
Table T lists the components of the four algorithms with
respect to the block diagram of Fig. 3.

Stimuli

Five pictorial scenes were used, whose grayscale ver-
sions are shown in Mg, 8. These scenes represent a broad
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Figure 8. Grayseale versions of images uzed in psychophysical experiment.

TABLE |. Components of the Different Gamut Mapping
Methods Used in the Psychophysical Expariments

L* compression G, Filter Feedback G,
MP Mone Mearest Pont More Mone
IGI_CUSP IGl Mone Mare Cusp
SGM Mong Mearest Poont High-Pass Cusp
1GI_S4GM IG1 Mearest Poonl High-Pass Cusp

range of pictorial imagery, and include smooth and tex-
tured regions, flesh tones, pastels, neutrals, highlights,
shadows, and saturated colors of many different hues.
For each scene, the eriginal and the four gamut-mapped
versions were printed on a Xerox DocuColorl2 printer.
The prints were of size 5" x 7°. The printer was cali-
brated for matching under D50 illuminant, and the im-
ages were displaved in a light booth under D50
illuminant. The illumination level within the booth was
2300 lux, The viewing distance was approximately 207,
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All ambient illumination in the room was turned off
The gamut-mapped versions were restricted to a smaller
gamul of a Xerox Xpress inkjet printer. By using the
same printer for original and gamut-mapped versions,
cross-printer and eress-media problems such as
metamerism could be avoided.

Experimental Procedure

A total of 18 observers participated in the visual experi-
ments. Among these, 11 were experts and 7 were non-
experts in terms of experience in color imaging, All
observers reported normal color vision,

Twa psychophysical experiments were conducted. One
used visual preference and the other used acouracy of re-
production. asthe quality criterion. The technique of pair-
wise comparison was used in both experiments. In the
preference task, the subject was presented with a pair of
images corresponding to two gamut-mapping algorithms,
and asked Lo select the most preferred image, This was
repeated for every possible pair of images, for each of the

Hela, et al,



five scenes, In the reproduction task, the original image
was presented as s reference, and the subject was asked
to gelect, from a4 given pair of imapes, the one that was
the more aceurate reproduction of the reference,

Data Analysis Technigues

The direel outeome of a pairwize comparison experi-
ment is the probability matrix P — j) whose (i,7) entry
denaotes the [raction of times that subjects select an im-
age processed using algorithm § over one processed us-
ing algorithm j§. That is, P — f) is the estimated
probability that algerithm @ is chosen over algorithm j:

Pli - j)=

The nuember of occerrences that algorithm ¢ is preferrad over §

The total number af comparisons that are made between algorithms § and §

The estimated probability matrix provides a first-
arder observation about the performance of each method
compared with every other method, a pair at a time. How-
ever, it does nol direclly provide an ordering of prefer-
ence for all feur algerithms, Even il a rank ordering is
possible, it does not provide information aboutl how much
better or worse one method is compared to the others.
To further analyze the psyehophysical results, models
such as Thurstone's law of comparative judgement, 166
ar the Bradley—Terry analvsis!™¥ can be applied to gen-
erate preference scales from the probability matrices.
These preference scales assign a score to each algorithm
that indicates its performance relative to the other al-
gorithms. The differences between the aforementioned
two models are in the form of their nnderlving probabil-
ity distribution functions (Thurstone uses a cumulative
Gaussian funetion, while Bradley—Terry uses a logistic
funetion), and the method of estimating the preference
seales (Thurstone uses least-sgquares estimates, while
Bradley-Terry uses maximum-likelihood estimates). In
the authors’ experience, the outputs of these models are
guite similar; however, the Bradley—Terry formulation
has been more fully developed from a statistical view-
point, and elfers hypothesis testing and estimates for
confidence intervals. Hence, we adopted that model to
analvze our experimental data. For a detailed descrip-
tion of the Bradleyv—Terry maodel, and comparisons with
the Thurstone model, see Ref 15,

Hesults and Discussions

For illustration purposes, Color Plate 2 (p. 482) shows
the original and four gamut-mapped reproductions for ene
of the secenes, “macaws”, used in the experiment, In order
to fit all the images onto one figure for easy comparison,
a small interesling region has been cropped from this
scene. [t must be noted that additional processing to pre-
pare prints for this journal may result in some loss in
color aceuracy; however, it is hoped that the salient points
about the algorithmes will be retained. First, a compari-
son of images (A) and (B) shows that shadow detail around
the beak, and high-chroma detail in the red feathers have
been eliminated by nearest point clipping (NP} IGI L*
compression in image (C) has overall lightened the im-
age. This iz effective in bringing cut the shadow detail. It
alse restored high-chroma detail, but did so at the ex-
pense of an overall loss in chroma. Spatial gamut map-
ping in image (D) is a spatial extension of (B); it is easily
seen that much of the high-chroma detail was restored
without a substantial sacrifice in chroma. A combination
of 1G] compression and spatial gamut mapping in image
(I} shows the benefit of both components, i.e., restora-
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TABLE Il. Probability Matrix from Preference Experiment: {a}
All Observers; (b) Only Expert Observers; (c) Only Non-Ex-
pert Observers, An Entry in the i-th Column and f~th Row is
the Fraction of Times an Observer Picked Algorithm § Owver
Algorithm j.

ia)
NP IGI_CUSP SGM IGI_SGM
HP —_ PR | 063 Q.76
IGl_cusp 0.249 = 045 0.62
SGM 031 .51 — T
1GI_SGM 024 038 0.29 -—
{b)
NP 1GI_CUSP S5GM 1GI_SGM
MNP — .75 0.67 075
IGI_Cuse 0.25 -_— 0.49 o.er
SGM 0,533 (.51 - 0.73
IGI_SGM 0.25 0.33 0,27 . -
=)
NP 1GI_CUSP SGM IGI_SGM
NP == 0.B5 0.7 07T
1GI_CUsSP 0.34 —_ 0.44 0.54
SGM 0.29 0.51 — 3,62
IGI_5GM .23 045 0.3 —

tion of shadow detail around the beak, as well as resto-
ration of high-chroma detail in the feathers.

Results from the Preference Experiment

The probability matrices for the preference experiment
are listed in Table IT. From Table IT(aj~{c), it can be seen
that the columns labeled az “IGI_SGM” have all entries
that are substantially greater than 0.5 for both the ex-
pert and non-expert groups. Because a tie in a pair-wise
comparison has probability 0.5, IGI_SGM is a clear win-
ner under the preference eriterion when compared to the
other three methods independently, The results in Table
II also indicate that NP is the worst method among all
the four techniques,

The Bradley-Terry scales, calculated from data in
Table 1T, and their 5% confidence intervals are shown
in Fig. 9(a) (see Ref. 18 for details). From this figure, we
see that IGI_SGM is the most preferred method, while
NP is the least preferred, This is in agreement with the
probability matriz in Table I1. In comparing NP with
SGM, and 1GI_CUSP with 1GI_SGM respectively, we see
that introduction of the spatial mapping step consis-
tently results in an improvement. Also, respective com-
parisons of NP with [GI_CUSP and SGM with TGI_SGM
suggest that IGI compression tends to improve prefer-
ence scores, This is probably because the L% compres-
sion tends to lighten the images, an effect that is
generally desirable in gamut mapping.'® A combination
of 1G] and spatial mapping tends to inherit the advan-
tages of both approaches, thus yvielding the highest pref-
erence score. Finally, both expert and non-expert groups
vield very similar trends.

Results from the Reproductlion Experiment

The probability matrix for the reproduction experi-
ment is given in Table 111. From Table 111(h} it ¢an be
seen thatl the column labeled as “SGM” has all entries
substantially greater than 0.5, That is, for the experts,
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TABLE Ill. Probability Matrix from Reproduction Experimeant:
(@) All Observers; (h) Only Expert Observers; (C) Only Mon-
Expert Observers. An Entry in the i-th Column and fth Row
i the Fraction of Times an Observer Picked Algorithm 7 Over
Algorithm j.

(a)
MNP IGl_CUsSP SGM IGI_SGM
NP -— 0.48 068 0.47
1GI_CUSP 0.51 - o462 0.2
S5GM 0.32 .38 - 0.d4
1GI_SGM 053 048 Q.56 -
(k)
T 1GI_CUSP SGM 1GI_SGM
HP —_— Cadd .71 044
1GI_CUSP Q.55 = .65 0.47
SGM 0.29 0.35 - 0.36
1GI_SGM 056 0.53 .64 _—
]
NP 1GI_CUSP SGM 1GI_5GM
MP - 0.57 Q.63 0.581
1GI_CUSP 0.43 it 0.57 0,60
SGM 0.a7 0.43 - 0,57
IGI_SGM 0,49 .40 0.43 oo

SGM ig a clear winner under the reproduction criterion.
No method is clearly the worst technigue. For non-ex-
perts, the results presented in Table 111{¢) are inconelu-
sive, According to Table ITI(c), “IGI_SGM® is the best;
and the “NP" is the worst, However, the *IGI_SGM" is
only slightly better than “NP” with the probability of
01.51. This difference could be simply due to noise, which
iz inevitablv prezent in psychophysical data.

Looking at the Bradley—Terry seores in Fig, 9, we see
that SGM outperforms the other algorithms, This trend
is even sironger among the expert chservers, The dif-
ferences among the remaining three algorithms are not
statistically significant. Tt appears that the expert group
paid careful attention to fine image detail, which was
successfully restored by SGM. For the non-experts, all
four reproductions were essentially the same. With the
feedback we received from some of the observers, we
coneclude that this trend is probably caused by the [act
that all the reproductions were visually so different from
the original reference image that casual observers could
not distingnish among them. Generally speaking, the
spatial algorithms performed hetter than their pointwise
counterparts because they effectively retained detail and
edge information in shadows and high-chroma regions
that is often lost with standard techniques. L* compres-
sion resulted in improved performance in the preference
experiments, presumably due to an increase in perceived
overall lightness, colorfulness, and contrast of the im-
ages. However, this was not the case in the reproduc-
tion experiment, presumahbly because the color changes
Jusl mentioned would result in a less accurate mateh Lo
the original image.

Conclusions

We have presented a gamut-mapping algorithm that
takes into account spatial characteristics of the image.
This feature eliminates some of the compromises neces-
gitated by standard pointwise algorithms. By closely cou-
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pling the spatial and color transformations in a correc-
tive feedback mechanism, cur approach does not suffer
from the noise amplification problems that can arise when
the two transformations are applied separately. Psvcho-
physical experiments indicate that the proposed algo-
rithm cutperforms standard pointwise gamut mapping
methods for pictorial images. Because the spatial algo-
rithm is an extension of pointwise mappings, it will need
to be continually evolved as improved pointwise meth-
ods are developed.

We believe that with some extensions, the algorithm
will be equally elffective for business graphics images.
For example, while we have used high frequency lumi-
nanee preservation as the eriterion for spatial feedback,
other eriteria such as saturation or purity may be bet-
ter suited for graphics imagery, Another important ex-
tension of this work is the adaplive optimizalion of the
spatial filter for different image characteristics. Finally,
while our method is likely to achieve results that are
gualitatively similar to that obtained by Kasson and
MeCann, we believe our algorithm requires a simpler
implementation and fewer computations than either of
these approaches. /i
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Plate 2. Image “macaws” processed through various gamut mapping algorithms: (A) reference original, (B) NE, (C) [GI_CUSP, (T
SGM, (E) IGI_SGM. (Image source: Kodak PhotoCD sampler; photographer: Steve Kelly.) (Bala ef af. pp. 436—443)
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