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ABSTRACT

ON LAPPED TRANSFORMS

Publication No.__

Ricardo L. de Queiroz, M.S.

The University of Texas at Arlington, 1994

Supervising Professor: K. R. Rao

In this dissertation, it is intended to demonstrate the potential benefits result-
ing from the study of lapped transforms (LTs). New results are presented, including
the development of new LTs with general overlapping factors and linear phase fil-
ters, the theory of perfect reconstruction LTs for finite-length signals, the perfect
reconstruction conditions for time-varying LT, and a theory to implement time-
varying LTs and wavelet packets with the perfect reconstruction and orthogonality
properties. Time-invariant LTs are presented, designed, optimized, and applied
to image coding and the time-varying lapped transforms are applied to construct
time-varying wavelet packets which are able to implement systems to decompose
the signal in a maximally-decimated way using virtually any rectangular tiling of
the time-frequency plane. In all cases, perfect reconstruction and orthogonality are

inherently assured, along with fast implementation algorithms.
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CHAPTER 1

INTRODUCTION

Since the early studies in the field of digital signal processing [66], [94], [18], researchers
have been trying to better understand the relation among discrete signals sampled at
different rates. The evolution of the field of multirate digital signal processing has made
available several tools for direct sampling rate conversion in the discrete-time domain,
including interpolation and decimation [94], [18]. Perhaps one of the most significant
contributions in this field, is the better understanding of multirate filter banks, which are
now the basis for several signal processing tasks [3], [6], [18], [34], [49], [39], [59], [70], [97],
[102], [104], [106], [107], [110], [111]. The studying and understanding of multirate filter
banks continues to evolve as new theories, design procedures, and applications appear in
almost all technical journals in the field of digital signal processing. The discrete cosine
transform (DCT), as well as any discrete block transform, [1], [21], [88], [89], and the
discrete wavelet transform (DWT) [2], [13], [19], [42], are also well-known as special filter
banks. Under this visualization, new horizons were created for these transforms, as their
analysis has been simplified, unified, and better understood [24], [49], [46], [50], [51],
[91], [100], [104], [108], [109]. Understanding is, in fact, the primary objective of this
dissertation, aiming to broaden the knowledge in this field by developing new theories or

revisiting and applying existing ones.



1.1 Filter banks

Filter banks are used to separate the input signal into several components, each one
carrying a single frequency subband of the original signal [18], [104]. It is also desirable to
design the filter bank such that these subbands can be recombined to recover the original
signal. The first process is called analysis, while the second is called synthesis. The
output of the analysis is referred as the subband signal, with as many subbands as there
are filters in the filter bank. In multirate digital signal processing, the down-sampler
and up-sampler operators play a fundamental role, reducing and increasing, respectively,
the sampling frequency by an integer factor [18]. Fig. 1.1 shows the symbols for down-
samplers and up-samplers and their input-output relation. If we assume ideal filters
and that the bandpass signal in a subband has a bandwidth of, let us say, 7/M rads,
it can be downsampled by a factor M : 1 without loss of information, making this the
principle of critically-decimated filter banks [18], [104], [111]. In the synthesis side, the
subband signal is upsampled by a factor of 1 : M, filtered to cancel imaging [18], and the
subbands contributions are, thus, summed to recover the original signal. As a result, the
sum of the number of samples in each subband is equal to the number of samples in the
signal [18], [104]. This is also quite desirable in many applications. The combination of
filtering followed by down-sampling is often called decimation, while the combination of
up-sampling followed by filtering is called interpolation.

Ideal filters, inherently, are not feasible and the issue was first addressed using
two-channel linear-phase filter banks and a design called quadrature mirror filter bank

(QMF) was introduced to cancel aliasing resulting from the decimation and interpolation



y(n/M) if -+ integer
y(m) — T M = z(n) = "
0 otherwise

z(n) — I M [~ y(m) = z(mM)

Figure 1.1: Basic operators for sampling rate conversion. The up-sampler (top) or sam-
pling rate expander inserts M — 1 zero samples between each pair of input samples, thus
increasing sampling rate by a factor of M. The down-sampler (bottom) or sampling rate

compressor retains only one out of M input samples.

processes [18], [22]. The so called Johnston’s filters are a family of QMF designed for
this approach [34]. The QMF solutions do not allow perfect reconstruction (PR) of
the signal and later Smith and Barnwell [97] developed the conjugate quadrature filter
bank (CQF) in a formulation which does not use linear-phase filters but allows PR of
the signal. Both QMF and CQF solutions have a two-channel filter bank which can be
hierarchically associated in a binary-tree path in order to create filter banks with more
than two channels.

A uniform filter bank is the one where all, let us say, M filters have bandpass
width of /M, thus signals of all subbands are decimated and interpolated by a factor
of M [18, 104]. Fig. 1.2 shows an M-channel critically decimated uniform filter bank. In
this figure, M is the number of filters (or number of channels or subbands), z(n) is the
input signal, and #(n) is the recovered signal after synthesis. The subband signals are
represented by y;(m) (0 <i < M — 1), and the filters with impulse responses f;(m) and

gi(m) (0 <i < M — 1) correspond to analysis and synthesis sections, respectively.
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Figure 1.2: Critically decimated uniform filter bank. Analysis (left) and synthesis (right)

sections are shown.

Filter banks can also be classified into paraunitary or bi-orthogonal [104]. In pa-
raunitary FIR filter banks, each f;(m) has a one-to-one correspondence to g;(m) [49],
[104], [110], while in bi-orthogonal filter banks the set f;(m) is found from the entire set
of gi(m), or vice versa [104], [110]. This is similar to the relation between orthogonal and
non-orthogonal matrices, and, in fact, orthogonal block transforms are a special case of
paraunitary filter banks, while non-orthogonal ones belong to the class of bi-orthogonal
filter banks!.

In this dissertation we will concentrate on FIR uniform paraunitary filter banks,
and show their equivalence to the lapped transform (LT) [49]. Although studied inde-
pendently in the past, it was shown that both definitions are identical [49]. Therefore,
the term lapped transform or LT will be used throughout this dissertation because of its

compactness and elegance, instead of the more descriptive term FIR uniform paraunitary

!The term bi-orthogonal comes from the establishment of the PR conditions of two-channel filter

banks which was extended later for the M-channel case [104], [109)].
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filter bank (PUFB). Furthermore, matrix notation and time-domain viewpoint, so useful
for lapped transforms, will be applied here to the analysis and design of filter banks. So,
the choice for the term lapped transform is quite justifiable, although we recall that all
results and discussions in this dissertation apply to any filter bank in the class described
above. The reader may also be cautioned not to confuse LT with the lapped orthogonal
transform (LOT) [10], [43], [44], which is only a particular LT and not a generic definition

[49].

1.2 Special notation
In terms of notation, our conventions are: I,, is the n X n identity matrix. 0, is
the n x n null matrix, while 0,,5,, stands for the n x m null matrix. J,, is the n x n

counter-identity, or exchange, or reversing matrix, illustrated by the following example:

00 0O0T1
00010
Js=10 0100
01000
100 00
J reverses the ordering of elements of a vector. [ ]! means transposition. [ ] means

transposition combined with conjugation, where this combination is usually called the
Hermitian of the vector or matrix. [ |® means reversion of all columns and rows of a ma-
trix. Thus, for an m x n matrix A we have A® = J,,AJ,. Unidimensional concatenation
of matrices and vectors is indicated by a comma. In general, capital bold face letters are

reserved for matrices, so that a represents a vector while A represents a matrix. Unless
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otherwise stated, only column vectors are used, and row-vectors are indicated using the

transposition notation.

1.3 Organization

In chapter 2, we will cover the basic theory of LTs, exploring the relation among
block and lapped transforms, filter banks, multi-input multi-output paraunitary discrete
systems, hierarchical LTs and wavelets. We will also present some basic concepts of
time-frequency representation of signals. In this chapter the basic concepts necessary for
understanding the remaining parts of this dissertation are introduced with a particular
perspective, allowing us to obtain several viewpoints for the same problem. Some useful
time-invariant LTs will be discussed in chapter 3, introducing new LT's and revisiting
existing ones. In this chapter, the implementation of these L'T's over finite-length signals
and signal extension concepts will be presented along with its underlying theory. Chapter
4 is concerned with time-varying LTs, presenting ways to fully vary the parameters of
a PUFB maintaining orthogonality, the PR property, and fast algorithms (if any) at
all times. Within this concept, the idea of a time-varying wavelet packet is developed
allowing us to achieve virtually all rectangular partitions of the time-frequency (TF)
plane in a maximally-decimated representation. Furthermore, algorithms for this purpose
are presented. Chapter 5 discusses the implementation of LTs over finite-length signals.
Signal extensions and special boundary L'T's are designed and some image coding examples

are presented. Finally, chapter 6 contains the conclusions of this dissertation.



CHAPTER 2

THEORY OF LAPPED TRANSFORMS

2.1 Overlap across block boundaries
2.1.1 Block transforms

In traditional block-transform processing, such as in image and audio coding, the
signal is divided into blocks of M samples, and each block is processed independently [1],
[14], [21], [23], [33], [49], [58], [68], [87], [88], [89]. Let the samples in the m-th block be
denoted as

x! = [zo(m), z1(m),. .., xp_1(m)], (2.1)

and the corresponding transform vector be

Yo = Wo(m),y1(m), ..,y (m)]. (2.2)

For a real unitary transform A, AT = A~!. The forward and inverse transforms for the

m-th block are

Ym = AXm, (23)

and

X = ATy, (2.4)



8

The rows of A, denoted al (0 < n < M — 1), are called the basis vectors because
they form an orthogonal basis for the M-tuples over the real field [1]. The transform
vector coefficients [yo(m),y1(m), ..., ynp—1(m)] represent the corresponding weights of
vector x,, with respect to this basis. Also, it is well known that the signal energy is
preserved under an orthogonal transformation [1], [33], [23], [88], assuming stationary

signals, i.e.,

Mag = Z af, (2.5)

where o? is the variance of y;(m) and o2 is the variance of the input samples.

2.1.2 Lapped transforms

For lapped transforms [49], the basis vectors can have length L, such that L > M,
extending across traditional block boundaries. Thus, the transform matrix is no longer
square and most of the equations valid for block transforms do not apply to an LT. We
will concentrate our efforts on orthogonal LTs[49] and consider L = N M, where N is the
overlap factor. Note that N, M, and hence L are all integers. As in the case of block
transforms, we define the transform matrix as containing the orthonormal basis vectors
as its rows. A lapped transform matrix P of dimensions M x L can be divided into

square M x M submatrices P; (i =0,1,...,N —1) as

P=[P,P, - Py_i]. (2.6)

The orthogonality property does not hold because P is no longer a square matrix and it



2M 2M

2M 2M

Figure 2.1: The signal samples are divided into blocks of M samples. The lapped trans-
form uses neighboring blocks samples, as in this example for N = 2, ie. L = 2M,

yielding an overlap of (L — M)/2 = M /2 samples on either side of a block.

is replaced by the perfect reconstruction (PR) property[49], defined by

N—-1-1 N—-1-1
> PPL, = Y PLP =601y, (2.7)
=0 1=0

for | =0,1,...,N — 1, where §(I) is the Kronecker delta, i.e., 6(0) = 1 and 6(I) = 0
for I # 0. As we will see later (2.7) states the PR conditions and orthogonality of the
transform operating over the entire signal.

If we divide the signal into blocks, each of size M, we would have vectors x,, and
Ym such as in (2.1) and (2.2). These blocks are not used by LTs in a straightforward
manner. The actual vector which is transformed by the matrix P has to have L samples
and, at block number m, it is composed of the samples of x,,, plus L — M samples. These
samples are chosen by picking (L — M)/2 samples at each side of the block x,,, as shown
in Fig. 2.1, for N = 2. However, the number of transform coefficients at each step is M,
and, in this respect, there is no change in the way we represent the transform-domain
blocks y,,.
The input vector of length L is denoted as v,,, which is centered around the block x,,,

and is defined as
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Then, we have

Ym = Pvp. (2.9)

The inverse transform is not direct as in the case of block transforms, i.e., with the

knowledge of y,, we do not know the samples in the support region of v,,, and neither
in the support region of x,,. We can reconstruct a vector v,, from y,,, as

A

Vi = Ply,,. (2.10)

where v, # v,,. To reconstruct the original sequence, it is necessary to accumulate the
results of the vectors v,,, in a sense that a particular sample z(n) will be reconstructed
from the sum of the contributions it receives from all v,,, such that z(n) was included in
the region of support of the corresponding v,,,. This additional complication comes from
the fact that P is not a square matrix [49]. However, the whole analysis-synthesis system
(applied to the entire input vector) is orthogonal, assuring the PR property using (2.10).

We can also describe the process using a sliding rectangular window applied over
the samples of z(n). As an M-sample block y,, is computed using v,,, ¥m+1 is computed
from v, which is obtained by shifting the window to the right by M samples, as shown

in Fig. 2.2.
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M samples x(n)
....l..............................
Vm
Vin41
Ym+1 y(n)

Figure 2.2: Illustration of a lapped transform with NV = 2 applied to signal x(n), yielding
transform domain signal y(n). The input L-tuple as vector v,, is obtained by a sliding
window advancing M samples, generating y,,. This sliding is also valid for the synthesis

side.

As the reader may have noticed, the region of support of all vectors v,, is greater
than the region of support of the input vector. Hence, a special treatment has to be given
to the transform at the borders. We will discuss this fact later and assume infinite-length
signals until then, or assume the length is very large and the borders of the signal are far
enough from the region to which we are focusing our attention.

If we denote by x the input vector and by y the transform-domain vector, we can
be consistent with our notation of transform matrices by defining a matrix H such that

y = Hx and x = H”y. In this case, we have
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H = P . (2.11)

where the displacement of the matrices P obeys the following

Py, Pp -+ Py
H = . (2.12)

Py Pr -+ Py

H has as many block-rows as transform operations over each vector v,,.
Let the rows of P be denoted by 1 x L vectors p! (0 < i < M — 1), so that

P? = [py, -+, Pa—1].- In an analogy to the block transform case, we have

yi(m) = p] Vim. (2.13)

The vectors p; are the basis vectors of the lapped transform. They form an orthogonal
basis for an M-dimensional subspace (there are only M vectors) of the L-tuples over the
real field. As a remark, assuming infinite length signals, from the orthogonality of the
basis vectors and from the PR property in (2.7), the energy is preserved, such that (2.5)

is valid.
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Assuming that the entire input and output signals are represented by the vectors x

and y, respectively, and that the signals have infinite length, then, from (2.11), we have

y = Hx (2.14)

and, if H is orthogonal,

x=H"y. (2.15)

Note that H is orthogonal if and only if (2.7) is satisfied. Thus, the meaning for
(2.7) becomes clear, as it forces the transform operating over the entire input-output
signals to be orthogonal. So, the LT is called orthogonal. For block transforms, as
there is no overlap, it is sufficient to state the orthogonality of A because H will be a
block-diagonal matrix.

These formulations for L'Ts are general, and if the transform satisfies the PR prop-
erty described in (2.7), then the LTs are independent of the contents of the matrix P.
For example, suppose a block transform is chosen to transform the signal, but we want

to use the direct algorithm for a N = 4 lapped transform. Thus, we can use

P = [000A000],

where 0 is a M x M/2 null matrix. If we augment the length of the basis vectors, from
the center to the borders, but maintaining PR, the formulae in this section would still be
valid. The definition of P with a given N can accommodate any lapped transform whose

length of the basis vectors lies between M and NM. For the case of block transforms,
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N =1, i.e. no overlap. This illustrates the fact that block transforms are a special case
of lapped transforms.
Causal notation - If one is not concerned with particular localization of the transform
in respect with the origin x(0) of the signal z(n), it is possible to change the notation to
apply a causal representation. In this case, we can represent v,, as

T

Vin = [XZv;—N-i—lf"aXSz_pXT], (216)

which is identical to the previous representation, except for a shift in the origin to main-
tain causality. The block y,, is found in a similar fashion as

N-1

Ym =PV =Y Py 1 iXm . (2.17)

=0

Similarly, v, can be reconstructed as in (2.10) where the support region for the vector
is the same, except that the relation between it and the blocks Xx,, will be changed

accordingly.

2.2 Lapped transforms as filter banks
2.2.1 Matrix notation for paraunitary filter banks

Going back to the uniform maximally-decimated FIR paraunitary filter bank, as
shown in Fig. 1.2, we remind the reader that the filters with impulse responses f;(n) and

gi(n) (0 < i < M — 1) are the analysis and synthesis filters, respectively, and obey the
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relation
filn) = g:(L — 1 —n),

for 0 < n < L —1, ie., they are pairwise mirror images of each other if the filter bank
is paraunitary [49], [104], [110]. Let us focus on the analysis section where the subband
signals yx(m) are formed. For a PR design, the filters are such that, if yx(m) = gx(m),
then (n) = z(n — 7), where 7 is an integer representing a delay [104], [111]. In the

analysis, right before the decimator, the convolution of the input signal and the k-th

filter (0 < k < M — 1) is represented as

Ue(n) = z(n) * fr(n) = i fr(@)x(n —1) = 2 fr(@)x(n —1). (2.18)

1=—00

The group of decimators is viewed as switches which close the circuit once at every M
samples of the input signal. The absolute phase where the simultaneous decimation
occurs, in this period of M samples, is unimportant for us and we will arbitrarily set it
as happening at all instants mM + M — 1, i.e., the last polyphase component is passed

to the output while all others are deleted. Hence, the subband signals are found by
L—1
ye(m) = ge(mM) = > fu(i)z(mM + M — 1 —i). (2.19)
=0
Define the vectors

vi =[x(mM+M —L)---a(mM+ M — 1)] = [X}_ni1r X (2.20)

m m

gr = [gr(0) -+ - gu(L — 1)] (2.21)

fi = [fx(0)--- fi(L = 1)], (2.22)
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for 0 < k < M — 1. Thus, (2.19) can be written as

yr(m) = (f,;FJL)Vm = ggvm (2.23)

Comparing (2.23) and (2.13) we see that the analysis process of a filter bank can be
regarded as a forward transformation using lapped transforms, if we use py = J.f, for
0 < k< M-—1. If we apply the same derivations for the synthesis section, we will
obtain pi = g, where g is a vector with the synthesis filters coefficients. Combining
both results, and assuming P has elements {p;;}, we can interchange the filter bank and

lapped transforms interpretations as long as

pi = fi(L—1—=1) = gx(l) (2.24)

is assumed, for 0 < k < M —1and 0 <1 < L —1 [49]. It is even possible to state
the equivalence between LTs and paraunitary filter banks (uniform, using FIR filters and
maintaining the validity of the dimensions of filters and matrices). In other words, a
LT is a paraunitary filter bank and vice-versa, although both concepts were developed

independently in the past. In order to convert a filter bank to a lapped transform, then

e Choose an arbitrary maximum-length-limit L (an integer multiple of M) for all

filters.
e Pad zeros on the impulse response of the filters, until the length L is obtained.

e Construct matrix P using (2.24) and follow the analysis and synthesis procedures

described in Sec.2.1.2.
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This result is important for two main reasons. First it gives a new insight over
the understanding of the frequency-domain behavior of the LT. As each basis vector can
be regarded as a filter, one can evaluate its frequency response. Second, it allows the
analysis and implementation of a filter bank in time-domain as LT. Therefore, we can
use either point-of-view, depending on which approach would be more applicable for a

particular purpose.

2.2.2 Variances of transform coefficients
We will now derive the variance for the coefficient of any orthogonal lapped or
block transform. If z(n) is a stationary process with power spectral density (PSD) given

by S.(€’*), then the PSD of the signal right before the decimator is
S (€7) = Sua(€) | Fr(e7)[,

where Fj(e’*) is the Fourier transform of fi(n). The PSD of the decimated signal is

M-1

Sykyk(ejw) = Z Sﬂkﬂk (ej(w_zﬂr)/M) (225)

r=0
and the integral of the PSD, before and after decimation, is the same. Therefore, in order

to calculate the variance of any transformed coefficient, we can use

1 rm . .
ot = — /O S (€7 | Fi(€) 2 dw. (2.26)
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2.3 Paraunitary filter banks

2.3.1 Multi-input multi-output FIR systems

A stable and causal linear discrete system governed by a difference equation relating
the input and output sequences can be defined by the Z-transform of its impulse response,
i.e., its transfer function. Assume the system is FIR. For an FIR multi-input multi-
output system (MIMO), we may express each output sequence as a linear combination
of difference equations involving each of the input sequences. The details of this section
can be found in [104]. Let the MIMO system have M input and M output sequences
with respective Z-transforms X;(z) and Y;(z), for 0 <i < M — 1. Then, X;(z) and Y;(z)

are related by

Yo(2) Eo(2) Eoi(2) -+ Eom-1(2) Xo(2)
Yl(Z) EL()(Z) El’l(Z) s El,M—l(Z) X1 (Z)
- (2.27)
i Yi-1(2) ] i Eyvi10(2) Em-1a(2) -+ Ev—im-1(2) I Xn-1(2) ]

where E;;(z) are entries of E(z) which is a square matrix, called the transfer matrix of
the system.

Of relevance to us are the normalized paraunitary transfer matrices with entries
on the field of real-coefficient polynomials of z, i.e. the entries represent real-coefficients
FIR filters. For such system, E(z) becomes a unitary matrix when evaluated on the unit

circle with center in the origin of the z-plane, as
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E7 (e/)E(e/?) = E(e/)E (/) = 1y, (2.28)

and E(z) is normalized paraunitary, which means

E~!(z) = ET(z). (2.29)

For FIR causal entries, paraunitary systems are said lossless systems, which contain
several properties analogous to those of orthogonal matrices. In fact, an orthogonal
matrix is one where all E;;(z) are constant for all z.

The degree of E(z) (or the McMillan degree, N,) is a positive number indicating the
minimum number of delays necessary to implement the system. For paraunitary systems,
the determinant of E(2) is of the form az~":, for a real constant a.

The order of E(z) is the maximum degree among all E;;(z), assuming they represent

causal FIR filters.

2.3.2 Polyphase transfer matrix
In multirate signal processing, it is often more comfortable to work with the
polyphase components of the signal [18]. If a decimation-interpolation factor of M is

applied, it is useful to consider M polyphase components z;(m) of the signal xz(n) as

zi(m) = x(mM + i) (2.30)

where 0 < ¢ < M —1. The polyphase components are, of course, sub-sampled by a factor

of M in relation to the original signal. Recalling Fig. 1.2, y;(n) are the subband signals
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Blocking  Polyphase MIMO Subband Unblocking

device components system samples device
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Figure 2.3: The analysis filter bank regarded as block-filter implementation, where the

output signal y(n) has its polyphase components as the subband signals.

(for 0 < i < M —1). Now define a signal y(n) whose polyphase components are the

subband signals, i.e.,

yi(m) = y(mM + 1) (2.31)

Therefore, the analysis filter bank is regarded as a MIMO system relating the polyphase
components of z(n) and y(n) in a block-filter-type operation [104], as shown in Fig. 2.3.

In Fig. 2.3, the devices responsible to convert a serial stream into its polyphase
components and vice-versa, denoted as blocking and unblocking devices, respectively,
are shown. The polyphase signals and the subbands are processed with a rate M times
slower than the sampling rate of z(n). The blocking device can also be viewed as a device
to extract one block of M samples from z(n) at a time. Also, in Fig. 2.3, the MIMO
system E(z) is called the polyphase transfer matrix (PTM) and it is responsible for
processing the polyphase components, in order to find the subbands [104], [106], [111].

The PTM is found by commuting the sequence of decimators-interpolators and filters
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Figure 2.4: The filter bank represented as a MIMO system is applied to the polyphase
components of the signal. The matrices F(z) and G(z) are called polyphase transfer
matrices. For a PR system both must be inverses of each other and for paraunitary filter
banks they must be paraunitary matrices. Thus, G(z) = F71(2) = FT(27!). For a PR

paraunitary causal system of order N, we must choose G(z) = z~W"DFT(z71),

using the well-known commuting rules [18][104]. The PTM E(z) has elements in the
field of polynomials of z, which are given directly from the filter bank. The elements of

E(z), E;;(z), are the Z-transforms of the sequences e;;(m) given by

The synthesis filter bank also corresponds to another transfer matrix leading the
processed subband signal g(m), whose polyphase components are g;(m), into the recon-
structed signal Z(n). For that distinction, we denote F(z) as the PTM corresponding
to the analysis filter bank, and G(z) as the PTM corresponding to the synthesis filter
bank. A blocking device cascaded with a unblocking device results in a pure delay which

can be omitted. Therefore, the entire analysis-synthesis system can be represented as in

Fig. 2.4 through the use of PTMs.
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!
|

Figure 2.5: Block-transform operation as a memoryless processing of the polyphase com-

ponents of the signal.

For a real-valued E(z), for all z, we have E(z) = A, and A is an orthogonal
transform, since E(z) is assumed to be paraunitary. So, the block transform discussed
in Sec. 2.1.1 can be viewed as a memoryless operation applied to the M polyphase

components of the signal, generating M subband signals, as in Fig. 2.5.

2.3.3 Perfect reconstruction and orthogonality

In the absence of any processing, F(z) and G(z) are connected together back-to-

back and PR is possible if they are inverses of each other.

F(z) = G7!(2) (2.33)

In this case, Z(n) = z(n) and analysis and synthesis are canceled. As mentioned earlier,
we are interested in paraunitary (lossless) systems to represent the filter bank [104], [106],
[107]. Let E(z) represent a normalized paraunitary transfer matrix so that E7'(z) =

ET(271), then, adding the constraint of normalized paraunitariness, we have
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F(z) = E(z), G(z) = ET(z ™). (2.34)

If the entries of F(z) are causal filters, the inverse PTM has non-causal filters and adding

the constraint of causality, for a PTM of order N, we must choose

F(z) = E(z), G(z) = 2 W-VET (27} (2.35)

so that Z(n) = z(n—NM+1) and the overall reconstruction delay is 7 = L—1. Therefore,

the PUFB, or the LT, can be described by a single M x M paraunitary PTM E(z).
Reinforcing the equivalence of paraunitary systems and LT's, we recall that the LT

matrix P and the PTMs are expressed as a function of the analysis and synthesis filters.

Hence

N-1
F(z) =Y 2"Py_1-iJu (2.36)
1=0
N-1 )
G(z) = > 2P, (2.37)
=0

As a result, the reader can verify that each of the following equations are equivalent and

each one of them implies the other [49]

ERET'(z Y =E'(zHE() =1y (2.38)
N—-1-1 N—-1-1

> PP, =Y PP =60l (2.39)
1=0 1=0

HH' =H'H=1, (2.40)
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This reminds us once more about the equivalence of real-valued maximally-decimated
uniform FIR PUFBs and LTs and this comparison will no longer be carried, exclusively

referring to such a system as an LT.

2.3.4 Support region and delays

The only constraints, in the previous definition of an LT, are that the signal is
assumed of infinite length and N — 1 is the maximum degree of the entries of the PTM,
such that each filter can have an actual length lying anywhere between M and NM. If

one of the filters has a length much smaller than L = N M, then it can be delayed.

Proposition 2.1 Let E'(z2) and E"(2) be two PTM corresponding to analysis filters fi(n)
and fr(n—prM —qr), respectively, for p, and q unique integers. Let fr(n) have length ¢y,
and let by + ppM + q < L. If E'(2) is paraunitary, E"(z) remains paraunitary, provided

that py is any permissible integer and qo = ... = qy-1 = q.

Let E};(2) and EJ}(z) be the entries of E'(2) and E”(z), respectively, and let ((z))us

denote z modulo M or the remainder of /M. One can verify that

Ejj(2) = 277 B (g ()21 (2.41)

If e, 7(2) e} T(z) are the vectors containing the k-th rows of E’(z2) and E”(z), respectively,

then (2.41) can be also expressed as
e} (z) = 277 ®p(2)e(2) (2.42)

for a suitable matrix ®;(z) which will combine a permutation matrix and a diagonal

matrix with elements of the form z7%. Note that ®;(2) is paraunitary. Paraunitariness
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of E"(z) requires that

o T(z)el(z7") = o(r — ). (2.43)

Since ®(z2) is only dependent on g, if g = ... = qa—1 = ¢ then ®L(2)®,(27!) = Iy,
(r,s€0,...,M —1). Thus,

e;’ T(z)e;’(zfl) — Z*prerse;T(z)q)zj(z)q)s(zfl)els(zfl) — 5(T _ S) (2.44)

Therefore, E”(2) is paraunitary. From this proposition we learnt that, if not all the filters
have length L in a LT, we can shift the impulse responses of the filters and pad zeros
to both extremities, in order to make the non-zero entries of the LT matrix P, clustered
around its center. With these considerations, we assume all filters to have actual length

L, regardless of shifting or zero-padding their impulse responses.

2.4 Factorization of lapped transforms

There is an important result for paraunitary uniform filter banks, derived from
the paraunitariness of the PTM, which states that any E(z) can be decomposed into a
series of orthogonal matrices and delay stages [20], [105]. There are N, delay stages and
N, + 1 orthogonal matrices, where N, is the MacMillan degree of E(z) (the degree of the

determinant of E(z)). Then,

N
E(:) = Bo [ (Y(:)B) (2.45)
i=1
where Y(z) = diag{z"',1,1,...,1}, and B; are orthogonal matrices. It is well-known

that an M x M orthogonal matrix can be expressed as a product of M (M — 1)/2 plane
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rotations. However, in this case, only B, is a general orthogonal matrix, while the
matrices B; through By, have only M — 1 degrees of freedom. This is an important
result which will be used throughout this dissertation. It states that it is possible to
implement a lapped transform with a sequence of delays and orthogonal matrices. It also
defines the total number of degrees of freedom in a lapped transform, i.e., if one changes
arbitrarily any of the plane rotations composing the orthogonal transforms, one will span

all possible PR lapped transforms, for given values of M and L.

Proposition 2.2 The (McMillan) degree of E(z) is bounded by N, < (L — M)/2 with
equality for a general structure to implement all LTs of filters with length up to L = NM,

i.e., E(2) of order N — 1.

This factorization is minimal and complete, however, it does not say anything
about the length of the filters. In [102] it is presented a minimal factorization of a class
of PUFBs where E(z) has order N —1 and N, = (N —1)M/2 = (L — M)/2. Then,
a general factorization has to have N, > (L — M)/2. Consider E"(z) = E'(2)Y(2)B,,
as one increment in the general factorization, where B; is a sequence of M — 1 Givens
rotations [20]. Assume B, has at least one rotation that can not be incorporated into
E'(z), otherwise B; = I;. Hence, if E'(2) and E”(z) correspond to a PUFB whose filters
have lengths L' and L”, respectively, then it is clear that L” > L’ + 2. As the maximum
length is L, there can only be a maximum of (L—M)/2 delay stages and N, < (L—M)/2.

Thus, for the general case N, = (L — M)/2.
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Unless otherwise stated, we will consider the L'T's which can be parameterized using

the symmetric delay factorization (SDF). Let

ZﬁllM/g 0 ~ IM/2 0
Alz) = , A(z) = . (2.46)

0 IM/2 0 Z_lIM/Q
The SDF of the PTM is given by

F() = By [] (A()By) (2.47)
G(z) =B%_, JV[? (A(=)B]). (2.48)

where all stages B; are allowed to be arbitrary M x M orthogonal matrices. Of course,
in such case, M is forced to be even. Note that for SDF, N, = (L — M)/2. It is not clear
whether, SDF is complete, i.e., can generate any LT for M even if we delay the filters
appropriately. However, we will assume it as a particular case.

The flow graph for implementing an LT which can be parameterized using SDF
is shown in Fig. 2.6 for analysis and synthesis sections. The use of SDF is not very
restrictive in practice, as, for M even, most PUFBs with any practical advantage can
be expressed in this way as we will see later. Its advantage will become clear in a later
chapter.

If we are given the SDF matrices instead of the filters’ coefficients, one can easily
reconstruct the LT matrix. For this, start with the last stage and recur the structure in
(2.47). Let P® be the partial reconstruction of P after including up to the i-th stage.

Then,
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Figure 2.6: Flow graph for paraunitary FIR filter banks where F(z) can be factorized
using symmetric delays and N stages. Signals z(n) and y(n) are segmented and processed
using blocks of M samples, all branches carry M /2 samples, and blocks B; are M x M
orthogonal matrices. (a) Analysis section; (b) Synthesis section; (c) and (d) are equivalent
SDF flow-graphs for the non-causal implementation of H. As all blocks are orthogonal,
analysis is carried by following the paths from left to right while synthesis is carried
by following the paths from right to left, using the transposes of the B;. Time- and

transform-domain block numbers are indicated in (c) for N =4 and in (d) for N = 3.



29

PO — By, (2.49)
. Injz On2 Ongz Onggo P 0xr

PY = By_i (2.50)
Onrs2 Onrsz Onro Ingge Onr Pl

p _ pv-1, (2.51)

Redefinition of an LT - We will assume, from now on, that an LT is a maximally-

decimated uniform FIR PUFB, obeying the SDF. Note that this implies that M is even.

2.5 Finite-length signals

Suppose the input signal z(n) has only NNV, samples and assume N, = NgM, where
Np is an integer representing the number of blocks, with M samples per block. To avoid
the expansion of the number of samples, we require y(n) to have N, samples, so that
each subband would have Np samples. Again, let 2(n) and y(n) be represented by the
vectors x and y, respectively, while, Z(n) and g(n) are the corresponding signals in the
synthesis section represented by vectors x and y, respectively. With a straight forward
application of the LT, the analysis section will require more than N, samples in x in
order to find N, samples of y. We can define X as an augmented vector obtained from x
by extending the boundary samples in any fashion, in a process we call signal extension.

The matrix notation for the analysis is given by

y =Px (2.52)
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where P is similar to H in (2.11), but with only Nz block-rows. The synthesis is accom-
plished by
x = PTy. (2.53)

As an example, for N = 3 and Ng = 5, we have

PO P1 P2 Oy Opr Opr Oy
O PO P1 P2 Oy Op Oy

sl
I
=]
S
=]
S
e
T
T
=]
S
o
S

From (2.7) we can see that

Iy

In, Lim ) (2.54)

L FR .
where I';, and T'g are (L — M) x (L — M) matrices and none of them is equal to I_ s, so
that even if y = y we have X # x, where the difference would occur in the last (L — M) /2
samples in each border. However, there is a size-limited linear transform T mapping x

into y so that [64], [65]

y =Tx (2.55)
x =Ty (2.56)

Note that P is not a square matrix whereas T is. As Ng — oo, then T — P,
P — H, and T — H. Also, both H and P are a function of just P whereas T depends

on other parameters such as the number of samples in the signal. T is an undefined
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matrix and depends on the boundary filter banks. These facts lead to the following

statement.

Proposition 2.3 Although, for infinite-length signals, an LT will lead to a orthogonal

transform T, in the case of finite-length signals, neither PR nor orthogonality is assured.

However, there are techniques that allow us to always reconstruct the signal bound-
aries. Furthermore, it is also possible to adapt the analysis-synthesis system to achieve

orthogonality of T. These topics are covered in a later chapter.

2.6 Hierarchical connection of lapped transforms

So far we have focused on the construction of a single LT resulting in M subband
signals. What happens if we cascade LTs by connecting them hierarchically, in such a way
that a subband signal is the actual input for another LT ? Also, what are the consequences
of submitting only part of the subband signals to further stages of LTs ? The relation
between PUFBs and discrete orthogonal wavelets [2], [3], [13], [19], [42], [24], [49], [46],
[50], [51], [91], [96], [100], [104], [108], [109] is well-known. Under conditions that are
easily satisfied [104], [24], an infinite cascade of PUFBs will generate a set of continuous
orthogonal wavelet bases. In general, if only the low-pass subband is connected to another
PUFB, for a finite number of stages, we call the resulting filter bank a discrete wavelet
transform (DWT) [3], [13], [19], [42], [91] [104], [108], [109]. A free cascading of LTs,
however, is better known as discrete wavelet packet (DWP) [16], [17], [71], [100].

From our equivalence relations between PUFBs and LTs, we infer the same relation
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between LTs and wavelets. The filter bank resulting from the hierarchical association of

several LT's will be called a hierarchical lapped transform (HLT') [46].

2.6.1 Time-frequency diagram

The description of the cascaded connection of LTs is better carried with the aid of
simplifying diagrams. The first is the time-frequency (TF) diagram. It is based on the
TF plane, which is well known from the fields of spectral and time-frequency analysis
[67], [7], [41]. The time-frequency representation of signals is a well-known method (for
example the time-dependent DFT and the construction of spectrograms [67]; see [15]
and [7] for details on TF signal representation). The TF representation is obtained by
expressing the signal z(n) with respect to bases which are functions of both frequency
and time. For example, the size-r DFT of a sequence extracted from z(n) (from z(n) to

xz(n+r—1)) [67] can be

ok, n) = S i + ) exp (—jmi> (2.57)

=0 r
Using a sliding window w(m) of length r which is non-zero only in the interval n < m <

n 4 r — 1, (which in this case is rectangular), we can rewrite the last equation as

r

alk,n) = i z(i)w(i) exp (—M> . (2.58)

For more general bases we may write
alk,n)= > z(i)p(n—1i,k) (2.59)

1=—00

where ¢(n, k) represents the bases for the space of the signal, n represents the index

where the base is located in time, and k is the frequency index.
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Figure 2.7: Examples of rectangular partitions of the time-frequency plane for a signal
which has N, samples. (a) Spectrogram with a N,-length window, resulting in N2 TF
samples; (b) Input signal, no processing; (c¢) A transform such as the DCT or DFT is
applied to all N, samples;

As the signal is assumed to have an infinite number of samples, consider a segment
of N, samples extracted from signal z(n), which can be extended in any fashion in order
to account for the overlap of the window of r samples outside the signal domain. In such
segment we can construct a spectrogram with a resolution of r samples in the frequency
axis and N, samples in the time axis. Assuming a maximum frequency resolution we can
have a window with length up to r = N,. In this case, the diagram for the spectrogram
is given in Fig. 2.7(a). We call such diagrams as TF diagrams, because they only indicate
the number of samples used in the TF representation of the signal. Assuming an ideal
partition of the TF plane (using filters with ideal frequency response and null transition
regions), each TF coefficient would represent a distinct region in a TF diagram. Note
that in such representation, the signal is represented by N2 TF coefficients. We are
looking for maximally-decimated TF representation which is defined as a representation

of the signal where the TF plane diagram would be partitioned into N, regions, i.e., N,
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TF coefficients will be generated. Also, we require that all N, samples of z(n) can be
reconstructed from the N, TF coefficients. If we use less than N, samples in the TF
plane, we clearly cannot reconstruct all possible combinations of samples in z(n), from
the TF coefficients, solely using linear relations.

Under these assumptions, Fig. 2.7(b) shows the TF diagram for the original signal
(only resolution in the time axis) for N, = 16. Also, for N, = 16, Fig. 2.7(c) shows a TF
diagram with maximum frequency resolution, which could be achieved by transforming

the original N, -sample sequence with an N, -sample DCT or DFT.

2.6.2 Tree-structured hierarchical lapped transforms

The tree diagram is helpful to describe the hierarchical connection of filter banks.
In this diagram we represent an M-band LT by nodes and branches of an M-ary tree. In
Fig. 2.8(a) it is shown an M-band LT, where all the M subband signals have sampling
rates M times smaller than that of z(n). In Fig. 2.8(b) it is shown the equivalent notation
for the LT in a tree diagram, i.e., a single-stage M-branch tree, which is called here a
tree cell. Recalling Fig. 2.7, the equivalent TF diagram for an M-band LT is shown
in Fig. 2.8(c), for a 16-sample signal and for M = 4. Note that the TF diagram of
Fig. 2.8(c) resembles that of Fig. 2.7(a). This is because for each 4 samples in z(n)
there is a corresponding set of 4 transformed coefficients. So, the TF representation
is maximally decimated. Compared to Fig. 2.7(b), Fig. 2.8(c) implies an exchange of
resolution from time to frequency domain achieved by the LT.

The exchange of resolution in the TF diagram is obtained by the LT. As we connect
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Figure 2.8: Representation of an M-channel LT as tree nodes and branches. (a) Analysis
section of an LT, including the blocking device. (b) Equivalent notation for (a) using an
M-branch single-stage tree. (c) Equivalent TF diagram for (a) or (b) assuming M =4
and N, = 16.

several LTs following the paths of a tree, each new set of branches (each new tree cell)
connected to the tree will force the TF diagram to exchange from time to frequency
resolution. We can achieve a more versatile TF representation by connecting cells in
unbalanced ways. For example, in Fig. 2.9 it is shown some examples of HLTs given
by their tree diagrams and respective TF diagrams. In Fig. 2.9(a) it is shown the tree
diagram for the 3-stages DW'T. Note that only the lowpass subband is further processed.
Also, as all stages are chosen to be 2-channel LTs, this HLT can be represented by a
binary tree. In Fig. 2.9(b), a more generic hierarchical connection of 2-channel LTs is
shown. First the signal is split into low- and high-pass. Each output branch is further
connected to another 2-channel L'T. In the third stage only the most low-pass subband
signal is connected to another 2-channel LT. In Fig. 2.9(c) it is shown a 2-stages HLT
obtaining the same TF diagram as Fig. 2.9(b). Note that the succession of 2-channel LT's

was substituted by a single stage 4-channel LT, i.e., the signal is split into four subbands
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Figure 2.9: Tree and TF diagrams. (a) The 3-stages DWT binary-tree diagram, where
only the low-pass subband is submitted to further LT stages. (b) A more generic 3-stages
tree diagram. (c) A 2-stages tree-diagram resulting in the same TF diagram as (b). (d)

TF diagram for (a). (e) TF diagram for (b) or (c).

and, then, one subband is connected to another LT. Fig. 2.9(d) shows the TF diagram
corresponding to Fig. 2.9(a), while Fig. 2.9(e) shows the TF diagram corresponding to
Fig. 2.9(b,c). Note that, as the tree-paths are unbalanced, we have irregular partitions
of the TF plane. For example, in the DWT, low-frequency TF coefficients have poor
time localization and good frequency resolution, while high-frequency ones have poor
frequency resolution and better time localization.

To better understand how connecting an LT to the tree can achieve the exchange
between time and frequency resolutions, in Fig. 2.10 it is shown the bases functions
(filters) resulting from two similar tree-structured HLTs. The difference between them is

one tree cell which is applied or not to a terminal branch of the tree.
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Figure 2.10: Two HLTs and resulting filter banks. (a) The 2-channel 16-tap-filters LT,
showing low- and high-pass filters, fo(n) and fi(n), respectively. (b) Resulting basis
functions of a 2-stage HLT based on (a), given by fo(n) through f3(n). Its respective
tree diagram is also shown. (c) Resulting HLT, by pruning one high-pass branch in (b).
Note that the two high-pass basis functions are identical to the high-pass basis function
of (a) and, instead of having two distinct bases for high frequencies, occupying distinct
spectral slots, the two bases are, now shifted in time. Thus, better time localization is

attainable, at the expense of frequency resolution.



CHAPTER 3

TIME-INVARIANT LAPPED TRANSFORMS

As we will show, some classes of fast and efficient LTs can be generated with SDF, not
to mention the two-channel PUFBs which always obey a SDF structure [105]. In order
to be useful for subband signal processing, LT's are designed to have fast implementation
algorithms allied with good performance. Such performance is measured for a given
criterion. The algorithms are frequently based on variations of the DCT. The DCT
matrix is also known as the DCT type II and is denoted as D/. The inverse DCT is
known as the DCT type III, and denoted as DI, Clearly, (D’/)~! = (D)7 = D!/
Another matrix used here is the so-called DCT type IV matrix, which is both orthogonal

and symmetric, so that (D'V)~! = (D!V)? = DIV, Let the DCTs of type II and IV have

1A%
ij

2 (25 + 1)im 2 (27 +1)(2i+ )7
n_ |2 \&J T2 v _ |z
4 =\ 3t COS( 2M ) 4y M 4M ’ (3:-1)

where kg = 1 and k; = 1/ \/5, for 1 < ¢ < M — 1. These matrices are highly structured

entries d/] and d]}, respectively, for i and j pertaining to {0,1,..., M — 1}. Then

and have fast implementation algorithms [88]. Two main classes of LTs will be discussed

along with some design issues.

38



39
3.1 Extended lapped transform (ELT)

Cosine modulated filter banks are PUFBs [104] using a low-pass prototype modu-
lating a cosine sequence. By a proper choice of the phase of the cosine sequence, Malvar
developed the modulated lapped transform (MLT) [45], which led to the so-called ex-
tended lapped transforms (ELT) [47], [48], [49], [52]. The ELT allows several overlapping
factors, generating a family of PR cosine modulated filter banks. Both designations (MLT
and ELT) are frequently applied to this class of filter banks. Other cosine-modulation
approaches have also been developed and the most significant difference among them is
the low-pass prototype choice and the phase of the cosine sequence [26], [38], [45], [49],
48], [61], [70], [95], [103], [104].

In the ELTs, the filters’ length L is basically an even multiple of the block size
M,as L =NM = 2KM. Thus, K is referred to as the overlap factor of the ELT. The

MLT-ELT class is defined by

Prn = h(n) cos [(kz + %) ((n — %) % + (N + 1)%)} (3.2)
fork=0,1...,M—1landn=0,1,...,L—1. h(n) is a symmetric window modulating the
cosine sequence and the impulse response of a low-pass prototype (with cutoff frequency
at w/2M) which is translated in frequency to M different frequency slots in order to
construct the uniform filter bank. A very useful ELT is the one with K = 2, which will
be designated as ELT-2, while ELT with other values of K will be referred as ELT-K.

The ELTs have as their major plus a fast implementation algorithm. The algorithm

is based on a factorization of the PTM into a series of plane rotation stages and delays and
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Figure 3.1: Flow graph for the direct (top) and inverse (bottom) ELT. Each branch

carries M /2 samples.

a DCT type IV [88] orthogonal transform in the last stage, which has fast implementation
algorithms. The lattice-style algorithm is shown in Fig. 3.1 for an ELT with generic
overlap factor K. In Fig. 3.1 each branch carries M /2 samples and both analysis (forward
transform) and synthesis (inverse transform) flow-graphs are shown. The plane rotation
stages are of the form indicated in Fig. 3.2 and contain M/2 orthogonal butterflies to
implement the M /2 plane rotations. The stages ©; contain the plane rotations and are

defined by

-G SiJ sz

Jar2Si In2CiJryo

C, = diag {cos(fo,), cos(b1,),- -, cos(H%_Li)}

S; = diag {sin(6y;), sin(6y,),- -, sin(Q%flﬂ.)}

t; ; are rotation angles. These angles are the free parameters in the design of an ELT

because they define the modulating window h(n). Note that there are KM angles,
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Figure 3.2: Implementation of plane rotations stage showing the displacement of the

M /2 butterflies.

while h(n) has 2K M samples, however, h(n) is symmetric what gives a total number of
degrees of freedom in such cosine modulated filter banks equal to K M. In general, there
is no simple relation among the rotation angles and the window. We will often use the
optimized angles given in [49], except for the ELT-2, where we use the parameterized

design [52][49][48]. In this design, we have

Ok0 = —g + Har/o4k (3.4)
Or1 = —g + tnr/2-1-k (3.5)

where
i = [(12_—]\;) 2k +1) + 7} (3.6)

and + is a control parameter, for 0 < k < (M/2) — 1. In general, we will use v = 0.5.
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If we let D’V denote the DCT type IV matrix [88], from our SDF notation, we can

define the ELT as the LT where

B DI Onrs2 Inggo
0 p—

Ini2 Onggo
B21+1 = O3 fOfOSZSK—l,

3.2 Linear-phase LT

From the work by Soman et al. [101], [102], we know that a complete parameter-
ization of any E(z) of order N — 1 characterizing a linear-phase PUFB (LPPUFB) of

M-channels (M even) is given by

E(Z) = Spolp‘IlN_lA(Z)‘IIN_gA(Z) s A(Z)‘I’()le (37)
where
Inie Onrge
Qi = (3.8)
Onj2 Jny2

1| Onr/2 Ly Iy
Slp = 5 ) (39)

Oppe S Ly —J iy
S’ and S” can be any M /2 x M/2 orthogonal matrices, and ¥; are M x M orthogonal

matrices described as
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A, By,
w,=| . (3.10)

Blp,i Alp,i

for some non-singular M /2 x M /2 matrices A;,; and By, ;. A(z) is defined in (2.46). We

will abbreviate the notation for (3.7) as

0
E(2) = S,Qp ¥y ( H A(Z)‘I’i) Qip- (3.11)
i=N—2
Let
1 | Iz Inp
we L / /
| BYYP R SV
and
U; Oy
P, = , (3.12)
Orse Vi

where U; and V; can be any M/2 x M/2 orthogonal matrices. The implementation
flow-graph of the LPPUFB is shown in Fig. 3.3. Note that ¥; can be expressed as

102, 101]

U, = W&,W (3.13)

for Alp,i = (Uz + VZ)/Q and Blp,i = (UZ — Vz)/2

Proposition 3.1 Any linear-phase PUFB with M even can be expressed as

E(z) = Kn_1(2)Kny_2(2) - - - Ky (2)Eg
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Figure 3.3: (a) Flow-graph for the implementation of the PTM E(z) describing the
analysis section of the LPPUFB. Each branch carries M /2 samples and E and O stand
for even and odd output subband coefficients. In this factorization, the stages ¥; can be

factorized as in part (b).

where K;(z) = &;WA(2)W, and Eq is a generic M x M orthogonal matriz with sym-

metric basis functions.

It is easy to see that S;,Q;, ¥ n_1 can be simplified to

S'Un_1 Ounypo
S, Qu Ty = W, (3.14)
Op2 S"Vinoy

As Uy_; and S’ are generic orthogonal matrices, and the product S'Uy_; is also
a generic orthogonal matrix, we can discard the term S’ without any loss of generality.
The same is valid for S” with regard to Vy_;. Therefore, we get S;,Qi, ¥n_1 = Pn_1W

and (3.11) reduces to
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0
E(z) = &y 1W ( 11 A(z)Wi’iW) Qup, (3.15)
i=N—2
or to
1
E(z) = [ ®WA(:)W | E,. (3.16)
i=N—1

where Eqg = ®,WQ, is a general M x M orthogonal matrix with symmetric basis

functions, i.e., the PTM of order 0 of a LPPUFB. Since an order-n PTM leads to filters
of length (n + 1)M, a LPPUFB with filter’s length nM + M can be obtained from one
with filters’ length nM by adding a stage to the PTM of the later. If E,(z) denotes an

order-n PTM, then we can state that

E,.(z) =K, (2)E,_1(2) (3.17)

where

Ki(z) = ®&,WA(2)W. (3.18)

Therefore, for any N > 1, any PTM of a LPPUFB can be expressed as

E(z) = Kn_1(2)Ky_2(2) - - - Ki(2)Eg (3.19)

Proposition 3.2 FEach stage in the above factorization can also be expressed as K;(z) =

®, W, A(2)Wy, where W, and Wy can be either W or WE independently.

Let
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_ Ivie Ongge
I=
Oz —Iayo
then W, can also be expressed as
U, +V; V- U;
U, = WROWR ; A, = % Bpi= o, (3.20)
" \ Ui +V,
IV, = WEOW ;. A, = —— i Bui= —%, (3.21)
. \ Ui +V,
I, =WIdWE: A, = 5 By, = ;— : (3.22)
Hence we can say that
1
En(Z) = (H @leiA(Z)Wi1> QOWOQZP (323)

where W; can be either W or W% such that ¥, is as in (3.13) or (3.20). Suppose we
violate this rule, for example by reversing only one W matrix, as in (3.21) or (3.22), then
the reader can check that we will obtain a PTM E/ (z) which is related to the original
one by E! (z) = £IE,(z). Therefore, E/(z) also corresponds to a LPPUFB, although
having the sign of some filters inverted. Odd-symmetric filters are not affected, because
the sign change is equivalent to time-reversion of the coefficients. For even-symmetric
filters, the sign change can be compensated by inverting the signs of the elements of any
matrix ®;, because the odd-symmetric filters are not significantly affected by the overall

sign change. As a conclusion, the stage K;(z) can be expressed as
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Ki(z) = ®,W1A(2)W, (3.24)

where W; and W, can be either W or W¥, independently.
Let P® be the partial reconstruction of P after including up to the i-th stage.

Then, for linear-phase LTs, we have

PY = E, (3.25)
. Inj2 Onrs2 Ongsz Ongpo WPl 0xr

PO = W (3.26)
Onrr2 Onrg2 Ongse Iago Onr WPl

P = PWVD, (3.27)

3.3 Generalized Linear-Phase LOT (GenLOT)

The LOT is a popular LT with N = 2 whose basis functions are symmetric [10],

[43], [44], [45], [49]. Its transform matrix, representing its fast algorithm, is given by

U, 0 D.-D, (D, — DO)JM/2
Pror = (3.28)
0 Vl De - Do _(De - DO)JM/2

where D, is the M /2 x M matrix with the even-symmetric basis functions of the DCT
and D, is the matrix with the odd-symmetric ones (see [44], [49] for details). Examining

IT for 4 even and

the symmetries of D'/, it is easy to see that D, and D, have the entries d/}

odd, respectively. U; and V; are M/2 x M /2 orthogonal matrices. The design suggested
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for the LOT [44], [49] uses A instead of A, U; = I s, and approximates V; by M/2 — 1

plane rotations [44], [49].

With the results in (3.19) and (3.24) we can formulate the complete factorization for
a generalized linear-phase LOT (GenL.OT), which can be defined for any integer overlap.
The GenLOT is defined as a LPPUFB obeying (3.19), where Eq is chosen to be the DCT
matrix [88], which we denote as DZ. The output of the DCT is, then, separated into
the groups of even and odd coefficients. The GenLOT with N — 1 stages after the DCT

has basis functions (filters) with length L = NM and has its PTM defined as

E(z) = Ky 1(2)Ky_2(2) - - - K (2)D'. (3.29)

The implementation flow-graphs for the analysis and synthesis sections are shown in
Fig. 3.4.

The class of GenLOTSs, defined in this way, allow us to view the DCT and LOT as
special cases, respectively for N = 1 and N = 2. The degrees of freedom reside on the
matrices U; and V; which are only restricted to be real M/2 x M /2 orthogonal matrices.
Thus, each one can be parameterized into a set of M (M — 2)/8 plane rotations. Each
plane rotation represents one degree of freedom in the design and can be implemented
with either 3 additions and 3 multiplications or 2 additions and 4 multiplications. In
either case, the total number of floating-point operations (flops) is 6. For N — 1 stages
after the DCT, this results in a total of M (N — 1)(M — 2)/4 degrees of freedom. For
example, for M = 8, U; and V; are 4 x 4 orthogonal matrices. Hence, each one can be

parameterized as a cascade of 6 plane rotations, as shown in Fig. 3.5. U; and V; can be
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Figure 3.4: Flow-graph for implementation of GenLOTs. Each branch carries M /2 sam-

ples and E and O stand for the even and odd transform coefficients, respectively, of

output (analysis) and input (synthesis) for both DCT and GenLOT. Even and odd co-

efficients also correspond to symmetric and anti-symmetric basis functions (which are

the filters’ impulse responses), respectively. [ is a scaling factor incorporating all scaling
factors present in W, so that 3 = 2=V~ (a) Analysis; (b) synthesis; (c) details of the
analysis stages K/, for M = 8; (d) details of the synthesis stages K], for M = 8.



90

RV
QAN
DY,

— sin(6;)
A ‘ 0; cos(6;)

Figure 3.5: Implementation of a 4 x 4 orthogonal matrix through plane rotations. The

detail of each plane rotation is shown on the right.

implemented with 3M (M — 2)/4 flops, each, using plane rotations, or (M — 1)M /2 flops
using direct matrix multiplication. Note that for M > 4 it is advantageous to use direct
matrix multiplication to implement each factor (U; or V;) than to use plane rotations.
For M = 4 the number of flops is the same, and there are no LPPUFBs for M = 2 [104].
So, plane rotations are just useful for the design of ®; and not for their implementation.
One can achieve a reduction in the implementation cost, by forcing each matrix to be
composed by a reduced set of plane rotations, let us say (M/2) —1. For M = 8, a matrix
with only 3 plane rotations is shown in Fig. 3.6. Using only matrices parameterized in this
form, the total number of degrees of freedom is reduced to (N — 1)(M — 2), a reduction
of a factor of M/4. Each matrix can be implemented with 3M — 6 flops compared to
(M — 1)M/2 flops in direct matrix multiplication.

In our notation, we can say that the GenLOTs are LTs with symmetric delay

factorization, for which
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Figure 3.6: Implementation of a constrained 4 x 4 orthogonal matrix using only 3 plane

rotations.

1| Iz Inpe Un_1- 0 Lnjz Inge

Ly —Tuype 0 Wn_1- Ly —Ingge

for 1 <i< N -2

3.4 Design Aspects

Mostly, the signal is assumed to have an infinite number of samples and stationary
statistics, so that the design of P to fit in a given model suffices for its application. A
cost /benefit trade-off has to be established and weighted before designing the LT. Both
GenLOTs and ELTSs have fast implementation algorithms and several degrees of freedom
that one can manipulate to shape the impulse response of the respective filters. These
degrees of freedom are given by the plane rotation angles.

For ELTs, there are ¢ = L/2 plane rotations to design. For K > 2, there is
no simple relation among the rotation angles and the modulating window and non-
linear optimization techniques have to be carried. The design of ELT's is so well covered

in [49] that we will just concentrate on the design of GenLOTs. For GenLOTSs, the
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number of degrees of freedom is ¢ = M(N — 1)(M — 2)/4 for the full set of rotations or

q= (N —1)(M — 2) for the reduced one.

The LOT can be obtained from the DCT, by direct determination of ®; [49]. In
this case, U; and V; are determined in a general form, without obeying any particular
structure. Optimization, in this case, is carried solely to determine an approximation to
the matrices U; and Vj, found through the techniques described in [49]. For the LOT,
U, is approximated to I,;/; and V is approximated by a cascade of % —1 plane rotations
[44], through optimization routines. So, for the LOT, the optimization is necessary to find
faster implementation algorithms. However, for NV > 2, there are no techniques available
to find directly all matrices ®;. The ¢-dimensional space of solutions is searched through
optimization routines, in such a way as to minimize a particular cost function. However,
due to the highly non-linear relationships among the angles and the cost functions, there
is no guarantee to obtain a global minimum. All GenLOT examples presented here
were obtained using unconstrained non-linear optimization and simplex search, using the
routines provided by MATLAB version 4.0 .

Examples of features we can try to maximize in the design are the transform coding
gain (Grc¢) [33] or a measure of the attenuation in the stopband region of each filter, or
a combination of both. Other features can be considered as well. Thus, the cost function

can be selected as the inverse of any of these functions.
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3.4.1 Coding Gain

Let the autocorrelation matrix for z(n) be R, then y(n) has an autocorrelation

matrix given by [44]

R,, = PR, P” (3.30)

with elements 7,(i, 7). If the diagonal elements are o7 = r,,(i,7), and if we want to
maximize the coding gain [33], the cost function to be minimized is the inverse of the

coding gain as

M—1 1/M
(1)
COST = _GTC(dB) = 1010g10 TOT . (331)
M=

=0

In the design of any LT, we can speed up the optimization by not optimizing the
last stage, i.e., Bg. This is possible by using the method applied by Malvar [44] for the

LOT. For this, in the recursion to find P, assume

I 0 0 0 PV-2) 0
p_pN1_p, M2 Oa2 Ong2 Ongg2 M |
Onr2 Onrjz Onrgz Iggo 0 PW-2)
so that P = BgP;,., where P;,. contains the remaining factors. The matrix B, for
maximum decorrelation of the input signal (given matrices By through By_;, and a

statistical model for the input) is given by the matrix whose rows are the M eigenvectors

of f)zncRxxf)T

wmc [44]'
In the case of GenLOTs, for N = 4 (three times the overlap amount present in the

LOT), it is only necessary to optimize two out of four stages (because the first stage is
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DCT and the last stage is determined by the remaining ones). For a reduced set of angles
this method does not make sense because it would force us to run a second optimization
to approximate Uy_; and Vy_; by a series of M/2 — 1 plane rotations each.

Assuming the input signal as a zero mean AR(1) signal with adjacent sample cor-
relation coefficient 0.95 (i.e., its autocorrelation function is 7,(n) = 0.95/"!), the basis
functions of a GenLOT for M = 8, optimized for maximum Gr¢ are shown in Fig. 3.7,

for N =4 (L =32) and N =5 (L = 40).

=~

O P N W A~ 01 OO N
O L N W M 01O NFX

$ ,vm
0 20 40 O 20 40
n n

Figure 3.7: Basis functions fy(n) (filters’ impulse responses) of a GenLOT with M = 8
designed for maximum Gr¢. Examples for L = 40 (left) and L = 32 (right) are shown.
The design of LOT based on maximum Gr¢ is not necessarily the best one for image
coding, even considering that the AR(1) process is, in general, a good model for images.
For example, the “smoothness” of the basis functions is an important issue, because in

low bit-rate coding only few coefficients are non-zero, thus the signal is reconstructed
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using only few basis functions. If these basis functions are very concentrated or have
“bends” or “edges”, then these will produce visible patterns in the reconstructed image,
which could have a better aspect if the lowest frequency basis functions were smoother,

even though they could lead to a GenLLOT with lower G¢.

3.4.2 Stopband Attenuation

Another criteria for the design of the GenLOT can be the maximization of the
stopband attenuation of the filters fr(n) (0 < k< M —1,0<n <L —1). Let Fy(e’)
be the Fourier transform of fi(n) which is a band-pass filter with low and high cut-off
frequencies denoted by wy 1, and wy . Let the filters be sorted by their frequency slots
so that

WL = k?T('/M, Wk,H = (k?+ 1)7T/M

The stopband region {2 corresponding to fi(n) is defined by

Q = {w]|w| € wom+em))}
Y = {w||wl € (0,wrs — €U [wrm+em)}

Q1 = {w | |w| S [waM—l,L — 6]} (332)

where € is a small positive real number used to reduce the influence of the transition
region into the stopband region.
A possible cost function to be minimized can be the energy of the filters frequency

response in the stopband region, defined as
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Figure 3.8: Filters’ frequency responses (20 log;, |Fi.(e’*)]), given in dB, of the GenLOT
with L = 32, M = 8 N = 4. (a) Designed for maximum Gr¢. (b) Designed for

maximum stopband attenuation.
For a direct comparison, in Fig. 3.8 it is shown the frequency response plots for a

GenLOT with M = 8 optimized for maximum stopband attenuation and for maximum

GTC-



CHAPTER 4

TIME-VARYING LAPPED TRANSFORMS

In the previous sections, we dealt with time-invariant filter banks in a sense that filters
with linear time invariant impulse responses were used. We can extend this to the
concept of time-varying analysis-synthesis systems and the possibility to maintain perfect
reconstruction while changing filter banks. Furthermore, we would like to find the PR
conditions for time-varying filter banks and verify to what extent we can make variations.

Recently, other researchers obtained independent results on the subject of time-
varying filter banks [4], [12], [25], [28], [29], [30], [31], [57], [99], which are distinct from
our perspective. Some of the topics described in this section can be also found in [71],

[72], [75], [76].

4.1 Flow-graphs and orthogonality

The key for achieving PR time-varying filter banks and LTs resides on a very
simple fact, generally not considered in the theory of multirate filter banks. Consider
Fig. 4.1, where it is shown the flow graph for implementing a fictitious system, leading
8 input samples to the output, as we follow the paths from left to right. The boxes
contain orthogonal matrices meaning orthogonal linear operations over the input. As the

number of input samples is equal to the number of output samples, there are no sources or

o7
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drains for the paths, all internal operators are orthogonal, hence, one can always obtain
the inverse by following the paths from right to left and replacing the matrices by their
transposes. In other words, the 8-samples transform is itself orthogonal and enjoys PR,
since we always can recover the input samples from the output ones.

Now, let us review the flow-graphs shown in Fig. 2.6. The z-domain flow-graphs
in Fig. 2.6(a) and Fig. 2.6(b) led us to the time-domain flow-graphs of Fig. 2.6(c) and
Fig. 2.6(d), which, in the light of what we have just discussed, form an orthogonal system
leading input time-domain samples to output transform-domain samples. It is, thus, easy
to find the samples in any domain with the knowledge of the samples in the other domain.

Suppose, instead, that the orthogonal matrices in Fig. 2.6 are no longer identical
along the time index. We would arrive at the flow-graphs shown in Fig. 4.2. Similarly,
the causal (z-domain) and non-causal blockwise (time-domain) flow-graphs are shown.
In the figures, all branches carry M /2 branches and blocks B;(m) are M x M orthogonal
matrices. As all blocks are still orthogonal, although not necessarily identical within a
stage, the whole orthogonality is still maintained, and analysis is carried by following
the paths from left to right while synthesis is carried by following the paths from right
to left, using the transposes of the matrices B;(m). Time indices for different stages in
Fig. 4.2(c) are changed for a more convenient reference, in relation to the indexes shown

in parts (a) and (b).
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Input X Output

>

Figure 4.1: A flow-graph relating 8 input and output samples in a fictitious system.
The x boxes represent orthogonal matrices, and, therefore they can also be permutation

matrices.

4.2 PR time-varying LT's

From Fig. 4.2, we can see that PR is inherent with this new degree of freedom,
independently of the choice of the orthogonal matrices. It is also very easy to see that
this new time-varying flow-graph corresponds to a time-varying filter bank or to a time-
varying L'T. The recipe to find the time-varying filter bank from the flow-graphs is simple:
find the input blocks which are connected in any way to output block m and arrange
them in a vector v,,; find P(m) such that the m-th output block (y,,) is given by
Ym = P(m)v,,. In this way, the transform matrix operating over the entire signal extent

in (2.11) is rewritten as

where the displacement of the transform matrices P(m) still obeys the following
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Figure 4.2: Flow graph for time-varying paraunitary FIR filter banks using symmetric
delays and N stages. The z-domain and time-domain flow-graphs are shown. In the fig-
ures, all branches carry M /2 branches and blocks B;(m) are M x M orthogonal matrices.
(a) Analysis section; (b) synthesis section; (c) time domain blockwise flow-graphs corre-
sponding to the symmetric delay factorizations. As all blocks are orthogonal, analysis is
carried by following the paths from left to right while synthesis is carried by following the
paths from right to left, using the matrices transposes. Time indices for different stages
in (c) are changed for a more convenient reference, in relation to the index shown in parts

(a) and (b). PR is inherent, independent of the choice of the orthogonal matrices.



Po(m—-1) Pi(m-1) Py_1(m-1)
H= Po(m) Pi(m) Pn_1(m)
Po(m+1) Pi(m+1) Py_1(m+1)
For example, in the case N = 4 shown in Fig. 4.2, we have
(100000 |
1000 Bi(m 0 000IO0O
P(m)  Bo(m) 1)
0001 0 Bi(m+1) 001000
100000 I |
(10000000 |
000I00O00O0
00I000O00O
00000IO00O
0000IO0O0O
I 00000001 |
[ Bs(m—1) 0 0 0o |
0 Bs3(m) 0 0
0 0 Bs(m +1) 0
I 0 0 0 Bs(m + 2) |
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(4.2)

where I and 0 are of size M /2 x M /2 and their subscript was dropped to simplify the

notation. In general, we have

P(m) = By(m)D1Bj(m) - - - Dy_1Bly_ (m).

(4.3)
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where B(m) has size (i4+1)M x (i+1)M and D; has size iM x (i+1)M, for 0 <i < N—1.

To find the matrices D, start with

1000
D, =
000I

and then find D; (1 <i < N — 1), recursively from

Di1 Ou-_nymrxm
Onrxm D,

The matrices B;(m) are determined by

B'2i+1(m) = diag{BgiH(m — Z), ceny B2i+1(m + 1 + Z)} (45)

B)(m) = diag{Ba(m —1i),...,By(m +1i)} (4.6)

for0<i< K -—1.

It is easy to see that a particular choice of By(m) will influence solely P(m), while
a particular choice of B;(m) (i > 0) can influence several instants of P(m). This suggests
that any change of the filter bank is preceded and followed by transition regions.

The time-domain PR equations, in (2.7) and in Sec. 2.3.3, assume that P remains
unchanged along the time-index. Therefore, the analysis can be more easily presented
due to the periodic nature of the problem. In time-varying systems, we have to choose an
index m and find the PR equations for it, noting that (2.7) is no longer valid. Roughly
speaking, the PR conditions for steady systems must state the orthogonality of the basis
functions and the so-called orthogonality of the “tails”. This implies that aliased (shifted)

versions of P would cancel in the synthesis process. Since P(m) is no longer constant with
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m, (2.7) must be rewritten to ensure the orthogonality among P(m) and its neighbors
P(m+1),P(m=*2),P(m=*3).... Then, it is easy to show that the PR conditions for
time-varying LTs are

N—-1-¢ N—-1-¢

kz: P.(m)PL pre(m —20) = Z Pie(m)PL(m +4) = 501y (4.7)
=0
for ¢ =0,1,..., N — 1, yielding 2N — 1 independent matrix equations.

As a remark, the term lapped transform was maintained (although (2.7) is no longer
valid) because H remains orthogonal and for each instant m, the synthesis filters are time-
reversed versions of the analysis ones. Thus, the filter bank is said to be instantaneously
paraunitary. In this case, (4.7) is satisfied, but not necessarily the steady conditions in
(2.7) are met. In this situation, the filter bank is said to be transitory. Of course, all
equations are satisfied when the filter bank is not time-varying.

One important point not discussed so far regards to what extent we can change
the LT. From our assumptions, using the symmetric delay factorization, independently
of the choice of B;(m) we can only change the frequency response of the filters. The
maximum length L (overlap amount) and the number of channels M (block size) cannot
be changed in this simple fashion. Actually, L can change assuming any value [ such that
M < | < L. However, it is possible to freely change L and M, although complicating

the notation a little more.
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4.3 Changing the number of filters (M)

To change the number of filters, M, using the symmetric delay factorization, we
can start by assuming that at one point in time we are using a LT with M; channels,
and, from that point on it is desired to use a LT with M, channels. The flow-graph
shown in Fig. 4.2(c) would still be valid noting that on the top of this figure, M = M,
while on the bottom M = M. In other words, for the beginning of the flow-graph the
branches carry M; /2 samples, and the boxes are M; x M; orthogonal matrices, while at
the bottom of that flow-graph the branches would carry M,/2 samples and the boxes are
My x Ms orthogonal matrices. Therefore, there would be a transition where a matrix
B;(m) would be connected to branches with both M; and M, samples and have size
(My + Ms)/2 x (M, + Ms)/2 as shown in Fig. 4.3. Note that as B;(m) is chosen to be a
(My + M) /2 x (M + M,)/2 orthogonal matrix, PR and full orthogonality are assured
by the same principles allowing PR time-varying L'Ts for the M; = M, = M case. The
choice of this orthogonal matrix has to be studied carefully so as not to allow undesirable

transitory filter banks.

4.4 Changing the maximum filter length (L)

The overlap amount (filters’ length) can be changed not only by altering the im-
pulse responses of filters representing a PTM of a certain degree (setting elements on
both extremes to zero), but also by changing the degree of the instantaneous PTM. For
this, one shall add or delete stages to the factorization. The addition of stages can be

carried either as post-processing or as pre-processing operations. Consider the transform
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M /2 My/2
N 2

Bi(m) |

My)2 2,2
1

Figure 4.3: In the transition from M;-channel LT to a Ms-channel LT, there will be a
sparse factor with input-output branches carrying both M; and M, samples. Note that
as B;(m) is chosen to be a (M; + Ms)/2 x (M; + M,)/2 orthogonal matrix, PR and full
orthogonality are assured by the same principles allowing PR time-varying L'Ts for the

M, = My = M case.

matrix H as a function of the stages containing the delays (permutations) and orthogonal

matrices (sparse factors). Let the orthogonal matrices stages be denoted by

B, = diag{...,B;(m —1),B;(m),B;(m +1),...} (4.8)

and let D be a permutation matrix (which is also orthogonal) representing the symmetric

delays, assuming the pattern of an infinite recursion of (4.4). Then, it is easy to see that

N-1
H =B, H DB.. (4.9)
i=1
The reader can see that the entire analysis (or synthesis) process of a LT is a
cascade of delays and block transforms appended to the output (or input) of a smaller
degree LT. Thus,

N
H,.., = Bo H DB, = HDBy (4.10)

=1
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can be thought of as a form of preprocessing the input sequence. Accordingly, in a

post-processing perspective, if we rewrite H as
~ N ~ ~
H,, = B; [[ DB, (4.11)
i=2

where we just changed the labels of the stages, then

N
H,.., — Bo [[ DB; = B,DH,,,. (4.12)
i=1

The key to make a time-varying use of the degree change, is to only apply the pre-
or post-processing stages from a certain point in time. For increasing the degree, for
example, one can bypass the stage of delays and orthogonal matrices before the chosen

point in time. Hence, for a stage to be bypassed,

B, = diag{. .., Iy, I, Bi(m),B;(m + 1),...}. (4.13)

The delay stage in the transition will, accordingly, have the form

100000000
0I000000O0
00I000000O0
0000I0000O0
000100000
000000I00O0
00000IO0O0O
000000001

Again, a careful examination of the transition regions may be carried in each case.
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4.5 Switching LTs and transitions

A continuous change of filter banks, like in adaptive filtering, is possible, but its
effectiveness is, at least, arguable, due to the transition period inherent of a change of
any of the factors B;(m). Maybe the most practical idea would be to switch between two

filter banks at a time. Each one would have its own characteristics (and factorization)

well defined.
- — filter bank 1 — filter bank 2 — filter bank 3 — - --

If we use the complete factorization of (2.45), it is, thus, possible to switch between
any two LTs at a time. Similarly, one can switch between any two SDF-LTs. Also, we
can go further and use ELT's to switch between any two ELT's (the same for a LPPUFB),
and so on. In any case, a more detailed study of the transition is necessary. For a given
change of LTs, non-linear optimization may be carried to design the angles constituting
the transitory factors B;. However, this may not be the only way to fix undesired
transitory filters arising in the transitions. Note that one can also switch directly all B;
factors pertaining to the first LT to factors pertaining to the second LT and use post-
processing. For this consider block-diagonal matrix post-processing the output of Hx, so
that

y = HHx (4.14)
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where

H’ Ao : (4.15)

Lo

and A, is a orthogonal matrix of any finite size. It is clear that H' is also orthogonal
and corresponds to some sort of time-varying PUFB. Thus, the post-processing matrix
can be used to re-transform the subbands in the transition region. Also, A,,s can be
chosen to have size larger than the transition length in order to perform a slower switch
between the two LTs. Of course, the design of A, is dependent on the LTs and on a
particular cost function. We can choose its size, factorize it into plane rotations, and use
the same COST functions and design methods discussed in the previous chapter.
Alternatively, we may try to improve transitory LTs, trying to match some pre-
defined output statistics. For this, we can introduce the make-up matrix. Such matrix
represents a post-processing operation, as is the case for the matrix A, just described.
A s can have any size we want, but if we restrict it to be of size M, i. e., just post-
processing the output of the instantaneous LT P(m), we may absorb A,,s into By(m),
thus the make-up matrix to be designed is Bo(m). This may simplify the notation but the
method we are about to discuss can be applied to A,s, as well. Assume P(m) belongs

to a transition and, using (4.3), let

P'(m) = D,B)(m) - --Dy_1B)y_,(m) (4.16)

so that

P(m) = Bo(m)P'(m). (4.17)
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V,, is the vector containing the samples of z(n) transformed by P(m). Assume z(n) has

an autocorrelation matrix R, and let
w = P'(m)v,, (4.18)
which has a pseudo autocorrelation matrix R, (m), given by
Ryw(m) = P'(m)RyP* (m). (4.19)

The word “pseudo” was added to the autocorrelation matrix because the transform itself
is variable, so that the output signal is also time-varying, therefore, rigorously it cannot
be stationary. However, we think of these signals as if the transitory LT was to be held
steady indefinitely for a stationary input signal.

The statistics of z(n), in R,,, are an assumption and P’(m) is given, hence R, is
known. Assume also that we want the output signal y,, = P(m)v,, (for that particular
transitory LT) to have a pseudo autocorrelation matrix R,,(m) = E{y,y.} of any
particular form (for example diagonal, as in signal compression applications). Note that
R,w(m) is a Toeplitz symmetric matrix which can be diagonalized by an orthogonal
matrix ®,, as

A= ®,Ry(m)®L (4.20)

where both ®,, and A are M x M matrices, A contains the eigenvalues of R, (m), while

the rows of ®,, are the eigenvectors of Ry, (m). If we choose R, (m) such that
R,,(m) = ®)A®, (4.21)

for some orthogonal matrix ®,, we can say that ®, diagonalizes R,,(m) and



70

R,,(m) = ®] ®, R, (m) 2L P, (4.22)

Using (4.17) and (4.19) we can see that

R,,(m) = ®] ®,P' (m)R,.P7 (m)®_®, = Bo(m)P'(m)R,. P (m)B{ (m).  (4.23)

Hence, we get

By(m) = @, ®,,. (4.24)

Given the restriction in (4.21), ®, and ®, contain the eigenvectors of R,,,(m) and
R,,(m), respectively, while A contains the eigenvalues of both. Also, A, ®,, and ®, are
similar, i.e. are related by similarity transformations [32].

The design of the make-up matrix consists in solving (4.21) for ®,, for particular
assumptions of R, (m) and R,, (A is found from R,, and from P’(m)). This procedure
may be carried interactively, until finding suitable matrix R, (m), with characteristics
close to those originally desired, such that an orthogonal matrix ®,, in (4.21) does exist for
a given A. For example, if decorrelation is desired, as in signal compression applications,
one can set directly ®, = I);. We can expect some improvement, by using the make-up
matrix, but this method is limited. The reason so is because P(m) brings elements from
RL to a subspace *M, while By(m) can just optimize the transform inside the subspace

selected by P’(m).
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For more complicated approaches such as applying A,,s to a set of output blocks,
the same concept applies, although P’(m) and some other factors have to be changed to
conform to the new situation.

The change of orthogonal factors, other than in the last stage, may be performed
by optimizing the angles forming the sparse orthogonal factors for a given cost func-
tion. However, we can also narrow our search by starting an optimization process from
a possibly non-orthogonal matrix, which will be a combination of the sparse factors be-
fore and after transition. If such factor is non-orthogonal, one can select an orthogonal

approximation (e. g. using its QR factorization [32]).

4.6 Turning an LT “on” and “off” using the bypass LT

An important filter bank is the most trivial structure we can implement, i.e., the

bypass LT. This filter bank is characterized by

P(m) = Prypass = [Onrx(n—n1)/2, Int, Onrx(n—n1)2)- (4.25)

Given a factorization structure, one may find its bypass state which will perform
the bypass filter bank and would cause the input samples to be copied to output without

any transformation. For the general SDF, we have

B, = L (4.26)
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Onrse a2
B — 1<i<N-1. (4.27)

Inie Ongo

If we are using an LT with a more particular structure, such as the LT or GenLOT,
we can always find ways to accommodate a fast switch to a bypass LT. For the ELT we
can set all angles in By through By_; to m/2 and replace By by

K K+1

JM2 0M2 0M2 IM2
By—| %M i . (4.28)

Oz Jumy2 Ini2 Ongo
For the GenLOT or any LPPUFB, we can switch the factors U; and V;, along with Eg

such that

Ui=-Vi=Iy, 1<i<N-1 (4.29)
O a2
Ini2 Onggo

Also, we have to apply a postprocessing stage. If the transform matrix with its orthogonal

factors modified according to (4.29) and (4.30) is denoted as P’; then

Pbypass = WP’ (431)

The reader can confirm these statements either by direct inspection and substitut-
ing the orthogonal factors into the general structure. For example, the bypass LT found

using the structure of an ELT is shown in Fig. 4.4.
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1 J J J J ><

m—2 Bo| m—2
1 J J J J ><

m—1 By m—1
1 J J J J ><

m By m

1 J J J J ><

m—+1 B0:m+1
1 J J J J ><

m+ 2 Bo| m+2
1 J J J J ><

Figure 4.4: Flow graph for the ELT with K = 4 under the bypass state, where input is
solely copied to output.

If we switch from a regular LT to a bypass state, or vice-versa, there will be
a transition region. As the transition region is over, it has no sense in following the
implementation flow-graph and input samples can be just copied to output. The notion
of the bypass state is only necessary to maintain PR in the transition regions. Although
the bypass filter bank is trivial, it is crucial and is the most important factor in the
development of the applications of time-varying LTs. It allows to bypass the filter bank
as many times as we want, maintaining PR during transitions. Hence, we can associate
filter banks in a hierarchical way following the paths of an M-ary tree, and prune or

expand branches at our convenience. Also, the bypass filter bank allows us to process
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finite-length signals. If the LT is turned to the bypass state on the borders, in such a
way that the last filter bank in the transition is applied to the last block in each border,
then, the transform over the entire finite-length signal is fully orthogonal enjoying PR
also at the borders.

Assume we switch to a regular LT from a bypass LT or vice-versa. The effective
transform H applied to x will be composed by a block diagonal connection of two matri-
ces: one for the bypass LT (which is of course the identity matrix) and another (denoted
by T’) corresponding to the transform applied by the regular LT, including the transition
region. As the structure for switching LTs is completely orthogonal, it is clear that T’ is

also orthogonal. Thus we can have

I T'
H = or H= (4.32)
T' I

As we can turn “on” or “off” the transform anytime we want, it is also possible to have

I, T
H= T or H= I, (4.33)
I, T
where in the first hypothesis we processed/segmented a finite-length signal and, on the
second one, the LT is turned “oft” for n samples and, then, turned “on” again producing
T”. In this fashion, we can segment the signal in any way we want, bypassing the LT
anytime we want, and maintain PR and orthogonality at all times. The design of the

transition regions (to and from a bypass state) is discussed later.
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4.7 Time-varying wavelet packets

As we are able to turn “on” and “oft” an LT, it is possible to implement a PR time-
varying M-ary DWP. For this, we may express the HLT (or the DWP) as connections of
LTs, following the paths of an M-ary tree, and prune or expand branches at any time.
To expand a branch, one may add an LT to the terminal branch of the tree and turn
it “on” whenever the expansion is supposed to occur. To prune a branch, one may just
turn-off the LT representing the particular branch. Note that, in this way, one can change
arbitrarily the shape of the tree, generating orthogonal DWP bases and maintaining PR
at all times. As we can also change L and M in any branch, we are able to virtually

make an arbitrary orthogonal representation of the signal in the TF plane, using any LT.

4.7.1 Notation for general time-varying DWP

In a previous chapter we defined the notation for the DWP and HLT, by associ-
ating LTs following the paths of tree as shown in Fig. 2.8 and Fig. 2.9. So, the general
hierarchical association of LTs is completely defined by the branches and nodes of the
tree representing the connection of LTs. From Fig. 2.8 and Fig. 2.9 we can see that
signals flow in the nodes of the tree while the branches connecting the nodes are filters
and decimators, representing the filter bank. The first node of a tree (which contains
the original signal) is the “root” while the terminal nodes (which carry signals which are
not processed by an LT) are called “leaves”. Leaf nodes are also called instantaneously
virtual end nodes (IVEN) and define the tree bounds momentaneously. If two nodes are

connected, the node toward the root is called the parent node, while the one towards
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the leaf is called the child node. Although we studied a single LT we need to establish a

proper notation to describe the shape of the tree, the signals flowing in the nodes, and
the LT's used in each branch.

Let us define a stage as the set of all nodes which are separated from the tree root
by the same number of branches, i.e., all nodes in a stage s are output signals after the
hierarchical connection of s LTs. Therefore, we label each node in the tree as 7;;, where
1 is the stage number and j is a unique number labeling the node in a stage. Since the
shape of the tree is time-varying the number of nodes in a stage will vary too, such that,
at a time instant k there are k;(k) nodes in stage i. The signal z;;(n) flows in node
n;; and has a sampling rate which is slower than the original input signal z(n), and,
clearly, zoo(n) = x(n). The signal in node 7;; is processed by an LT matrix P;;(k), which
represents a M;;(k)-channels PUFB. In order to label the nodes in a stage we increasingly
order them according to their respective frequency slots occupied by the corresponding
filter’s frequency response as shown in Fig. 4.5. Note that node ordering in a stage is not
so easily found from the tree structure. This is because [18] the decimation of high-pass
or band-pass filtered subbands (assume ideal filters, for instance) may lead to a signal
whose spectrum is a mirror of the in-band spectrum of the subband before decimation.

If 75 is a leaf, we can say that P;;(k) = In,, ) and that the signal in a leaf (IVEN)
is processed by a one channel filter bank, which is the bypass LT. In such case, we can
extend the paths of the tree so that the leaf node is a parent of only one other node.
This child node, of course, carries the same signal as its parent and we can extend this

false parenthood notation for as many stages as necessary. Although the tree ends where
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Figure 4.5: Node labelling example for a DWP. The nodes are labelled n;; where ¢ is

the stage number and j a unique number inside a stage. Assuming unit-gain filters,

the corresponding frequency response of each resulting filter at each stage is also shown.

These frequency responses show the spectral partition provided by each stage of the DWP

as we go from the root to the leaves (from stage 0 to stage 3).



78

an IVEN is found, we can make all terminal branches of the tree to lie in the same stage
number. Hence, we define S,,,, as an absolute maximum stage number (depth of the
tree). The equivalent filters and spectrum partitions resulting from any tree shape can
be found by inspecting the nodes in the stage S,,.., and the shape of the tree is found
by the set of M;;(k). As a remark, the sampling rate ratio between the original signal
and the j-th subband in the stage S,..., at instant k, is the ratio between 7 and the

bandwidth of the j-th subband.

4.7.2 M-ary homogeneous trees

The M-ary tree is a simplification of the general tree where, except for the leaves,
M;;(k) = M (a fixed number) for all ¢,j and k. In other words, each node is either
an IVEN or is parent of exactly M other nodes. In this way, the shape of the tree can
change, but not the number of branches connected to each node. For a homogeneous
tree we assume that P;;(k) = P, ie., a fixed LT for all nodes at all times. Also, it is
simple to see that 7;; is the parent node of nodes 7; jus through 7; jar+a—1 and is also
the child node of 1,_1 jonm, Where @ means integer division. Therefore, we do not have
to keep track of M;;(k), and, instead, we can assume a maximum stage number S,
and define the concept of activity of a node. A node is said to be active if its signal is
processed by an LT, and is said inactive otherwise. Obviously, an IVEN is inactive. Let
us denote by a;;(n) the activity of node 7;; and a;;(n) = 1 if the node is active at instant
n and a;j(n) = 0, otherwise. So, the tree shape is defined by the activity of its nodes

(the map of all a;;(n), up to stage Sp,q,) and this is the DWP we want to implement. We
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Figure 4.6: A 2-stages binary-tree example. (a) Full-tree with its nodes labelled. All
nodes have M;; = 2. (b) The tree we want to implement. (c) The tree with leaf nodes
extended to the last stage, in such a way that for the extended node M;; = 1. (d)
Equivalent notation for homogeneous binary tree, by deactivating one LT, as indicated.
When a node is deactivated, the LT is turned to its bypass state. When the transition

to bypass is over, one can extract all samples directly from node 7.

can always think as if the full-tree is the LT system that is always implemented, while
we pick the signal at the desired nodes (IVENs). This different notation is shown in an

example in Fig. 4.6.

4.8 Tiling the time-frequency plane

As we discussed in Section 2.6, the TF diagram has an intimate connection with
the tree-diagram and both represent a DWP. The time-invariant DWP allows partition
of the TF plane in a very versatile fashion. However it can be much improved with the
use of a time-varying DWP. If we can shape the tree in any way along the time index
and even change the number of channels in each tree-node, we can approach a virtually

arbitrary maximally-decimated partition of the TF plane, although the tiling is always
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Figure 4.7: Examples of TF diagrams of time-varying DWP. (a) A change in the number
of channels. (b) One of the binary tree branches is pruned. (c¢) A more complex change

in the shape of the tree.

rectangular. In practical cases, the number of allowed combinations is so large that
virtually all TF diagrams (tiling of the TF plane) of interest may be represented by a
general time-varying DWP.

For example, based on the TF diagrams in examples in Figs. 2.7 and 2.9 we can con-
struct the TF diagrams shown in Fig. 4.7, which are associated with time-varying DWP,

where tree-branches are pruned and expanded or the number of channels is changed.

4.9 Adaptive wavelet packets

The best time-frequency representation of a signal, or the best wavelet packet,
is based on abstract ideas. Almost all representations and tiling of the time-frequency
plane may have their utility. In [90] it was developed a method to find the best wavelet
packet based on a rate-distortion criterion. In another work [29], [28], this criterion
was applied to search for an adaptive wavelet packet which would track the best tree

shape. The method populates each node of the tree with a Lagrangian cost function
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Jij(@) = D;j + aR;;, where D;; and R;; are the distortion and bit-rate associated with

node 7,5, respectively, and o is a Lagrange multiplier. Then, an algorithm is used to find
the minimum cost for all possible set of terminal nodes, given a quality factor a [90],
[29], [28]. For variation in time, a “double-tree” algorithm was employed in [28]. This
algorithm was also applied to code speech signals, and it can be applied to our case,
since we are providing the means to adapt the tree and not the cost function for the
adaptation.

On the other hand, we can also use an ad-hoc simplifying strategy, which is solely
based on intuition and concepts. This can simplify the adaptation procedure and even
allow backward adaptation. Assume, for while, an homogeneous M-ary tree. For this we
need to formulate a cost function allowing all nodes to be independent. In such a way
the adaptation algorithm is divided into two acting units.

Node unit - Present in every node of the full tree, it evaluates the signal flowing in the
node and decides if such node may be active or not.

Managing unit - Central unit that collects information (suggestions) about activities
of all node units and decides which nodes should be made active or not based on their

hierarchies in the tree.

4.9.1 Energy compaction algorithm for the node units
If a stationary model is assumed, for minimum mean square error, the greater
energy compaction in fewer coefficients [33] results in less distortion for a given bit-

rate. This will generally lead us to choose the full tree which has better frequency
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resolution [73]. However, as a transform is bypassed, the filter for the resulting subband
is shortened. Therefore a better temporal localization is attainable. Furthermore, if we
use shorter filters, the distortion in a coefficient in a particular subband would spread
along a smaller region than if the filters were longer. Therefore, we can seek the maximum
time resolution whenever not much energy compaction is provided by the transform.
Let us focus our attention in one node 7;;, as the node units are assumed to be
independent. As the tree is M-ary, let x(m) = x;;(m) and xx(n) = 2ir1,;m1x(n) for

0 <k < M — 1. For this node, a(n) is the activity signal. Let

oy = E [xi(n)] (4.34)

The above variance is related to the variance of x(n) (¢2). If the LT is orthonormal, its

filters have gain /M and obey the power complementary property, i.e.,

M-1
> op = Mo (4.35)
k=0

The signal is not assumed stationary and the variances can be estimated continuously.
Further computations over x(n) would lead to more complexity and we can work directly
with the decomposed signal. Then, a windowed estimation of the variance using a filter

with impulse response h(n) results in

Gi(n) = Xi(n) * h(n) (4.36)
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Using the estimated variances for energy compaction computations, we have a local

estimation of the transform coding gain [33] as

— =0 1. (4.37)

and we can compare G(n) to a threshold g in order to decide if we set a(n) = 1 or not.
Hence,

a(n) = u[G(n) - g] (4.38)

where u(x) is the unit step function. For each node we can append the subscript ij for

its proper identification in a(n), G(n), and g.

4.9.2 Tree-collapsing algorithm

To determine whether all nodes are to be made active or not we can start from
the maximum available frequency resolution, i.e., check nodes in a maximum stage S,4z
and, then, their parents. At each node, we can evaluate a;;(n) as in (4.38). If a node is
made active, all nodes connecting it to the root are also made active, in order to make
the algorithm consistent. When all nodes in a stage are active, the algorithm is stopped.
Start: a;; = 0 (all ij)

s = Smaa:
repeat

form=0..M*—1

if agy, =0

evaluate ag,

if ag, =1
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end

if (agm =1, m=0,...,M*—1)
then: stop
else: s=s5—1

end

until s =0

4.9.3 Tree-construction algorithm
The tree-construction algorithm is similar to the tree-collapsing one, but, instead
of starting from a stage S,,.., we start from the root and proceed towards the leaves

checking the activity of the nodes. In this way, the algorithm can be simplified as
e Start the adaptive process with any tree configuration.

e Evaluate activity in all parent nodes of IVENSs to see if they can be made inactive

(prune the tree). In this case, these nodes become IVENs in the next iteration.

e Check all IVENS to see if they can become active (expand the tree). In this case

the current IVENs become parent nodes of M IVENSs in the next iteration.

Note that activity may be checked only on IVENs and on their parents, while all

other nodes do not have such procedure. Thus, the managing unit just prunes or expands
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branches of the tree. Alternatively one can try to extend the search, by searching IVENS

and n — 1 levels of nodes with childhood relation to an IVEN (for expanding the tree),

and n levels of parenthood of an IVEN (for tree pruning).

4.9.4 Adaptation

In order to prune or expand the same branches in analysis (transmitter) and syn-
thesis (receiver), in an adaptive DWP, it is necessary to reconstruct the activity map (the
set of all a;;(n)) at the receiver. Adaptation can be either forward (the activity map is
sent as side information) or backward (the activity map is deducted by the receiver from

past reconstructed samples).

Backward adaptation

In (4.37) and (4.38) we use LT domain samples. If G(n) in (4.37) uses quantized

samples Xx(n) to estimate the variances and if, for a node 7;;, we use

aij(n+1) = u[Gy(n) — gi], (4.39)

then, the receiver can recover a;;(n) without transmission of side-information, because
it has available the past quantized transform- or time-domain samples and g;; can be a
fixed threshold. Both receiver and transmitter have to be synchronized, such that the
transmitter has to use quantized values also when the transform is bypassed. Further-
more, the same nodal interrelation algorithm has to be used, always preparing future

values of a;;(n + 1). The filter h(n) has to be causal and a simple first or second order
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ITR filter can be adequate, having a narrow low-pass bandwidth to avoid frequent transi-
tions. Whenever a transition occurs, the states of the IIR filter may be reset, interrupting
filtering until the transition is over. After that, filtering is resumed. This is because at
a transition, the receiver will not have transform-domain samples or time-domain ones.
Therefore, it will not be able to perform filtering, in the windowed estimation of vari-
ances, unless the time-domain samples are recovered and transformed again. Setting the

filters to avoid frequent changes may help in this case.

Forward adaptation

In case the activity map with all a;;j(n) is sent in parallel, then things get much
easier. First, there is no need to calculate activity on the receiver side. Second, one
can use any means to determine activity of the nodes, including non-causal filters. A
non-causal h(n) is naturally preferred since it will avoid very short changes. The binary
signal a;;(n) can be processed to avoid short bursts and locally oscillatory behaviors. A
possible solution is a recursive median filter, which, in the binary case, is easily computed

using tables. The formula for this is:

a;;(n) = round [mean (a;;(n — k) ... a;;(n + k))] (4.40)

This would prevent bursts of up to k isolated values of a;; and would not oscillate
if the input is an alternation of 0’s and 1’s. When an oscillation is encountered, the state
just before it is preserved. The order in which the node activity is evaluated may be

found using the algorithm described earlier.
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The disadvantage is due to the transmission of side information, since all the activ-
ity map has to be transmitted. Assuming 1 bit per sample and a maximum stage number
Simaz, 1t would require S,,.. /M bits per sample as overhead. (Remember that if node 79
works at a sampling rate fs, node 7;; works in a sampling rate M~ f,.) However, assum-
ing the filters would prevent very frequent changes, run-length coding can be applied to
largely compress this map. Furthermore, as a node is active, all nodes connecting it to

the root node will also be active. Therefore, information for them is not necessary.

Tests

Tests were made, using the energy compaction, tree-collapsing and forward adap-
tation algorithms, to code a segment of 8192 samples of a speech signal shown in Fig. 4.8,
based on the ELT-2 (M = 2) and S;u4: = 6. The transformed samples were coded using
a uniform quantizer whose step size was varied. The entropy of the quantizer output
plus tree-information, was evaluated as a measure of the rate obtained. The measure of

distortion was

D~ (i3 3o (olo) - fc(n»Q)m,

n=0

where #(n) is the reconstructed signal after synthesis. The plots of distortion versus
entropy (DH) are shown in Fig. 4.8 for several threshold values g. Once the threshold
g is chosen (the same value g was applied to all nodes), the quantizer step is varied to
obtain curves in the DH plane. The curves are not shown (only the points are shown),
because we have tried several threshold values between g = 2.5 and g = 4.0 for several

step sizes and the plot of each curve would be confusing. On solid line the same results
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were obtained with the use of a regular wavelet transform. We can see the concentration

of points below the solid line indicating the best performance of the adaptive scheme.

4.9.5 Non-M-ary trees

We can accommodate the tree-construction algorithm for non-M-ary trees and,
yet, elaborate an algorithm which is not unbearably complex to implement. However,
we assume that M;;(n) € {mo,...,my,,}, corresponding to a set of ny; + 1 admissible
values for the LT’s number of channels, and where my = 1 (inactive node). Of course, if
nyr = 1, we have the particular case of an M-ary tree.

We may change the node units to compare several values of M and decide how
many channels the particular node may have. For this, the node unit may start with
M;;(n) = m,,, and check if G;; > g;;. If not, it may repeat the test with M;;(n) = m,,, 1
and, in case Gj; > g;; still is not satisfied, recur the test with the set of admissible values
until reaching M;;(n) = my, in which case the particular node is bypassed. The managing
unit may behave as for the case of the M-ary tree, i.e., only the IVENs and their parents
are checked for pruning or expanding branches. Backward or forward adaptation are
perfectly possible, as well, although the side-information (for forward adaptation) may
contain the map of all M;;(n), where each permissible value belongs to the enumerable

set of possible number of channels, as mentioned above.
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Figure 4.8: Distortion (D) versus Entropy (H), in bits-per-sample, plot of the results
simulating the adaptive wavelet packets based on the ELT with K = 2 and M = 2. a)
Sample speech segment. b) D x H plots using several values of threshold and quantizer

steps, where the solid line shows the results for the DWT, using the same filter bank.



CHAPTER 5

PROCESSING FINITE-LENGTH SIGNALS

When designing an LT, the signal is assumed to have an infinite number of samples and
stationary statistics, so that the design of the LT matrix P to fit in a given statistical
model suffices for its application. With these assumptions, the choice of P is the single
goal in the design of the analysis-synthesis system. However, most of the signals encoun-
tered have finite length either because of their nature, or because they are previously
segmented to deal with time-varying statistics. As we discussed in the previous chapter,
a time-varying DWP can be implemented by segmenting the signal and applying LT's to
finite-length segments, for each node of the tree. Thus, the need for efficient approaches
to implement LTs over finite-length signals is evident. In this case, two approaches will
be discussed in this chapter. First, time-invariant LTs following SDF are analyzed, in
such a way that a single L'T' is invariantly applied to the signal. This is accomplished by
artificially extending the signal into a periodic sequence, which is processed and, then,
segmented again [5], [8], [9], [11], [36], [37], [53], [54], [64], [65], [77], [82], [86], [98].
Second, we discuss the use of time-varying filter banks applied to the boundary regions
of the signal in order to assure full orthogonality of the size-limited transform T [25],

[28]-[31], [49], [69], [86].

90
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B periodic extension

0 N1
signal

symmetric-periodic extension

Figure 5.1: (a) Illustration of input signal of N, samples, and its periodic and symmetric-

periodic extensions.

5.1 Periodic extensions

When processing a finite-length signal, of N, samples, one can create an infinite-
length sequence by periodically extending the original sequence [5], [11], [37], [53], [54],
[64], [65], [86], [98]. Illustrations of two popular extension methods are shown in Fig. 5.1.
If, starting from signal z(n), of N, samples, contained in vector x, we can create an

infinite periodic signal (see Fig. 5.1) x,, as

Xog = [, X, X, X, X, X, (5.1)
Then, the analysis transform is given by
Yoo = HX (5.2)
and, we can see that y., is also periodic given by
Voo = [yl oyl vyl yhyt -, (5.3)

Hence the equivalent transform T, such that y = Tx, is block circulant and orthogonal
[110]. The orthogonality of T can be easily inferred by checking (2.39) and (2.40). As

an example, for N = 3 and Ng = 5, we have
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Py Py Oy Oy Po
Po Pr Py Oy Oy
T=10y Py P, Py Oy (5.4)
Oy Oy Py P, P,
Py, 0 0y Py Py

The periodic extension has important properties. All processing can be done effi-
ciently with the aid of the DFT by implying circular convolution [66], [67]. However, this
may just be more efficient than direct time-domain implementation of the convolution
if the filters’ length L is large. Furthermore, the assumption that the signal is periodic,
also implies that, in the extended signal, samples in both extremes of x are adjacent,
and this may introduce artificial high-frequency components in the subbands because of
possible discontinuities, across the signal boundaries. One way to resolve this problem

may be by using another signal extension. Assume N < Np and let

x. = Erx, (5.5)

where Er is a square matrix used to find a signal extension (x.) based on the existing

signal x. Thus, we construct an infinite-length periodic signal given by

T [ T 7XT7 Xga XT7 XZ? XT7 XZ? o ] (56)

X 18 periodic and is processed by H, generating an infinite-length vector as y., = Hx.
Note that still there is a size-limited transform T such that y = Tx. Since both H and

X have a periodic structure, then y, is also periodic as
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ygo = ["'?yT7YZ7yT7YZ?yTaYZa"']) (57)

where y = Tx and the relation among y, y., and E; will be discussed later. However, as
only linear relations are involved we can expect to find a matrix Eg such that y, = Egy.

Note that the simple periodic extension is the one where E; = Iy,. A popular
extension method is the so-called symmetric-periodic extension (see Fig. 5.1), or sym-
metric extension [5], [8], [9], [11], [36], [37], [53], [54], [64], [65], [77], [82], [86], [98],
where Er = Jy,. This extension can avoid the artificial discontinuities and can also be

implemented with the aid of fast transforms, as we will see later.

5.1.1 Extended signals and transforms

Let the period of X, and of ys be represented by x!' = [x7, (Erx)"] = [x", x|
and y' = [y", (Esy)”] = [y, y’], respectively. Let the transform for the signal in one
period be T,, where

Yp = TpXp. (5.8)

Then, we have
Xoo = [0 35, %5, %5, ) (5.9)
Yoo =l Y Ve Ve Ya - (5.10)

The signal x,, is the period of x.,, therefore, T, is a block-circulant orthogonal

matrix of size 2N, x 2N,, as we previously discussed, which can be also implemented
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in the DF'T domain using circular convolution. However, we are not interested in x, or
¥p, but in x and y. Let us further explore the properties of the periodic transforms and
signals involved. T, has a composition similar to the example described in (5.4) and note

that T, can be divided into four IV, x N, square submatrices as

T, T,
T, = . (5.11)

T, T

Then, using (5.5), (5.8), and (5.11), we get
Yy = T()X + TlETX = (To + TlET)X, (512)

yielding the relation

T =Ty + T,Er. (5.13)

Proposition 5.1 The size limited transform T in (5.13) is one-to-one and onto, there-

fore, invertible, for every real extension matrix Er or choice of LT P.

To evaluate if T is invertible it is sufficient to show that T has full-rank, regardless
of the linear extension, for all P. T, is an orthogonal matrix, therefore it is invertible
and is full rank (rank 2/V,). Since x can be any vector in V=, all possible combinations
of elements of x,., span a subspace of RNz of dimension N,. As T,e, is orthogonal,
rank{[To, T1]} = N, (full rank), and all possible linear combinations of elements of y
will span RYs (as is the case for x). Therefore, T has full rank and is one-to-one and
onto. Thus, as T is full rank, it is also non-singular, and its inverse exists and is unique,

concluding the demonstration.
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Proposition 5.2 The subband vector extension matriz, Eg, does exist and is given by

ES - (Tl + T()ET)(TO + TlET)_l.

Since T is invertible, x = T~'y. Since y, = T1x + ToErx = (T; + ToEr)x, we have

ye = (T1 + ToEr)T'y. Hence

ES - (Tl + T()ET) (TO + TlET)il, (514)

which always exists (because T is invertible) and is only a function of the extension in
time-domain (E7) and of P (which defines Ty and T}).

For an arbitrary linear extension matrix E; we can implement the analysis and
the synthesis sections with the aid of the DF'T. However, as both Er and Eg can have a
very complex structure, perhaps being very difficult to invert, pre- and post-processing
can be of excessive complexity, eliminating the benefits of the use of the DFT for the

implementation of the L'T. Since,

Yy Iy,

Vp = = Y, (5.15)
| Esy | | Es |

X IN;,
X, = = X, (5.16)

ETX ET

the analysis section can be expressed as
+

Iy, Iy,

y = T, x (5.17)
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while the synthesis section can be expressed as

X = T Y, (5.18)

where [ |t stands for the pseudo-inverse of a matrix. If A is a n X m matrix (n > m)
with rank m, then A* = (ATA)"'AT. The pseudo-inverse matrix always exists because
Iy, ensures that the matrix in question has full rank. Thus, the above expressions prove

the following proposition:

Proposition 5.3 With periodic extensions, the analysis and synthesis can be performed

in the DFT-domain regardless of the extension method.

Filtering and subsampling of a 2N, sequence is computed in the DFT domain for
both analysis and synthesis, which are, then, preceded and followed by extra processing.
From these results, it is evident that without simplifying the extension matrices, DFT-

aided implementation is impractical.

5.2 General time-domain solution

As discussed in Section 2.5, the analysis operation would require the knowledge of
A = (L — M)/2 samples outside the range of x, for each border. If we set these samples
to zero or if we use circular convolution, undesirable high frequency components can
be generated due to discontinuities at the borders. The extension of x into x will be
restricted here to be a linear boundary extension where the unknown samples are found

by a linear combination of samples contained in x. We assume that, for each border, the
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Figure 5.2: Illustration of signal extension of vector x into vector x. In each border,
A = (L — M)/2 samples outside initial signal boundaries are found by linear relations
applied to the A boundary samples of x, i.e., x.; = Rjx; and x., = R;x,. As only A
samples are affected across the signal boundaries, it is not necessary to use the infinite-
length extension. Also, x; and x, contain the samples possibly affected by the border

distortions after synthesis.

A samples across the border are found as a linear function of at most A\ boundary samples

of the signal. Note that this is a special case of the most general extension method of
(5.5).

We adopt the notation shown in Fig. 5.2 ! where x is divided into three regions as

T = [x7,xT,xT

_ - ST _ [T T T
x' = [x;,X.,X,], and the extended vector is formed by X" = [x;;,x",x,,]. Then, we

!The expressions left and right are used to designate the extremes of the vector x just as if it is

displaced horizontally. In this case, 2(0) is the leftmost sample, while (N, — 1) is the rightmost one.



98

ST _ (T T T T T
have X' = [x_,,X; , X, , X, ,X,,], where

Xe,l = Rle, Xer = RTXT. (519)
The size of each subvector is indicated in Fig. 5.2 and R; and R, are arbitrary A x A

matrices to extend the signal on the left and right borders, respectively. For example,

the symmetric extension is equivalent to R; = R, = J,.

Proposition 5.4 The original boundary samples can be recovered by simple linear post-

processing operation applied to the distorted samples, after synthesis, as

X,
x, = &, : (5.20)
i )A(e,r
)A(e,l
X] = El y (521)
X

where Z; and 2, are 2\ X X\ real matrices. .

If we use the submatrices (P;) of P, we can easily express I'; and I'g, in (2.54), as

I,=A7 A;, (5.22)
'z = AL Ag, (5.23)

where A and Ap are found from
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P, P, --- Py, Py 0
Py - Py_s|Pn_o Py
(AL, Ag] = : (5.24)
0 P, | P, - Py,

Dividing, I';, and T'g, each into two 2\ x X\ matrices as I', = [I'.;,I';] and T'p =

I, T.,], we have

)A(e,l Xe,l
- [I‘e,larl] ) (525)
)A(l X
X, X,
= [}, T, . (5.26)
)A(e,r Xe,r
Hence, from (5.19),
}Ace l
= (LR + 1) x (5.27)
X
Xy
=T, +TI.,R,)x,. (5.28)
}Ace,r
and we can restore the boundary samples as
)A(e,l
(5.29)
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A

x, = ([, + T, R,) " XT : (5.30)

Xe,r
recalling that [ |* stands for the pseudo-inverse of a matrix, and the pseudo-inverses are
the 2 matrices mentioned in Proposition 5.4. It is easy to see that if T has full rank (as
we have shown), then the pseudo-inverses just discussed do exist. Thus, x; and x, are
recovered from the distorted extended signal using only linear relations, in a method that
is essentially based on post-processing the reconstructed signal. Note that the pseudo-

inverse matrices are computed a priori and only one matrix multiplication is carried for

the implementation.

5.3 Orthogonality in symmetric extensions

It is interesting to have T as a fully orthogonal transform. As we saw, if E; =1y,
T will be orthogonal, but little can be said otherwise. Then, we narrow our search by
assuming a symmetric extension.

Let T, and Tp,s be N, x N, block diagonal matrices as diag{A,A,...;A} ,
where A is an orthogonal matrix whose size divides N,. If T is a size-limited transform
based on P, it is clear that T = T,,;TT,,. is also an orthogonal transform generated
by a different LT, found by pre- or post-processing the LT input or output with trivial
block-transform operations. In this case, the extra processing is independent of the filter

bank in question P. This consideration is useful for the following proposition:

Proposition 5.5 Fxcept for pre- or post-processing, symmetric extensions will lead to an
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orthogonal size-limited transform T if and only if the filters in the LT have linear-phase.

Before presenting a proof, we would like to comment on the consequences of this
result. First, we can always ensure PR and orthogonality using symmetric extensions for
LTs with linear-phase filters. Second, non-linear-phase filters cannot achieve orthogonal-
ity using a symmetric extension (except by filters found by post-processing the output
of a linear-phase LT with orthogonal matrices having non-symmetric basis functions) so
that, for these filters, it is better to use directly the time-varying filter bank approach.

From TIT, = T,T} = Ly,, and from (5.11), we obtain the following relations:

T,T) + T, TV = 1y,
Ty TV + T.T) = oy,
TIT, +TIT, = 1y,

TIT, + TIT, = oy,.

x

(5.31)

Consider a linear-phase filter bank and define an M x M diagonal matrix V with

elements vy, = 1, if fi(m) is symmetric and vy, = —1, if fi(m) is anti-symmetric. Then,

P =VPJ,. (5.32)
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Let V be an N, x N, matrix with non-zero block entries only in the counter-diagonal, as

0 \Y%

V= . (5.33)

Using (5.32), it is easy to verify that

Ty = VToJy,

T, = VT,Jy,. (5.34)

Substituting (5.34) in (5.31), and using the fact that V is orthogonal, we get

T,T) + T\ TT = Iy,
ToJy, TT + T1JN, T = Oy,

TITo + I, TIT Iy, = Iy,

TIT Iy, +IN,TITy = Oyp,.

xT

(5.35)

From (5.8) and (5.11), we have y = (Ty + T1Jy,)x , so that T = Ty + T1Jy,, and T is

orthogonal because
TT? = ToTE + T1TT + ToJn, TT + T1Jn, Th = Iy, + 05, = Iy,

TIT = T{To + In, T T Iy, + TP T Iy, +In, TITy = Iy, + 0y, = 1y,.
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Hence the sufficiency is proved. To prove the necessity, note that given (5.31) we can

reach (5.35) by algebraic manipulation if and only if we have

TO - QIT()JNI

T, = ®T.Jy,. (5.36)

where ®' is a square orthogonal matrix. As Ty and T; are block-circulant, presenting
a periodic structure, the reader can check that (5.36) is only possible if P presents a
structure such that

P = ®PJ,, (5.37)

where ® is a square orthogonal matrix. In other words, the filters fi(n) would have to
be found by a linear combination of their time-reversed versions (which are the filters
gr(n)). Using the fact that PPT = I); and after some manipulation, we can see that
(5.37) is only true if ® = ! (& is symmetric and orthogonal) and that ® = PJ P7.
For any matrix ®, with such characteristics, there is an orthogonal matrix A,
such that Ag,, = AT®A [32], where Ay, is a diagonal matrix. As A and & are
orthogonal, A, is orthogonal, having elements £1 along the diagonal. Consider the
LT given by P.p = ATP. Since A is orthogonal, P = AP p and substituting in (5.37)
we get Prp = AgioqgPrpJdr, implying that PLpJLP}CP = Agiag- Therefore, if P is a
solution to (5.37), Ppp is also a solution. Furthermore, Pyp corresponds to linear-phase
filters because Prp = AgiogPrpJr. So, every solution P to (5.37) can be written as
P = APp, what means a post-processing of a linear-phase LT by a block-transform A.

This concludes the proof.
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5.4 LTs with linear-phase filters

If we combine linear-phase filters with symmetric extensions, not only we can get

a smoother transition across the signal boundaries, but also T will be orthogonal.

Proposition 5.6 Using symmetric extension and linear-phase filters, Eg = V.

The proof is straightforward, as

Ye = T1X + T()JNwX = (VTlJNw + VT())X
= V(To+TJy,)x = VTx

= Vy. (5.38)

As a result, using symmetric extensions, y,. is easily found from y by sample mirroring

(for each subband) followed by sign inversions.

5.4.1 Time-domain Implementation

In Fig. 2.6, we have a clocked system with memory where at each instant (block
index) a block of M samples in time-domain is the input which is transformed into
another block of M subband samples.

Based on the previous results, for the analysis, we extend the signal, through a
mirror-image reflection applied to the last A = (L — M)/2 samples on each border,

resulting in a signal Z(n) with N, +2X = N, + L — M samples, as

z(A—1),---,2(0),2(0), -, x(Ny — 1), (N, — 1), - -, x(N, — \)
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The internal states in Fig. 2.6(a) can be initialized in any fashion and the signal is
processed yielding Ng+ N —1 blocks. We discard the first N —1 output blocks, obtaining
Np transform-domain blocks corresponding to Ng samples of each subband.

At the synthesis section, we have the subband signals §x(m) composing the signal
g(n) as g(mM +1i) = g;(m) for 0 < ¢ < M — 1. This signal g(n) is extended, by
extending the subband signals by K samples in each border, as in (5.38), and processed

as in Fig. 2.6(b). The k-th subband (initially having Np samples) is extended as
Okl (K = 1), ver¥x(0), 91 (0), - - - G (Np — 1), ve (N — 1), -+ -, v (N — K).

Then, we proceed with the synthesis over the Np + 2K blocks of §(n), obtaining a
reconstructed signal with Nz + 2K blocks #(n), initializing the states of Fig. 2.6(b) in
any fashion. For N odd, K = (N — 1)/2, we discard the first N — 1 blocks to obtain
Z(n). For N even (K = N/2), we discard the first N — 1 blocks, the first M/2 samples
in the N-th block and the last M /2 samples of the signal.

In the absence of quantization/processing of the subbands (#(n) = x(n)), this
approach will assure the perfect reconstruction property and orthogonality of the analysis
and synthesis processes, paying the price of running the algorithm over extra N or N — 1

blocks, making it suitable for applications when Ng > N.

5.4.2 DFT-aided Implementation
In some applications, where Np is comparable to N, it may be more conve-
nient to implement the linear-phase LT with the aid of the DFT. For this, the filter-

ing /subsampling, or the upsampling/filtering operations can be performed in the DFT
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domain, as long as the signal is periodic. For the symmetric extension method, the
periodic vectors are x, and y,, and the transform T, and its inverse Tg is the one

implemented in the DFT-domain. Using (5.8) and (5.38), we have

y In,
Yp = = Yy (5.39)
Vy \%
X INz
JN X JN

Hence, the analysis section is expressed as

1 Iy,
y=5|Iy, V T, X, (5.41)
Jn,
while the synthesis section is expressed as
1 Iy,
x =2 l Iy, Jn, ] T! y. (5.42)
A\

We use the DF'T of a symmetric real sequence of length 2NV,,, whose complexity can
be reduced close to that of an N,-samples DFT. Filtering and subsampling is computed in
the DFT domain followed by an inverse DF'T, to whose output we apply NV, additions. For
the synthesis, the procedure is similar, where the subbands are extended in a symmetric
way, and upsampling followed by filtering is performed in the DFT domain. As in the

subsampling case, we apply N, additions to the output of the inverse DFT.
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5.5 Orthogonal boundary filter banks

Consider applying time-varying LTs over the finite-length signal as

=0
I

(5.43)

P(Np — 1)

As we have defined earlier, let K be the greatest integ-er smaller than N/2 (the
same as integer division, as K = N/2). Hence, there are K filter banks, at each border,
which have their basis functions crossing the signal boundaries. We call this the minimal
complete design (MCD) when only K filter banks at each border, are changed in order
to achieve orthogonality of T. We could change all Ny filter banks but only 2K of them

have any influence on the borders, so that we will often assume an MCD. Then, we have
Pim)=P for K<m<Np—K-—-1 (5.44)

and the remaining filter banks are redesigned, but remaining instantaneously paraunitary,
and obeying PR rules for time-varying filter banks.

As we have observed so far, using simple symmetric extensions, a linear-phase LT
can achieve orthogonality and non-linear-phase LTs cannot do so (except for the special
case previously discussed). Assuming a time varying LT approach and the MCD, only

P(0) through P(K — 1) and P(Np — K) through P(Ng — 1) should be changed.

Proposition 5.7 If we denote the entries of P(m) as p;;(m) for 0 <i < M —1 and

0<j<L-—1, and denoting A = (L — M)/2, then, in order to have T as an orthogonal
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matriz, p;j(m) =0 for 0 <i <M —1 and

{m,jlj € [0,A —mM —1];m € [0, K — 1]}

{m,jlj e [L—-X+(Ng—1—m)M,L—1};m € [Ng — K,Ng —1]}

These two sets imply that P has zero entries for the first and last A columns.
To see this, consider an unlimited-length signal where a sequence of length N, is to be
transformed by T and imagine that the adjacent segments are also transformed by any
other orthogonal transform, for example using the identity matrix as a transform matrix.

So, assuming T is orthogonal,

I/0|o0
A |TIA, | (5.45)
001

will be an orthogonal matrix if and only if A; = A, = 0, meaning that we cannot allow
any overlap across the signal border, and, thus, P has its first and last A columns with

zero entries.

Isolating the degrees of freedom

Proposition 5.8 The total number of degrees of freedom for all possible choices of bound-
ary LTs, assuming MCD and obeying the SDF' structure, is v = [(4K + 1)(M — 1) —

1|KM/8 for each border.

For an infinite-length signal, we can draw the flow-graph relating the input and

output of the analysis section, as in the two examples shown in Fig. 2.6, which accounts
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for permutations and orthogonal matrices and represents an orthogonal system following
the factorization of (4.9). The input and output signals are segmented into blocks of M
samples, as shown in Fig. 2.6, and blocks are labelled 0 through Ng — 1 for the actual
support region of z(n) and y(n). A simple way to find the complete SDF relevant for the

signal is:

1. Construct the flow-graph for the hypothetical infinite-length signal as in the exam-

ples shown in Fig. 2.6;

2. Eliminate unnecessary paths and boxes, used for the signal outside the bounds.

3. From the remaining boxes, those which are connected to output blocks numbered K
through N — K —1 are the same as in the time-invariant SDF and are not changed
for the MCD, while the remaining can be any orthogonal matrices (maintaining

their sizes) and are responsible for the degrees of freedom in the transitory boundary

filter banks.

Let us describe in detail the second and third steps. Let the i-th stage be the
one with all matrices B;. Note that each box labelled B; has two input or output
branches, each carrying M /2 samples. To prune unnecessary branches and boxes, start
by disconnecting the input samples outside signal bounds from the flow-graph. For ¢
varying from ¢ = N — 1 through ¢ = 0, check all boxes in stage N — 1, then proceed
with stage N — 2 towards stage 0. For each box in each stage, check its input branches.
If both of its input branches are disconnected, erase this box and its output branches.

If only one input branch is disconnected, erase one output branch and make the box in
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Figure 5.3: Pruned flow-graph for a size-limited orthogonal implementation of a PUFB
for N = 4 and Np = 6. Each branch carries M/2 samples. The 6 input and output
blocks are numbered and generic M x M orthogonal matrices are marked with x while

generic M /2 x M /2 orthogonal matrices are marked with o.

question an M /2 x M /2 orthogonal matrix. If both input branches are connected, leave
the box as an M x M orthogonal matrix. When the pruning process is complete, and
the boxes belonging to the transitory boundary filter banks are selected, we will have
some orthogonal matrices (with sizes M /2 x M/2 or M x M) as degrees of freedom. For
example, for N = 4 and N = 6 the resulting flow-graph is shown in Fig. 5.3, where the
generic orthogonal matrices are indicated.

An n x n orthogonal matrix has n(n — 1)/2 degrees of freedom corresponding to
its plane rotation angles [32]. The reader can check that, for each border, the number of

generic orthogonal boundary matrices is

stage 2¢ = K — i matrices of size M x M

stage 2¢4+1 = K —i— 1 matrices of size M x M
M

and one matrix of size > X >
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Table 5.1: The total number of degrees of freedom for each border, v.
M| 2 4 6 8 10 12 14 16 20 24 32

111 7T 18 34 5} 81 112 148 235 342 616

21 4 26 66 124 200 294 406 536 850 1236 2224
K 3| 9 57 144 270 435 639 882 1164 1845 2682 4824

4

)

16 100 252 472 760 1116 1540 2032 3220 4680 8416
25 155 390 730 1175 1725 2380 3140 4975 7230 13000

Hence, the total number of degrees of freedom for each border is

y:<§z’+§§z’> M(MQ”HK%UQ ! :[(4K+1)(M—1)—1]¥ (5.46)

and 2v is the total number of degrees of freedom for both borders of the signal.

Optimal boundary filter banks

In the design of the boundary filter banks, for an optimal orthogonal solution,
we span all degrees of freedom in a search for the minimum of a specific cost function.
As the relation among the plane rotations and cost functions is generally non-linear,
an optimization algorithm would generally have slow convergence and lead to a local
minimum. So, a large number of variables to optimize can be burdensome. Note that v
can be a very big number (see Table 5.1, for some choices of K and M).

In a simple example, for M = 2, N = 4 and Ng = 6 (see Fig. 5.3) we have 4
degrees of freedom at each border. (M/2 =1 and the 1 x 1 “orthogonal” matrices are
set to 1.) We started with a 2-channel 8-tap PR PUFB shown in Fig. 5.4(a) and used an
unconstrained non-linear optimization routine provided by MATLAB 4.0 to optimize the

border matrices (one plane rotation angle per matrix), where the function maximized
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Figure 5.4: Design example of orthogonal boundary filter banks. (a) an 8-tap 2-channel
LT (L = 8,M = 2), where the low-pass (LP) and high-pass (HP) filters fx(n) and their
frequency responses are shown. (b) Design result of the bases (filters) for a 12-sample

signal (Np = 6).

was an average of the stopband attenuation of the boundary filters. The 12 resulting
bases for the 12-sample signal are shown in Fig. 5.4(b), where the relation of the basis
functions and P(m) (m = 0,...,5) is indicated. Note that P(2) = P(3) = P for MCD,
and the 4 bases in the middle of Fig. 5.4(b) are the same as those in Fig. 5.4(a). For
this example, what is actually shown in Fig. 5.4(b) are the basis functions of a 12 x 12
orthogonal transform with sparse composition obtained from two-channel LTs. This is to
illustrate the meaning of the term orthogonal boundary filter banks, which implies filter
banks which will cause T to be an orthogonal matrix.

As a second example, we used the 8-channels MLT (ELT-1,N = 2). We have
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Figure 5.5: Design example of orthogonal boundary filter bank for an MLT with N = 2
and M = 8. (a) Optimized filter bank Gr¢ = 9.19 dB. (b) Standard boundary filter
bank Gro = 5.66 dB.

34 degrees of freedom at each border and we focussed our attention to just one border
for comparison purposes. Note that just one filter bank, P(0), needs to be optimized
because K = 1. Malvar [49] provided a standard boundary solution for the MLT which
is orthogonal and, therefore, it is a special case among all solutions wherein the 34 degrees
of freedom would span. Here, we maximized the transform coding gain Gr¢ (see [33] and
(3.31) or (4.37)). for the boundary filter bank, just as we discussed previously. In Fig. 5.5
it is shown the bases p,(0) of the standard boundary filter bank proposed by Malvar
[49] and the optimized one. The Gr¢ for the optimal boundary filter bank is 9.19dB,
compared to 5.66dB for that of Malvar. As a reference, the MLT has Gp¢ ranging from
8.25dB through 9.22dB (it depends upon a design parameter [49]) and the DCT has

Gre = 8.83dB.
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5.6 Algorithms for the ELT

With the methods discussed so far, we are able to devise a fast implementation
algorithm for the ELT to process finite-length signals. As we saw, symmetric extensions
will lead to non-orthogonal boundary factors and an alternative is the use of optimized
boundary filter banks. We will discuss algorithms only for the ELT-1 (MLT) and ELT-
2 while algorithms for higher values of K can be easily devised using the techniques

discussed in this chapter.

5.6.1 Optimization

The MLT (K = 1) can be implemented using the flow-graph in Fig. 5.6. In this flow-
graph, each branch carries M/2 samples and analysis is accomplished by following the
paths from left to right, while the synthesis (inverse transform) is achieved by following
the paths from right to left, replacing the Z matrices by their inverses. This flow-graph
is the result of the method discussed in the previous section for N = 2.

As a matter of reference, the standard orthogonal MLT flow-graph for finite-length

signals defined by Malvar [49] is the one where

Zy) =76 = Jupo (5:47)
7)) = D" (5.48)
zt) = DV (5.49)

From Table 5.1, we can see that for N = 4 (K = 2), v grows very rapidly for

increasing M making the task of non-linear optimization almost impossible. For this
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Figure 5.6: Flow graph for finite-length signals for MLT (ELT-1, K = 1). Each branch

carries M /2 samples. Forward transform is performed by following the flow-graph from

left to right, while inverse transform is performed by following the flow-graph in the

opposite direction and substituting the Z matrices by their inverses (transposes, if they

are orthogonal).

reason, we present a simplified solution which is shown in Fig. 5.7. In this case, the

number of angles to be optimized for each border is reduced to (2.5M — 3)M /2, so that

for M = 8 there are there are 68 angles to be optimized, against 124 for the general

K = 2 case.

The standard orthogonal ELT-2 flow-graph for finite-length signals defined by Mal-

var [49] is the one where

79 = Jup

(5.50)

(5.51)
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Figure 5.7: Alternative flow-graph for semi-optimized ELT-2. Each branch carries M /2

samples. All Z matrices are orthogonal.

A
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DL,

(5.52)
(5.53)
(5.54)
(5.55)
(5.56)

(5.57)

We can see that the standard algorithm is fast, although simplistic, since all matrices

were chosen among simple matrices which can be implemented by using fast algorithms,

paying the price of a somewhat less desirable performance. It also may be useful to

optimize the ELT for the two-channel case, so that it can be usefully applied in the
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Figure 5.8: Flow-graph for optimized two-channel ELT-2.

construction of time-varying wavelet packets based on binary trees. In this case, we can
surely use all angles in the optimization process and the flow-graph in Fig. 5.8. Also, the
M/2 x M/2 =1 x1 “orthogonal” matrix is 1.

Examples of optimized matrices are presented in Appendix B.

5.6.2 Symmetric extensions

Symmetric extension applied to the ELT will lead to a size limited transform T
which is not orthogonal. However, in most cases, the condition number of the non-
orthogonal factors involved may not be very far from unity. Additionally, we can have fast
algorithms along with the absence of artificial discontinuities. For the MLT, symmetric

extensions are implemented if we set

Zy = (So—Co)J, (5.58)
78 = zl) =D, (5.59)

Z8) = J(So+ Co). (5.60)
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Figure 5.9: Flow graph for finite-length signals for ELT-2 (K = 2). Each branch carries

M /2 samples.

Similarly, Fig. 5.9 shows the flow-graph for PR implementation of the ELT-2 using

symmetric extensions, where

3

(81— Cy)J, (5.61)

—C, S,J
: (5.62)

(So —Co)S1 (So+ Cy)CyJ

J(Co—So)C1 J(Co + So)S1J
, (5.63)

JS; JCyJ

J(S, +Cy). (5.64)

Note that except for the DCT type IV matrix, in the MLT, the other bound-

ary matrices are non-orthogonal and are responsible for producing a non-orthogonal T.
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Note that Zill), Zg), Zf) and Z(DQ) are simple counter-diagonal matrices with trivial im-
plementation (one multiplication per input sample). Thus, their inverses are also counter
diagonal. Zg) and Zg) are composed of M /2 butterflies, similar to those on Fig. 3.2, but
the lattice is no longer orthogonal (see (5.62) and (5.63)). Their inverses are obtained by
inverting each of the butterflies. As a result, both analysis or synthesis have the same
fast algorithm. The DCT-IV and ©,, matrices do not need replacement in the synthesis
section because they are both symmetric and orthogonal.

These algorithms for ELT-1 and ELT-2 were found by using a symmetric extension
and applying regular ELT flow-graph to the extended sequence. Then, it is found a
size-limited flow-graph that would be equivalent. Values of K greater than 2 can also be
found, but we will use mostly the ELT-2 and occasionally the ELT-1. As an example,

the starting algorithm for an ELT-3 is illustrated in Fig. 5.10, where

Z% = (S:-Cy)J, (5.65)
~C, S,J
VAN , (5.66)

(S —C1)Sy (S1+ Cy)Cod

(Co+Sp)S1 (Co+8S0)CiS2 (So — Cp)C1CoJ

Zg) = GH S, S, . (5.67)

0 -G, SoJ
Note that as each part of Zg’) is a diagonal matrix, it can also be implemented with M /2

triple butterflies. Thus, the inverse of this matrix is implemented using the inverse of

each butterfly.
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Figure 5.10: Example flow graph for one of the image borders for ELT-3 (K = 3). Each
branch carries M /2 samples. Forward transform is performed by following the flow-graph
from left to right, while inverse transform is performed by following the flow-graph in the

opposite direction and substituting the Z matrices by their inverses.

5.7 Image Compression

We can reduce the image processing task to an one-dimensional problem by assum-
ing separable transforms, where processing is applied to the image in a row and column
fashion. In image coding, the signal x is transformed by T, quantized, and transmit-
ted, and, at the receiver side, the signal is recovered by inverse operations, as shown
in Fig. 5.11. Orthogonal transforms have several desirable properties in image coding
regarding statistics of the quantization noise. Of course, in our case, only the boundary

parts of the signal can suffer the effects of the possible non-orthogonality of T. However,
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Figure 5.11: Basic subband coding diagram for transmission (or storage), where the LT
is represented by its corresponding size-limited transform T, and ) and Q! represent

quantization and inverse quantization, respectively.

as the noise will follow closely the image border, it would have an organized pattern and
can be more easily percepted.

The use of LTs for image compression underlies a substitution of the DCT by
another transform with increasing overlap, implying in possible border distortions. Note
that the DCT has no overlap. We want now to investigate the use of LT's for image coding
as a direct replacement for the DCT ensuring that all processing is completely free of
perceptible border distortion. Also, we emphasize three major points where LTs need
to be proven to be significantly advantageous over the DCT, which are reconstruction
quality at low-bit-rates, scalability (allowing the receiver to reconstruct the image at

multiple resolutions), and robustness against transmission errors.

5.7.1 Border distortions

We have seen so far several ways to achieve perfect reconstruction of the boundary
regions of a finite-length signal. However, when the subbands are quantized, the signal is
no longer reconstructed exactly as the noise added by quantization is propagated through
the inverse transform. If the noise appearing in the boundary region of the signal follows
a different pattern than the pattern of the noise occurring in non-boundary regions, then,

boundary artifacts can still appear. The boundary artifacts are more easily perceptible
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because of their spatial pattern (following the borders of the image). One must ensure
that the encoder gives a sufficient amount of resources to encode the boundary blocks
and thereby reduce the visibility of the error, but not always coders are designed with
such constraint, and even if they are, boundary blocks can drain precious information
bits that could, otherwise, be used to better encode the image as a whole. PR analysis-
synthesis systems may not be free of border distortions if the boundary filter bank is
not orthogonal generating amplification and coloring of the quantization error pattern.
Also if the boundary filter bank has the most important basis functions (those which
concentrate most of the energy) with discontinuities, the reconstructed image can present
visible artifacts at low bit-rates and the LT will not provide energy compaction even for
smooth images (for example, lack of polyphase normalization, i.e., a flat image region
will not just produce one non-zero LT coefficient).

The GenLLOTs are free of any kind of block distortion using the symmetric extension
method. The boundary regions of the reconstructed image present a quantization noise
pattern that is nearly identical to the pattern of the image internal regions. The ELTSs,
however, cannot achieve orthogonality with symmetric extension, and we will show how
these boundary artifacts can be easily noticeable by using the wrong approach.

Consider the original 8 bits per pixel (bpp) image “Lena” in Fig. A.1. Another
image, consisting of a 48 x 48-pels tile of this test image, is shown in Fig. A.2(a), where
the region possibly affected by the boundary filter banks for an MLT (ELT-1) with M = 8
is indicated. In Fig. A.2(b)-(d) it is compared the performance of several boundary

approaches, simulating an environment of high compression. From Fig. A.2 it can be
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Figure 5.12: Difference in SNR (in dB) among GenLOTs and the DCT for several bit-
rates using test image “Lena” (256 x 256-pels, 8 bpp) and JPEG baseline coder.

easily seen that the optimized boundary solution is the one which gives the best results,
although the non-orthogonal solution (symmetric extensions method) also yields very
good results. The standard MLT boundary solution given by Malvar [49] described in
(5.47)-(5.49) gives poor results and the periodic extensions are definitely not suited for
such applications and will no longer be discussed here.

For the ELT-2 we applied the JPEG baseline coder [68], replacing the DCT by the
ELT-2, in blocks of 8 x 8 (M = 8). A comparison of methods is carried in Fig. A.3 where
a compression of an 8 bpp 128 x 128-pels image to 0.7 bpp is carried using Malvar’s
standard method [49], symmetric extensions, and the semi-optimized boundary solution
for the ELT-2.

The results in Fig. A.3 show that the symmetric extension method provides the best
results. The distortion does exist. However, it is concentrated in the last row/column of

pixels and it is masked by the contrast between the image border and the background.
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Figure 5.13: Difference in SNR (in dB) between ELT-2 and other transforms using JPEG

for several bit-rates. The test images have either 256 x 256-pels or 512 x 512-pels, 8 bpp,
SNRLOT-

and their names and sizes are indicated. (a) SNRgrr_2 — SNRper. (b) SNRgrr_o —
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5.7.2 Objective comparisons

We can compare objectively LTs to the DCT using the signal to noise ratio (SNR)
between original and reconstructed images. However, it may be more instructive to show
the difference in SNR between the LTs and the DCT, for the same image at several
bit-rates. In Fig. 5.12 it is shown the SNR difference among several GenLOT's and the
DCT for image “Lena” (256 x 256-pels, 8bpp) using the JPEG baseline coder [68]. In
Fig. 5.13 it is shown the SNR differences comparing the ELT-2 to both the DCT and the
LOT. In this case we carried the tests over several 8 bpp images which can have either
256 x 256-pels or 512 x 512-pels. The name and size of the images tested is indicated in
Fig. 5.13.

Fig. A.4 shows reconstructed images after compressing image “Lena” using the
JPEG coder [68], but replacing the DCT by the GenLOT and the ELT-2. Also, Fig. A.5

compares the DCT to both LTs for low-bit-rate encoding.

5.7.3 Scalability

Another important issue is the filtering capabilities of the LT. Let an image of
N; x Ny-pels be separately processed by an M; x Ms-channels LT and suppose we want
to display the reconstructed images fairly well in several smaller resolutions. This is
common when it is necessary to compress an image and maintain compatibility with
previous display systems which have lower resolutions. As the processing is separable,
we can easily understand this task in one dimension as shown in Fig. 5.14. In Fig. 5.14 it

is shown how to efficiently implement a system to perform synthesis, filtering, and down-
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sampling into one (actually simplified) synthesis operation. For a decimation factor of k,
the equivalent anti-aliasing filter is the sum of the first M /k filters of the LT. Fig. 5.15
shows the equivalent low-pass anti-aliasing filter corresponding to the first 8/k filters of
the DCT, LOT, and ELT-2 for an M = 8 L'T. It is easy to see that the ELT-2 outperforms
its competitors with higher stopband attenuation and sharper transitions. Examples of
down-scaled reconstructed images using the JPEG coder are shown in Fig. A.6, comparing
the DCT and the ELT-2, where the higher quality of the reconstructed image using
the ELT-2 is clearly visible, presenting higher frequency details compared to the one

reconstructed using the DCT.

5.7.4 Robustness against transmission errors

Most communications protocols packetize data into cells and provide cell priori-
tization to protect more important data, as cell losses can occur. This is appropriate,
for example, for the asynchronous transfer mode (ATM) networks, which are gaining
acceptance lately. For image and video transmission in such networks, compressed data
can be unrecoverably lost and a more robust encoding approach is necessary, as well as
developing reconstruction procedures.

In order to simplify the problem and its modelling, we assume that [27]: (i) the DC
coefficients of the transform are prioritized and transmitted with enough protection so
that they are not susceptible to errors; (ii) if a cell loss occurs, the information regarding
all AC coefficients of only one block is lost. In this case, see [27] for details on packet

losses and on efficient methods for estimating the lost AC coefficients using the LOT.
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Figure 5.14: Scaling of a reconstructed image to lower resolutions. (a) The image is down-
sampled by a factor of k after processing by a low-pass anti-aliasing filter with cutoff
frequency in 7/k. (b) If the filtering is conducted in the transform domain, the filtering
can be accomplished by masking some LT coefficients before the inverse transform. (c)
Faster implementation of (b) by using a pruned synthesis, where only few input/output

samples are computed. In this particular illustration, M = 8 and k = 2.

The ELT-2 is expected to perform better than LOT because of its larger overlapping,
since the spatial region affected by the lost-block will increase making the error locally less
intense. However, this is only partially true. We have discovered that the great robustness
of the ELT-2 comes from its non-linear-phase-filters allied with the longer overlap. The
error using ELT-2 is sparser compared to a filter bank with the same filters’ length but
with linear-phase (such as a GenLOT with N = 4 too, which we refer as LOT-2). We
transformed an image using various transforms and deleted all the coefficients of a single

block except the DC term. After respective inverse transforms, Fig. A.7 shows a zoom
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Figure 5.15: Frequency response of the equivalent decimation low-pass filter with cut-off
frequency = 7/k produced by the first 8/k filters of an 8-channel LT. These filters are
present to prevent aliasing for a k:1 down sampling of the signal. Plots for DCT, LOT,
and ELT-2 are shown for kK = 2, 4, and 8.
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of the region where a lost-block occurred, using DCT, LOT, LOT-2 and ELT-2. From

the DCT results, we can clearly see where the lost-block was located and, comparing all
results, we can see that the ELT-2 performed fairly better than its competitors, in view
of its improved masking of the errors.

To carry out our tests we selected again the JPEG baseline coder [68] because its
algorithm is popular and is well understood. We assume it will resemble image/video
coders actually used in packetized transmission of images. Then, we replace the 8x8 DCT
by the ELT-2 with M = 8. Fig. A.8 shows the 256 x 256-pels image Lena coded at 0.8
bits/pel (bpp) using JPEG for both the DCT and the ELT-2. For a better visualization,
a dramatic error rate was used, and we simulated 5% rate of lost blocks (51 blocks are
lost). The errors occur randomly, but we forced the position of the errors used for the
DCT to be repeated for the ELT-2, so that we can compare the effects of a block-loss for

both transforms in identical positions in the test image.

5.7.5 Remarks on image coding tests

The semi-optimized orthogonal boundary ELT-2, did not show much advantage
over its non-orthogonal counterpart (symmetric extensions method) for M = 8. Although
the number of constraints was greatly reduced, it makes sense to believe that either the
optimization routine was trapped into a local minimum or the cost function chosen is
not appropriate for the task. The convergence for each border took about 10 hours on a
486 PC with 66 MHz clock, and using MATLAB 4.0. As we discussed, the cost function

as maximum Gr¢ may not be sufficient, and other factors such as discontinuities in the
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basis functions may also influence the performance of the boundary LT. That is what
actually happened, as a thin stripe appears near the borders of the reconstructed image
after its compression using the ELT-2.

The optimized 2-channel ELT-2 was tested in an image coding environment as a
basis LT for an octave DWT. Although the optimized borders were successfully applied,
showing no border distortion face quantization of the subbands whatsoever, the overall
performance of the 2-channel ELT-2 in a JPEG-like wavelet coder was not very exciting.
The DWT based on the 2-channel linear-phase Johnston’s quadrature mirror filter bank
showed better performance than the ELT-2. Also different designs of the modulating
window led to very different results. Thus, one may find the most appropriated design
of the 2-channel ELT-2 window and the most indicated coder for a ELT-2-based DWT.
Such work would be extensive and it is outside the scope of this dissertation.

The use of time-varying LTs in image coding has yet to be investigated in more

detail.



CHAPTER 6

CONCLUSIONS

The interconnection of filter banks, LTs, wavelet transforms, and time-frequency analysis,
is so rich that this dissertation can be extended without an end in sight. Instead, in this
Dissertation it was intended to gain insight into uniform paraunitary filter banks through
the viewpoint of lapped transforms. LTs are often assumed to possess some sort of fast
implementation algorithms, although such a restriction is not necessary, as the first LT's
were created to rival the DCT in image coding. The equivalence to a certain kind of
filter banks opens new sights for application of LTs and the cross section of the theory
between both fields enormously aids the understanding of each other.

Most of the material in this Dissertation is based on original research, although
the ELTs were developed elsewhere. Also, Chapter 2 covers mostly background ma-
terial. However, its presentation follows a singular point-of-view which is helpful to
understand the following chapters. Also, some key ideas are better developed and high-
lighted. New results are presented, including: the development of new LTs with general
overlapping factors and linear phase filters, the theory of perfect reconstruction LT's for
finite-length signals, the perfect reconstruction conditions for time-varying LT, and a the-
ory to implement time-varying L'T's and wavelet packets with the perfect reconstruction

and orthogonality properties.
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Time-invariant LTs were presented, designed, optimized, and applied to image
coding. Of course, for this, it was necessary to develop an adequate theory for processing
finite-length signals without using a periodic extension (purely circular convolution),
which introduces artificial discontinuities to the signal. It was also necessary to study
the problem of finite-length signals to construct the time varying wavelet packets, which
turned out to be one of the major developments of this dissertation. Algorithms for
signal extension and for optimizing the boundary LTs were developed and successfully
tested /implemented.

Neither image coding nor optimization techniques are the topics of this Dissertation.
They were just used to formulate examples. Few results were not satisfactory, mainly
because of inadequate design, which is a consequence of the complexity in some design
techniques through optimization of plane rotations. Most algorithms were developed by
a factorization of orthogonal matrices based on plane rotations, leading to a strongly
non-linear optimization task. As a result, cost functions to be minimized are kept simple
and often a local minimum is reached. In this category of optimized L'T's are some optimal
boundary LTs and the GenLLOTs, having in mind the image coding application. In other
words, we provided the means and theory to develop such LTs, and the designs presented
are mere examples that can be surely improved.

The theory of time-varying LTs allows us the freedom to change LTs (filter banks)
in a way that has not been reported elsewhere. This freedom is used to construct time-
varying wavelet packets which are able to implement systems to decompose the signal in

a maximally-decimated way using virtually any rectangular tiling of the time-frequency
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plane. Such a powerful tool can be used in many fields of signal analysis and compression.
The time-varying wavelet packet can use the fast implementations of the ELTs as a basic
cell, forming a formidable technique to decompose the signal into orthogonal bases and
to achieve the best time-frequency localization for a particular application.

In all cases, perfect reconstruction and orthogonality are inherently assured, along
with fast implementation algorithms and good performance. It is acknowledged that
much has still to be done to fully develop the theory discussed, and to perfectly match
the LTs to other demanding applications. Future work is necessary, and is planned, to

further study time-varying LT's.
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Only one test image was used, which is called “Lena”. It has resolution of either 256 x 256
pels or 512 x 512 pels at 8 bits/pel (bpp), and is shown in Fig. A.1. The images involved
in the discussion of border distortions when the MLT or ELT-2 are applied to finite-
length signals, in Chapter 5, are shown in Fig. A.2 and in Fig. A.3. Fig. A.4 and Fig. A.5
show examples of image compression results (on the 8bpp image “Lena”) using the ELT-
2 and the GenLOT. Fig. A.6 carries a comparison between DCT and ELT-2 regarding
filtering capabilities in scalable coding, as discussed in Chapter 5. Another comparison,
regarding robustness against transmission errors, is carried out in Fig. A.7 using several
transforms. The reconstructed image quality is comapred when all AC coefficients in a
block are lost. In this context, the performance of the DCT and ELT-2 are compared in
Fig. A.8. All images were rendered and printed at a 600 dots-per-inch (dpi) resolution
using a non-noisy clustering method that should allow photocopying without imposing

much distortion.
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Figure A.1: Original 256 x 256-pels (8 bpp) image “Lena”.
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Figure A.2: Coding tests on a 48 x 48-pels image, simulating high-compression rates. The
basic filter bank is the MLT with M = 8. (a) Original image indicating area possibly
affected by border distortions. (b) Result using symmetric extensions. (c) Result using
periodic extension and circular convolution. (d) Result using the standard MLT boundary
filter bank. (e) Result using an optimal boundary filter bank, optimized for maximum

Gre.
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Figure A.3: Coding tests on an 8 bpp 128 x 128-pels image, using the JPEG baseline
coder, but substituting the DCT by the the ELT with M = 8. The original image
is shown along with reconstructed images after compression to 0.7 bpp. (a) Original
image showing the regions which can possibly be affected by any border distortion. (b)
Result using symmetric extensions (non-orthogonal). (c) Result using the standard ELT-
2 boundary filter bank. (d) Result using an optimal boundary filter bank, optimized for

maximum Grc.
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(a)

Figure A.4: Reconstructed images after compression of image “Lena”, using JPEG. (a)
ELT-2 applied to 256 x 256-pels image, compression to 1 bpp; (b) GenLOT (N = 4)
applied to 256 x 256-pels image, compression to 1 bpp; (¢) ELT-2 applied to 512 x 512-
pels image, compression to 0.5 bpp; (d) GenLOT (N = 4) applied to 512 x 512-pels

image, compression to 0.5 bpp.
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Fig. A.4(b)
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Fig. A.4(c)
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Fig. A.4(d)
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Figure A.5: Zoom of reconstructed images after compression of 512 x 512-pels image
“Lena” to 0.25 bpp, using JPEG baseline coder, and for different LTs. (a) DCT; (b)
ELT-2; (¢) GenLOT (N = 3).



Fig. A.5(b)



Fig. A.5(c)
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(a)

Figure A.6: Down-sampling results using fast prunned synthesis. The 512 x 512-pels
image Lena (8 bpp) is compressed using JPEG to a rate of 0.6 bpp, and, then it is
reconstructed at a resolution of 128 x 128-pels. (a) DCT ; (b) ELT-2.
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Fig. A.6(b)
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Figure A.7: Trivial image reconstruction when all AC coefficents of a single block are
lost. The AC coefficients are set to zero in this block and a zoom of reconstructed images
for each transform are shown. Top left corner, DCT. Top right corner, LOT. Bottom left
corner, LOT-2. Bottom right corner, ELT-2.
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(a)

Figure A.8: Image compression results for 256 x 256-pels image Lena (8 bpp), using
JPEG to compress the image to a rate of 0.8 bpp. Both compressed images are subject
to a block-loss rate of 5%. (a) DCT ; (b) ELT-2.
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Fig. A.8(b)
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Let us define two operands: OM and SORT. A = OM(v) is an orthogonal matrix

which is parameterized by plane rotation angles which are the elements of vector v. The
elements of v (angles) are given as fractions of 7 and the algorithm to generate A from
v is given in a MATLAB routine later in this Appendix. Let P’ be a LT matrix whose
basis functions pj, are not sorted by its respective frequency slots. Then, P = SORT (P’)
yields P which is a permutation of the rows of P’ so that if ¢ < j, the i-th basis function
of P corresponds to a filter occupying a slot of lower frequency than the one relative to
the j-th basis functions. A MATLAB routine for SORT is also presented later on.

The Z matrices in Fig. 5.6 are given by

Z4) = OM(v.01) (B.1)
Z5) = OM(v.1) (B.2)
Ze) = OM(v.c1) (B.3)
Z5) = OM(v.ar) (B.4)

where v,,; through v,4 are vectors containing optimized angles which are presented in
Table B.1.

Note that the angles given in Table B.1 does not assure the boundary filter banks
will have their basis functions sorted by its respective frequency slots. If the boundary
filter bank is denoted as P’ and AP’ = SORT(P’), where A is a permutation matrix,
then the correpondent matrix Bg(m) can also to be substituted by ABy(m) to ensure

proper ordering of the basis functions.
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Table B.1: Optimized angles (maximum Gr¢) for the MLT and for M = 8. V,41,V.p1,V2e1,

and v,4 are the vectors corresponding to ZS), Zg), Zg), and Zg).

Vzal Vb1 Vzel Vzdi
6.0361441e-2 | -9.8356124e-2 | 1.3104490e-1 | 3.3652103e-1
-1.2128763e-1 | 7.3779229¢e-2 | 6.6089743e-2 | 1.3188390e-1
3.7489016e-2 | -1.2759128e-1 | 2.0368626e-1 | 5.5250759e-2
-9.0278172e-2 | -2.2500217e-1 | 2.6036638e-1 | 3.4845902e-1
-2.2009595e-1 | -6.1987324e-4 | 2.6696781e-1 | 1.0044415e-1
1.9999349e-1 | -2.0292659e-1 | -2.2559627e-1 | 1.3996199e-1

N/A -1.9524805e-1 N/A -3.0454016e-2

N/A -1.5181387e-1 N/A -1.3256903e-1

N/A 1.1500757e-1 N/A 1.0722820e-2

N/A 2.2358023e-1 N/A 9.4583445e-4

N/A 5.7784063¢-2 N/A -6.1996030e-2

N/A -1.6828920e-1 N/A -1.3327864e-1

N/A -3.8397653e-3 N/A 9.2688768e-2

N/A 9.5103389%¢-2 N/A -2.9632112e-1

N/A 1.3858998e-1 N/A ~7.4795257e-2

N/A 3.4608093e-1 N/A -3.2476081e-1

N/A 2.1440864e-1 N/A -1.4506926¢-1

N/A 4.1692375e-1 N/A -1.8827390e-1

N/A 6.5937913¢-2 N/A -8.5333113e-2

N/A -7.7791031e-2 N/A -7.1975058¢-2

N/A 9.6472143e-2 N/A 1.4557053e-1

N/A 6.8707142e-2 N/A -1.5715783e-1

N/A 1.6166533e-1 N/A -4.1260365e-1

N/A -3.5256997e-2 N/A -3.8681753e-2

N/A -2.6310078e-1 N/A 7.2795891e-2

N/A -4.0704652e-2 N/A -2.7519320e-1

N/A -4.5506472e-2 N/A 5.7620856e-2

N/A -1.4874539e-1 N/A -1.9603046e-1




The Z matrices in Fig. 5.7 are given by

Zf) = OM(Va2)
Z3 = OM(V.w)
Z& = OM(Vica)
23 = OM(v.4)
Zy = OM(Vie)
ZZ = OM(v.p)
Zg' = OM(v.p)
Z7 = OM(v.)
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(B.5)
(B.6)
(B.7)
(B.8)
(B.9)
(B.10)
(B.11)

(B.12)

where v, through v,,, are vectors containing optimized angles which are presented

in Tables B.2 and B.3. Note that, as in the case of the MLT, the same consideration

regarding sorting the bases function applies to the ELT-2.

Labeling the blocks in Fig. 5.3 as shown in Fig. 5.8, we have the optimized angles

(for maximum Gr¢) given as

Z» = OM(1.5771354e — 001)
Z¥) = OM(—5.6420094e — 001)
Z» = OM(-2.0679954e — 001)

Z® = OM(—1.1661845¢ — 001)

(B.13)
(B.14)
(B.15)

(B.16)
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Table B.2: Optimized angles (maximum Gr¢) for the the alternative ELT algorithm and

for M = 8. Angles for the matrices at the left border are shown. v.42,V.p2,V.e2, and v, g

are the vectors corresponding to Zf), Zg), Zg), and Zg).

Vzal Vbl Vel Vzdl
1.4181352e-1 | 3.6473780e-1 | 2.6052679e-2 | 7.8915688e-2
4.5043396e-2 | -2.7172762e-1 | 4.4098587e-1 | -2.5649235e-1
1.6965747e-1 | -2.5202078e-1 | -1.3575710e-1 | 4.9865902e-1
8.1650219e-2 | 2.5014256e-1 | 3.1337035e-1 | 2.0513643e-2
-7.4123175e-2 | 4.7332204e-1 | -1.3013016e-1 | -1.0658223e-1
-8.1954239¢-2 | 1.8359863e-1 | -1.9364221e-1 | -1.8332815e-1

N/A N/A -3.5251438¢-1 | 4.7814177e-1

N/A N/A 7.2775599e-2 | 7.2554914e-2

N/A N/A -4.9145027e-2 | 2.2964964e-1

N/A N/A 1.3119103e-1 | 3.6052471e-2

N/A N/A 1.4342332e-1 | -1.0053531e-1

N/A N/A -3.8554309e-2 | -2.9908737e-1

N/A N/A -2.4238374e-1 | 4.8054091e-2

N/A N/A 9.7838538e-2 | 7.4374883e-3

N/A N/A -4.2644088e-1 | -2.1312100e-1

N/A N/A -2.4991673e-1 | 8.3483976e-2

N/A N/A -2.4133041e-1 | 2.4669203¢-1

N/A N/A -1.7081655e-1 | -6.6289376e-2

N/A N/A -2.7379406e-1 | -4.6000574e-1

N/A N/A -8.8558160e-2 | 1.8300806e-2

N/A N/A -1.0208290e-1 | 8.1538883e-2

N/A N/A -4.0462163e-1 | -4.8975555e-2

N/A N/A -5.6589225¢-2 | 4.9271676e-1

N/A N/A -0.4341537e-2 | -1.9251568e-1

N/A N/A 1.2222002e-1 | 1.1924225e-1

N/A N/A 8.1913863e-2 | 4.1402159e-2

N/A N/A -5.4278727e-2 | -2.5770042¢-2

N/A N/A 9.1127519e-2 | 2.9147181e-1
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Table B.3: Optimized angles (maximum Gr¢) for the the alternative ELT algorithm and

for M = 8. Angles for the matrices at the right border are shown. Vv,es,v,2,v.g2, and

V.n2 are the vectors corresponding to Zg), Zg), Zg), and z(,_?.

Vzel Vzf1 Vg1 Vzhl
-1.1936741e-1 | -5.4769188e-2 | 2.6547390e-2 | -5.4237253e-1
-6.9392734e-2 | -4.9338643e-1 | -8.8550396e-3 | 1.0731591e-1
3.3510049e-1 | -1.7344322e-1 | 5.7996105e-2 | 9.2206255e-2
-1.0642071e-1 | 5.1777178e-2 | -3.2948846e-2 | -2.7857731e-1
2.3815717e-1 | 3.2831025e-1 | 6.1685874e-2 | -2.5279014e-1
6.1458354e-2 | -4.6561120e-1 | -6.5051211e-2 | -5.2057911e-2

N/A N/A 4.3020365e-1 | 3.6959057e-2

N/A N/A 3.0092989¢-2 | 8.1699643¢-2

N/A N/A -5.4945745e-2 | -1.2315566e-1

N/A N/A 1.4147002e-1 | -3.9826804e-1

N/A N/A 2.5803483¢-1 | -2.5513924e-1

N/A N/A 4.9665837e-1 | 5.5021081e-2

N/A N/A 4.2903287e-2 | -6.6158132e-2

N/A N/A 7.7839170e-2 | 1.9251213e-1

N/A N/A 1.3780322e-1 | 3.3212412e-2

N/A N/A 4.2542530e-1 | 1.0602242e-1

N/A N/A -2.5487925e-1 | -8.6400656e-2

N/A N/A -3.3108311e-2 | -8.7793763e-2

N/A N/A 4.6170494e-1 | -1.7310266e-2

N/A N/A “1.5654798¢-1 | 1.5506084e-1

N/A N/A -1.8312649e-1 | 2.2198462¢-2

N/A N/A 5.3975087e-2 | -1.0081810e-3

N/A N/A 7.4914312e-2 | 1.3138272e-1

N/A N/A ~1.8747096¢-1 | -2.8677078¢-1

N/A N/A ~4.6768560e-3 | 4.9899774e-1

N/A N/A -3.9014503e-1 | -5.0336555e-1

N/A N/A -8.9575653e-2 | 2.6570242¢-2

N/A N/A 3.9632152¢-1 | 1.3333262¢-1
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7 = OM/(7.4524271e — 001) (B.17)
Z? = OM(4.1035710¢ — 001) (B.18)
Z!? = OM(1.1520603¢ — 001) (B.19)
Z\?) = OM(—5.1496339¢ — 001) (B.20)

Although thousands of lines of source code have been written to simulate, imple-
ment, or design all LTs mentioned in this dissertation we include a minimum fraction
of source code that may be useful to implement the functions SORT and OM just

described. The following code is for MATLAB 4.0 .

Generation of the orthogonal matrix

% orthmtx(A,N)

b Returns te NxN orthogonal matrix whose parameters are in
yA vector A. The parameters are the N(N-1)/2 plane rotation
yA angles. If some plane rotations are missing, they will be
b assumed as 0, and any exceeding angles will be discarded.

h

function mtx = orthmtx(A,N)

L=N=x (N-1) /2;
v = zeros(1,L);
1 = length(A);
if (1 > L)
v = A(1:L);
else
v(1:1) = A;

end
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C = cos(v);

S = sin(v);
mtx = eye(N);
k=1;

for i=1:(N-1)
for j=(i+1):N
tmp = mtx(i,:) * C(k) + mtx(j,:) * S(k);

mtx(j,:) = - mtx(i,:) * S(k) + mtx(j,:) * C(k);
mtx(i,:) = tmp;
k=k+ 1;

end

end

Sorting the basis functions

% sortbf (Hin,test)

yA Hin is a lapped transform matrix with basis functions as
yA its columns. Output is the same transform sorted by

yA frequency slots and normalized for orthonormality.

% If test=1, perfect reconstruction is checked.

function Hout=sortbf (H,test);
[L,M] = size(H);
ha = abs(fft(H,1024));
ha = ha(1:512,:);
d =512 / M;
rd = round(d);
for i = 0:M-1
k = floor(i * d);
1i

k+1;
1s

k + rd;

v = sum(ha(li:1s,:));



[y,j] = max(v);
order(i+l) = j;

ha(:,j)= zeros(512,1);

end
for i = 1:M

Hs(:,1) = H(:,order(i));
end

% Hs is H sorted by freq. slots
% Now, normalize bases
Hout = Hs * sqrt(M) / sum(Hs(:,1));
% Now, check PR. Show PR error only if below 50dB.
if (test==1)
R = prtest (Hout);
pmatrix = zeros(size(Hout));
pmatrix(1:M,1:M) = eye(M);
maxerr = max(max(R - pmatrix));
err = abs (20 * log(maxerr));
if (err < 50)
Notice = ’Input matrix is not PR’
PR_error = err
end
end

T

% prtest(H);

yA Test of PR property of a filter bank with basis functions
% as columns of H. Returns a [I ; O ; O ..... ; 0] matrix if
o H is PR.

b

function R=prtest(H);
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[L,M] = size(H);

N = L/M;
R=1[;
for 1=0:(N-1)
S = zeros(M);
for i=0:(N-1-1)
im = i * M;
ilm = (i + 1) * M;
HTH = H((im+1) : (im+M),:)’ * H((ilm+1):(ilm+M),:);
S = S + HTH;
end
R =[R; S];
end
b

Utilities to transform a finite-length segment free of border distortions

Although not directly related to the presentation of the optimized angles, two tools
are included to perform analysis and synthesis of finite-length segments using the general

time-domain solution and symmetric extensions.

% transfor(H, x)

yA transform vector x into the output vector y using the lapped
b transform described in H. Columns of H are the basis

b functions. x and the output are column-vectors.

o

function y = transfor(H, x)
[L,M] = size(H);
if M>L, Error=’Bad transform’, return, end

[1x,xx] = size(x);



if xx 7=

end

ifL>M

else

end

nb = 1x

n=0;

y = zero

for i =

end

h

% transi
b
b
b
b
b
b

function
% set le
y=x’;

[c,Nx] =

1

Error=’Second argument must be column vector’

return

n=(L-M /2

v = [x(n:-1:1); x ; x(Ix:-1:1x-n+1)];
vV = X;

/ M;

s(length(x),1);
1:nb
y((n+1): (n+tM)) = H’ * v((n+1):(n+l));

n=n+ M;

nv(H,x)

inverse transforming of a finite segment of a line.

X - must contain the finite signal (column vector)

H - must contain the filter bank
(basis functions as its columns)

output - reconstructed column vector

xr = transinv(H,x)

ngths and dimensions

size(y);
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[L,M] = size(H);

N = L/M;
K = N/2;
P =H;
Nb = Nx/M;
n2 = L-M;
n = n2/2;

% inverse transform
vr=zeros (1,Nx+n2) ;
for i=0:(Nb-1)

c =1 % M;

vr((c+1):(c+L)) = vr((c+1):(c+L)) + y((c+1)

end
xr = vr((n+1): (n+Nx))’;
% Border reconstruction
% left
F = zeros(n2,n2);
for i = 0: (N-2)

iM = i *x M;

F(iM+1:iM+M,iM+1:n2) = P(:,1:n2-iM);

end
HL = F’x F;
Al = pinv(HL(:,1:n)*jay(n)+HL(:,n+1:n2));

xr(1:n) = Al * vr(1:n2)’;
% right
F = zeros(n2,n2);
for i = 0:(N-2)
iM = 1 x M;
F(iM+1:iM+M,1:iM+M) = P(:,n2-iM+1:L);
end

HR = F’x F;

:(c+tM)) * P;
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Ar = pinv(HR(:,1:n)+HR(:,n+1:n2)*jay(n));

xr(Nx-n+1:Nx) = Ar * vr(Nx+1:Nx+n2)’;
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