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Abstract—We propose a scalable lossy-compression method
to enable acoustic data transmission through a narrow band
channel (e.g. from an AUV), while still allowing for sufficiently
good reconstruction on the receive station, which is adequate for
other processing applications. Scalable coders are well-known
in regular image compression, but they have not been applied
yet to sonar backscatter data from multi-beam echo sounders
(MBES). We achieve so by converting the backscatter samples
acquired during a survey into one waterfall-image, which is
an optimized representation of the MBES backscatter data.
Each line of the image is assembled based on an auxiliary
ping time-series obtained by consolidating the individual beam
time-series into a single signal, spanning the space of all the
responses of the multiple overlapping beams. Then, the ping
time series are stacked, forming a monochrome image aligned
by the center of the navigation, without any geodesic referencing.
The assembled waterfall-image is then compressed using standard
image compression algorithms. The distortion metric we use to
evaluate quality is the mean absolute error (MAE) of samples
among original and reconstructed ping time series as well as the
MAE among the original multi-beam time series. However, the
most important distortion metric in our opinion is the comparison
of compositions of a mosaic image of the sea bottom surface
among compressed and uncompressed data. Results indicate
compression ratios of up to 200:1 at a lower but useful quality,
while smaller ratios may yield mosaic images from compressed
data that are virtually indistinguishable from the original. Thus,
we have a scalable compression method that allows for a large
range of compression ratios. From the highly compact preview
version that an AUV could send to the surface to the accurate data
that can be near-losslessly stored for future studies. The proposed
algorithm is efficient and we are unaware of any similar work in
the literature.

I. INTRODUCTION

Modern multibeam echo sounders acquire acoustic
backscatter data associated with a set of acoustic beams,
which are derived from the beamforming process. There are
usually hundreds of beams per transmit ping and each beam
can be associated with one mean backscatter value or with a
time series of backscatter samples [1],[2]. These time series
are stored under different formats within the manufacturer
datagram specs, usually comprising large files. Additionally,
one survey line can have thousands of survey pings. A
complete survey comprising a collection of those large files
face obstacles for transmission in constrained channels. For
instance, in applications which demand real-time underwa-

ter acoustic communications with an autonomous underwater
vehicle (AUV), this type of data transmission is extremely
difficult, almost unfeasible [3]. Furthermore, extensive survey
results yield very large databases that prevent easy distribution
and portability. As a result, compression may be necessary
to achieve communications (of the surveyed data) within
restricted channels.

Specifically for AUV applications, we envision a scalable
system wherein the AUV compresses the data in real-time and
transmits the compressed data to the surface, or to a listener
station, using the usually constrained acoustic underwater
communication channels. The AUV can also save the more
detailed data internally, perhaps uncompressed or compressed
at a much higher bit rate. Such data can be retrieved in post-
processing for other applications which may demand more
precision.

Multibeam echo sounder (MBES) data and image process-
ing has been addressed by a number of works, e.g. [4]–[6],
including the correction of geometric distortions [7]. The inver-
sion of the data to characterize seafloor properties has also been
discussed in [8],[9]. MBES generate large amounts of data and
the problem of handling of such large data has been relatively
ignored in the literature, with a few exceptions [10]. In general,
data management in a seafloor survey is usually neglected.
Transmission and storage are often considered only during
or after the acquisition step. These procedures can be very
costly and time-consuming, since high-bandwidth transmission
channels are not available for routine use and the backup of
very large databases if often inconvenient [11]. A few works
have dealt with the compression of the sonar data [12]–[14].
Image compression applied to the MBES data is often applied
to the results of the data analysis derived from the MBES
raw data. We, however, apply image compression towards
an internal, intermediary, two-dimensional data representation
which allows for the easy reconstruction of the sonar raw data.

We present the technique to consolidate the beam time
series into a ping time series in Sec. II while the compres-
sion method is described in Sec. III. Simulation results are
presented in Sec. IV and the conclusions of this work are in
Sec. V.
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II. IMAGING THE PING TIME SERIES

A hydrographic survey is normally comprised of many
acquisition lines, each of them containing thousands of survey
pings. For a multibeam echo sounder there are many beams
computed for each ping and one backscatter time series is
logged for each beam. Data is delivered after intense pro-
cessing by the echo sounder acquisition unit and software.
The number of samples per time series and the number of
time series (beams) per ping is variable. Usually, near-normal
incidence beams are associated with less samples while oblique
beams are associated with longer time series [2]. In Fig. 1(a)
a multi-beam sonar scan of the seabed is illustrated along with
the time-series received for each beam. We want to obtain a
single time-series for the whole region covered by the multiple
beams, i.e. for the whole ping, as illustrated in Fig. 1(b).

Fig. 1. Illustration of the combination of the multiple beam time series into
one time series for the whole ping.

Let there be N pings and M(p) valid beams in the p-th
ping. Each beam time series is represented by sp,k(n), where
p is the ping number (0 ≤ p < N ), k is the beam number (0 ≤
k < M(p)) and n is the time index (0 ≤ n < Npk). spk(n)
is represented as backscatter strength in dB, such that initial
numbers are all negative integers. Along with the value for
spk(n) the echo sounder provides its central sample position
cpk along with some information about the central sample of
each beam such as spatial coordinates (xpk, centerline, ypk,
athwartships, zpk, depth) and two-way travel time τpk. Note
that the center beam is not necessarily the central sample in
spk(n) because of all the processing and corrections, i.e cpk �=
Npk/2.

The beams are predominantly displaced along the y co-
ordinate, across the boat centerline. If we disregard the other
two components we may locate all the time-series samples for
all beams into a single dimension, i.e. place all the {spk(n)}
into one large combined time-series for the whole ping hp(n).
Firstly, we need to find where the samples lie in y direction,
i.e. find the irregular samples of a continuous ping function
h′
p(y).

Even though it is clear that spk(cpk) corresponds to posi-
tion ypk, in order to establish the position values for spk(n),
n �= cpk, we need to estimate the sampling interval in y
direction (ȳpk) for that particular beam, so that

h′(ypk + �ȳpk) = spk(cpk + �). (1)

Echo sounders will also make available a local sound speed
estimation νp and the sampling interval Tp for every ping. For
a linear and stable relation between τpk and ypk, using simple
trigonometry (see Fig. 2) we get to

ȳpk =
Tpypk
τpk

. (2)

Fig. 2. Relating the sampling interval in space (ȳpk) and time (Tp). Different
beams at a ping have different relations as their beam centers imply different
incidence angles.

The above relation, however, varies from beam to beam
and from ping to ping, due to 3 factors among others: beam
shape, seabed inclination and noise. Figure 3 shows plots of
the relation of two-way travel (τpk) and distance (ypk) for two
given pings. These two pings are the first and the 3000th from
line 19-2011 acquired over the Admiralty Bay in the South
Shetland Islands of Antarctica [15]. Note that the relation
follows a curve similar to a quadratic function, offset from
the centerline. The near-quadratic behavior follows from the
beam shape and the offset follows from the seabed inclination.
On top of all, noise levels are very high in everything related
to open sea acoustics.

We model a function τ = fp(y) for every ping, by fitting
a cubic polynomial to the points {(τpk, ypk)} for all k for a
given p, i.e.

f(y) = a0 + a1y + a2y
2 + a3y

3. (3)

Even though τ = f(y) can be modeled by a simple
function, we actually need to find y from τ and there is
no function y = f−1(τ). For that, we make a localized
approximation on the function inclination and use it.

ȳpk =
Tp(

∂f(y)
∂y

∣∣
y=ypk

) . (4)

Assuming our cubic model, we have

ȳpk = Tpαpk, (5)

where

αpk =
1

|3a3y2pk + 2a2ypk + a1| (6)
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Fig. 3. Time-distance relation for the center samples for two different pings
(p = 1 and p = 3000 ) from line 19-2011 acquired over the Admiralty Bay
in the South Shetland Islands of Antarctica.

It should be noted that the denominator will get too close to
zero. Therefore, we simply cap the value of αpk to a value
large enough for comfort. In particular, in our tests we capped

αpk ≤ 20
1

1
M(p)

∑M(p)−1
�=0 |3a3y2pk + 2a2ypk + a1|

(7)

but we appreciate that many other more elegant solutions can
be applied to this inversion problem.

Although (1) calculates ping data from beam samples, once
we know the spatial location of samples we can compensate
the data for beam dispersion. As in Fig. 4, the beam is not
a ray as the sound propagates with dispersion. As a result,
samples off the beam center are more attenuated than the center
one. Rule-of-thumb for compensation is to add +3 dB (reduce
attenuation) for each 0.5 degree. For different angles we apply
proportional compensation, yielding a compensation for each
beam as βpk(n). Note that βpk(cpk) = 0 and we calculate
the angle in between neighbor samples using the distance
to the center sample (νpτpk) and the distance in between

samples ȳpk as references. This is a suboptimal estimation
which assumes that the beam foot print on the seabed is
perpendicular to the line that reaches the echo sounder and all
angles in between samples are the same for a given beam. Such
a rough approximation should serve us well, though, since it
is not critical. In this case, the angle in between samples in a
beam is

θpk ≈ atg

(
ȳpk
νpτpk

)
.
360

2π
. (8)

The correction should add +3 dB to each 0.5 degree, or
6 dB per degree off center, or approximately 343.77 dB per
radian. The correction signal is

βpk(n) = |n− cpk| · 343.77 · atg

(
ȳpk
νpτpk

)
. (9)

Thus,

h′
p(ypk + �ȳpk) = spk(cpk + �) + βpk(cpk + �). (10)

Fig. 4. Beam wavefront dispersion illustration and the need for correction.

From h′
p(y) we need to get the ping time series hp(n). For

that we need to settle the resolution, i.e. the sampling interval
λp and the excursion Wp of the ping, both given in meters.
Because we have very irregular sampling h′

p(y) to transform
into a perfectly regular time-series we have two approaches:
interpolate then re-sample, or re-sample then interpolate. We
use here the latter. First we create samples

hp(n) = h′
p

(
round

(
y

λp

))
. (11)

If multiple samples of h′ are mapped to the same hp(n),
we chose the one that is closest to the center of the beam. In
other words, since all samples of h′ are h′

p(ypk + �ȳpk) we
chose the one with the smaller �. The reason is an assumption
that samples closer to the center are more reliable than those
far from it.

All samples at positions n to which no sample was as-
signed to hp(n) are then linearly interpolated using the closest
samples hp(n) which have been assigned values in (11).

The result is a ping time series hp(n), which depends on
the resolution (in meters at the seabed) and on the desired span
of the ping, also in meters. Examples will be given in the next
session.
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III. COMPRESSION

From all the {hp(n)}, we stack the ping time-series as
if they were rows of a two-dimensional array. Examples of
such a structure, imaged in Fig. 5, represent data acquired
over the Admiralty Bay, in the South Shetland Islands of
Antarctica. There are many lines, each with hundreds or
thousands of pings and we have chosen two as example. The
first line is line 19 of a 2011 survey (19-2011), and it contains
N = 2476 pings, each ping containing up to M(p) = 432
beams. The second line is line 84 of a 2013 survey (84-2013),
and it contains N = 7298 pings, each ping containing up to
M(p) = 288 beams.
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Fig. 5. “Waterfall” of the data acquired over the Admiralty Bay, in the
South Shetland Islands of Antarctica. (Top) Line 19-2011 with N = 2476,
M(p) ≤ 432 and Wp = ±2400m; (bottom) Line 84-2013 with N = 7298,
M(p) ≤ 288 and Wp = ±1000m.

The data represented as a two-dimensional array and shown
in Fig. 5 is referred here as the “waterfall” of the pings in a line.
The “waterfall” is then used to compose a mosaic where each
ping is geographically referenced and displaced in its relative
position [9], as illustrated in Fig. 6 for both lines (19-2011 and
84-2013).

As a next step, we filter the data in order to remove some of
the excessive amount of noise. Rather than filtering the ping
time-series hp(n), we perform filtering in the waterfall data
in order to remove possible artifacts across both dimensions:

Fig. 6. Mosaics derived from the data in Fig. 5 with geographic referencing
of the pings in lines 19-2011 and 84-2013.

athwartships and along the centerline. We used a rank-ordered
filter over a 5×5 window. The window is scrolled throughout
the image, the 25 samples in it are ranked, and if the center
pixel falls outside the middle 15 sample values it is replaced by
the closest allowed value. In other words, if the center sample
(pixel) is ranked 1st through 5th, it is replaced by the 6th value,
and, if it is ranked 21st through 25th, it is replaced by the 20th
value. A zoom of a filtered version of a waterfall is depicted
in Fig. 7.
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Fig. 7. Zoom of a part of the “waterfall” of line 19-2011 relating the mosaics
generated by the Geocoder software [9] using raw data (left) and filtered data
(right).

Even though the filter may remove some data along with
structures that are clearly noisy, there is not much damage
when constructing a mosaic. Many interpretation software ap-
ply very aggressive filtering to eliminate some of the excessive
noise. Figure 8 shows the mosaics obtained using filtered data
and should be compared to those results in Fig. 6. A zoom
comparing portions of the mosaics in Figs. 6 and 8 is shown
in Fig. 9. It is hard to identify any significant differences
comparing the mosaics generated by filtered and unfiltered
data.

Waterfalls have no immediate use, apart from the present
work, but the mosaics are used by specialists for analysis
and for data inversion trying to estimate seabed properties
such as impedance, granularity, rugosity, etc. [8],[9]. In this
paper we use the waterfall for compression, i.e. we compress
the waterfall-arranged data using standard image compression
methods. The attenuation data ranges from -1000 to -10 (×
0.1 dB attenuation) and we use 12- or 16-bit image data in
modern compressors that support high-dynamic range (HDR).

We have tested two image compressors: JPEG-2000 [16]
and HEVC-Intra (High Efficiency Video Coder or H.265,
operating in intra-frame mode [17]). The data to be compressed
is the waterfall-arranged data, which are N × 2Wp-pixel
images. The decompressed image data can be mapped back
into the reconstructed ping time-series {ĥp(n)} which can be
mapped back to beam time series ({ŝpk(n)}). Alternatively,
the decompressed images can be used to compose mosaics
or to undergo other analysis steps. The reconstructed time
series are {ŝpk(n)} which are not the same as {spk(n)}.
There are 4 sources of errors from the compression and
decompression cycle and from the {spk(n)} → {hp(n)} plus

{ĥp(n)} → {ŝpk(n)} cycle, which are:

1) Quantization. The image compression algorithms
we use are lossy and trade distortion for further
compression. The quantization of the transformed
coefficients are the main source of errors, and we
can say that image data was quantized to obtain
compression. Since decompressed data is different
from the uncompressed one, {ĥp(n)} is reconstructed
instead of {hp(n)}, even without filtering.

Fig. 8. Mosaics as in Fig. 6 using filtered “waterfall” data.

2) Filtering. The rank-order filter irreversibly modifies
the image data and, even if we skip the compression,
{ĥp(n)} would be different from {hp(n)}.

3) Sample discarding. Even if we skip compression and
filtering such that ĥp(n) = hp(n), for all p and n,
the process {spk(n)} → {hp(n)} is not reversible.
The reason for so is that in (11) we assumed that if
multiple samples are mapped to the same hp(n) we
would discard all but the one closest to the center
beam sample. In this way, the overlapping samples
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Fig. 9. A zoom comparing portions of the mosaics in Figs. 6 (left) and 8
(right).

are simply discarded and one cannot recreate them.
Thus, the loss is irreversible. One might argue it is
a benign loss, removing less reliable data, but it is a
loss nevertheless.

4) Data-dependent modeling. Finally, since there are
some losses in any of the three previous items,
and since the polynomial modeling in (3) is data-
dependent, different data would result in a slightly
different model and a slightly different mapping in
between τ and y.

IV. RESULTS

In order to test the rate-distortion (RD) performance of
the proposed method we ran tests using different distortion
and rate metrics. The first rate metric is the compression ratio
between the compressed image file size and the image itself.
If the compressed file size is B bits, and the image is stored
with 16 bits and has dimensions 2Wp×N the first compression
ratio we use is

CR1 =
32WpN

B
. (12)

The other rate metric compares the original data in all
beams, stored with 16 bits/sample, to the compressed file. In
this way, the compression ratio is

CR2 =
16Ns

p

B
, (13)

where Ns
p = ||spk(n)|| is the number of samples in all beams

at ping p.

The first distortion metric D1 we use is the mean absolute
error (MAE) of the image (waterfall) data. If the image data
is {g(i, j)} and the reconstructed is {ĝ(i, j)}, then

D1 =
1

2WpN

Wp−1∑
i=−Wp

N−1∑
j=0

|ĝ(i, j)− g(i, j)| (14)

The second distortion is the MAE of the original data, i.e.

D2 =
1

Ns
p

N−1∑
p=0

M(p)−1∑
k=0

Npk−1∑
n=0

|ŝpk(n)− spk(n)| (15)
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Fig. 10. RD curves using the waterfall image as a reference, i.e. CR1×D1

curves for line 19-2011 (top) and 84-2013 (bottom). Both JPEG-2000 and
HEVC-Intra were used.

The third distortion is the traditional peak signal to noise
ratio (PSNR) in between the two images of the mosaics (before
and after compression).

D3 = 10 log10
2552

1
Nm

∑
i

∑
j(m̂(i, j)−m(i, j))2

, (16)

where {m(i, j)} represent the mosaic image of the uncom-
pressed data, with Nm pixels, while {m̂(i, j)} represents the
reconstructed mosaic data.

In Fig. 10 we present RD results as curves relating CR1×
D1 (i.e. RD curves using the waterfall data as reference), for
lines 19-2011 and 84-2013. We tested both JPEG-2000 and
HEVC-Intra. The results under these metrics are unequivocal
in favor of JPEG-2000 over HEVC. At any rate (compression
ratio), JPEG-2000 yields less distortion than HEVC, and at
any distortion level, JPEG-2000 attains a higher compression
ratio. The main reason for it, we speculate, is that the highly
texturized nature of the image implies in higher-energy high-
frequency coefficients and lower spatial predictability. JPEG-
2000 uses wavelet transforms while HEVC uses intra-frame
predictions followed by block transforms. Both methods were
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Fig. 11. RD curves using the original beam-time-series data as a reference,
i.e. CR2 × D2 curves for line 19-2011 (top) and 84-2013 (bottom). Both
JPEG-2000 and HEVC-Intra were used.

designed to compress natural images, and JPEG-2000 seems to
better adapt to the noisy image characteristics of the waterfall
data. Tests were repeated using the beam time series data as
reference, i.e. RD results as curves relating CR2×D2, in Fig.
11. The results are similar to those in 10 and we can conclude
two things: (i) JPEG-2000 should be favored over HEVC-Intra;
(ii) one can attain large compression ratios while inducing only
moderate errors.

Metrics D1 and D2 are good indicators of errors, but
are not conclusive indicators of the effects of the distortion
on the analysis of the echo sounder data. In this respect,
we carried tests using D3, i.e. the distortion of the mosaic
images. Mosaics were generated for several compression ratios
using JPEG-2000 and the results are shown in Fig. 12. PSNR
values at 38 dB, for example, are considered of good quality
for broadcast and entertainment applications. For subjective
evaluation, the mosaic images at different compression ratios
are presented in Figs. 13 and 14. In order to make the
comparison more clear, an enlarged portion of a mosaic image
of line 19-2011 is shown in Fig. 15. From those one can
see that only at very high compression ratios the distortion
becomes easily noticeable. However, most of the distortion is
the elimination of the high frequency textures and noise while
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Fig. 12. RD curves relating CR2 × D3 (mosaic image as a reference) for
line 19-2011 (top) and 84-2013 (bottom).

preserving the structures in the data.

V. CONCLUSION

We have presented a method to compress sonar multi-
beam backscatter data in a domain that lends itself useful for
removing redundancies while not sacrificing much the quality
of the resulting data, i.e. the data that is going to be analyzed.
For that, we converted multi-beam time-series data into a ping
time series. Ping signals are stacked to form an image, which
is then filtered and compressed using standard modern image
compressors.

In order to not be application-dependent, it was important
to maintain the integrity of the original data as well as the
output mosaic images. As there are no standard distortion
metrics for this data, we have shown to be able to achieve
high compression without much loss in quality under three
different metrics: distortion on the original data, distortion on
the ping-time series data and distortion on the mosaic image
derived from the ping data.

Despite all the processing it undertakes, the signal out of
the echo sounder is too noisy to be reliable. Such noise hinders
compression and we believe that much of the information that
is lost due to the compression is due to noise removal rather
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than suppressing useful information. The filter we used is an
example and it is necessary to better study processing methods
for noise removal in the ping time series.

Apart from better processing, we also plan to work on
compressing the many other parameters in the echo-sounder
datagrams and to develop better distortion metrics, such as
using parameter inversion (e.g. soil impedance or rugosity).
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Fig. 13. Mosaic images of line 19-2011 at different compression ratios:
CR1 = 12, CR1 = 119 and CR1 = 238.

Fig. 14. Mosaic images of line 84-2013 at different compression ratios:
CR1 = 8, CR1 = 77 and CR1 = 155.
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Fig. 15. Comparison among original and decompressed mosaic images.
Enlarged portions of mosaic image of line 19-2011 are shown for: (top-left)
original unprocessed ; (top-right) uncompressed but processed; (center-left)
CR1 = 12, (center-right) CR1 = 24, (bottom-left) CR1 = 119, (bottom-
right) CR1 = 238.
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