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ABSTRACT 

In this paper we present a rate distortion analysis and a 
statistical model in order to select coding parameters for 
memoryless coset codes, for a spatial scalability based mixed 
resolution Wyner-Ziv framework. The mixed resolution 
framework, used in this work, is based on full resolution 
coding of the key frames and spatial 2-layer coding of the 
intermediate non-reference frames where the spatial 
enhancement layer is Wyner-Ziv coded. The framework 
enables reduced encoding complexity through reduced 
spatial-resolution encoding of the non-reference frames. The 
quantized transform coefficients of the Laplacian residual 
frame are mapped to cosets and sent to the decoder.  A 
correlation estimation mechanism that guides the parameter 
choice process is proposed based on extracting edge 
information and residual error rate in co-located blocks from 
the low resolution base layer.  
Index Terms— Wyner-Ziv, reversed-complexity coding, 
spatial scalability 

1. INTRODUCTION 
Distributed coding has its roots in the information theory 
proofs of Slepian and Wolf 0 for the lossless case and Wyner 
and Ziv [2] for the lossy case. Recently, a kind of video 
coding referred to as reversed complexity coding, has been 
proposed based on these principles, where the encoder 
complexity is reduced by obviating the need for full motion 
search, but the performance loss is partially recovered by a 
more complex decoding process exploiting source statistics. 
A review of distributed video coding can be found in [3]. 

In [5]-[7], we proposed a mixed resolution framework that 
can be implemented as an optional coding mode in any 
existing video codec standard. In this framework, the 
reference frames are coded exactly as in a regular codec as I-, 
P- or reference B-frames, at full resolution. For the non-
reference P- or B- frames, called non-reference Wyner-Ziv 
(NRWZ) frames, the encoding complexity is reduced by low 
resolution (LR) encoding. As shown in Figure 1, the non-
reference frames are decimated and coded using decimated 
versions of the reconstructed reference frames in the frame 
store. Then the Laplacian residual, obtained by taking the 
difference between the original frame and an interpolated 
version of the LR layer reconstruction, is Wyner-Ziv coded to 
form the enhancement layer. Since the reference frames are 
regular coded, there are no drift errors. Ideally, the number of 
non-references frames and the decimation factor can be 
varied dynamically based on the complexity reduction target. 
At the decoder, a high quality version of the non-reference 
frames are generated by a multi-frame motion-based mixed 
super-resolution mechanism [5]-[9]. The interpolated LR 
reconstruction is subtracted form this frame to obtain the 

side-information Laplacian residual frame. Thereafter, the 
Wyner-Ziv layer is channel decoded to obtain the final 
reconstruction. Note that for encoding and decoding the LR 
frame, all reference frames in the frame store and syntax 
elements are first scaled to fit the non-reference LR coded 
frame. Related work [4] has also explored spatial reduction 
recently, but our mixed resolution approach while less 
aggressive in complexity reduction can achieve better 
compression efficiency. 

In realistic usage scenarios for video communication 
using mobile power-constrained devices, it is not necessary 
for a video encoder to always transmit video to a more 
powerful machine or server. In the mixed resolution 
approach, the LR bit-stream can be decoded immediately for 
real-time communications albeit at lower quality. However, 
the main difference with other work in this area is that we do 
not employ a feedback channel for rate-estimation, thereby 
enabling the enhancement layer to be decoded offline. This 
requirement necessitates a sophisticated mechanism for 
estimating the correlation statistics at the encoder, followed 
by mapping the estimated statistics to actual encoding 
parameters. We present in this paper, as a continuation of 
previous works [5]-[7], a statistical model as well as a 
mechanism to estimate the model parameters, based on 
which optimal coding parameters [6][10] for memoryless 
coset codes can be selected.  
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Figure 1. Non-reference Wyner-Ziv frames Encoder 



2. WYNER-ZIV CODER 
Our WZ coder operates on the Laplacian residual error 

frame in the block-transform domain. Let the random 
variable X denote the transform coefficients. Then, the 
quantization of X, with a dead-zone quantizer, yields a 
quantization index random variable Q: Q = ф(X, QP), QP 
being the quantization step-size. Next, cosets are computed 
to yield a random variable C: C = ψ(Q, M) = ψ(ф(X, QP), M), 
M being the coset modulus: 
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If quantization bin q corresponds to interval [xl(q), xh(q)], 
then the probability of the bin Qq Ω∈ , and the probability of 

a coset index Cc Ω∈  are given by the probability mass 
functions: 
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The entropy coder that already exists in the regular coder 

can be reused for C, but a different entropy coder 
conditioned on M for each coefficient should yield better 
compression.  

For decoding, existence of the corresponding side-
information coefficient random variable Y is assumed. The 
minimum MSE reconstruction function ),(ˆ cyXYC  based on 
unquantized side information y and received coset index c, is 
given by:  
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The regularly coded reference frames in our framework 
are assumed to be coded with quantization step-size QPt. 
Additionally, the LR layer of the NRWZ frames is also 
assumed to be coded with the same step-size QPt. Therefore, 
the enhancement Wyner-Ziv layer for NRWZ frames should 
be ideally coded such that the distortion is about the same 
level as that obtained by regular coding with quantization 
step-size QPt.  

3. CHOOSING CODING PARAMETERS 
In order to make an optimal choice of the quantization and 
modulus parameters {QP, M}, we assume a general enough 
statistical model: Y = ρX + Z, where X is a Laplacian 
distributed transform coefficient, Z is additive Gaussian noise 
uncorrelated with X and 0 <ρ ≤ 1 is an attenuation factor 
expected to decay at higher frequencies. Note that while this 
is a generalization of the simpler model: Y = X + Z dealt with 
in [6][10], since we can rewrite it as Y/ρ=X+Z/ρ, the same 
procedure [6][10] can be applied with simply (σZ/ρ)2 
replacing σZ

2 and Y/ρ replacing Y during decoding. In the rest 
of this section, we review the optimal parameter choice 
mechanism for the Y = X + Z model, however to use for the Y 
= ρX + Z model, σZ needs to be replaced by (σZ/ρ). 
3.1. Memoryless coset codes followed by minimum 
MSE recostrunction 
The first step is to obtain expressions for expected rate and 
distortion functions for the memoryless coset codes described 
in Section 2, for a given {QP, M} pair. Assuming an ideal 

entropy coder for the coset indices, the expected rate would 
be the entropy of the source C, given by: 
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Further, it can be shown [6][10] that the expected distortion 
DYC for the minimum MSE reconstruction function (4), is:                                  

dyyf
yqxmyqxm

yqxmyqxm
DE Y

c

cMqq
lYXhYX

cMqq
lYXhYX

XYC
C

Q

Q )(}
)]),(()),(([

)]),(()),(([
{)(

),(:

)0(
/

)0(
/

2

),(:

)1(
/

)1(
/

2 ∫ ∑
∑

∑∞

∞− Ω∈

=Ω∈

=Ω∈









−









−

−=

ψ

ψσ     (6)                           

where xdyxfxyxm
x

YX
ii

YX
′′′= ∫

∞−

),(),( /
)(
/

.                 

A viable coding choice is to just use zero-rate coding, 
where no information is transmitted (i.e. QP→∞ or M=1). 
Then the rate will be 0 and it can be shown [6][10] that the 
expected distortion based on optimal reconstruction using Y 
alone is given by: 
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3.2. Laplacian source with additive Gaussian noise  
We now specialize for the case of Laplacian X and Gaussian 
Z, i.e.: 
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Closed form expressions for )()0( xm
X

 and )()1( xm
X

 can be readily 
evaluated. Defining: 
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where dtexerf
x
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2)2()( π , and using Y=X+Z, we have: 
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Given fX/Y(x,y), closed form expressions for ),()0(
/ yxm YX  

and ),()1(
/ yxm YX  based on the erf() function (evaluated based 

on a polynomial approximation in [11]) can now be 
computed. All the expected rate and distortion values in 
Section 3.1 for a given {QP, M} pair can now be evaluated 
based on these moments in conjunction with numerical 
integration with )(yfY .  

While there are many different combinations of {QP, M} 
that can be chosen, only those combinations that yield R-D 
points on the Pareto frontier are optimal ones. A bunch of R-
D points are evaluated offline by varying M and QP at small 
increments, for a given {σX, σZ}. The sub-optimal choices for 
{QP, M} combination are pruned out by finding the Pareto-
Optimal set P, wherein each point representing a code, is 
such that no other code is superior to it. For a given target 



distortion upper bound Dt, the optimal {QP, M} combination 
is selected by picking the code from the optimal set P that 
yields the closest distortion to Dt, not exceeding it.  
3.3. Distortion target matching 

Finally, we note that it is advantageous in our framework 
to specify Dt in terms of a target quantization step-size QPt 
for regular coding. The expected distortion from regular 
encoding followed by MSE reconstruction (without side-
information) is given by: 
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This function computed for a given QPt yields Dt. Thereafter, 
a sorted set P can be searched for the optimal code with 
distortion closest to Dt not exceeding it. 

In practice, this mapping from QPt to {QP, M} can be 
pre-computed and stored in a normalized table for a range of 
QPt values, for a given σZ assuming σX=1. To use for an 
arbitrary σX, the values of QPt and QP in a normalized table 
need to be appropriately scaled before and after table-lookup. 
A limited set of normalized tables can be stored in a codec 
for a range of σZ values at small steps.  

Reverting back to our Y = ρX + Z model, if the model 
parameters {ρ, σX, σZ} are known, then in order to find the 
{QP*, M} combination corresponding to a given QPt*, we 
simply have to evaluate σZ/(ρ. σX) to find the normalized 
table to use for look-up, find the closest entry in it 
corresponding to target QPt= QPt*/σX, read off QP and M, 
and finally scale to obtain the final QP*=QP. σX. 

4. CORRELATION STATISTICS ESTIMATION 
In this Section, we will propose a mechanism to estimate 

the parameters {ρ, σX, σZ} for our Y = ρX + Z model within 
the proposed spatial scalability framework. These parameters 
are to be next used for parameter selection as described in the 
previous section.   

The model parameters need to be specialized for each 
frequency band (FB) within a block, where the FB is defined 
as diagonals in a transform block as shown in Figure 2. Also 
note that the correlation is obviously dependent on the 
quantization step-size QPt for the reference frame and the LR 
layer. Besides, other vital information can be extracted from 
the LR layer to direct the estimation process as described 
below. Note that since any data from the LR layer is available 
at both decoder and encoder, no overhead bits need to be 
transmitted to convey this information. An alternative 
approach may transmit explicitly some statistical information, 
but in this work, we adopt a no-overheads approach.  

To generate the estimation models we use a training based 
approach where X (transform coefficients of Laplacian 
residual of original frame) and Y (transform coefficients of 
residual after multi-frame processing) data for each FB is 
collected for a set of training video sequences for varying 
values of QPt along with the corresponding values of 
additional information extracted from the LR layer.  

4.1. Estimation of σX
2- variance of Laplacian residual 

coefficients 
The variance of a Laplacian residual coefficient (σ2

x) will 
not be the same in every block of a coded frame. It will not 
only depend on QPt and FB, but also on the high frequency 
content of the block. If the original frame has a high edge 
content it is likely that the error between the decimated-
interpolated version and the original one would be larger. 
Even though the exact high frequency content in an original 
frame is not available at the decoder, we can use an edge 
activity measure of the reconstructed LR block as a parameter 
to estimate σX

2. It is intuitive to think that the edge activity in 
the LR block will be correlated with the energy of the high 
frequency coefficients of the Laplacian residual, while the 
energy at the lower frequencies in the Laplacian residual will 
be more related to QPt. The edge activity, denoted E, is 
computed as the accumulate sum of the difference between 
the lines and columns of a macroblock in the reconstructed 
version of the interpolated LR frame. Then, the estimated σX

2 
is modeled as a function of QPt, FB and E. That is: 

                        ),,(1
2 EFBQPf tX =σ                         (13) 

We next assume σX
2 to be proportional to QPt

2. Further, 
after processing the training data we find that it is enough to 
model the remaining part linearly for each FB, so that: 

 2
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where ki,FB are constants that vary for each frequency 
band. In Figure 3, we show the linear approximations used 
for 22 / tX QPσ  vs. E, compared to the real training data for 
some of the frequency bands. 
4.2. Estimation of the correlation parameter 
To estimate the ρ parameter, we use a simplified model 
assuming that it only depends on QPt and FB: 

),(2 FBQPf t=ρ                               (15) 
Note, that a better estimation of ρ could be the subject of 

future improvements. In this case, if tQPFBT ,  represents the 
training data set for QPt and FB, we estimate:  
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Then, after tQPFB ,ρ  is calculated for the entire training set, 
a linear approximation is used to model it as:  

)( ,4,3, FBtFBQPFB kQPk
t

+=ρ                     (17) 
Note that with higher QP the variables X and Y are less 

correlated then k3,FB is a negative constants.   

 
Figure 2. First seven frequency bands in an 8×8 block 

 
Figure 3. Real EvsQPtX  . / 22σ  and linear approximation 



4.3. Estimation of the variance of the Gaussian noise 
To estimate σZ

2 from the training data set, we first 
calculate Z = Y - tQPFB,ρ X. Further, we conjecture that σ2

z for a 
macroblock in the enhancement layer will depend on the 
residual error rate R used to code a co-located 8×8 block in 
the LR base layer along with QPt, FB and E. A higher rate in 
the LR base layer indicates greater inaccuracy of motion 
estimation at reduced resolution, and therefore the multi-
frame super-resolution process is also likely to yield more 
inaccurate estimate of the high-resolution frame at the 
decoder, leading to increase in σZ

2. However, since R 
depends also on QPt we use normalized rate Rn = R×QP2

t in 
order to remove the effect of QPt. Now, we can model σZ

2 as: 
                   ),,,(3

2
ntZ REFBQPf=σ .                        (18) 

We next assume σZ
2 to be proportional to σX

2 for a given 
FB and Rn, and the effect of QPt and E to be subsumed 
within σX

2. Further, the remaining part is modeled linearly for 
each FB, such that:  

                    2
,6,5

2 )( XFBnFBZ kRk σσ +=                      (19) 
In Figure 4 we show the linear approximations used for 

22/ XZ σσ  vs. Rn, compared to the real training data, for some of 
the frequency bands. 

5. RESULTS AND CONCLUSIONS 
This optimal parameter choice was applied to the 

proposed mixed resolution framework using H.263+. In 
Figure 5 and Figure 6 we compare the performances of 1. a 
regular H.263+ codec working in IBPB mode; 2. the LR base 
where the B-frames are encode at quarter resolution 
(indicated as Z frames) and simply interpolated at the 
decoder; 3. the results from decoding both layers of the 
reversed complexity codec without optimal parameter choice 
(fixing {QP,M} for each frequency band); and 4. the results 
from decoding both layers using the proposed estimation of 
the correlated statistic for optimal parameter choice. It can be 
observed that a better statistical model and parameter choice 
mechanism improve significantly the performance of the WZ-
codec.  As future work, this model will be implemented in 
the latest video codec standard H.264. 
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Figure 4. Real nXZ Rvs  . / 22 σσ  and linear approximation. 

 
Figure 5. Performance for H.263+ (Silent CIF sequence). 

 

Figure 6. Performance for H.263+ (Foreman CIF sequence) 


