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ABSTRACT

A new non-expansive pyramidal decomposition is pro-
posed. The signal is decomposed through a non-linear
filter bank into low- and high-pass signals and the recur-
sion of the filter bank over the low-pass signal generates
a pyramid resembling that of the octave wavelet trans-
form. The transformed samples were grouped into square
blocks and used to replace the DCT in the JPEG coder.
The proposed coder shows several advantages: compu-
tation is greatly reduced compared to the DCT, image
edges are better encoded, blocking is eliminated, and it
allows lossless coding,.

1. INTRODUCTION

The Laplacian pyramid [1] became quite popular for im-
age processing and coding despite the fact that it im-
poses an expansion of the number of samples, limiting
the performance of the coder. Expansiveness can be elim-
inated by directly applying an association of filter banks
(2], which has been shown to be equivalent to the dis-
crete wavelet transform [2]. The JPEG baseline system
(referred here simply as JPEG) [3] is a de facto standard
for lossy compression of gray-level or color images. How-
ever, it is based on the discrete cosine transform (DCT)
which is somewhat expensive to compute. In this paper
we present a JPEG-based coder which uses a non-linear
transform instead of the DCT. The transform is an en-
hanced version of the pyramidal structure presented in [4]
and it does not require multiplications, nor floating point
numbers of any kind.

Perfect reconstruction (PR) in critically decimated
systems is generally guaranteed by imposing conditions
on the filter coefficients. When dealing with non-linear
filters, no such general conditions exist. For this reason,
non-linear filter banks were restricted to non-critically
decimated cases [6, 7, 8]. Recently, a new approach for
critically decimated non-linear filter banks has been in-
troduced [9, 4], where PR is obtained by imposing re-
strictions in the filter structure instead of on the filter
coefficients. We use here a particularization of a general
framework [5].
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2. THE TRANSFORM

2.1. One stage

Let the picture elements (pixels or pels) in the input im-
age be denoted by z(n;,nz). With the usual notation
for multidimensional signals [10], we define the vector
n = [n;,n2]T and denote the signal by z(n). We de-
fine the polyphase components of the signal as z;(m) =

. M, 0
z(Mm + i), for M = 0 M,
0 < i < M. We are concerned with 2D signals and with
the case M7 = My = 2, so that i can assume the values
representing one out of four polyphase components: (0,0),
(0,1), (1,0), (1,1), i.e., they obey the following grid:

(00) (01) (00) (01) (00) (01) (00) (01) (00) (01)
(10) (11) (10) (11) (10) (11) (10) (11) (10) (11)
(00) (01) (00) (01) (00) (01) (00) (01) (00) (01)
(10) (11) (10) (11) (10) (11) (10) (11) (10) (11)

and for i = [ig,4]7,

We also represent the transformed signal into its poly-
phase components (subbands) as y;(n), such that similar
notation applies to samples of y(n) as well.

The decomposition for one level of the specific struc-
ture that we used to construct the pyramid can be de-
scribed as:

yoo(n) = moo(n) (1)
yi(n) = wy1(n) — Fo(zeo(n)) (2)
Yor,01(n) = o1,10(n) — Fi(xee(n),z11(n)) (3)

where Fj is any linear or non-linear function and z¢; 10(n2)
is the quincunx grid formed by z¢;(n) and 2;0(n). The
signal can be perfectly reconstructed by making:

Zoo (n) = yoo(n) (4)
z11(n) = yi(n)+ Fo(zeo(n)) (%)
zo1,10(n) = wor10(n) + Fi(zeo(n),z13(n)) (6)

The relative spatial arrangement between the two rectan-
gular grids zgg and 217 is the same as that between the
two quincunx grids Zgg,11 and x1,10. The difference is a
rotation of 45 degrees. Therefore, F can be essentially
the same as Fy [5].
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Figure 1: Cascading stages to form a multiresolution
pyramid.

|

2.2. The pyramid

As usual in the filter banks literature, we call the sub-
band decomposition process analysis and the reconstruc-
tion process synthesis. We further extend the notation to
define

T ioi (Mo, 1) = 2(2°00 4+ 257 1ip, 20y + 2°714y). (7)

As in the wavelet and pyramid transforms [1, 2], one can
connect the input of a stage right to the low-pass output
of another one as shown in Fig. 1.

In image coding applications the subbands are quan-
tized. Given the sequential nature of the decomposition
process, we can avoid excessive accumulation of quantiza-
tion error across subbands by using a feedback loop (local
reconstruction) similar to that used in DPCM systems.
Furthermore, for maximum compression, F; should be a
good interpolator in order to minimize the information
sent along the subbands. A description of the analysis
process! is given by:
=1
ys,oo(n) = Is,oo(n)
9s,00(n) = Q7 {Qi{ys.00(n)}}

Zs,00(n) = §s,00(n)
fork=5:-1:1

Zj,11(n) = interpolate(Zg go(n))

yr11(n) = 2g11(n) — Fx,11(n)

gk11(n) = Q1_+11{Ql+1{yk,11<n)}}

Er11(n) = &, 11 (n) + Je1(n)

Tk 01(n) = interpolate(Zy go(n), &1 11(n))

Yk,01(n) = Tk01(n) — T4 01(n)

dk01(n) = Q5 {Qur2{yr01(0)}}

Eg01(n) = Tx01(n) + Jr 01 (n)

Ik 10(n) = interpolate(Zy go(n), Lf,11(11))

Yr10(n) = zx 10(n) — T 10(n)

Ir10(n) = QL {Qur2{ve,10(n)}}

Zr10(n) = Zx 10(n) + Jr,10(n)

l=1+2
end

Note that at each iteration

Ep_100(n) = (2x,00(n), Zx,01(n), Zx,10(n), 11 (n)),

more details can be found in [5]

Figure 2: Illustration of a 3-stage decomposition. Sam-
ples labeled “1” through “n” are used to interpolate the
samples labeled “n+1”. We can also group the samples
into blocks, as indicated.
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Figure 3: Typical support region of the interpolation fil-
ters. Samples marked with e are used to interpolate the
sample marked with ®.

and (), represents the quantization process at the n-
th step and Q7! is the inverse operation. For exam-
ple, for uniform quantizers with step size A,, Q.{t} =
round(t/Ay) and Q;1{t} = tA,. For S = 3 (a depth-
3 decomposition), an example of the sequence of pixels
used is given in Fig. 2. In this figure, samples labeled
“1” through “n” are used to interpolate samples labeled
“n+1”. Note also that we can group the samples into
25 x 25 blocks (as the 8 x 8 block in the figure) to replace
traditional block transforms.

We can characterize the analysis-synthesis process as
a pyramidal scheme with critical sampling of the interpo-
lation error, as an association of filter banks, or as a hi-
erarchical DPCM system where samples are predicted by
interpolation rather than conventional extrapolation [11,
12]. Actually, if we encode ys0(n) using a DPCM sys-
tem we would have a hybrid interpolative-extrapolative
prediction system [11].

2.3. Interpolation

The choice of the filters boils down to the choice of an in-
terpolation method. In Fig. 3, samples in the grid marked
by e are available to interpolate the sample marked with
®. Typical support regions are those indicated by the
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solid or dashed lines in Fig. 3 (4 or 16 neighbors). Op-
timum linear interpolators can be easily computed (as-
suming the signal characteristics are known). Neverthe-
less, simple non-linear interpolation has shown to produce
better results than much more complex linear filters [13].
Even with the recent theoretical advances in non-linear
systems [14, 15, 16], non-linear filters still lack adequate
design techniques. Instead of exploring a complex ad-hoc
design for the filter, we decided to settle on one of the
simplest filters we can think of: a 2 x 2 median filter.
The objective is to show the high potential of non-linear
systems. Although simple, we will show that such system
can outperform much more complex linear systems. For
4 input samples a;;, we define the median filter by the
following rule:

o Given set {aj1,a12,a921,022}

o Discard min{a;1,a12,a21,a22}

e Discard maz{a;1,a12,a21,022}

o Output the average of the remaining two elements.
See [5] for a discussion on properties of this filtering op-
eration, as well as on its fast implementation algorithm.
Such algorithm can be carried using B-bit integer arith-
metic for B-bit images and is multiplication free.

3. JPEG-BASED CODING

For evaluation and comparisons in a complete image cod-
ing system, we embedded the transform into JPEG. The
idea is to replace the DCT coefficients by our pyramid
samples. This has been done before by substituting the
DCT by the DWT and using the same coder except by
replacing the transform [17]. Here, we follow the same
principle: using 3 stages (S = 3) and grouping the pyra-
mid samples into blocks as shown in Fig. 2. We, there-
fore, refer to our coder as NLP-JPEG and refer to regular
JPEG coder as DCT-JPEG.

S is selected as 3 and 25+ 1 = 7 step sizes are selected
for uniform quantizers. The image is transformed using
the non-linear pyramid with quantizer feedback. The low-
pass samples are encoded using a 2D DPCM as:

Fsom) = s(iseom— ) +2seem—[]) (®)
yseo(n) = zs00(n)— Zs00(n) 9)
gseo(m) = Q7'{Q:1{ysoo(n)}} (10)
Tsoo(n) = Gsoo(n)+ Tspe(n) (1)

The transformed samples are grouped into blocks of 25 x
25 = 8 x 8 samples as in Fig. 2. For each block, the quan-
tized samples are reorganized into a vector. The samples
are scanned from those labeled “1” to those labeled “7”
in Fig. 2. The quantized samples are encoded using stan-
dard JPEG entropy coding based on Huffman codes.
The DCT-JPEG has 64 quantizer steps (one for each
DCT coefficient), while the proposed one has only 7 for
3 stages. A complete description of an algorithm to op-
timize the quantizer steps can be found in [5]. It is a
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Figure 4: Plot of PSNR versus bit-rate for several images.
In both cases optimized Huffman codes were used. Image
“Cameraman” has 256 x 256 pixels while the others have
512 x 512 pixels.

simplified variation of the method given in [18]. Among
the modifications, the quantizer steps were constrained to
be non-decreasing because of the recursive nature of the
proposed transform. Note that A, = 1 leads to lossless
coding.

Tests were carried to compare the performances of
NLP- and DCT-JPEG. Fig. 4 shows peak signal-to-noise
ratio (PSNR) values for typical images. In these plots
we used optimized Huffman codes in JPEG for both the
DCT and NLP based schemes. Although, in most cases,
both approaches yield relatively close PSNR results, they
generate images that look radically different in terms of
the artifacts they produce. The DCT-JPEG approach at
low bit rates produces the familiar ringing and blocking
artifacts. The NLP-JPEG approach has no ringing or
blocking and generally encodes edges well, but it is not
accurate to encode texture regions. Images are presented
for subjective comparison in Fig. 5.

4. CONCLUSIONS

We presented a PR critically decimated non-linear fil-
ter structure for compression applications. The structure
used was a two-step filter bank, which is cascaded to pro-
duce a pyramid. Image coding tests were carried using
JPEG and replacing the DCT by the proposed pyrami-
dal scheme. The proposed scheme shows superior per-
formance over DCT-JPEG both objectively and subjec-
tively. The most appealing feature of the pyramid is its
complexity, which is far less complex than most popular
linear transforms and is suitable for hardware implemen-
tation.
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Figure 5: Zoom of reconstructed images. Top: NLP-JPEG. bottom: DCT-JPEG. Image “baby™: NLP (30.04dB @
0.45bpp) DCT (29.22dB @ 0.45bpp). Image “graphics™: NLP (35.35dB a 0.44bpp) DCT (32.70dB @ 0.44bpp). Image
“cameraman’: NLP (32.48dB < 0.907bpp) DCT (30.26dB @ 0.914bpp).

(1]

5. REFERENCES

P. Burt and J. Adelson, "The Laplacian pyramid as a
compact Image Code,” IEEE Trans. Commun.. vol. 31.
pp- 532-540. Apr 1983.

P.P. Vaidyanathan. Multirate Systems and Filter Banks.
Englewood Cliffs, NJ: Prentice-Hall. 1993,

W. B. Pennebaker and J. L. Mitchell. JPEG: Still Image
Compression Standard,” New York, NY: Van Nostrand
Reinhold, 1993.

D. F. Floréncio and R. W. Schafer. "A non-expansive
pyramidal morphological image coder.” in Proc. ICIP.
Vol. 2, pp- 331-334. 1994.

R. L. de Queiroz and D. A. F. Floréncio. “Non-expansive
Pyramid For Image Coding Using a Non-Linear Filter
Bank.” to be submitted to IEEE Trans. Image Process-
mny.

Z.%hou and A.N. Venetsanopoulos. “Morphological
Methods in Image Coding.” in Proc. of ICASSP. pp.481-
484, vol. 11, 1992.

F.K. Sun and P. Maragos, “Experiments on Image Com-
pression Using Morphological Pyramids.” SPIE VCIP..
pp. 1303-1312, SPIE vol. 1199, 1989.

A. Toet, “A morphological pyramidal image decompo-
sition,” Pattern Recog. Lett., vol. 9. pp. 255-261. May
1989.

O. Egger and Wei Li, “Very low bit rate image coding
using morphological operators and adaptive decomposi-
tions,” in Proc. ICIP, Vol. 2, pp. 326-330, 1994.

(10]

(11]

(12]

1

1118

D. E. Dugeon and R. M. Merserean, Multidimensional
Digital Signal Processing. Englewood Cliffs, NJ: Prentice-
Hall. 1984.

R. L. de Queiroz and J. T. Yabu-Uti. “On a hybrid
predictive-interpolative scheme for reducing processing
speed in DPCM TV CODECSs,” Proc. of EUSIPCO, Vol.
II. pp. 797-780. Sep. 1990.

R. L. de Queiroz. Multiresolution Systems for Redun-
dancy Eztraction and Progressive transmission wn Image
Coding. in Portuguese. Master’s Thesis, FEE UNICAMP,
Brazil. Nov. 1990.

D. F. Floréncio and R. W. Schafer, “Post-sampling alias-
ing control for images,” in Proc. of [CASSP, pp. 893-896,
vol. II. 1995.

P. Maragos. “Slope Transforms: theory and application
to nonlinear signal processing.” IEEE trans. on Signal
Processing. vol. 43 n. 4. pp. 864-877. Apr 1995.

D. F. Floréncio and R. W. Schafer, “Critical morpholog-
ical sampling, part 1: binary signals,” preprint.

D. F. Floréncio and R. W. Schafer. “Critical morpholog-
ical sampling. part 2: gray-level signals,” preprint.

R. de Queiroz, C. Choi, Y. Huh, J. Hwang, and K. R.
Rao. “Wavelet transforms in a JPEG-like image coder,”
Proc. SPIE Conf. on VCIP. SPIE Vol. 2308, pp. 1662-
1673. 1994.

S. Wu and A. Gersho, “Rate-constrained picture-
adaptive quantization for JPEG baseline coders,” Proc.
of ICASSP, vol V, pp. 389392, 1093.



