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ABSTRACT 

A new non-expansive pyramidal decomposition is pro- 
posed. The signal is decomposed through a non-linear 
filter bank into low- and high-pass signals and the recur- 
sion of the filter bank over the low-pass signal generates 
a pyramid resembling that of the octave wavelet trans- 
form. The transformed samples were grouped into square 
blocks and used to replace the DCT in the JPEG coder. 
The proposed coder shows several advantages: compu- 
tation is greatly reduced compared to the DCT, image 
edges are better encoded, blocking is eliminated, and it 
allows lossless coding. 

1. INTRODUCTION 

The Laplacian pyramid [l] became quite popular for im- 
age processing and coding despite the fact that it im- 
poses an expansion of the number of samples, limiting 
the performance of the coder. Expansiveness can be elim- 
inated by directly applying an association of filter hanks 
[2], which has been shown to be equivalent to the dis- 
crete wavelet transform [2]. The JPEG baseline system 
(referred here simply as JPEG) [3] is a de  fac to  standard 
for lossy compression of gray-level or color images. How- 
ever, it is based on the discrete cosine transform (DCT) 
which is somewhat expensive to compute. In this paper 
we present a JPEG-based coder which uses a non-linear 
transform instead of the DCT. The transform is an en- 
hanced version of the pyramidal structure presented in [4] 
and it does not require multiplications, nor floating point 
numbers of any kind. 

Perfect reconstruction (PR) in critically decimated 
syst,ems is generally guaranteed by imposing conditions 
on the filter coefficients. When dealing with non-linear 
filters, no such general conditions exist. For this reason, 
non-linear filter banks were restricted to non-critically 
decimated cases [6, 7, 81. Recently, a new approach for 
critically decimated non-linear filter banks has been in- 
troduced 19, 41, where PR is obtained by imposing re- 
strictions in the filter structure instead of on the filter 
coeficients.  We use here a particularization of a general 
framework [5]. 
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2. THE TRANSFORM 

2.1. One stage 

Let the picture elements (pixels or pels) in the input im- 
age be denoted by x(n1,n2). With the usual notation 
for multidimensional signals [lo], we define the vector 
n = [n1,n2IT and denote the signal by z(n). We de- 
fine the polyphase components of the signal as x;(m) = 

z(Mm + i), for M = [ ] and for i = [io,ilIT, 

0 5 ik < Mk. We are concerned with 2D signals and with 
the case MI = M2 = 2, so that i can assume the values 
representing one out of four polyphase components: (O,O), 
( O , l ) ,  ( l , O ) ,  (l,l), i.e., they obey the following grid: 

(00) (01) (00) (01) (00) (01) (00) (01) (00) (01) 
(10) (11) (10) (11) (10) (11) (10) (11) (10) (11) 
(00) (01) (00) (01) (00) (01) (00) (01) (00) (01) 
(10) (11) (10) (11) (10) (11) (10) (11) (10) (11) 

We also represent the transformed signal into its poly- 
phase components (subbands) as yi(n), such that similar 
notation applies to samples of y(n)  as well. 

The decomposition for one level of the specific struc- 
ture that we used to construct the pyramid can be de- 
scribed as: 

where Fi is any linear or non-linear function and xo1,1o(n) 
is the quincunx grid formed by zol(n) and zlo(n). The 
signal can be perfectly reconstructed by making: 

zoo(n) = Y O O ( ~ )  (4) 
zll(n) = yll(n) + F o ( ~ o o ( ~ ) )  ( 5 )  

z01,10(n) = ?401,1o(n) + Fl(zOO(n),zll(n)) (6) 
The relative spatial arrangement between the two rectan- 
gular grids zoo and 211 is the same as that between the 
two quincunx grids z00,11 and ~ 0 1 ~ 0 .  The difference is a 
rotation of 45 degrees. Therefore, can be essentially 
the same as FO [5]. 
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Figure 1: 
pyramid. 

Cascading stages to form a multiresolution 

2.2. The pyramid 

As usual in the filter banks literature, we call the sub- 
band decomposition process analysis and the reconstruc- 
tion process synthesis. We further extend the notation to 
define 

5 , , i 0 i l  (no,n1) = x ( 2 “ n o  + 2s-li0,2sn1 + 2 3 - 1 4 .  (7) 

As in the wavelet and pyramid transforms [l? 2]? one can 
connect the input of a stage right to the low-pass output 
of another one as shown in Fig. 1. 

In image coding applications the subbands are quan- 
tized. Given the sequential nature of the decomposition 
process, we can avoid excessive accumulation of quantiza- 
tion error across subbands by using a feedback loop (local 
reconstruction) similar to that used in DPCM systems. 
Furthermore, for maximum compression, Fi should be a 
good interpolator in order to minimize the information 
sent along the subbands. A description of the analysis 
process’ is given by: 

1 = 1  
Y/S,OO (n) = ZS,OO (n) 
Ys,oo (4 = &r {sl { Y ~ , ~ ~  (4 I I 
? s , o o ( n )  = l i s , o o ( n )  
fo rk  = S :  -1 : 1 

Zk,1’ (n) = interpolate(gk,oo(n)) 
n , l l (n)  = xk,11(n) - Z:k,l l(n) 
Yk ,ii (n) = QG1l { Q l +  1 { ~ l ~ , i i  (n) } } 
..i.t,ll(n) = Z k , l l ( n )  + Y k , l l ( n )  

Z :k ,o l  (n) = interpolate( i k , o o ( n ) ,  gli ,11 (n)) 
Y k , 0 1 ( n )  = x k , o l ( n )  - Z k , o l ( n )  
G k , o i ( n )  = QG12{Q1+2{~k ,01(n ) ) )  
g k , o l ( n )  = Z k , O l ( n )  + G k , o l ( n )  
2 k , i o  (n) = interpolate( f k  ,oo (n) , f k ,I 1 (n) ) 
Y k , l o ( n )  = Zlc,iO(n) - Z k , l o ( n )  
G k , l o ( n )  = Q~12{Q1+2{~lc ,10(n)}}  

..i .k,lo(n) = Z k , l o ( n )  + & , l o ( n )  
1 = 1 + 2  

end 

Note that a t  each iteration 

‘more details can be found in [5] 

Figure 2: Illustration of a 3-stage decomposition. Sam- 
ples labeled “1” through “n” are used to interpolate the 
samples labeled “n+l”. We can also group the samples 
into blocks, as indicated. 
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Figure 3: Typical support region of the interpolation fil- 
ters. Samples marked with 0 are used to interpolate the 
sample marked with 8. 

and Q ,  represents the quantization process a t  the n- 
th step and Q i l  is the inverse operation. For exam- 
ple, for uniform quantizers with step size A,, Qn{ t }  = 
round(t/A,)  and Q;’{t} = tA,. For S = 3 (a depth- 
3 decomposition), an example of the sequence of pixels 
used is given in Fig. 2 .  In this figure, samples labeled 
‘$1’’ through “n” are used to interpolate samples labeled 
“n f l ” .  Sote also that we can group the samples into 
2’ x 2’ blocks (as the 8 x 8 block in the figure) to replace 
traditional block transforms. 

We can characterize the analysis-synthesis process as 
a pyramidal scheme with critical sampling of the interpo- 
lation error, as an association of filter banks, or as a hi- 
rraicliirdl DPCM systrm w l i r i ~  samples are predicted by 
interpolation rather than conventional extrapolation [ll, 
121. Actually, if we encode y s , o o ( n )  using a DPCM sys- 
tem we would have a hybrid interpolative-extrapolative 
prediction system [ll]. 

2.3. Interpolation 

The choice of the filters boils down to the choice of an in- 
terpolation method. In Fig. 3, samples in the grid marked 
by 0 are available to interpolate the sample marked with 
@. Typical support regions are those indicated by the 
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solid or dashed lines in Fig. 3 (4 or 16 neighbors). Op- 
timum linear interpolators can be easily computed (as- 
suming the signal characteristics are known). Neverthe- 
less, simple non-linear interpolation has shown to produce 
better results than much more complex linear filters [13]. 
Even with the recent theoretical advances in non-linear 
systems [14, 15, 161, non-linear filters still lack adequate 
design techniques. Instead of exploring a complex ad-hoc 
design for the filter, we decided to settle on one of the 
simplest filters we can think of a 2 x 2 median filter. 
The objective is to show the high potential of non-linear 
systems. Although simple, we will show that such system 
can outperform much more complex linear systems. For 
4 input samples a; j ,  we define the median filter by the 
following rule: 

Given set {a~,a12,a21,a22) 
0 Discard min{all, a12, a21,a22} 
0 Discard m a z { a ~ ~ , a ~ ~ , a ~ ~ , a ~ ~ }  
0 Output the average of the remaining two elements. 

See [5] for a discussion on properties of this filtering op- 
eration, as well as on its fast implementation algorithm. 
Such algorithm can be carried using B-bit integer arith- 
metic for B-bit images and is multiplication free. 

3. JPEG-BASED CODING 

For evaluation and comparisons in a complete image cod- 
ing system, we embedded the transform into JPEG. The 
idea is to replace the DCT coefficients by our pyramid 
samples. This has been done before by substituting the 
DCT by the DWT and using the same coder except by 
replacing the transform [17]. Here, we follow the same 
principle: using 3 stages ( S  = 3) and grouping the pyra- 
mid samples into blocks as shown in Fig. 2. We, there- 
fore, refer to our coder as NLP-JPEG and refer to regular 
JPEG coder as DCT-JPEG. 

S is selected as 3 and 2S+ 1 = 7 step sizes are selected 
for uniform quantizers. The image is transformed using 
the non-linear pyramid with quantizer feedback. The low- 
pass samples are encoded using a 2D DPCM as: 

Y S , O O  (n) = zs,oo (n) - 2’S,oo (n) (9) 
i k o o  (n) = QF1{Qi {~s ,oo  (n))) (10) 
gs,oo(n) = Gs,oo(n) + 2s,oo(n) (11) 

The transformed samples are grouped into blocks of 2’ x 
2’ = 8 x 8 samples as in Fig. 2. For each block, the quan- 
tized samples are reorganized into a vector. The samples 
are scanned from those labeled “1” to those labeled “7” 
in Fig. 2. The quantized samples are encoded using stan- 
dard JPEG entropy coding based on Huffman codes. 

The DCT-JPEG has 64 quantizer steps (one for each 
DCT coefficient), while the proposed one has only 7 for 
3 stages. A complete description of an algorithm to op- 
timize the quantizer steps can be found in [5]. It is a 
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Figure 4: Plot of PSNR versus bit-rate for several images. 
In both cases optimized Huffman codes were used. Image 
“Cameraman” has 256 x 256 pixels while the others have 
512 x 512 pixels. 

simplified variation of the method given in [18]. Among 
the modifications, the quantizer steps were constrained to 
be non-decreasing because of the recursive nature of the 
proposed transform. Note that A, = 1 leads to lossless 
coding. 

Tests were carried to compare the performances of 
NLP- and DCT-JPEG. Fig. 4 shows peak signal-to-noise 
ratio (PSNR) values for typical images. In these plots 
we used optimized Huffman codes in JPEG for both the 
DCT and NLP based schemes. Although, in most cases, 
both approaches yield relatively close PSNR results, they 
generate images that look radically different in terms of 
the artifacts they produce. The DCT-JPEG approach at 
low bit rates produces the familiar ringing and blocking 
artifacts. The NLP-JPEG approach has no ringing or 
blocking and generally encodes edges well, but it is not 
accurate to encode texture regions. Images are presented 
for subjective comparison in Fig. 5. 

4. CONCLUSIONS 

We presented a PR critically decimated non-linear fil- 
ter structure for compression applications. The structure 
used was a two-step filter bank, which is cascaded to pro- 
duce a pyramid. Image coding tests were carried using 
JPEG and replacing the DCT by the proposed pyrami- 
dal scheme. The proposed scheme shows superior per- 
formance over DCT-JPEG both objectively and subjec- 
tively. The most appealing feature of the pyramid is its 
complexity, which is far less complex than most popular 
linear transforms and is suitable for hardware implemen- 
tation. 
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Figurc 5: Zoorii of rccoristructed images. Top: TLP-.JPECT. bo t tom:  DCT-JPEG. Iiiiage "bal-n.": NLP (30.04dB 
0.45bpp) DCT (29.22dB U 0.45hpp). IriiagP ..giaphic5": TLP (33.3XB 
.Lcaiiicl.cLriiitii'': KLP (32.48dB c l  O.9OTbpp) DCT (30 2GdB (I 0.914bpp) .  

0.44hpp) DCT (32.TOdB CL 0.+thpp). Iriiagr 
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