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Abstract—Nowadays, more and more videos are transmitted
for video analytics purposes rather than human perceptions.
In mobile surveillance networks, a cloud server collects videos
delivered from multiple moving cameras and detects suspicious
people in all the camera views. However, all the videos recorded
by moving cameras such as phone or dash cameras are uploaded
through bandwidth-limited wireless networks. Therefore, videos
are required to be encoded with high compression ratio to
satisfy the total data rate constraint, which may affect the video
analyses (e.g., human detection/tracking and action recognition,
etc.) performance due to the degraded video decoding qualities
at the server side. In this paper, we propose an effective content-
driven video source coding rate allocation scheme, which can
improve the human detection success rate in mobile surveillance
networks under a total data rate constraint. The proposed scheme
allocates appropriate amount of data rate to each moving camera
based on the corresponding content information (i.e., human
detection results). A model of human detection accuracy based
on object area and video quality is provided. The rate allocation
problem is formulated as a convex optimization problem and
can be solved by standard solvers. Simulations with real video
sequences demonstrate the effectiveness of our proposed scheme.

Keywords—rate allocation; video analysis; human detection;
visual surveillance; convex optimization

I. INTRODUCTION

The rapidly increasing demand of video streaming applica-

tions has boosted the development of wireless video transmis-

sion technologies [1], [2]. As predicted in [3], 72 percent of all

consumer mobile Internet traffic will be mobile video in 2019,

up from 55 percent in 2014. Furthermore, mobile data traffic

will exponentially increase between 2014 and 2019, represent-

ing a 57 percent of compound annual growth rate (CAGR),

which is about three times faster than fixed IP traffic. Due to

the bandwidth-limited nature of wireless channels, it is crucial

to design efficient wireless video transmission schemes for the

bandwidth-consuming real-time video streaming services [4].

In traditional wireless video transmission research, the op-

timization criteria are either quality-of-service (QoS) based
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design [1], or quality-of-experience (QoE) based design [5]–

[9]. For QoS-based design, network parameters such as packet

loss, delay, jitter, etc. are jointly considered in order to improve

the video streaming applications from a network perspective.

For QoE-based design, the user perception and experience of

decoded videos are combined with the QoS parameters so

that video transmission parameters can be adjusted to improve

users’ satisfaction [10]. Both subjective and objective video

quality measurements have been developed to quantify the

QoE-based system design [11].

Although most of video transmission services are designed

for human perceptions, more and more video streaming data

are collected for video analytics purposes. In [12], authors

developed a vehicle tracking system with static surveillance

cameras. In [13], a live fish tracking system is developed based

on low-contrast and low-frame-rate stereo videos. Based on

human detectors, pedestrian tracking systems in single moving

camera are developed [14], [15]. Moreover, a system of on-

road pedestrian tracking across multiple driving recorders

for mobile surveillance network is proposed in [16]. Most

existing human-perception-based (QoE-based) wireless video

transmission designs may not be optimal for video analytics

purposes. Therefore, it is necessary to develop more efficient

video transmission schemes for surveillance and computer

vision applications.

As intelligent surveillance systems become more and more

important for crime investigation and tragedy prevention,

mobile surveillance networks with multiple moving cameras,

which have more flexible camera views comparing to tra-

ditional surveillance systems with static cameras, have thus

been introduced [16]. As indicated in [16], videos are recorded

by driving recorders (dash cameras) and uploaded to remote

cloud servers for further automatic analyses. Due to the mo-

bility nature of moving cameras, wireless wide area networks

(WWAN) have to be used for video transmissions, where

efficient rate allocation is necessary because of the limited

wireless resources.

Among different applications in intelligent mobile surveil-

lance networks, such as human tracking, action recognition,

behavior understanding, etc., human detection is the first step

and its result will critically affect the performance of other
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human-related video analysis applications [16]. In [17], [18],

image/video features instead of the full video sequences are

uploaded to the cloud servers for video analyses. Although

transmitting features can save lots of wireless resources, they

are not suitable for surveillance purposes since the full video

sequences are requried to be archived in the server for future

investigations. In [19], authors proposed a saliency-based rate

control for human detection with a single camera. Based on

a properly designed saliency map, this scheme adaptively

adjusts the quantization parameters (QPs) to preserve regions

with small contrast from excessive smoothing so that the

human detection accuracy can be improved. In this paper,

we propose a quality-of-content (QoC)-driven video source

coding rate allocation scheme for human detection in the

mobile surveillance networks with multiple moving cameras.

Instead of considering human perception in traditional video

streaming design, the proposed scheme maximizes the overall

human detection accuracy at the remote server when multiple

moving cameras upload videos via WWAN with a total data

rate constraint. We analytically evaluate the factors that affect

the probability of successful human detections and propose

a video source coding rate allocation algorithm based on the

human detection results in the past group of pictures (GoP).

To the best of our knowledge, there is no existing QoC-

driven work conducted in video encoding rate allocation for

human detections in mobile surveillance system when multiple

moving cameras compete for the limited wireless resources.

The rest of this paper is organized as follows. In Section II,

we will describe the scenario and system structure of mobile

surveillance network. In Section III, evaluation of the factors

that affect the successful human detections is provided. Section

IV gives the proposed video source coding rate adaptation

algorithm. Simulation results are shown in Section V, followed

by the conclusion remarks in Section VI.

II. SCENARIOS AND SYSTEM STRUCTURE

As shown in Fig. 1, a mobile surveillance network con-

sists of multiple moving cameras (mobile nodes) such as

dash cameras and smartphone cameras, which are randomly

distributed and moving around in the areas with different

pedestrian densities. Each camera can encode and upload

videos via a WWAN to a remote cloud server in real time for

further video analyses, such as human detection. The system

structure is shown in Fig. 2, where captured camera views

are encoded with the high efficiency video coding (HEVC)

[20] with different encoding data rates. To reduce the cost and

computational complexity on each mobile node, human detec-

tion is performed in the cloud server. After human detection

is performed, an upload scheduling and resource allocation

module collects the human detection results (contents) and

assigns different source encoding data rate target to each

camera. The overall encoding data rate is constrained such that

the data transmission can be better supported by the network.

Therefore, the human detection accuracy is only related to the

source coding data rate allocation. In this work, we assume

all the video analyses are conducted in the cloud server. Not
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Fig. 1: Scenario of mobile surveillance network.
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Fig. 2: Proposed system structure.

only can it archive videos in the cloud server for further

investigations, it can save computational cost and power at

mobile nodes as well, especially for smartphone cameras.

III. EFFECT OF VIDEO QUALITY ON HUMAN DETECTOR

Many human detectors have been proposed in the literatures.

In [21], a human detector, which can effectively represent the

shape of human, has been proposed based on the histogram of

oriented gradient (HOG) features. The implicit shape model

(ISM) proposed in [22] applies a voting scheme based on

multi-scale interest points to create plenty of detection hy-

potheses, and a codebook is used to preserve the trained

features. The deformable part model (DPM) [23], an extension

of the idea in [21], uses a root model and several part models to

describe different partitions of an object. Based on a predefined

geometry, the part models are spatially connected with the root

model so that the object can be precisely depicted. Among

different human detectors, the DPM is a well-accepted robust

and computational efficient scheme. Therefore, we adopt the

DPM as the human detection scheme in this paper. But similar

concept can be applied to other detection schemes.

The DPM object detector is based on HOG features, which

can be affected by the artifacts created from video encoder



Fig. 3: Human detection result of DPM. Video clip: BAHN-

HOF in the ETHZ dataset [25]. Left: QP=15; Right: QP=39

with different compression ratios [19]. Therefore, the received

video quality will affect the detection performance in the cloud

server. Figure 3 shows a comparison of the DPM detection

results with two different video encoding qualities in terms of

different QPs. When the video quality is poor, smaller objects

in the view have lower probability to be successfully detected

compared to the larger objects in the view since a larger QP

may smooth out the detailed shape information of smaller

objects. Figure 4 illustrates the human detection accuracy with

different object areas (in terms of number of pixels) and QPs

of HEVC encoder [24]. Six video clips in ETHZ dataset [25]

are tested and each video is encoded with 11 different QPs

from 15 to 45. The detection results are compared with the

ground-truth coordinate labels of each object in the dataset. If

the overlapped area of the detection result and the ground-truth

is larger than 50 percent of the ground-truth area, the detected

object is regarded as a successful detection [23]. The detection

accuracy of a specific object area a is calculated by counting

all the true-positive detected objects whose areas are larger

than this specific value a and divided by the total number

of objects whose area is larger than this value a. According

to Fig. 4, the detection accuracy increases with better video

frame quality (smaller QP) and larger object area.

Suppose A is a random variable representing the object

area, and Q is a random variable representing QP. Due to

the independence of A and Q, the detection accuracy in Fig.

4 can be expressed as:

PA,Q (a, q) = f (A ≥ a) g (q) , (1)

where f (·) is the probability of true-positive detection result

when the objects area is larger than a. g (·) is the probability of

true-positive detection result as a function of video encoding

QP q. In total 6 videos with VGA (640 × 480) resolution

in ETHZ dataset [25] and 2 videos with 720p (1280 × 720)

resolution recorded in the University of Washington (UW)

are tested. We also investigate the human detection accuracy

model by two-dimensional curve-fitting in Fig. 5, Eq. (1) can

be approximated via regression as:

PA,Q (a, q) =
(

1− 0.2865 exp
(

−3.3934× 10−4 · a
))

·
(

−0.0016 · 2q/6 + 0.6762
)

.
(2)

The encoding data rate model function r (q) can also be

represented as a function of q. In this paper, we adopt a simple
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Fig. 4: Human detection accuracy with different object areas

and QPs.
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Fig. 5: Curve-fitting results of the source encoding data rate

model in Eq. (2) with different videos of VGA and 720p

resolutions.

exponential model to fit the source coding rate with respect to

QP, i.e.,

r (q) = c1 exp (c2 · q) , (3)

where c1 ≥ 0 and c2 ≤ 0 are two parameters to be determined.

Figure 5 shows the relationship between different QP and

source coding rate using HEVC encoder.



IV. PROPOSED VIDEO ENCODING RATE ALLOCATION

SCHEME

Since wireless video streaming is bandwidth consuming,

and the overall wireless resource is limited in WWAN, it is

crucial to design an efficient rate allocation scheme so that the

true-positive detection result is maximized under a certain total

data rate constraint. Therefore, the objective of our proposed

system is to optimally allocate the video encoding data rate of

each mobile node under a total data rate constraint so that the

overall true-positive detection probability is maximized, i.e.,

max
r

M
∏

m=1

Nm
∏

n=1

P (am,n, qm (rm))

subject to

M
∑

m=1

rm ≤ R(T); rm ≥ R(min), ∀m,

(4)

where M is the total number of mobile nodes. r =
[r1, r2, · · · , rM ] is the rate allocation vector and the element

rm represents the corresponding source coding rate of the

mobile node m. Nm is the number of objects (people in human

detection scenario) in the view of mobile node m. R(T) is the

total available data rate of the system. R(min) is the minimum

data rate requirement so that the minimum detection capability

can be maintained for each mobile node. By taking the

logarithm of the objective function, the optimization problem

in Eq. (4) can be reformulated as:

max
r

M
∑

m=1

Nm log (g (qm (rm)))+
M
∑

m=1

Nm
∑

n=1

log (f (am,n))

subject to

M
∑

m=1

rm ≤ R(T); rm ≥ R(min), ∀m.

(5)

In Eq. 5, the second term of the objective function can be

considered as constant since the optimization variable only

appears in the first term. Therefore, we remove the second

term so that the final problem formulation is:

max
r

M
∑

m=1

Nm log



−0.0016·2

1

6·c
(m)
2

log

(

rm

c

(m)
1

)

+0.6762





subject to

M
∑

m=1

rm ≤ R(T); rm ≥ R(min), ∀m.

(6)

Note that in our problem formulation, the optimal solution

of the source coding rate allocation is affected by human

density indicated by Nm. The objective function in Eq. (6)

can be proven as a convex function [26] (see Appendix A).

Since the constraint is linear, the optimization problem in Eq.

(6) becomes a convex optimization problem, which can be

effectively solved by existing tools such as CVX [27]. In our

implementation, the resource allocation is updated in every

GoP time period and the human density Nm is determined by

human detection results in the last GoP time period.

TABLE I: Video Resolutions and Human Densities

Video Resolution Human Density

UW 1 1280× 720 Low

UW 2 1280× 720 Medium

LINTHESCHER 640× 480 High

Fig. 6: The sample frames of the three videos. Left: “UW 1”;

Middle: “UW 2”; Right: “LINTHESCHER”.

V. SIMULATION RESULTS

The proposed algorithm is tested in this section. Three video

clips are used to compete for the limited wireless resources:

one video “LINTHESCHER” from the ETHZ data set [25]

and two videos recorded in UW campus. The resolutions and

human densities of the three videos are listed in Table I. HEVC

(X265 implementation) [24] is used as the video encoder. The

frame rate of each video is set as 25 fps. GoP sizes are set

as 16 for all the videos. The encoding pattern in each GoP

block is one I-frame followed by 15 P-frames. 25 GoPs (400
frames) are tested for each video. The sample video frames of

the three videos are shown in Fig. 6

We compare our proposed QoC-driven rate allocation

scheme with two other schemes. One is the equal rate al-

location scheme, which evenly allocates the total data rate to

each mobile node. The other scheme is a distortion-driven rate

allocation scheme, which tries to minimize the decoding mean-

squared-error (MSE) of the system. We adopt a rate-distortion

model as [28]:

dm (r) = c
(m)
3 rc

(m)
4 , (7)

where dm is the distortion in terms of MSE for the mo-

bile node m, while c
(m)
3 and c

(m)
4 are two constants to be

determined. The MSE-driven rate allocation problem can be

expressed as:

min
r

M
∑

m=1

dm (rm)

subject to

M
∑

m=1

rm ≤ R(T); rm ≥ R(min), ∀m.

(8)

In the simulations, the minimum data rate requirement R(min)

for our proposed QoC-driven scheme and the MSE-driven rate

allocation scheme are both set as 200 Kbps.

Figure 7 shows the source coding rate allocation of these 3
videos when the total data rate constraint is 4.8 Mbps. With the

MSE-driven rate allocation scheme, the data rate is allocated

based on the distortion of each video, which is not directly

related to human detection results. However, with the proposed

QoC-driven rate allocation scheme, more data rate is allocated

to the mobile nodes with higher human densities. Therefore,
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Fig. 7: Data rate allocation of the 3 videos with the proposed

QoC-driven data rate allocation scheme (top) and the MSE-

driven data rate allcoation scheme (bottom). Total data rate

constraint: 4.8 Mbps.
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the data rate of the video clip LINTHESCHER is higher than

that of UW 2 and the data rate assigned to UW 1 is the lowest.

The probabilities of total true-positive detections with dif-

ferent total data rate constraints are plotted in Fig. 8. With

more available data rate, the video encoding qualities become

better, resulting in improving the true-positive detection rates

at the cloud server. Moreover, with the same total data

rate constraint, the proposed QoC-driven data rate allocation

scheme has better human detection performance comparing

with the equal data rate allocation scheme and the MSE-

driven data rate allocation scheme. It is noticeable that the

MSE-driven data rate allocation scheme has worse human

detection performance than the equal data rate allocation

scheme. This indicates that transmitting videos based on

distortions (decoding qualities) may not be a suitable choice
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Fig. 9: False-alarm rate under different total data rate con-

straints.

if the delivered videos are used for video analysis other than

human perception. Also, the performance gain of the proposed

QoC-driven scheme becomes less when the total available data

rate becomes higher. This is because of less video quality

degradation with higher encoding data rate.

The human detector may generates some false-alarm de-

tections (i.e., no human exists in the region of bounding

box given by human detectors), which will cause problems

for subsequent video analysis techniques based on human

detections, such as human tracking, behavior understanding,

etc.. Therefore, false-alarm is another performance indicator

for human detections. Figure 9 shows the probability of false-

alarms under different total data rate constraints. Obviously,

the false-alarm rate becomes smaller when more data rate is

available and high-quality videos are decoded at the cloud

server. With the same total data rate constraint, the proposed

QoC-driven data rate allocation scheme has the lowest false-

alarm rate.

The videos of human detection results are available at

http://allison.ee.washington.edu/xchen/MMSP QoC/

VI. CONCLUSIONS

In this paper, we proposed a QoC-driven rate allocation

scheme for video analytics purposes in mobile surveillance

network with multiple moving cameras. Unlike the traditional

wireless video transmission design for human perception, our

proposed scheme tries to maximize the human detection rate.

The DPM object detector is used for human detection and

its accuracy model with respect to object area and video

quality is given. Our proposed rate allocation scheme can be

formulated as a convex optimization problem, which can be

efficiently solved by existing solvers. Simulation results show

the effectiveness of our proposed scheme and its favorable

performance comparing with equal rate allocation and MSE-

driven rate allocation schemes.

Plenty of future works can be conducted in both computer



vision and video transmission areas. In computer vision area,

effects of video compression and transmission errors on exist-

ing video analysis and computer graphics technologies such

as object detection and tracking, pose and event recognitions,

3-D scene reconstructions etc. can be investigated. While

in video transmission area, it is necessary to develop noval

video coding and transmissions schemes, which can preserve

the required features (e.g., [29]) for existing computer vision

technologies. As more and more videos are transmitted for

video analysis purposes, we believe that combining wireless

video transmission and computer vision techniques contains

rich research topics and is crucial for next generation mobile

networks based on the Internet of things (IoT) and the big

data.

APPENDIX A

CONVEXITY OF THE OBJECTIVE FUNCTION IN EQ. (6)

Let f1 (x) be defined as:

f1 (x) =
1

6 · c2
log

(

x

c1

)

, (9)

which is convex with respect to x if c2 is non-positive, and

f2 (x) is defined as:

f2 (x) = −0.0016 · 2x + 0.6762, (10)

which is concave and non-increasing with respect to x. By the

composition rule [26], f3 (x) = f2 (f1 (x)) is concave. Sim-

ilarly, since f4 (x) = log (x) is concave and non-decreasing,

f5 (x) = f4 (f3 (x)) is also concave by the composition rule.

Also, Nm is the detection result of mobile node m, which is

non-negative. Therefore, the objective function of Eq. (6) is a

non-negative sum of concave functions f5 (rm), which is also

concave [26].
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