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Abstract—Nowadays, more and more videos are transmitted
for video analytics purposes rather than human perceptions.
In mobile surveillance networks, a cloud server collects videos
delivered from multiple moving cameras and detects suspicious
people in all the camera views. However, all the videos recorded
by moving cameras such as phone or dash cameras are uploaded
through bandwidth-limited wireless networks. Therefore, videos
are required to be encoded with high compression ratio to
satisfy the total data rate constraint, which may affect the video
analyses (e.g., human detection/tracking and action recognition,
etc.) performance due to the degraded video decoding qualities
at the server side. In this paper, we propose an effective content-
driven video source coding rate allocation scheme, which can
improve the human detection success rate in mobile surveillance
networks under a total data rate constraint. The proposed scheme
allocates appropriate amount of data rate to each moving camera
based on the corresponding content information (i.e., human
detection results). A model of human detection accuracy based
on object area and video quality is provided. The rate allocation
problem is formulated as a convex optimization problem and
can be solved by standard solvers. Simulations with real video
sequences demonstrate the effectiveness of our proposed scheme.

Keywords—rate allocation; video analysis; human detection;
visual surveillance; convex optimization

I. INTRODUCTION

The rapidly increasing demand of video streaming applica-
tions has boosted the development of wireless video transmis-
sion technologies [1], [2]. As predicted in [3], 72 percent of all
consumer mobile Internet traffic will be mobile video in 2019,
up from 55 percent in 2014. Furthermore, mobile data traffic
will exponentially increase between 2014 and 2019, represent-
ing a 57 percent of compound annual growth rate (CAGR),
which is about three times faster than fixed IP traffic. Due to
the bandwidth-limited nature of wireless channels, it is crucial
to design efficient wireless video transmission schemes for the
bandwidth-consuming real-time video streaming services [4].

In traditional wireless video transmission research, the op-
timization criteria are either quality-of-service (QoS) based
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design [1], or quality-of-experience (QoE) based design [5]—
[9]. For QoS-based design, network parameters such as packet
loss, delay, jitter, etc. are jointly considered in order to improve
the video streaming applications from a network perspective.
For QoE-based design, the user perception and experience of
decoded videos are combined with the QoS parameters so
that video transmission parameters can be adjusted to improve
users’ satisfaction [10]. Both subjective and objective video
quality measurements have been developed to quantify the
QoE-based system design [11].

Although most of video transmission services are designed
for human perceptions, more and more video streaming data
are collected for video analytics purposes. In [12], authors
developed a vehicle tracking system with static surveillance
cameras. In [13], a live fish tracking system is developed based
on low-contrast and low-frame-rate stereo videos. Based on
human detectors, pedestrian tracking systems in single moving
camera are developed [14], [15]. Moreover, a system of on-
road pedestrian tracking across multiple driving recorders
for mobile surveillance network is proposed in [16]. Most
existing human-perception-based (QoE-based) wireless video
transmission designs may not be optimal for video analytics
purposes. Therefore, it is necessary to develop more efficient
video transmission schemes for surveillance and computer
vision applications.

As intelligent surveillance systems become more and more
important for crime investigation and tragedy prevention,
mobile surveillance networks with multiple moving cameras,
which have more flexible camera views comparing to tra-
ditional surveillance systems with static cameras, have thus
been introduced [16]. As indicated in [16], videos are recorded
by driving recorders (dash cameras) and uploaded to remote
cloud servers for further automatic analyses. Due to the mo-
bility nature of moving cameras, wireless wide area networks
(WWAN) have to be used for video transmissions, where
efficient rate allocation is necessary because of the limited
wireless resources.

Among different applications in intelligent mobile surveil-
lance networks, such as human tracking, action recognition,
behavior understanding, etc., human detection is the first step
and its result will critically affect the performance of other



human-related video analysis applications [16]. In [17], [18],
image/video features instead of the full video sequences are
uploaded to the cloud servers for video analyses. Although
transmitting features can save lots of wireless resources, they
are not suitable for surveillance purposes since the full video
sequences are requried to be archived in the server for future
investigations. In [19], authors proposed a saliency-based rate
control for human detection with a single camera. Based on
a properly designed saliency map, this scheme adaptively
adjusts the quantization parameters (QPs) to preserve regions
with small contrast from excessive smoothing so that the
human detection accuracy can be improved. In this paper,
we propose a quality-of-content (QoC)-driven video source
coding rate allocation scheme for human detection in the
mobile surveillance networks with multiple moving cameras.
Instead of considering human perception in traditional video
streaming design, the proposed scheme maximizes the overall
human detection accuracy at the remote server when multiple
moving cameras upload videos via WWAN with a total data
rate constraint. We analytically evaluate the factors that affect
the probability of successful human detections and propose
a video source coding rate allocation algorithm based on the
human detection results in the past group of pictures (GoP).
To the best of our knowledge, there is no existing QoC-
driven work conducted in video encoding rate allocation for
human detections in mobile surveillance system when multiple
moving cameras compete for the limited wireless resources.

The rest of this paper is organized as follows. In Section II,
we will describe the scenario and system structure of mobile
surveillance network. In Section III, evaluation of the factors
that affect the successful human detections is provided. Section
IV gives the proposed video source coding rate adaptation
algorithm. Simulation results are shown in Section V, followed
by the conclusion remarks in Section VI.

II. SCENARIOS AND SYSTEM STRUCTURE

As shown in Fig. 1, a mobile surveillance network con-
sists of multiple moving cameras (mobile nodes) such as
dash cameras and smartphone cameras, which are randomly
distributed and moving around in the areas with different
pedestrian densities. Each camera can encode and upload
videos via a WWAN to a remote cloud server in real time for
further video analyses, such as human detection. The system
structure is shown in Fig. 2, where captured camera views
are encoded with the high efficiency video coding (HEVC)
[20] with different encoding data rates. To reduce the cost and
computational complexity on each mobile node, human detec-
tion is performed in the cloud server. After human detection
is performed, an upload scheduling and resource allocation
module collects the human detection results (contents) and
assigns different source encoding data rate target to each
camera. The overall encoding data rate is constrained such that
the data transmission can be better supported by the network.
Therefore, the human detection accuracy is only related to the
source coding data rate allocation. In this work, we assume
all the video analyses are conducted in the cloud server. Not
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Fig. 1: Scenario of mobile surveillance network.
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Fig. 2: Proposed system structure.

only can it archive videos in the cloud server for further
investigations, it can save computational cost and power at
mobile nodes as well, especially for smartphone cameras.

III. EFFECT OF VIDEO QUALITY ON HUMAN DETECTOR

Many human detectors have been proposed in the literatures.
In [21], a human detector, which can effectively represent the
shape of human, has been proposed based on the histogram of
oriented gradient (HOG) features. The implicit shape model
(ISM) proposed in [22] applies a voting scheme based on
multi-scale interest points to create plenty of detection hy-
potheses, and a codebook is used to preserve the trained
features. The deformable part model (DPM) [23], an extension
of the idea in [21], uses a root model and several part models to
describe different partitions of an object. Based on a predefined
geometry, the part models are spatially connected with the root
model so that the object can be precisely depicted. Among
different human detectors, the DPM is a well-accepted robust
and computational efficient scheme. Therefore, we adopt the
DPM as the human detection scheme in this paper. But similar
concept can be applied to other detection schemes.

The DPM object detector is based on HOG features, which
can be affected by the artifacts created from video encoder



Fig. 3: Human detection result of DPM. Video clip: BAHN-
HOF in the ETHZ dataset [25]. Left: QP=15; Right: QP=39

with different compression ratios [19]. Therefore, the received
video quality will affect the detection performance in the cloud
server. Figure 3 shows a comparison of the DPM detection
results with two different video encoding qualities in terms of
different QPs. When the video quality is poor, smaller objects
in the view have lower probability to be successfully detected
compared to the larger objects in the view since a larger QP
may smooth out the detailed shape information of smaller
objects. Figure 4 illustrates the human detection accuracy with
different object areas (in terms of number of pixels) and QPs
of HEVC encoder [24]. Six video clips in ETHZ dataset [25]
are tested and each video is encoded with 11 different QPs
from 15 to 45. The detection results are compared with the
ground-truth coordinate labels of each object in the dataset. If
the overlapped area of the detection result and the ground-truth
is larger than 50 percent of the ground-truth area, the detected
object is regarded as a successful detection [23]. The detection
accuracy of a specific object area a is calculated by counting
all the true-positive detected objects whose areas are larger
than this specific value a and divided by the total number
of objects whose area is larger than this value a. According
to Fig. 4, the detection accuracy increases with better video
frame quality (smaller QP) and larger object area.

Suppose A is a random variable representing the object
area, and @ is a random variable representing QP. Due to
the independence of A and @), the detection accuracy in Fig.
4 can be expressed as:

=f(A>a)g(q), (1

where f (-) is the probability of true-positive detection result
when the objects area is larger than a. g (+) is the probability of
true-positive detection result as a function of video encoding
QP ¢. In total 6 videos with VGA (640 x 480) resolution
in ETHZ dataset [25] and 2 videos with 720p (1280 x 720)
resolution recorded in the University of Washington (UW)
are tested. We also investigate the human detection accuracy
model by two-dimensional curve-fitting in Fig. 5, Eq. (1) can
be approximated via regression as:

(1- 0.2865 exp (—3.3934 x 107 - a))
(~0.0016- 20/ + 0.6762) .

PA,Q (a’7 Q)

PA,Q (aa q) = (2)

The encoding data rate model function r (¢) can also be
represented as a function of ¢. In this paper, we adopt a simple
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Fig. 4: Human detection accuracy with different object areas
and QPs.
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Fig. 5: Curve-fitting results of the source encoding data rate
model in Eq. (2) with different videos of VGA and 720p
resolutions.

exponential model to fit the source coding rate with respect to
QP ie.,

r(q) = crexp(c2-q), 3

where ¢; > 0 and co < 0 are two parameters to be determined.
Figure 5 shows the relationship between different QP and
source coding rate using HEVC encoder.



IV. PROPOSED VIDEO ENCODING RATE ALLOCATION
SCHEME

Since wireless video streaming is bandwidth consuming,
and the overall wireless resource is limited in WWAN, it is
crucial to design an efficient rate allocation scheme so that the
true-positive detection result is maximized under a certain total
data rate constraint. Therefore, the objective of our proposed
system is to optimally allocate the video encoding data rate of
each mobile node under a total data rate constraint so that the
overall true-positive detection probability is maximized, i.e.,

M Ny,

ax [ [T P (@mndm (rm)

max
m]; 1n=1 (4)

> rm < RDiry > RO, yim,

m=1

subject to

where M is the total number of mobile nodes. r =
[r1,72,- -+ , 7] is the rate allocation vector and the element
r, represents the corresponding source coding rate of the
mobile node m. N, is the number of objects (people in human
detection scenario) in the view of mobile node m. R™ is the
total available data rate of the system. R™) is the minimum
data rate requirement so that the minimum detection capability
can be maintained for each mobile node. By taking the
logarithm of the objective function, the optimization problem
in Eq. (4) can be reformulated as:

M

M N
max ZNm log (9 (qm (rm)))+z Z 10g (f (am.n))
m=1 m=1n=1 (5)
M
subject to Z T < R(T); o > R(min)’vm.

m=1

In Eq. 5, the second term of the objective function can be
considered as constant since the optimization variable only
appears in the first term. Therefore, we remove the second
term so that the final problem formulation is:

ol 7
maxy N, log[-0.0016-2°" \4"/ 10,6762
m=1 ©

M
subject to Z T < R(T); o > R(min)7vm.
m=1

Note that in our problem formulation, the optimal solution
of the source coding rate allocation is affected by human
density indicated by N,,. The objective function in Eq. (6)
can be proven as a convex function [26] (see Appendix A).
Since the constraint is linear, the optimization problem in Eq.
(6) becomes a convex optimization problem, which can be
effectively solved by existing tools such as CVX [27]. In our
implementation, the resource allocation is updated in every
GoP time period and the human density [V, is determined by
human detection results in the last GoP time period.

TABLE I: Video Resolutions and Human Densities

Video Resolution Human Density

UW 1 1280 x 720 Low

UW 2 1280 x 720 Medium
LINTHESCHER 640 x 480 High

Fig. 6: The sample frames of the three videos. Left: “UW 17;
Middle: “UW 27; Right: “LINTHESCHER”.

V. SIMULATION RESULTS

The proposed algorithm is tested in this section. Three video
clips are used to compete for the limited wireless resources:
one video “LINTHESCHER” from the ETHZ data set [25]
and two videos recorded in UW campus. The resolutions and
human densities of the three videos are listed in Table I. HEVC
(X265 implementation) [24] is used as the video encoder. The
frame rate of each video is set as 25 fps. GoP sizes are set
as 16 for all the videos. The encoding pattern in each GoP
block is one I-frame followed by 15 P-frames. 25 GoPs (400
frames) are tested for each video. The sample video frames of
the three videos are shown in Fig. 6

We compare our proposed QoC-driven rate allocation
scheme with two other schemes. One is the equal rate al-
location scheme, which evenly allocates the total data rate to
each mobile node. The other scheme is a distortion-driven rate
allocation scheme, which tries to minimize the decoding mean-
squared-error (MSE) of the system. We adopt a rate-distortion
model as [28]: ’

iy (r) = ™7™, ™)

where d,,, is the distortion in terms of MSE for the mo-
bile node m, while cgm) and cflm) are two constants to be
determined. The MSE-driven rate allocation problem can be
expressed as:

M
min Z ()
" ®)
subject to Z T < R(T);rm > R(min)yvm.

m=1

In the simulations, the minimum data rate requirement R™")
for our proposed QoC-driven scheme and the MSE-driven rate
allocation scheme are both set as 200 Kbps.

Figure 7 shows the source coding rate allocation of these 3
videos when the total data rate constraint is 4.8 Mbps. With the
MSE-driven rate allocation scheme, the data rate is allocated
based on the distortion of each video, which is not directly
related to human detection results. However, with the proposed
QoC-driven rate allocation scheme, more data rate is allocated
to the mobile nodes with higher human densities. Therefore,
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Fig. 7: Data rate allocation of the 3 videos with the proposed
QoC-driven data rate allocation scheme (top) and the MSE-
driven data rate allcoation scheme (bottom). Total data rate
constraint: 4.8 Mbps.
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the data rate of the video clip LINTHESCHER is higher than
that of UW 2 and the data rate assigned to UW 1 is the lowest.

The probabilities of total true-positive detections with dif-
ferent total data rate constraints are plotted in Fig. 8. With
more available data rate, the video encoding qualities become
better, resulting in improving the true-positive detection rates
at the cloud server. Moreover, with the same total data
rate constraint, the proposed QoC-driven data rate allocation
scheme has better human detection performance comparing
with the equal data rate allocation scheme and the MSE-
driven data rate allocation scheme. It is noticeable that the
MSE-driven data rate allocation scheme has worse human
detection performance than the equal data rate allocation
scheme. This indicates that transmitting videos based on
distortions (decoding qualities) may not be a suitable choice
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Fig. 9: False-alarm rate under different total data rate con-
straints.

if the delivered videos are used for video analysis other than
human perception. Also, the performance gain of the proposed
QoC-driven scheme becomes less when the total available data
rate becomes higher. This is because of less video quality
degradation with higher encoding data rate.

The human detector may generates some false-alarm de-
tections (i.e., no human exists in the region of bounding
box given by human detectors), which will cause problems
for subsequent video analysis techniques based on human
detections, such as human tracking, behavior understanding,
etc.. Therefore, false-alarm is another performance indicator
for human detections. Figure 9 shows the probability of false-
alarms under different total data rate constraints. Obviously,
the false-alarm rate becomes smaller when more data rate is
available and high-quality videos are decoded at the cloud
server. With the same total data rate constraint, the proposed
QoC-driven data rate allocation scheme has the lowest false-
alarm rate.

The videos of human detection results are available at
http://allison.ee.washington.edu/xchen/MMSP_QoC/

VI. CONCLUSIONS

In this paper, we proposed a QoC-driven rate allocation
scheme for video analytics purposes in mobile surveillance
network with multiple moving cameras. Unlike the traditional
wireless video transmission design for human perception, our
proposed scheme tries to maximize the human detection rate.
The DPM object detector is used for human detection and
its accuracy model with respect to object area and video
quality is given. Our proposed rate allocation scheme can be
formulated as a convex optimization problem, which can be
efficiently solved by existing solvers. Simulation results show
the effectiveness of our proposed scheme and its favorable
performance comparing with equal rate allocation and MSE-
driven rate allocation schemes.

Plenty of future works can be conducted in both computer



vision and video transmission areas. In computer vision area,
effects of video compression and transmission errors on exist-
ing video analysis and computer graphics technologies such
as object detection and tracking, pose and event recognitions,
3-D scene reconstructions etc. can be investigated. While
in video transmission area, it is necessary to develop noval
video coding and transmissions schemes, which can preserve
the required features (e.g., [29]) for existing computer vision
technologies. As more and more videos are transmitted for
video analysis purposes, we believe that combining wireless
video transmission and computer vision techniques contains
rich research topics and is crucial for next generation mobile
networks based on the Internet of things (IoT) and the big
data.

APPENDIX A
CONVEXITY OF THE OBJECTIVE FUNCTION IN EQ. (6)

Let f1 (z) be defined as:

1 x
= log | — ),
i) = o (C)
which is convex with respect to x if co is non-positive, and
f2 (x) is defined as:

fo(z) = —0.0016 - 2% + 0.6762,

(€))

(10)

which is concave and non-increasing with respect to x. By the
composition rule [26], f3 (xz) = f2(f1 (z)) is concave. Sim-
ilarly, since f4 () = log (z) is concave and non-decreasing,
f5(x) = fa(fs (x)) is also concave by the composition rule.
Also, N,, is the detection result of mobile node m, which is
non-negative. Therefore, the objective function of Eq. (6) is a
non-negative sum of concave functions f5 (7,,,), which is also
concave [26].
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