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The use of a paraunitary filter bank (PUFB) for image pro-
cessing requires a special treatment at image boundaries, to
ensure perfect reconstruction (PR) of these regions, and peri-
odic or symmetric extensions are cornmonly assumed, We re-
duced the analysis to a one-dimensional signal assuming sepa-
rable processing. Unlike infinite-length signals, PR PUFBs
applied to finite-length signals will not necessarily lead to an
orthogonal system. For quantization/processing of the sub-
bands, artifacts at the image boundaries can appear due to
artificial discontinuities at borders, lack of orthogonality of
the effective boundary filter banks, or improper reconstruction
procedure, We will explore linear-phase and nonlinear-phase
PUFBs and methods to obtain orthogonality from the bound-
ary filter banks. We will show that for symmetric extensions,
orthogonality is only possible for special PUFBs based on
linear-phase filters. Using time-varying boundary filter banks,
we will discuss a procedure that explores all degrees of
freedom of the border filters in a method essentially indepen-
dent of signal extensions, allowing us to design optimal
boundary filter banks, while maintaining fast implementation
algorithins. ©1995 Academic Press, Inc.

L. | INTRODUCTION

The applications of muitirate filter banks [1, 2] in image
processing are receiving increasing attention and the prob-
lems resulting from the processing of finite-length signals,
as opposed to infinite-length signais often assumed in the
theory of multirate filter banks, have been examined in

" different ways [3-16]. The only trivial solution is to use
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pericdic extensions and circular convolution, where filter-
ing and up- and down-sampling can be optionally imple-
mented with the aid of the discrete Fourier transform
(DFT) [3]. However, the idea of assuming a periodic signal
{see Fig. 1} implies that the samples in opposite borders
of the image are adjacent for the implementation algo-
rithm. This procedure introduces artificial discontinuities
and is undesirable for most applications, such as image
coding. The border distortions are generally easily identi-
fied by the human eye because they have a well-defined
space localization pattern, following the image boundary
contours. Other sources of visible distortion patterns can
arise from the use of improper reconstruction methods for
the image boundaries [6], or from using schemes leading
to nonorthogonal boundary filter banks [13, 16]; in which
case, perfect reconstruction (PF) is assured, but the addi-
tion of near-white noise to the subbands (such as in quanti-
zation} leads to colored noise in the reconstructed signal at
the boundaries. One simple approach that avoids artificial
discontinuities is to assume a symmetric periodic signal [7-
12], in the so-called symmetric extension method. Another
approach is to use time-varying orthogonal filter banks, in
which the filter banks near the borders are changed to
foree orthogonality [17-25].

Although our primary interest lies in image processing
and coding, we reduce the problem to that of processing
a finite-length one-dimensional (1) signal, by assuming
aseparable transform, i.c., applying the 1D transform along
the image rows, followed by 1D transform along the col-
umns of the semitransformed image.

In terms of notation, our conventions are unidimensional
concatenation of matrices and vectors indicated by a
comma; [ ]' means transposition; I, is the n X n identity
matrix; @, is the n X »n null matrix; and J,, is the n X n
counter-identity or exchange matrix, as
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FIG. 1. Illustration of input signal of N, samples, and its periodic
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Section II reviews some filter banks concepts of interest
to this paper, linking them to the processing of finite-length
signals. Section 111 is concerned with the discussion of the
symmetric extension algorithm, while Section IV presents
some resuits on approaching orthogonal transforms
through the use of special time-varying filter banks applied
to the signal borders. Finally, Section V contains the con-
clusions of this paper.

II. FILTER BANKS AND FINITE-LENGTH SIGNALS

L1, Paraunitary Filter Banks

We will use a PR critically decimated paraunitary uni-
form filter bank {2] of M FIR filters,' as in Fig. 2. The
filters are assumed to have a maximum length L. = NM,
where N is also called the overlap factor, and the analysis
and synthesis filters have impulse responses f,(n) and g, (n)
(k=0,1,.... M —1,rn=20,1,..., L — 1), respectively.
We will refer to such system shortly as a paraunitary filter
bank (PUFB). In a PUFB, fi(n) = g(L — 1 - r) (k= 0,
1,..., M—1,nr=0,1,..., L — 1); ie., synthesis filters
are time-reversed versions of the analysis ones. The input
signal, x(rn) is, thus, transformed by the analysis filter bank
into the subband signals v, (m) (k = 0,1, ... , M — 1).

FIG. 2. Critically decimated uniform filter bank. Analysis (left}
and synthesis {right) sections are shown.

! Filter banks in this class are also called lapped transforms [26], cau-
tioning the reader not to confuse them with the term lapped orthogonal
transform [26, 27].
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After processing, the samples ¥,(m)(k =0,1,..., M —
1) are transformed by the synthesis filter bank into the
reconstructed signal #(n), which is a delayed replica of
x{n), if y.(m) = y(m). We can also define a transform
matrix P with elements p;; as
pi=FfL~1—])=gdlj) (1)
for0=i=M-1land0=j=L —1][26]. Also, it is
convenient to define @ as the version of P with reversed
column ordering, as
qi; = gL — 1 =) = f(}). (2)
We can express the input signal in its polyphase compo-
nents x;(m) = x(mM + i} with Z transforms X;(z) and
define a signal y(n} whose polyphase components are the

subbands, such that y;{m) = y(mM + ). Assume the sub-
bands have Z transforms Y{z). If

y;(i’,) = [YO(Z)u Y](Z), Ty YM*l(Z)]

X, (2) = [Xo(2), X1(2), ..., X (2)],

then we define the polyphase transter matrix (PTM) F(z)
[2] as the multi-input multi-output transfer matrix such that

' yp(z) = F(Z)XP(Z), (3)

and the inverse of this system G(z), for the synthesis sec-
tion, is given by

%,(2) = G(2)§,(2). (4)

A paraunitary PTM requires that F~'(z) = F'(z™") [2], so
that a causal PR PUFB requires

G(z) = W VF(z7). (5)

1f P and Q are segmented into N square matrices as

P= [PO P1 e PN—IL (6)
Q=[QuQ: - Qu-1], (7
we can easily find the PTM as
N-1 ] N-1 )
F2) = 2 27 Pya-du = 2 27'Q; (®)

and (5) can be rewritten as either of the following set of
equations [26]:
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FIG. 3. Flow graph for paraunitary FIR filter banks where F(z}
can be factorized using symmetric delays and N stages. Signals x{n}
and y(rn) are segmented and processed using blocks of M samples,
all branches carry M/2 samples, and blocks B, are M X M orthogonal
matrices. (a) Analysis section; (b) synthesis section.
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Note that each representation of the PR conditions ((5)
or (9)) implies the other, being, thus, equivalent. The only
constraint is the maximum degree (N — 1) of the entries
of the PTM, such that each filter can have an actual length
lying anywhere between M and NM. Also, if one of the
filters has a length much smaller than L. = NM, it can be
delayed because if F(z) is paraunitary, so is D(z)F(z),
where D(z) = diag{z™,z7%,..., z7%}, for a; integers. In
fact, delaying any filter is irrelevant when considering fi-
nite-length signals, as we can manipulate (advance or re-
tard} the input signal and the subband signals to compen-
sate any delay. Filters are assumed, for simplicity, to be
roughly centered around L/2, and zero samples may be
padded whenever necessary, so that we can assume all
filters to have actual length £..
We will also consider more carefully the PUFBs which
can be parameterized using the symmetric delay factoriza-
tion (SDF). Let

bl 1Y - Lun
AlZ) = , AMz)y= 10
@ 0 Ly @ 0 z7'kyp (10)
The SDF of the PTM is given by
N-1
F(z) = By [ (A(2)B) (11)
i=1
0 —~
G(z) =By-1 [ (A(z)B]), (12)
i=N=2

where all stages B; are allowed to be arbitrary M X M
orthogonal matrices.

The flow graph for implementing a PUFB which can be
parameterized using SDF is shown in Fig, 3 for analysis and
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synthesis sections. The use of SDF is not very restrictive in
practice, as, for M even, most PUFBs with any practical
advantage can be expressed in this way. Examples of such
filter banks are linear-phase PUFBs [28-30] and cosine-
modulated filter banks [2, 26, 31, 32]. Its great advantage
is that it spares us the task of developing different algo-
rithms for each border of the signal.

If the vectors x and y contain the signals x{#) and y(n),
of unrestricted length, respectively, then the analysis and
synthesis sections can be represented in matrix notation as

y=T.x (13)
£=T.¥, (14)
where
0
P, P P,
T, = [} 1 N-1 (15)
Pl] Pl PN—I

Note that, from (9), T.TT = TIT. = L, so that the trans-
form mapping x into y is orthogonal.

I1.2.  Finite-Length Signals

Suppose the signal x(n) has only N, samples and assume
N, = NgM,where Ny is an integer representing the number
of blocks, with M samples per block. To avoid the expan-
sion of the number of samples, we require y(n) to have
N, samples, so that each subband would have Ny samples.
Again, let x(n) and y{n) be represented by the vectorsx and
y. respectively, while, £{n) and y(n} are the corresponding
signals in the synthesis section represented by vectors #
and ¥, respectively. As a straight application of the PUFB,
in the analysis section, requires more than N, samples in
x in order to find N, samples of y, we can define X as
an augmented vector obtained from x by extending the
oundary samples in any fashion, in a process we call signal
extension. The matrix notation for the analysis is given by

y = P%, (16)
where P is as in (15), but with only Ng block rows. The
synthesis is accomplished by

% = PTy. (17)

As an example, for N = 3 and Ny = 5, we have
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From (9) we can see that

I

PP = (18)

Iy -r+m ,

I

where I'; are (L — M) X (L — M) matricesand I'; £ I, _y,
so that even if § = y we have & # x, where the difference
would occur in the last (. — M)/2 samples in each border.
However, there is a size-limited linear transform T leading
x into y so that [16]

y=Tx (19)

x=Tly. (20)

We are seeking extension methods and filter banks such
that T is orthogonal. For this, the assumptions are that the
filters and signals are real valued, M is even, Ny is an
integer, the filter bank is paraunitary uniform, etc., as de-
scribed previously, The restrictions imposed on M and
Np are certainly mild and are valid for most applications.
However, often one will need to use a PUFB with an odd
number of channels. We do not cover such a case because
SDF will not be valid and one will end up with asymmetri-
cal solutions. Also, even numbers (actually powers of two)
are much more popatar choices for M. Furthermore, having
a signal which is not a multiple of the block size (M) wil!
lead to a very complicated notation and to the generation
of a set of particular solutions, which may not be useful
for most readers. Whenever possible the signal may be
extended to reach a suitable size, as does the JPEG image
coder [33]. Such approach will introduce extra subband
samples and the best way may be to jointly select N, and
M in order to have Np as an integer.

I1.3.  Image Processing and Coding

As mentioned earlier, we reduced the image-processing
task to a one-dimensional problem by assuming separable
transforms, where processing is applied to the image in a
row and column fashion. Thus, we are actually interested
in what happens to a finite-lengih segment of N, samples.
As we have seen, the use of PUFBs to infinite-length signals
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FIG. 4. Basic subband coding diagram for transmission (or stor-
age), where the PUFB is represented by its corresponding size-
limited transform T, and Q represents quantization.

leads to orthogonal transforms, but this is not necessarily
true for finite-length signals.

In image coding, the signal x is transformed by T, quan-
tized, and transmitted, and, at the receiver side, the signal
is recovered by inverse operations, as shown in Fig. 4.
Orthogonal transforms have several desirable properties
inimage coding [34--36] regarding statistics of the quantiza-
tion noise, this being the reason behind the choice to force
T to be orthogonal. Of course, in our case, only the bound-
ary parts of the signal would suffer the effects of the possi-
ble nonorthogonality of T {see (18)). However, as the noise
will follow closely the image border, it would have an
organized pattern and can be more casily percepted.

114, Periodic Signals

If, starting from X, we create an infinite periodic signal
(see Fig. 1) x., as

=T xT x5, x5 x" xt, -],

(21)

then we use (13) through (15) applied to signals x., and y..
where y.. is also periodic given by

T T T T T T

ya=[yLyLyLyLyl ] (22)

Hence the equivalent transform T such that y = Tx is block
circulant and orthogonal [37}. The reader can also check
that T is orthogonal for periodic extensions using (9). As
an example, for N = 3 and Ng = 5, we have

P, P, 0y, 0y P,
P, P, P, 0y O
T=| 0y P, P, P, 0y
0y 0y P, P, P,
P, 0y 0y P, P

IL5. Signal Extensions and Boundary Filter Banks

There are two ways to face the boundary filter banks,
and, if possible, ensure the orthogonality of T. We can
produce an unlimited length signal, by assuming a particu-
lar extension of the original size-constrained signal. In this
case the filter bank is assumed to be time invariant and is
applied 1o the extended signal [7-15]. Here, an equivalent
transform T is found from considerations based on the
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particular characteristics of the extension. Alternatively,
we can use time-varying filter banks, where the filter bank
is changed near the signal boundaries in order to ensure
full orthogonality of the size-limited transform T [18-23].
This time-varying filter bank approach is essentially inde-
pendent of any signal extension [16].

In the first case, assume N < Ny and let x, = Ex, where
E is a square matrix used to find the extended part x;
based on the signal x. Thus, we construct an infinite-length
periodic signal given by

T

Xi=[ - T 4T T T T

xUxl xT xl xT xT, - (23)
X.. 15 periodic and is processed by T.., as in (15), so that
Vo = T.X., and, since both T. and x. have a periodic
structure, then y.. is also periodic as

T T T T T T T

Yw=["'1y ¥, ¥ . ¥ ¥ ,y.-,“'], (24)

where y = Tx and the relation among y, y,, and E will be
discussed later.
The second methed applies time-varying filter banks as

P(0)
P(1)

-t
Il

P(Ng — 1)

Let K be the greatest integer smaller than N/2 (the same
as integer division as K = N/2). Hence, there are K filter
banks, at each border, which have their basis functions
crossing the signal boundaries. We call this the minimal
complete design (MCD) when only X filter banks at each
border are changed in order to achieve orthogonality of
T. We could change ail Ny filter banks but only 2K of them
have any influence to the borders, so that we will often
assume an MCBC design. Then, we have

Pim)=P forK=m=Ng—K-1 (26)
and the remaining filter banks are redesigned, but re-
maining instantancously paraunitary 18], and obeying PR
rules for time-varying filter banks.

Comparing both methods, signal extension is advanta-
geous for simple extension matrices, as is the popular sym-
metric extension [7-12], where E = Jy . Depending on
the filter bank, it may be necessary to apply very complex
extension methods to achieve orthogonality; thus it would
be better to directly apply time-varying filter banks. We
will discuss both methods in detail, and the filter banks to
which they are applicable.
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H1. SYMMETRIC EXTENSION

The symmetric extension is the one where E = JNX SO
that boundary samples of the signal x(n) are reflected
across the borders (see Fig. 1). Its usefulness comes from
its simplicity and from the fact that x., becomes periodic,
where the period is a symmetric sequence. Let the period
of x. and of y. be represented by x§ = [x", (Jy x)'] and
¥s = [¥7, 11, respectively. Let the transform for the signal
in one period be T, where

yp = Tpx,. 27

Then we have
e R (28)
Y= [ %0 Yo Yoo Yoo o] (29)

1. Orthogonality and Linear-Phase Filters

Let 8, and S, be N, X N, block diagonal matrices as
diag{8, 8, ..., S}, where § is an orthogonal matrix whose
size divides N,. If T is a size-limited transform based upon
P, it is clear that T' = 5., TS, is also an orthogonal
transform generated by a ditferent filter bank, found by
pre- or postprocessing the filter bank input or output with
trivial block-transform operations. In this case, the extra
processing is independent of the filter bank in question, P.
This consideration is useful for the following proposition:

ProprosiTION 1. EXxcept for pre- or posiprocessing, and
with the assumptions from Sec. IL2, symmetric extensions
will lead to an orthogonal size-limited transform T if and
only if the filters in the PUFB have linear phase.

Before presenting a proof, we would like to comment
on the consequences of this resolt. First, we can always
ensure PR and orthogonality using symmetric extensions
for PUFBs with linear-phase filters. Second, nonlinear-
phase filters cannot achieve orthogonality using a symmet-
ric extension (except by filters found by postprocessing the
output of a linear-phase PUFB with orthogonal matrices
having nonasymmetric basis functions} so that, for these
filters, it is better to use directly the time-varying filter
bank approach in the design of the size-limited PUFB.

Demonstration. T, is a block circulant orthogonal ma-
trix [37], which can be divided into four N, X N, square
submatrices as

TU Tl

T, = i
P lT, To

(30)

From T} T, = T,T; = Ly_, and from (30}, we obtain the re-
lations
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TUTE + TlTT = INx
T()T'lr + T]TT = ONx
3
TETU + TlTTl = INX ( )

Tng + T?T(] = ONx'

Consider a linear-phase filter bank and definea M X M
diagonal matrix V with elements v, = 1,if f,.(n) is symmet-
ric and vy, = —1, if fy(m) is antisymmetric. Then

Let V be an N, X N, matrix with nonzero block entries
only in the counter-diagonal, as

0 A
A%
V= v (33)
\'Z 0
Using (32), it is easy to verify that
TD - VTOJNJ
(34)
T] = VT] JNJ-

Applying (34) into (31), and using the fact that V is
orthogonal, we get

ToTy + T = Iy,

Tody T] + Tidn T = Oy

ToTo + Iy TITdy = Ly

TiTdy, + InTiTy = 0y .

(35)

From (27) and (30), we have y = (T, + TJy )x, so that
T = To + TiJn,, and T is orthogonal because

TTT = TOT(g + TETF{ + TOJNXT? + Tl.!N:T-g
- INJ =+ ﬂNx = le

TTT =TT, + Iy TT Ty, + TIT 0y + Ix TTT,
= INx + ON; = INx'

Hence the sufficiency is proved. To prove the necessity,
note that given (31} we would reach (35) by algebraic
manipulation if and only if we have
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Tﬂ = (I)'TOJNx

(36)
Tl = (prTlJNx,

where @' is a square orthogonal matrix. As Ty and T, are
block circulant, presenting a periodic structure, the reader
can check that (36) is only possible if P presents a structure
such that

P=0P],, (37
where @ is a square orthogonal matrix. In other words,
the filters f;. () would have to be found by a linear combina-
tion of their time-reversed versions (which are the filters
g«(n)). Using the fact that PPT = I, and after some manip-
ulation, we can see that (37) is only true if ® = &1 (d is
symmetric and orthogonal) and that @ = PJ,P'. For such
matrix there is an orthogonal matrix A, such that B =
AT®A [38], where D is a diagonal matrix. Since A and @
are orthogonal, I is orthogonal, having elements *+1 along
the diagonal. Therefore, for every solution P to (37), there
is a solution P.p corresponding to lincar-phase filters,
where P = ATP, such that P;p = DPpJ, and
P pJ, Pl = D. Thus, every solution P to (37) can be writ-
ten as P = APy p, which means a postprocessing of a linear-
phase PUFB by a block transform A. This concludes the
demonstration.

From now on, we will assume that a lincar-phase PUFB
is associated with symmetric extensions, so that (32) and
(34) hold.

T2, Symmertry of the Extended Subbands

PROPOSITION 2. ¥, is related to y by y, = (T} + THE)
(To + TE)y, and, for symmetric extensions and linear-
phase PUFBs, by y, = Vy. Such relations always exist re-
gardless of the SDF PUFB.

Demonstration. 1t is possible to show that T is always
invertible regardless of the filter bank and extension used
[391. Thus, x = T'y. Since y. = (T, + TyE)x, we have
¥. = (T; + T,E)T 'y. Hence,

y, = (Tl + T()E)(T(] -+ T]E)_]y, (38)
which always exists (because T is invertible) and is only a

function of the extension (E) and of the PUFB. For the
symmetric extension, it is easy to see that

Y. = T]X + TDJNXX = (VTIJNX + VT[))X
= V(T, + Ty )x = VIx (39)
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and as a result, using symmetric extensions, y; is easily
found from y by sample mirroring (for each subband) and
sign inversions.

111.3. Time-Domain Implementation

In Fig. 3, we have a clocked system with memory where
at each instant (block index) a block of M samples in time
domain is the input which is transformed into another
block of M subband samples.

Based on the previous results, for the analysis, we extend
the signal, through a mirror-image reflection applied to
the last A = (L — M)/2 samples on each border, resulting
in a signal #(n) with ¥, + 2x = N, + L — M samples, as

x(h = 1), -0, x(0), x(0), -, x(N; — 1),
x(N, — 1), - -+, x(N, = \).

The internal states in Fig. 3a can be initialized in any
fashion and the signal is processed yielding Ng + N — 1
blocks. We discard the first ¥ — 1 output blocks, obtaining
Ny transform-domain blocks corresponding to Ng samples
of each subband. '

At the synthesis section, we have the subband signals
¥i(m) composing the signal $(n) as ¥(mM + ) = .(m)
for0=i= M — 1. This signal $(n) is extended, by extending
the subband signals by K samples in each border, as in
(39), and processed as in Fig. 3b. The kth subband {initially
having Ny samples) is extended as

VieJ(K — 1), - -, v $e{0), ﬁk(o), <o FuNe — 1),
kaﬁk(NB =1), ka)’k(NB - K).

Then we proceed with the synthesis over the Ng + 2K
blocks of #(r), obtaining a reconstructed signal with Ny +
2K blocks £(n), initializing the states of Fig. 3b in any
fashion. For N odd, K = (N — 1)/2, we discard the first
N — 1 blocks to obtain £(n). For N even (K = N — 2), we
discard the first N — 1 blocks, the first M/2 samples in the
Nth block and the last M/2 samples of the signal.

In the absence of quantization/processing of the suh-
bands, #(n) = x(n). This approach will assure the perfect
reconstruction property and orthogonality of the analysis
and synthesis processes, paying the price of running the
algorithm over extra N or N — 1 blocks, making it suitable
for applications where Ng > N,

I 4. DFT-Aided Implementation

In some applications, it may be more convenient to im-
plement the linear-phase PUFB with the aid of the DFT.
For this, the filtering/subsampling, or the upsampling/fil-
tering operations can be performed in the DFT domain, as
long as the signal is periodic. For the symmetric extension
method, the periodic vectors are x, and y,, and the trans-
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Analysis

Synthesis
T s 12

» T: LQ

FIG. 5. Illustration of DFT-aided implementation of symmetri-
cal extension method. The blocks T, and T} are implemented by
performing the filtering and up- and down-sampling, for the analysis
and synthesis sections, in the DFT domain, over an extended (but
symmetric) signal.

form T, and its inverse T, are implemented in the DFT
domain. Using (27) and (39), we have

y Iy
= = * 40
Yo Vy v Y (40)
[ X le
Xp = Jux X= " X (41)

Hence, analysis and synthesis can be implemented as

Ly

1 A
y==[I : VIT, X (42)

2V P 3y,

1 Iy
X=5 v, InIT,| " |¥. (43)

Y

Such operations are illustrated in Fig. 5. We use a DFT
of size 2N, of a symmetric real sequence of length 2N,,
reducing the DFT computation close to the complexity of
an N,-sample DFT. Filtering and subsampling is imple-
mented in the DFT domain followed by an inverse DFT,
to whose output we apply N, additions. For the synthesis,
the procedure is similar, where the subbands are extended
in a symmetric way, and upsampling followed by filtering
is performed in the DFT domain. As in the subsampling
case, we apply N, additions to the output of the inverse
DFT.

IV. TIME-VARYING FILTERS

As we have observed thus far, using simple symmetric
extensions, a linear-phase PUFB can achieve orthogonality
and nonlinear-phase PUFBs cannot do so (except for the
special case previously discussed). We will assume SDF
PUFBs with generic nonlinear-phase filters and apply time-
varying filter banks at the borders in an MCD. Thus, only
P{0) through P(K — 1) and P(Ng — K) through P(Ng —
1) should be changed.
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m+l
m+2

m+3

(a) (b)

FIG. 6. Flow-graph examples for implementation of a SDF
PUFB without internal states. Input and output blocks are num-
bered. Each branch carries M/2 samples. (a} N = 4, (b)) N = 3.

ProrosiTION 3. If we denote the entries of P(m) as
pi(m) for0=i=M—1land0 = j= L — 1, and denoting
N = (L — M)/2, then, in order to have T as an orthogonal
matrix, p;{m) =0 for0 =i< M — 1 and

{m, jli€lOA—mM—-1me[0,K — 1]}

m,jli€fL—A+(Npg—1-m)M,L-1];
mE[NB—K,NB—l]}.

Demonstration. These two sets imply that P has zero
entries for the first and last A columns. To see this, consider
an unlimited-length signal where a sequence of length N,
is to be transformed by T and imagine that the adjacent
segments are also transformed by any other orthogonal
transform, for example, using the identity matrix as a trans-
form matrix. Thus, assuming T is orthogonal,

1|00
v, | T | W |, (44)
010l 1

will be an orthogonal matrix if and only if ¥, = ¥, = 0,
meaning that we cannot allow any overlap across the signal
border, and, thus, P has its first and last A columns with
7ero entries.

IV.1. Minimal and Complete Set of Degrees of Freedom

For an infinite-length signal, we can draw the flow graph
relating the input and output of the analysis section, as
in the two examples shown in Fig. 6, which accounts for
permutations and orthogonal matrices [18, 19, 20] and rep-
resents an orthogonal system as

N-1
Tm = Im;() H Wﬁh (45)
i=1

where B; = diag{- - -, B;, B;, B,, - - -} and W is a permutation
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matrix that can be derived from Fig. 6. Hence, the synthesis
process, defined by TZ, would be represented by the same
flow graph reversing the direction to follow the paths and
substituting the orthogonal matrices by their transposes.
As we saw, the transform cannot allow overlap across the
signal borders and the two adjacent size-limited transforms
have to be completely independent. Thus, the algorithm
described by Fig. 3 is applied to a hypothetical uniimited-
length signal and the stages B; are modified (however,
orthogonality is maintained) along the time index so that
transitions among SDF PUFBs are achieved. The input
and output signals are segmented into blocks of M samples,
as shown in Fig, 6, and blocks are labeled 0 through Ny —
1 for the actual support region of x(r) and y(n). A simple
way to find the complete SDF relevant for the signal is:
(i) Construct the flow graph for the hypothetical infinite-
length signal as in the examples in Fig. 6. (ii) Eliminate
unnecessary paths and boxes, used for the signal outside
the bounds. (iii) From the remaining boxes, those which
are connected to output blocks numbered K through Ng —
K — 1 are the same as in the time-invariant SDF and are
not changed for an MCD, while the remaining can be
any orthogonal matrix {maintaining their sizes) and are
responsible for the degrees of freedom in the transitory
boundary filter banks.

A straightforward algorithm to perform steps (ii) and
(iil) is now presented. Let the ith stage be that with all
matrices B;. Note that each box labeled B; has two input
or output branches (each carrying M/2 samples). To prune
unnecessary branches and boxes, start by disconnecting
the input samples outside signal bounds from the flow
graph. For i varying from { = N — 1 to { = 0, check all
boxes in stage N — 1 and then proceed with stage N — 2
toward stage 0. For each box in each stage, check its input
branches. If both of its input branches are disconnected,
erase this box and its output branches. If only one input
branch is disconnected, erase one output branch and make
the box in question an M/2 X M/2 orthogonal matrix. If
both input branches are connected, leave the box as an
M X M orthogonal matrix.

Proposimion 4. The total number of degrees of freedom
for all possible choices of boundary PUFBs, assuming
MCD and obeying the SDF structure, isv = [(4K + 1}(M —
1} — 11KM/8 for each border.

Demonstration. When the prunning process is com-
plete, and the boxes belonging to the transitory boundary
filter banks are selected, we will have some orthogonal
matrices (with sizes M/2 X M/2 or M X M) as degrees of
freedom. For example, for N = 4 and Ng = 6, the resulting
flow graph is shown in Fig. 7, where the generic orthogonal
matrices are indicated. An n X n orthogonal matrix has
n{n — 1)/2 degrees of freedom corresponding to its plane
rotation angles [38]. The reader can check that, for each
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s W N = O

FIG.7. Prunned flow graph for a size-limited orthogonal imple-
mentation of a PUFB for N = 4 and Ny = 6. Each branch carries
M/2 samples. The six input and output blocks are numbered and
generic M X M orthogonal matrices are marked with X while generic
Mi2 X M2 orthogonal matrices are marked with O.

border, the number of generic orthogonal boundary matri-
ces is

stage 2i = K — i matrices of size M X M

stage 2i + 1 = K — i — 1 matrices of size M X M and
M

one of size % X 5

i=0,1,..., K- 1.

Thus, the total number of degrees of freedom for each
border is

g 2 2

~ [(4K + 1)(M — 1) — 1]%,

K K-1 _ —
L= ( it ) MM-1) M2(M2-1)
i=1 i=1

and 2v is the total number of degrees of freedom for both
borders of the signal.

In the design of the boundary filter banks, for an optimal
orthogonal solution we shall span all degrees of freedom
in a search for the minimum of a specific cost function. As
the relation among the plane rotations and cost functions
is generally nonlinear, an optimization algorithm would
generally have slow convergence and lead (o a local mini-
mum. Thus, a large number of variables to optimize can
be burdensome. Note that v can be a very big number (see
Table 1, for some choices of K and M).
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FIG. 8. Design example of orthogonal boundary filter banks
based on a two-channel PUFB. (a) An eight tap two-channel PUFB
(L = 8, M = 2}, where the low-pass {LP}) and high-pass (HP) filters
fi(r) and their frequency responses are shown. (b) Design result of
the bases (filters) for a 12-sample signal (Nz = 6) where the function
maximized was an average of the stopband atenuation of the bound-
ary filters. The relation of the basis functions and P(m)
{m =0, ...,5)is indicated.
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V.2, Optimal Boundary Filter Baniks

In a simple example, for M = 2, N = 4, and Ny = 6
(see Fig. 7), we have 4 degrees of freedom at each border.
(M/2 = 1 and the 1 x 1 “orthogonal” matrices are set 1o
1.) We started with a two-channel eight-tap PR PUFB
shown in Fig. 8a and used an unconstrained nonlinear
optimization routine? to optimize the border matrices (one
plane rotation angle per matrix), where the function max-
imized was an average of the stopband atenuation of the
boundary filters, The 12 resulting bases for the 12-sample
signal are shown in Fig. 8b, where the relation of the basis
functions and P(m) (m = 0, ..., 5) is indicated. Note that
P(2) = P(3) = P for MCD, and the 4 bases in the middle
of Fig. 8b are the same as those in Fig. 8a.

As asecond example, more tuned to image coding appli-
cations, we used the modulated lapped transform (MLT)

2 All optimizations were carried using function finins provided by
MATLAB 4.0.

TABLE 1
The Total Number of Degrees of Freedom for Each Border, v
M 2 4 6 8 10 12 14 16 20 24 32
K 1 1 7 18 34 55 81 112 148 235 342 616
2 4 26 66 124 200 294 406 536 830 1236 2224
3 9 57 144 270 435 639 882 1164 1845 2682 4824
4 16 100 252 472 760 1116 1540 2032 3220 4680 8416
5 25 155 390 730 1175 1725 2380 3140 4975 7230 13000
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@ ()
FIG. 9. Design example of orthogonal boundary filter bank for
an MLT with N = 2 and M = 8. (a) Optimized filter bank G =
9.19 dB. (b) Standard filter bank Grec = 5.66 dB.

[26] with N = 2 and M = 8. We have 34 degrees of freedom
at each border and we focused our attention to just one
border for comparison purposes. Note that just one filter
bank, P(0}, needs to be optimized because K = 1. Malvar
[26] provided a standard boundary solution for the MLT
which is orthogonal and, therefore, it is a special case
among all solutions wherein the 34 degrees of freedom
would span. Here, we maximized the transform coding
gain Gr¢ [34] for the boundary filter bank. Assuming x(n)
has autocorrelation r.(n) = 0.95" and an autocorrelation
R, with entries R;; = 095"/ (0 = (4, j) = L — 1), and
denoting the diagonal elements of PR, PT as o through
a1, then
UM Z, o?
Grews) = 10log (W) (46)
In Fig. 9 are shown the bases p;,.(0) of the standard bound-
ary filter bank proposed by Malvar [26] and those of the
optimized one. The Grc for the optimal boundary filter
bank is 9.19 dB, compared to 5.66 dB from that of Malvar.
As a reference, the MLT has Gre ranging from 825 to
9.22 dB (it depends upon a design parameter [26]) and
the popular discrete cosine transform (DCT) has Gyc =
8.83 dB.

V.3, Image Coding Comparisons

If a PR approach is applied, border distortions are elimi-
nated when y = §. If T is orthogonal, we increase the
chances of avoiding border distortions in image compres-
sion applications, when severe quantization distertion cor-
rupts y. However, having T orthogonal does not assure
elimination of border distortions. One key point we have
to take into account is the compaction of energy provided
by the boundary filter banks, i.e., how the energy of the
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subband coefficients is concentrated. In a good filter bank
for image coding, reasonably smooth regions may just lead
to few nonzero subband coefficients. If the boundary filter
banks fail to do so, they may be introducing “artificial
discontinuities,” as is commonly the case using periodic
extensions. For high-compression applications, when few
subband coefficients are retained, the artificial high-fre-
quency components either are not encoded, producing arti-
ficial edge patterns in the reconstructed image, or expend
precious information bits.

To highlight the boundary regions, we made image cod-
ing tests, using the MLT, a 48 X 48-pels image, and adopt-
ing M = 8. For a two-dimensional separable implementa-
tion, there are 8% = 64 subbands and 36 coefficients in each
subband, where 20 of them result from boundary filter
banks. Thus, as each basis function (filter) has 16 elements
(N = 2), boundary PUFBs will affect a 12-sample-deep
region of the reconstructed image starting at each border.
We carried out a comparison, using periodic extension
(circular convolution), of the standard boundary orthogo-
nal solution proposed by Maivar [26] and our optimal solu-
tion (maximum Grc) described in the previous section. To
simulate high-compression, we quantized only & out of 64
subbands and discarded the remaining. In Fig. 10a is shown
the original image, indicating the region affected by bound-
ary filter banks. In Fig. 10b we see the reconstructed image
using periodic extensions, while in Figs. 10c and 10d we
have the reconstructed images using Malvar’s solution and
the optimal boundary PUFB, respectively. As we see from
the figures, the optimal boundary solution is free of border
distortion at high-compression rates, while the other meth-
ods are not.

V. CONCLUSIONS

We have developed techniques to construct orthogonal
boundary filter banks for PUFBs, The restrictions imposed
are minimal, and the results can be changed to accommo-
date an odd number of channels M, in which case the basic
ideas would not change, but the presentation would be
greatly complicated. Simplification, in fact, is the reason
behind the choice for restricting the length of the signal
N, to be a multiple of M. The motivation for studying
finite-length signals is for the application of PUFBs in
image processing/coding. In this case, the image dimen-
sions are often chosen as a multiple of M; otherwise, the
image is artificially extended, as does the JPEG [33] base-
line coder, where M is the block size.

We have shown that linear-phase PUFBs do lead to
orthogonal transforms with a simple symmetric extension
(while nonlinear-phase PUFBs in general do not). This
extension is exceptionally useful, due to its simplicity and
due to the elimination of discontinuities across the signal
(image) borders. Also, simple implementation algorithms
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F1G.10. Coding tests over a 48 X 48-pels image, simulating high-
compression tates. The basic filter bank is the MLT with M = &
(a) Original image, showing the region, in the reconstructed image,
which could be affected by the boundary filter banks. (b) Result
using periodic extension and circular convolution. (¢) Result using
the standard MLT boundary filter bank. (d) Result using an optimat
boundary filter bank, optimized for maximum Grc.

picture labelling —

are presented. Image coding tests using a JPEG baseline
coder [33] were carried to test linear-phase filter banks
(with variable N) for several compression rates. We used
M = 8 so that we merely replaced the DCT by the PUFB.
In all tests, no artificial patterns caused by border distortion
were visible, and the distortions due to quantization in
those regions have the same intensity and patterns as the
distortions in central regions of the image, which were not
affected by the border discontinuity.

For nonlinear-phase PUFBs, methods to construct or-
thogonal boundary filter banks have been reported earlier
[18-25]. We have presented a general selution (as long as
the PUFB obeys the SDF) and have explicitly pointed the
degrees of freedom of such transitions. This allowed us to
easily design optimal boundary filter banks. The absence
of border distortion is also clear from our image coding
tests using optimized boundary filter bank, providing a
great improvement in relation to existing orthogonaliza-
tion methods for the MLT.

Also, the choice for SDF PUFBs aims to simplify the
presentation. For a generic (canonical) factorization [2],
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the algorithm to find the size-limited transform, as ex-
plained in Section IV.1, is similar, except that the symme-
tries disappear and it would not be so easy to quantify the
parameters in each step or to quantify v, the number of
degrees of freedom in each border. However, the basic
philosophy and methods to prune ihe flow graph are the
same.

Cases such as nonuniform and IIR filter banks are cer-
tainly interesting topics for future research in the field.
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