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Fig. 1. lllustration of the block construction procedure for a three-level DWT. The DWT coefficients are usually displayed and grouped by sulthiands. In
example, coefficients in the same location, but different subbands are grouped together in a block. The resulting block is scanned into a veotor as show

buffering? are much more complex than JPEG, and may require

multiple passes through the image. JPEG possesses computational JPEG coefficient coding
advantages but suffers from blocking and ringing artifacts at higher
com ; ; ; DCT li| Zig-zag antizer DC Huffman |:
pression ratios. We attempt to reduce these problems by replacing - P o amin Qu e Encoding H>
JPEG’s transform. As a remark, some JPEG chipsets have the D@ 8

implemented externally, easing the replacement task.
Some attempts were made to replace the DCT by a cascade of filter
banks in JPEG, for example usigl-hocwavelet packets [11] or a

full-tree [12]. In the proposed DWT-JPEG, each transform block will Modified . DC Huffman
not only contain coefficients in different subbands but also coefficier*([% > DWT Quantizer prcM [ Encoding]|

L Table Specification J

scanning
in different spatial locations. 1 A
Table Specification
Il. PROPOSED CODER
In the DWT, the coefficients are generated by applying a cas- . JPEG
. . . ) —| DWT with .
cade of two-channel filter banks to the input image [3]. In an(g rescanning | | coefficient
subband/transform coding procedure, the coefficients can be grouped coding

according to the subbands or according to spatial position (block). ' ' _ '
When using the DCT, it is common to group coefficients int6i9- 2. (a) Baseline JPEG basic encoding flow diagram. (b) The proposed

. . ; . . der (DWT-JPEG) based on a JPEG structure. (c) Optional implementation
blocks (common spatial location, different subbands) while using tﬁ DW'(I'—JPEG by rzearranging the DWT coeﬁicien(ts)in guch a Wallay that after

DWT, it is common to have S_Ubband oriented grouping (Com_m%regular zigzag rescanning the coefficients are displaced in the desired order.
subband, different spatial locations). We group the DWT coefficients
into blocks as illustrated in Fig. 1. Fa$-levels DWT, blocks of

2% % 2% samples are constructed. The resulting block is scanned intOJPEG fixed tizer table with 64 entri i
a vector in order to be processed by the remaining parts of JPEG: uses a fixed quantizer table with b entries, representing
ps of uniform quantization for each coefficient in a block. JPEG

The subbands are scanned from low- to high-frequency, obe iR . .
g q Y y o0 provides an example (default) table for the luminance and

the following subband scan sequence: horizontal, then vertical, th ominance components, designed after extensive tests [2]. Let the
diagonal. Vertical subbands are scanned horizontally, and vice-versa. . ’ S . '
g y block size beM x M(M = 2°) and the step sizes ba;; for

The diagonal subbands are scanned in zigzag. < (i) < M — 1. The st . di test found
In baseline JPEG, DCT coefficients are scanned in zigzag orderiﬂg,— (4,4) < M — 1. The step sizes used in our tests are found as

quantized, and encoded as shown in Fig. 2(a). In DWT-JPEG, the

. . - A
DCT is replaced by the DWT. Using the DWT, there are coefficients Ajj = ——F— 1)
which belong to different subbands, but also multiple coefficients in H < v 1;1“2)
the same subband for a given block. Hence, the scanning process as

well as the quantizer selection may be changed. Quantizer tables are A i l the bi hen defi del
downloadable in JPEG and only a new scanning sequence has té/vbgre Is a scaling to control the bit rate. We then define a mode
used (see Fig. 1). The flow-graph for implementing DWT-JPEG 18" H{(x) as
shown in Fig. 2(b). ) 51 (onrtans?)

Comparing Fig. 2(a) and Fig. 2(b) we can see that the differences H(z) = (a0 + miv + az2” + agz”)e "8 (2
reside on the transform and scanning components. It is easy to see
that one can reorder the output DWT coefficients in such a way tHtd we optimized the parameters f8r= 3 in such a way as to
after undergoing a zigzag rescanning, the resulting coefficients wilinimize the error between the achieved table and the table provided
be arranged as in the sequence depicted in Fig. 1. Therefore, one@adPEG. The parameters found are
implement DWT-JPEG as in Fig. 2(c) using existing parts of JPEG

(except for the transforn?). a0 =0.794 ay =—-1.639 a2 =0.614
3 =0.47 =4.27 5 = —4.892.
2The computation of an FIR-filter-based DWT does not require full-image a5 =0.470 aq = 4.277 s 4.892 ®)
buffering.
3For S # 3 JPEG may have to be adjusted to handle blocks witRecause we use the DWT, in a block there will be several coefficients

225(#£ 64) samples. in the same band, and the model (developed for the DCT) will have



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 2, APRIL 1997 421

SNR improvement: other filter banks compared to Haar
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Fig. 3. Objective evaluation of DWT-JPEG performance using plots of PSNR differences.

different step sizes for different coefficients in a block. Then, wne can also “stretch” and “bias” the quantizer table using
have chosen to average the quantizer steps for all coefficients in fi&fv/(«i)? + (3j)?/M), where f. is a relative sampling
same subband and to replace the respective stepsizes by this avefig/ency, whilea and 5 can be used to bias the quantizer table
Also, if we use orthonormalized filter banks (not unity gain) thd! either direction.
subbands will have different gains. In order to apply the quantizer,

one may scale up the coefficients in high-pass bands or scale down M
the quantizer steps. Fot = 6.7, the quantizer table for three-stage
DWT is given by

. TESTS

Tests were carried to select DWT parameters (number of levels and
filter bank) and to evaluate the coder performance. We tested a family
of Johnston’s quadrature mirror filters (QMF’s) with 8, 12, 16, and

24 taps [13] (denoted by J8 through J24, respectively). We also used

8 7 8 8 34 34 34 34y biorthogonal symmetric filter banks with 3/5-taps (B3/5) [14], 7/9-
7T 8 8 34 34 34 34 taps (B7/9) [15], and 11/13-taps (B11/13) [15]. For completeness,
g8 8 12 12 34 34 34 34 we also tested a fast cosine modulated filter bank known as the

Q= 8§ 8 12 12 34 34 34 34| (4) extended lapped transform (ELT) [16]. The Haar transform (two-

34 34 34 34 55 55 55 55 channel DCT) was used as a lower bound reference. Fig. 3 shows
34 34 34 34 55 55 55 535 comparative results for all filters. We tested the DWT-JPEG using
34 34 34 34 55 55 55 55 S =3 andS = 4 (three and four levels) for 512 512-pixel images

34 34 34 34 55 55 55 55 “Lena” and “Barbara.” In order to improve the graphical presentation,
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© (d)

Fig. 4. Subjective evaluation of DWT-JPEG, usifg= 3. Filter bank and bit rate are indicated. (a) Original, (b) 1.0 b/p—B11/13, (c) 0.5 b/p—B11/13,
and (d) 0.5 b/p—B3/5.

it is shown plots of peak signal-to-noise ratio (PSNR) improvemendifferences, i.e., the improvements led by replacing the DCT with the
led by replacing the Haar transform by each filter bank, for several EWT. Note that JPEG demands a minimal bit rate which is decided
rates. Therefore, the top plots in Fig. 3 refer to differences in PSN& the minimum number of bits encoded for each block. This yields
relative to the performance of the Haar bases. We can see thatdhminimum bit rate slightly lower than 0.1 bit-per-pixel (b/p) for
group composed by J24, J16, B7/9, and B11/13 consistently perfordefault luminance Huffman tables and 64-pixel blocks. Using four
better than J8, ELT, and B3/5. Also, J24 consistently performs equevels, DWT blocks have 1& 16 coefficients. Hence, the minimum
to or better than J12 and J16, while B11/13 performs better thhit rate is a quarter of that using the 8 8 DCT or three-level
B7/9. Thus, it may be a good guess to narrow the selection to JRXVT. Therefore, a better performance of a four-level DWT-JPEG is
and B11/13 in terms of PSNR. expected compared to a three-level DWT-JPEG at lower bit rates. For
In order to decide number of levels, we compare DWT-JPEG wiimage “Lena,” the three-level DWT-JPEG performs 1 dB better than
DCT-JPEG. On the bottom of Fig. 3 we show results for DWTDCT-JPEG at virtually all bit rates. For image “Barbara,” the three-
JPEG relating the PSNR obtained with DWT-JPEG to the PSNBvel DWT is slightly better than the four-level one above 0.5 b/p,
obtained using regular DCT-JPEG. Thus, the graphics show PSIdRd both are more than 2 dB superior to DCT-JPEG above 0.5 b/p.
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@) (b)
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®
Fig. 5. Subjective evaluation of DWT-JPEG, usifg= 3. Filter bank and bit rate are indicated. (a) DCT-JPEG 0.5 b/p, (b) DCT-JPEG 1.0 b/p, (c)
0.5 b/p—B11/13, (d) 1.0 b/p—B11/13, (e) 0.5 b/p—B3/5, and (f) 1.0 b/p—B3/5.

In general, their performances are very close. Because of the bl&&&W coder [7] is much more complex than the proposed DWT-
size, it is preferable to use three levels. JPEG. Nevertheless, we included results for the EZW coder along
As mentioned earlier, the goal of this paper is not the developmenith plots for the DWT-JPEG in the bottom of Fig. 3. Although
of a state-of-the-art coder at the cost of greater complexity, botuch simpler, the proposed coder performs slightly worse than EZW

to obtain improvement maintaining most of the JPEG structurfar image “Lena” and is comparable or superior to EZW for image
Embedded coders require buffering the whole image and ShapirtBarbara.” We also present reconstructed images using the proposed
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DWT-JPEG coder and image “Barbara” for subjective evaluation in  Acoust., Speech, Signal Processirgetroit, MI, vol. 4, 1995, pp.

Figs. 4 and 5. Other subjective and objective tests were carried but 2331-2334. _ _ _

omitted due to space limitations. [18] M. Cr_ouse and K. Ra_mchandran, “Joint thresholdln_g and quantizer
selection for transform image coding: entropy constrained analysis and
applications to baseline JPEG,” under review fBEE Trans. Image
Processing.

IV. CONCLUSIONS
The DWT-JPEG was shown to outperform baseline JPEG ap-
proaching the performance of more sophisticated and complex DWT-
based coders. It is worthwhile to mention that by eliminating encodin . . . . .
complexity constraints, JPEG can be optimized and still be decodg{ery Low Bit-Rate Co_lor ,V'deo_ Coding U_smg Adaptlye
compatible [17], [18]. Both quantizer and Huffman tables can paubband Vector Quantization with Dynamic Bit Allocation

optimized and optimal coefficient thresholding can be applied. In
fact, all three processes can be jointly optimized [17], [18]. These
techniques can largely improve JPEG performance and can also be

applied to DWT-JPEG [18]. Studies in this sense are in an early stag@pstract—In this correspondence a novel adaptive vector quantiza-
and preliminary results show that optimized DWT-JPEG performisn (VQ) based subband coding scheme for very low bit rate cod-
consistently better than an EZW coder [7]. Coder optimization isiag of video sequences is presented. Overlapped block motion esti-
topic for further research. mation/compensation is employed to exploit interframe redundancy. A

two-dimensional (2-D) wavelet transform (WT) is applied to the resulting
displaced frame difference (DFD) signal. The WT coefficients are encoded
using an adaptive subband vector quantization (ASBVQ) scheme in
combination with a dynamic bit allocation strategy based on marginal
analysis. Fixed rate coding is provided. Comparative experimental results
of the ASBVQ codec with the H.261 and the recently defined H.263 video
coding standards are given.

Stathis P. Voukelatos and John J. Soraghan
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