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Abotract : 

Pyramid C d h g  i8 baaed upon the reprwontation 
of an original image into ~ b - i m a g -  with 
different resolutions. Those resulting i m w  
a m  wparately coded with reduction of required 
entropy for perfect reconrrtruction. W e  will 
apply DPCM t o  Pyramid C d h g  strategy, and .how 
that for practical quantizer#. lower bit rates 
than regular DPCU are required for high quality 
resulting images. Alm the Pyramid DPCM is 
relatively simple, feasible and allowa a 
procepring interval between samples that is 
longer than the sampling interval. Furthermore 
we will comment a blockwh d e m o  for 
multiresolution, which could largely dacrsors 
t he  coding bit rate. 

1) INTRODUCTION 

The main goal in studying image coding techniques 
is the compression of the required amount of data 
for its representation. Here we have intended to  
modify standard DPCM coding strategies [I1 in order 
to deal with the short sampling interval in video 
signals. This period commonly lies near loons, but 
in the proposed scheme, adding parallel 
computation, i t  will increase to Uwms and 40011s. 
maintaining quality and reducing bit-rate. It 
allows frequency diffmnciated coding, like 
Sub-Band Coding 111, multiresolutlon, progressive 
transmission as well as DPCM simplicity. Due to 
this fact, we do not expect great saving ; but 
considerable performance improvement when compared 
with regular DFCM under same conditions. That led 
us to a comparative behavior throughout thls paper. 

Since we seck for simplicity. we will be limited to  
unidimenslonal signals. which' are obtained by 
raster scannig of the image over interlaced fields, 
as in commercial TV. The results cwld be easily 
upgraded in order to better exploit correlation of 
bidimensional signals. The test Images are mono- 
chromatic and have been grabbed with 10 M ~amples/s 
under 8-bit quantization. 

2) PYRAMID DPCN 

2.1) Pyramid Coding 

The pyramid technique for  progressive d i n g  of 
images can be found in I2l. 131 and [41. We will 
briefly describe the essence of the method. 

0 5 5 8  

Let the original image be an array of NxN pels. 
with N a power of 2. Here, we shall use the 
unidimenslonal sequence x(n) (which represents the 
full image by scamhg it line by line). Let 
xo(n)lx(n), ,prefilter this sequence with dJi! and 

subsample it with half the original sampling rate 
fs. Call thls poorer image xl(n1. From xl(n). find 

x;(n) by upsampling and interpolatlon, this will be 

an approximation of x(n). The array of differenas 
between them can be found by Lo(n)=xo(n)-x;(n). If 

the pref i l taa  and interpolators were ideal, Lo(n) 
would be the difference between the original image 
and the lowpass version version of it. Repeat the 
process finding x2(n) and x;(n) and sa on. In a 

general formulation, we have 

L;(d = xJn) - x;+l(n) k = 0.1. .... U-1 (El) 

as the difference between an image with ~ 2 '  of the 
orisipal resolution and an approximation of it. If 
N2=2 , then x,,(n) is a single pixel image roughly 

comsporsding to the mean of the original one. 

Recovering x(n) from x,,(n),Lo(n),Li(n),.., Lu-l(n) 

would be an easy task, by reverting the process. 
Therelore the general decoding formulation' is 

Calling xJn) as Lu(n). the pyramid is formed by 

the levels U(n )  displaced hierarchically, as in 
Figure 1. The total number of samples (nodes) 
recorded all over the pyramid mounts ro~ghly  to 
twice the number of pixels'or 

Top - I sample  o n l y  

Ls ( 1/32) 

Base = 1/1 of t o t a l  samples  = Lo 
FIGURE 1 - Pyramid nodes levels 
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M '  
Nnodes = 1 NZk!-i) = 2(1-2-')N2. (E31 

i=o 

L2 

L1 

In order t o  reduce this number to N2 the 
REDUCED-PYRAMID may be applied 141. Another 
approach fo r  reducing the pyramid would arise if no 
prefiltering is employed, therefore xi(") would 

have half of its samples coincidents with those 
from and Li(n) must record just those 

missing samples. Due to this approach, the levels 
would contain half the samples than non-reduced 
pyramid. Figure 2 sketches this new pyramid, with 

1/4 
1/4 

M 
Nnodes = N22-M + 1 N2(2-i) = N2 (E41 

i=l 

This is an issue concerned about a trade-off 
between aliasing inaccuracy and elimination of 
overhead, but avoiding filtering processing and 
allowing any interpolator's length. This is  a 
distinct technique than that found in I41 and just 
works for  pyramids with few levels, into which 
aliasing would not be so determinant. 

2.2) Applying DPCM to  Reduced-Pyramids 

In order t o  make the Pyramid feasible, we will 
restrict the number of levels to three (M=2) and 
Lz(n) will contain one fourth of the original 
samples. Li and Lo are composed by differences 
between lower level missing samples and inter- 
polative predictions of them. If we code L2(n) with 
DPCM.. i t s  samples would be coded by differenciating 
the samples and extrapolative predictions of them 
[ll. The global coding process would form a hybrid 
inter/extrapolative scheme and we can say that 
Lo,Li and L2 are coded via DPCM, being the latter 
level coded with extrapolative prediction and the 
formers with interpolative prediction. 

Base = 1/2 of total"samp1es = Lo 

FIGURE 2 - Reduced-pyramid nodes levels 
+ 

Lo 1/2 

FIGURE 3 - 3-level Reduced-pyramid 

In Figure 3 and 4 the steps towards the DPCM 
pyramid are illustrated, proceeding as follows : 

i) Decimate, by 2 and 4. x(n) in order to find 
x (n) e xz(n). 

ii) Code x2(n) with a regular DPCM. therefore Lz(n) 

is formed by the differences between xz(n) samples 

and their predictions. 

iiil Interpolate xl(n) and let Lo(") be formed by 

the errors of this interpolation and x(n). Do not 
code the errors corresponding t o  samples re- 
presented in xl(n). 

iv) Interpolate x (n) and let Ll(nl be formed by 

the errors of this interpolation and x (n). Do not 

code the errors corresponding to  samples re- 
presented in x (n). 

In Figure 5 a standard DPCM is represented with 
x(n) as input, e h )  as coded errors and x(n) as 
locally decoded recontructed value of x(d.  This 
coder i s  applied to the scheme of the Pyramid DPCM 
in Figure 6 . In this the fi l ters are the 
interpolators and DEMUX2 and MUXZ are devices that 
divide and reconstruct. respectively, their input 
samples. (even-n samples for  one branch and odd-n 
for  the other). 

Being a,&r the mean bit rates for  L2's DPCM, Li 
and LO , the global bit rate produced by the 
Pyramid DPCM is given by : 

3) BLOCKWISE PROGRESSIVE TRANSMISSION 

Those three levels could be thought of as : Lz con- 
veys information about a basic image, a blurred 
version of the original; Li conveys information 
about a f i rs t  refinement and Lo conveys the con- 
clusive one, recomposing the original image.In many 
cases. there is no need for  these refinements 
because images are composed by high and low 
frequency regions. Therefore we could divide the 
image into blocks, compute the SNR in each block 
and just refine regions where this ratio is below 
some threshold. In these blocks, we would not code 
Lo or even Li. We have prefiltered, decimated and 
interpolated the image "Zelda", obtaining images 
with V 4  and 1/2 of the original bandwidth. These 
images were divided in 16x16 pels blocks and Figure 
7 sketches the block density per SNR obtained. Note 
that there is a considerable amount of blocks whose 
SNR overpassed thresholds in the range 3540 dB. 
Taking into account the relative frequency of 
over-threshold blocks in E5, we can rewrite i t  as 

where S is the side-information rate. 
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Lo(n) - sample location 

Lib) - sample location 

I I 

FIGURE 4 - Example. 

PREDIC 

FIGURE 5 - DPCM Diagram 

x 2 ( n )  - L,(n) 

> CODkC ADPCY- 

DECOD ADPCM 

By comparing the standard and tHe m a m i d  DPCM, we 
may say that the main advantages of the latter are 

a1Bett.m data comprceSion, due to  (1) the 
predictioa galn of interpolation over extra- 
polation and (ii) to the fact that is m b l e  to 
adopt thra dlotiact quurtlzption prooedurcP, one 
for each level, optimizing c d h g  and &wing 
imprcwed subjective perf- in comp.rl~n to  
the regular rcheme. 

b)Enlargemcnt of p " h g  Interval between 
samples. Those intervals are 4 times longer for 
Lo d Lt and 2 times longer for Lo (Sa FigS. 4 
and 6). 

c)f.cility to extend to a Multiresolution approach 
by condltionaI/progressive transmission 

FIGURE 6 - Pyramid DPCM 
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However. the main d i s a d v a n t w  rise from the needs 
for apropriated logic to  multiplex those levels and 
from the addition of parallel computation (Fig. 6) .  

Now we must compare the predictors In both cases. 
The signal sat  over the channel Is composed by 
prediction errors of the samples x(n). Those 
predictions arc achieved by discrete filtering 
applied to pwiaua samples tcanpolatire) or to 
advanced samples too (intapolatlve). Generally : 

kn)=[ala 2. . .~  [x(n-cil) x ( n 4 ~  ... I - AV (ID) 

FipurO 8 depicts the I n t e r l d - l ~ y 8 t e m .  It is 
also ohown the sunple to be prodlaad "9 suq)le8 
Comnfonly used for intnfield prediction (X 4 8  b cl 
or X=[a]  1. Also, the predicton must be rlmpk In 
order to not mask comparative results. 

I 



5) SIMULATIONS 

For the simulations on still pictures, we used 
exactly the same DPCM for  Lz and for  full-image. This 
includes adaptive 2D prediction and fixed 31 level 
scalar quantizer. For the prediction equations 
updated by a 2Q LMS algorithm [91. 

0.1 
A(n+l)=A(n) + p (x(n)-x(n)) X ; p = - 

255' 

The quantizer's laws for  Li and Lo, here used were : 

Range Output Range Output Range Output 
0-1 0 0-0 0 0- 1 0 
2-6 3 1-2 1 2-7 3 
7-14 10 3-7 4 8-24 12 
15-25 19 8-24 12 25-255 37 
26-43 32 25-255 37 
44-255 55 

(E141 

IMAGE 

BEACH 

Figures 9-11 show comparative details extracted from 
reconstructed images ("Zelda", "Kitchen", "Girl"). In 
these, the upper left quarter (UL) is extracted from 
original image; upper right (UR): (Lo-7 levels); 
Bottom Left (BL) : (-9 levels); Bottom Right (BR): 
Standard DPCM. Li was quantized into 11 levels. Those 
results ,are summarized in TABLE 111, indicating 
overall SNR and global mean bit-rate. In the 
comparative images, the high quality of image 
reconstruction can be directly inferred by simple 
inspection of Figures 9-11 and Table 111. The three 
processed images are practically undistinguishable 
from the original, with Pyramid Coding requiring 
lower bit-rate. 

HO H1 H4 HLO HLI G 

7.33 4 .61  5 . 9 7  3 . 4 9  4.79 0.18 

Finally, Figure 12 is "ZELDA" coded with Blockwise 
Multiresolution scheme in 1.25 Wpel for  SNR beyond 
38dB threshold. 

61 CONCLUSION 

W e  tried to  propose Pyramid DPCM as an alternative to 
conventional DPCM in high sampling rate coding 
environments. I t  is more complex, but slower and, 
since interpolation provides better performance over 
extrapolation, compression efficiency is improved. 
One point that  must be strongly enphasized is that 
the results here achieved are too f a r  from optimum. 
They are relevant when compared with standard DPCM 
under same conditions, situation into which Pyramid 
scheme reveals t o  be an atractive alternative 
combining Sub-Band, Pyramid and DPCM coding for  
achieving a superior performance. 

TABLE I E n t r o p i e s  (b /pe l )  TABLE I 1  

ROOM 6 . 7 2  3 .84  5.05 2 .93  3 .99  0.12 1 IELDAI6.97 13.40 14.93 12.1612.81 I O .  381 

KITCH 6.86 3.56 4 . 9 0  2.59 3.56 0.15 

The interpolator here used is a discrete extension of 
the Cubic Convolution Kernel [61 [71 due to its ex- 
treme simplicity (even considering its coefficients), 
adequated polyphase structure 181 and performance. 
I ts  impulse response is [71: 

h(0)=1 h(fl)=9/16 h(f2)=0 h(t3)=-1/16 (E81 
ho(n) = tdnl (E9al 

hl(0) = h1(3) = -V16 ; hl(l) = h1(2) = 9/16 (E9b) 

where h(n) is  in a non-causal linear-phase presen- 
tation and the polyphase fi l ters . are in causal 
format. The fi l ters depicted in Figure 6 are  exactly 

. h i (d  and the equation for interpolation are 

9 x (2n+l) = (xk(n)+xk(n+l)+ 
k-1 

for k = 1 and 2, n = 0, l  ..., N/2' (over one line) 

For comparisons, we have done some tests and 
simulations over 4 test images : "Zelda", "Kitchen" , 
"Beach Scene" and "Room Scene". In a f i rs t  step we 
evaluated the error entropies. Let p(k) be the 
probability of X=k (k E K); the zero-th order 
entropies, here considered, are given by : 

H [XI = - 1 p ( i )  logz p(i) (Ell 1 

HO = H [ x ( n ) l  (ElW 
H1 = H [x(n)-x(n-lll (E12b) 
H4 = H [x(n)-x(n-4)1 (E12c) 
H L ~  = H [ L i ( n ) l  (E12d) 
HLO = H [Lo(n)l  (E12e) 

Now, in order t o  compare the full-image and Lz's DPCM 
coding for past-sample prediction, we must compare H1 
and H4. Furthermore, the entropy gain (GI must also 
take into account HLo and HLi. In table I, the 
results of tests over those four images are  presented 
leading to  a mean gain around 0.2 b/pel. If 
prefiltering is allowed, as in TABLE 11. the mean 
gain rises to  0.5 b/pel. This prefiltering will 
improve interpolation, eliminating aliasing. but i t  
will slightly corrupt the samples in Lz. Repeating 
the p r o a s s  for  planar prediction with A=[1 -0.7 0.71 
we have found the mean gain as 0.4 b/pel. 

i ED: 

= H1 - H ~ + H L ~ + ~ H L o  
4 (E131 

TABLE I 1  I B i  t - r a t e (  b / p e l )  ; SNR(dB) 
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b’ c - x-x-x-x-x- field n+l 
..................... field n a 

- x-x-x-x- field n+l 
..................... field n 

* o - sample to be predicted 

Figures 11 and 12 

7 )  REFERENCES 

Ll1 N.SJayant.P.Nol1, Digital Coding of Waveforms, 
Englewood Cliffs. NJ. RentiCcHall, 1984. 

121 P.J.Burt.E.H.A&Ieon, The Laplactan P y r m f d  as 
Compact Image Code, IEEE Trans C ~ ~ I U L ,  Cou-31, 
pp 532-540. Apri l  1983. 

131 S.L.Taniupto,Zmage Tranmrbton wtth Gross 
Information Firs t ,  Comp.Graph and Image Roc. 

141 L . W ~ , M . ~ l d ~ g , ~ ~ - d [ f f ~ ~  Pyramid, 
Optical Engineering. Vol 28. t7 ,  July 1989. 

[SI M.Bellanger. Adaptive Digital Filters and 
Sfgnal Analysis, Marcel Dekker Inc., NY.1981. 

I61 R.G.Keys. Cublc Convolution Interpolation For 
Digital Image Processing, IEEE Trans on ASP, 
ASSP-29,pp 746-749, June  1983. 

171 R.L.Queiroz,J.B.Yabu-uti, T&t&x.s de ProJdto 
de Filtros FIR para Mzha@o e Interpol@o de 
SinaLs MBcraos, RT-178. Contrato 208183, 
UNIW-S, Julho 1989. 

181 R.E.Csochfere,L.R.Rabinm, Multirate Digftal 
Stgnal ProcessLng. Englewood Cliffs, NJ. 
PrenticcHall, 1983 

191 M . H a d h d .  D.Thomas, 7’wo-Df”a l  Adaptfve 
LMS Algorithm, IEEE Trans. on Circuits and 
Systems, CAS-35, May 1988. 

9, pp 72-76, 1979. 

23.4.5 
0562 


