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Abstract :

Pyramid Coding is based upon the representation
of an original image into sub-images with
different resolutions. Those resulting images
are separately coded with reduction of required
entropy for perfect reconstruction., We will
apply DPCM to Pyramid Coding strategy, and show
that for practical quantizers, lower bit rates
than regular DPCM are required for high quality
resulting images. Also the Pyramid DPCM is
relatively simple, feasible and allows a
processing interval between samples that is
longer than the sampling interval. Furthermore
we will comment a blockwise scheme for
multiresolution, which could largely decrease
the coding bit rate.

1) INTRODUCTION

The main goal in studying image coding techniques
is the compression of the required amount of data
for its representation. Here we have interided to
modify standard DPCM coding strategies [1] in order
to deal with the short sampling interval in video
signals. This period commonly lies near 100ns, but
in the proposed scheme, adding parallel
computation, it will increase to 200ns and 400ns,
maintaining quality and reducing bit-rate. It
allows frequency differenciated coding, like
Sub-Band Coding (1], multiresolution, - progressive
transmission as well as DPCM simplicity. Due to
this fact, we do not expect great saving ; but
considerable performance improvement when compared
with regular DPCM under same conditions. That led
us to a comparative behavior throughout this paper.

Since we seek for simplicity, we will be limited to
unidimensional signals, which® are obtained by
raster scannig of the image over interlaced fields,
as in commercial TV. The results could be easily
upgraded in order to better exploit correlation of
bidimensional signals. The test images are mono-
chromatic and have been grabbed with 10 M samples/s
under 8-bit quantization.

2) PYRANID DPCM
2.1) Pyramid Coding
The pyramid technique for progressive coding of

images can be found in (2], (3] and [4). We will
briefly describe the essence of the method.
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Let the original image be an array of NxN pels,

with N a power of 2. Here, we shall use the
unidimensional sequence x(n) (which represents the
full image by scanning it line by line). Let
X, (n)=x(n), prefilter this ‘sequence with =nfs/2 and

subsample it with half the original sampling rate
fs. Call this poorer image xl(n). From xl(n). find

x;(n) by upsampling and  interpolation, this will be
an approximation of x(n). The array of differences
between them can be found by Lo(n)*xo(n)-x;(n). If

the prefilters and interpolators were ideal, Lo(n)
would be the difference between the original image
and the lowpass version version of it. Repeat the
process finding xz(n) and x;(n) and so on. In a

general formulation, we have

Li"(n) = xh(n) - xl'm(n) k = 0,1,...,M~-1 (E1)

as the difference between an image with 172% of the
otél resolution and an approximation of it. If
N"=2", then xu(n) is a single pixel image roughly -

corresponding to the mean of the original one.

Recovering x(n) from xu(n).l.o(n).u(n)..., Lu-1(n)

would be an easy task, by reverting the process.
Therefore the general decoding formulation’ is

xk(n) = x"m(n) + Lk(n) k=M-1,M-2,...,1,0 (E2)

Calling xu(n) as Lu(n), the pyramid is formed by

the levels Lx(n) displaced hierarchically, as in
Figure 1. The total number of samples (nodes)
recorded all over the pyramid amounts roughly to
twice the number of pixels’or

Top = 1 sample only

Ls (1/32)
l La (1/16)
L3 (1/8)
Lz (1/74)
[ 1 L1 (172)

{ 1

Base = 1/1 of total samples = Lo
FIGURE 1 -~ Pyramid nodes levels
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M
Nnodes = ¥ N2(27)) = 201-27")N2, (E3)
1=0

In order to reduce this number to N’ the

REDUCED-PYRAMID may be applied [4]. Another
approach for reducing the pyramid would arise if no
prefiltering is employed, therefore xi(n) would

have half of its samples coincidents with those
from X +l(n) and Ll.(n) must record just those

missing samples. Due to this approach, the levels
would contain half the samples than non-reduced
pyramid. Figure 2 sketches this new pyramid, with

M
Nnodes = N2 ™M 4+ y N227T) = N2 (E4)
i=1

This is an issue concerned about a trade-off
between aliasing inaccuracy and elimination of
overhead, but avoiding filtering processing and
allowing any interpolator’s length. This is a
distinct technique than that found in [4] and just
works for pyramids with few levels, into which
aliasing would not be so determinant.

2.2) Applying DPCM to Reduced-Pyramids

In order to make the Pyramid feasible, we will
restrict the number of levels to three (M=2) and
Lz(n) will contain one fourth of the original
samples. L1 and Lo are composed by differences
between lower level missing samples and inter-
polative predictions of them. If we code Lz2(n) with
DPCM, - its samples would be coded by differenciating
the samples and extrapolative predictions of them
[1]. The global coding process would form a hybrid
inter/extrapolative scheme and we can say that
Lo, L1 and L2z are coded via DPCM, being the latter
level coded with extrapolative prediction and the
formers with interpolative prediction.

Le (1/64)
Ls (1/64)
Ls (1/32)
L3 (1/16)
L2 (1/8)
l ] L1 (1/4)

L |

Base = 1/2 of total ‘samples = Lo
o
FIGURE 2 - Reduced-pyramid nodes levels

Lz 174
L1 174

L Lo 172

FIGURE 3 - 3-level Reduced-pyramid

In Figure 3 and 4 the steps towards the DPCM
pyramid are illustrated, proceeding as follows :

i) Decimate, by 2 and 4, x(n) in order to find
xl(n) e xz(n).

ii) Code xz(n) with a regular DPCM, therefore Lz(n)
is formed by the differences between xz(n) samples
and their predictions.

iii) Interpolate xlln) and let Lo(n) be formed by

the errors of this interpolation and x{(n). Do not
code the errors corresponding to samples re-
presented in xl(n).

iv) Interpolate xz(n) and let Ll(n) be formed by
the errors of this interpolation and xl(n). Do not

code the errors corresponding to samples re-
presented in xz(nl.

In Figure 5 a standard DPCM is represented with
x(n) as input, e(n) as coded errors and x(n) as
locally decoded recontructed value of x{(n). This
coder is applied to the scheme of the Pyramid DPCM
in Figure 6 . In this the filters are the
interpolators and DEMUX2 and MUXZ are devices that
divide and reconstruct, respectively, their input
samples. (even-n samples for one branch and odd-n
for the other).

Being «.8,7 the mean bit rates for Lz's DPCM, Li
and Lo , the global bit rate produced by the
Pyramid DPCM is given by :

R=(a+ﬁ+27)-i— (E5)

3) BLOCKWISE PROGRESSIVE TRANSMISSION

Those three levels could be thought of as : L2 con-
veys information about a basic image, a blurred
version of the original; L1 conveys information
about a first refinement and Lo conveys the con-
clusive one, recomposing the original image.In many
cases, there is no need for these refinements
because images are composed by high and low
frequency regions. Therefore we could divide the
image into blocks, compute the SNR in each block
and just refine regions where this ratio is below
some threshold. In these blocks, we would not code
Lo or even Li. We have prefiltered, decimated and
interpolated the image "Zelda", obtaining images
with 174 and 172 of the original bandwidth. These
images were divided in 16x16 pels blocks and Figure
7 sketches the block density per SNR obtained. Note
that there is a considerable amount of blocks whose
SNR overpassed thresholds in the range 35-40 dB.
Taking into account the relative frequency of
over-threshold blocks in ES5, we can rewrite it as

R = (a+aﬁ+257) +S (E6)

where S is the side-information rate.

23.4.2
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FIGURE 5 - DPCM Diagram

4) REGULAR x PYRAMID DPCM

By comparing the standard and the Pyramid DPCM, we
may say that the main advantages of the latter are

a)Better data compression, due to (i) the
prediction gain of interpolation over extra-
polation and (ii) to the fact that is possible to
adopt three distinct quantization procedures, one
for each level, optimizing coding and achieving
improved subjective performance in comparison to
the regular scheme.

b)Enlargemeént of processing interval between
samples. Those intervals are 4 times longer for
Lo and L1 and 2 times longer for Lo (See Figs. 4
and 6).

c)Facility to extend to a Multiresolution approach
by conditional/progressive transmission
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FIGURE 6 - Pyramid DPCM
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However, the main disadvantages rise from the needs
for apropriated logic to muitiplex those levels and
from the addition of parallel computation (Fig. 6).

ks
Now we must compare the predictors in both cases.
The signal sent over the channel Is composed by
prediction errors of the samples x(n). Those
predictions are achieved by discrete filtering
applied to previous samples (extrapolative) or to
advanced samples too (interpolative). Generally :

x()=la a,...] [x(n-d) xn-d,)...] = A'x* (ED)

Figure 8 depicts the interlaced-~line-system. It is
also shown the sample to be predicted nng samples
comnpnly used for intrafield prediction (X'={a b c]
or X'={a] ). Also, the predictors must be simple in
order to not mask comparative results.
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§) SIMULATIONS

For the simulations on still pictures, we used l
exactly the same DPCM for Lz and for full-image. This
includes adaptive 2D prediction and fixed 31 level

scalar quantizer. For the prediction equations
updated by a 2D LMS algorithm [9].

- 0.1
Aln+1)=A(n) + p (x(n)-x(n)) X ; p = — (E14)

255

The quantizer’s laws for Li and Lo, here used were :
Range Output Range Output Range Output
0-1 (/] 0-0 [¢] 0-1 (4]
2-6 3 1-2 1 2-7 3
7-14 10 3-7 4 8-24 12
15-25 19 8-24 12 25-255 37
26-43 32 25-255 37
44-255 S5

Figures 9-11 show comparative details extracted from
reconstructed images ("Zelda", "Kitchen", "Girl"). In
these, the upper left quarter (UL) is extracted from
original image; upper right (UR): (Lo-7 levels);
Bottom Left (BL) : (Lo-9 levels); Bottom Right (BR):
Standard DPCM. L1 was quantized into 11 levels. Those

results are summarized in TABLE III, indicating
overall SNR and global mean bit-rate. In the
comparative images, the high quality of image

reconstruction can be directly inferred by simple
inspection of Figures 9-11 and Table III. The three
processed images are practically undistinguishable
from the original, with Pyramid Coding requiring
lower bit-rate.

Finally, Figure 12 is "ZELDA" coded with Blockwise
Multiresolution scheme in 1.25 b/pel for SNR beyond
38dB threshold.

6) CONCLUSION

We tried to propose Pyramid DPCM as an alternative to
conventional DPCM in high sampling rate coding
environments. It is more complex, but slower and,
since interpolation provides better performance over
extrapolation, compression efficiency is improved.
One point that must be strongly enphasized is that
the results here achieved are too far from optimum.
They are relevant when compared with standard DPCM
under same conditions, situation into which Pyramid
scheme reveals to be an atractive alternative

The interpolator here used is a discrete extension of
the Cubic Convolution Kernel (6] [7] due to its ex-
treme simplicity (even considering its coefficients),
adequated polyphase structure [8] and performance.
Its impulse response is [7]:

h(0)=1 h(£1)=9/16 h(12)=0 h(23)=-1/16 (E8)
ho(n) = 3(n) (E9a)

h1(0) = hl(3) = -1/16 ; hl(l) = hl(Z) = 9/16 (E9b)

where h(n) is in a non-causal linear-phase presen-
tation and the polyphase filters -are in causal
format. The filters depicted in Figure 6 are exactly
hi(n) and the equation for interpolation are :

xk_l(2n+l) = (xk(n)-rxk(nﬂ))——?g

- (% -1x (020} + L () (E10)

for k =1 and 2, n = 0,1...,N/2° (over one line)

For comparisons, we have done some tests and
simulations over 4 test images : "Zelda", "Kitchen" ,
"Beach Scene" and "Room Scene". In a first step we
evaluated the error entropies. Let p(k} be the
probability of X=k (k € K); the =zero-th order
entropies, here considered, are given by :

H[X] =-F pli) log, p(i) (E11)
ieK N

HO = H [x(n)] (El2a)

Hl = H (x(n)-x(n-1)} (E12b)

H4 = H [x(n)-x(n-4)] (E12¢)

HL1 = H [Li1(n)] (E12d)

Hro = H [Lo(n)] (E12e)

Now, in order to compare the full-image and L2’s DPCM
coding for past-sample prediction, we must compare Hl
and H4. Furthermore, the entropy gain (G) must also
take into account HiLo and HLi. In table I, the
results of tests over those four images are presented
leading to a mean gain around 0.2 b/pel. If
prefiltering is allowed, as in TABLE II, the mean
gain rises to 0.5 b/pel. This prefiltering will
improve interpolation, eliminating aliasing, but it
will slightly corrupt the samples in° L2. Repeating
the process for planar prediction with A=[1 -0.7 0.7]
we have found the mean gain as 0.4 b/pel.

combining Sub-Band, Pyramid and DPCM coding for G=H - H4+HL1+2HLo (E13)
achieving a superior performance. 4
TABLE 1 Entropies (b/pel) TABLE 11 TABLE II1I Bit-rate(b/pel);SNR(dB)
IMAGE| HO | Hl | H4 | Hro| HL1| G H4 | Huo| Hui| G IMAGE|UR PYR 1[BL PYR 2|BR DPCM
! ZELDA|1.45/42 |2.00/44 .32/4
BEACH|7.33(4.61|5.97|3.49(4.79(0.18||5.84[2.91|4.45|0.40 2 5
KITCH(1.77/43 |2.26/44 |2.44/45
ROOM [6.72|3.84|5.05(2.93/3.99/0.12|14.94]2.2812.22]|0.73 GIRL |2.45/34 |2.80/35 05/
. .80 .
ZELDA|6.97|3.40(|4.93]2.16(2.81/0.38|{4.86(1.50|2.42)|0.67 3 39
KITCH|6.8613.56(4.90(2.59|3.56/0.15})4.78]/1.98{3.19|0.42

23.44
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* o - sample to be predicted

Figures 7, 8, 9 and
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