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Abstract—This work presents a novel technique for image re-
construction applied to mixed-resolution video super-resolution.
We segment an image into patches defined by the clustering
of a vector flow generated from matching SIFT features. We
reconstruct the segmented image by applying image projective
transformation to a reference image. By varying the number of
clusters, we composed a sequence of reconstructed images, which
are then used to compose a codebook, through gradient matching.
This idea is extended to use low and high-resolution image
pairs for super-resolution. Our results indicate a 1.4dB gain, on
average, over the use of overlapped-block motion-compensation
(OBMC).

I. INTRODUCTION

Super-resolution (SR) is a process in which a single high-

resolution (HR) image is composed either by several low-

resolution (LR) images [1] or one low-resolution image and

several low-high-resolution image pairs, known as example-

based super-resolution [2]. In example-based super-resolution,

a common approach is the use of pairs of patches for locally

applying SR to an image [3].

In the field of video processing, SR has been used in a

framework of mixed-resolution videos, i.e., videos that contain

both LR or HR frames, in applications such as video coding

with reversed complexity [4]. Since the similarities between

LR and HR frames are intrinsic to the video scene, example-

based SR is an approach that has shown good results. In this

context, Song et al. [5] has proposed using sparsely existing

high-resolution key-frames to super-resolve frames in a low-

resolution sequence by using overlapped-block motion com-

pensation (OBMC) and a dictionary training. Also, Hung et

al. [6] proposed a SR technique through the use of codebooks,

also derived from key-frames and with OBMC, achieving

better results than those in [5].

We have presented, in a previous work [7], a technique

based on SIFT features [8] and gradient matching for super-

resolution of mixed-resolution video frames. One of its draw-

backs was the need for manual parameter settings. In this

work, we propose an improved approach that depends more on

the images’ characteristics, achieved through the clustering of

a matching vector flow. Furthermore, we improved the gradient

matching step. Our experiments show better results compared

with works based on OBMC, specially for scenes that present

more complex scene variations other than translation, such as

scale, rotation, affine and perspective changes.

We present our work as follows: Section II presents the pro-

posed image compensation technique based on the clustering

of SIFT feature vector flow; Section III details the gradient

matching with compensated images for image construction;

Section IV shows how we combine the two previous steps for

super-resolution; Section V presents our test conditions and

results; and Section VI brings our conclusions to this work.

II. IMAGE COMPENSATION FROM FEATURE CLUSTERING

Let there be a current image A and a reference image B,

which are similar in the sense that they depict a similar scene.

We assume these images share objects and a distinct set of

features, i.e. some features in A are also present in B. We

build a compensated image C similar to A, by using only

pixels from B, similarly to classical motion compensation

(MC) [9], nevertheless exploring a larger variety of relative

motions and scene variations between the two images, other

than just translation. Figure 1 shows a diagram with the steps

to compose the compensated image.

First, we select the set of shared features by matching

those from both images A and B with Best-Bin-First and

Nearest Neighbors techniques, as proposed by Lowe [8] and

implemented by Hess et al. [10]. The difference between

positions from each pair of matched feature produces a feature

motion vector. We then compose a 4D vector in the form

[x, y, vx, vy]T , referred to as matching vector, in which x and

y are the coordinates of a feature in image A, while vx and

vy are the feature motion vector components associated to

the matched feature in image B. The set of all the matching

vectors compose a vector flow, which will be clustered. The

use of 4D vectors is an usual approach in the clustering of

vector flows, as in [11]. Figure 2 depicts an example of an

image where the superimposed arrows represent the feature

motion vectors. For this example, we used two frames from
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Fig. 1. Diagram of image composition through vector flow clustering.

video sequence mobile. The other superimposed markings will

be explained in the following paragraphs.

To define the clusters, we use euclidean distance between

each matching vector and inner squared distance between

clusters, also known as Ward’s method, which minimizes the

total variance within each cluster [12]. These decisions were

made empirically based on preliminary results. This clustering

allows us to work with image’s segments with arbitrary shapes,

differently from the regular shaped blocks used in MC. Once

the matching vectors are clustered, we must define two major

aspects related to each cluster: a homography matrix and a

region of influence (RoI).

Differently from the translation applied in MC, we perform

a transformation in the reference image B according to the

projective transformation matrix—linear transformation repre-

sented by a non-singular 3 × 3 matrix that can be calculated

from four pairs of matched points in the 2D space [13],

also known as homography—acquired from the feature motion

vectors.

Since each cluster contains several matching vectors, we

use RANSAC to determine the best homography matrix. The

reference image B then suffers a projective transformation

according to each derived matrix and is patched to its related

RoI. For a small number of vectors, however, RANSAC may

fail to produce a realistic homography, which leads to an

erroneous compensated image. We will readdress this problem

later on.

Each RoI is a patch in the compensated image C to be filled

with the warped version of the reference image B. In order to

define the RoI for each cluster, we first acquire the clusters’

Fig. 2. Example of image segmented according to matching vectors separated
in 15 clusters.

convex hulls. Each convex hull is calculated according to the

values of x and y of the matching vectors, i.e., all matching

vectors in the same cluster are positioned inside the convex

hull, but may point to an outside point.

The convex hulls acquired from the clusters are contours

of convex regions that do not span the entire image, which

forbids them to be used as RoIs. These convex regions are

then used to define the borders between all RoIs. We create

a binary image in which all convex regions assume value

0, while the background assumes value 1. We then apply

watershed segmentation [14] to this binary image, i.e., each

convex region is a local minimum in the segmentation process.

The segmentation process then defines the borders between

catchment basins, which are our desired RoIs. In Figure 2, the

red contours represent the convex hulls of the clustered vectors

while the yellow lines indicated the borders of the RoIs.

Since the resulting compensated image depends on the

number of clustered regions, we compose a set {C(k)} of

distinct compensate images, where k indicates the number

of clusters. The size of the set is defined by the maximum

possible number of clusters, following a successive clustering

approach. In this approach, we repeat the entire previously

described image compensation process for each value of k

clusters, in increasing order. However, if a cluster contains

three or less vectors (in which case we could not calculate the

homography), these vectors are excluded from the vector flow

and the remaining vectors are re-clustered according to the

current k value. The algorithm reaches a point at which it is

no longer possible to cluster the remaining vectors for larger

k values, and it stops. At this point, the value of k defines the

number of elements in set {C(k)}.

For the super-resolution application, we usually need several

reference images Bn. In the case, we get a family of indexed

sets {C(k)}n.
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Fig. 3. Image composition through gradient matching.

III. IMAGE CONSTRUCTION FROM GRADIENT MATCHING

In the previous step, we generated a collection of compen-

sated images {C(k)}. As mentioned before, because of the

use of RANSAC with only a few vectors, some of the images

may have regions which are too distorted when compared to

image A. However, these images may still contain useful high-

frequency information. For this, we use gradient matching to

generate a new set of images

Let again A be the current image we want to reconstruct

and {C(k)} be the set of compensated images. For a given

pixel position (i, j), let Ai,j be a pixel in A, Ci,j(k) be a

pixel in C(k) and ∇Ai,j and ∇Ci,j(k) be their gradients,

respectively. The best match is the index k̂i,j that satisfies

k̂i,j = argmin
k

‖∇Ai,j −∇Ci,j(k)‖. (1)

By finding these matches, we compose a new image D, in

which each pixel is given by Di,j = Ci,j(k̂i,j). In the case

of multiple reference images, the gradient matching may be

carried using any of the indexed sets {C(k)}n or even their

union.

Instead of matching the gradient among pixels as in Eq.(1),

it is found [7] that it is often beneficial to include a region R

around pixel (i, j) in the match as in Eq.(2):

k̂i,j = argmin
k

∑

s∈R

∑

t∈R

‖∇Ai+s,j+t −∇Ci+s,j+t(k)‖, (2)

The radius r of region R directly affects the final image

result. Because of that, it is possible to build distinct D(r)
images. These images are then combined to yield set {D(r)}.

We limit the maximum value of r, and the number of elements

of {D(r)}, to rmax so that region R entirely fits inside the

smallest RoI found in the clustering step.

IV. COMBINING IMAGE COMPENSATION AND GRADIENT

MATCHING FOR SUPER-RESOLUTION

As an application, the presented techniques can be used

to build a codebook for super-resolution in substitution to

OBMC, within the method presented in [6]. Our objective is

to super-resolve low-resolution image A using high-resolution

image B. This is achieved by adding some high-frequency

information I
SR (calculated using both A and B) to the

upsampled version of A, A
u = u(A), where u(.) is an

interpolation kernel. Thus, we seek A
SR = A

u + I
SR. Our

technique must then be extended to calculate I
SR.

In order to build the mentioned codebook, we need pairs

of LR and HR images. We then calculate a LR version

B
l of image B by applying a low-pass filter. This filtering

process is done by decimation-interpolation operation, i.e.,

pre-filtering and downsampling B to the size of A, followed

by upsampling it back to its original size. This process is

represented by B
l = u(d(B)), where d(.) is the pre-filtering

and downsampling kernel in the same scale factor as u(.).
We acquire the vector flow from the matching of features

from A
u and B. B

l is not used because the resampling

process produces artifacts, which may generate spurious fea-

tures that may degrade feature matching. We now find the

compensated images C(k), by warping image B according

to the found homographies. For each cluster, we can also

apply the homographies to image B
l, giving us images Cl(k).

Note that Cl(k) ≈ u(d(C(k))), except for the high-frequency

borders of the patches.

The next step is to use image A
u and the sets {Cl(k)}

and {C(k)} for gradient matching. The matching is then

performed between image A
u and images in set {Cl(k)},

since they are both approximately in the same resolution.

The matching will again return k̂i,j . With the indexes found

for each pixel position, we compose two images D
l and

D, where pixels in each image are Dl
i,j = Cl

i,j(k̂i,j) and

Di,j = Ci,j(k̂i,j), respectively, where Cl
i,j(k) is a pixel in

C
l(k) and Ci,j(k) is a pixel in C(k). Considering the region

R around each pixel position, we have sets {Dl(r)} and

{D(r)}. This pair is then used to build the codebook.

The codebook is populated by pairs of images in order to

follow steps described in [6]. First, for each index r, the image

I containing only high-frequency information is calculated by

I(r) = D(r) - D
l(r). The other image in the pair is a LR

image. Initially, we used image D
l(r). However, test have

shown that the results could be improved by using images

that are more similar to A
u. Thus, we create new images L,

calculated for each index r as

L(r) = u(d(Au + I(r))), (3)

The final high-frequency information added to image A
u,

which yields the super-resolved image, is a linear combination

of images in set {I(r)}, calculated in a block-wise fashion.

Let Au
s and Ls(r) be two collocated square blocks in images

A
u and {L(r)}, respectively. We calculate a distortion γ(r) =

dist(Au
s ,Ls(r)) between these two blocks, where dist is any

desired distortion metric, like SAD or SSD, for example. Next,

we calculate weights α(r), which are inversely proportional to

the distortions γ(r), given by:

α(r) =

(

1

γ(r)

)

(

rmax
∑

r=1

1

γ(r)

)−1

. (4)

Each A
u
s block is then super-resolved by a linear combina-

tion of blocks Is(r) from I(r), i.e.
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TABLE I
PSNR [DB] COMPARISON AMONG SR AND INTERPOLATION METHODS.

Sequence Bicubic Lanczos SR in MSR HSR Our Previous SR in Ours Ours
[5] [15] [5] [5] Work [7] [6] + OBMC

Container 27.9 27.4 30.7 31.9 33.2 35.0 36.0 36.7 37.3

Hall 29.1 28.2 32.6 37.4 38.0 40.3 41.1 41.9 42.0

Mobile 22.9 22.8 25.5 24.5 25.5 28.6 27.1 29.6 30.1

News 29.4 30.1 34.1 31.9 36.1 39.1 38.8 39.5 39.9

Mobcal 27.7 27.8 29.8 30.9 31.0 36.1 35.0 38.1 38.2

Shields 31.1 33.1 34.9 31.4 32.7 36.4 36.0 36.5 37.1

A
SR
s = A

u
s +

rmax
∑

r=1

α(r)Is(r). (5)

The whole A
SR is calculated when the previous algorithm

is applied to all s blocks in A
u.

V. EXPERIMENTAL RESULTS

Our technique is compared to others under the same test

conditions they have presented. We super-resolve a low-

resolution version (original frame downsampled by a factor

of 2) of the 16th frame of a video sequence, using the 1st and

31st frames as reference images. The tests are run on four CIF

and two 720p sequences and the results are shown on Table

I. All frames used are luminance only.

We compare our results to those directly reported in [5] and

[6]. We also compare to the work [15], for which we ran new

tests, where we composed 1000 patch-pairs with the reference

frames as training sets. The training images where downsized

by a factor of two with a bicubic filter, while the features

extraction was performed using gradient and Laplacian filters.

We also compare to our previous results.

In the entire process, both downsampling and upsampling

were performed with a factor of 2 and used the Lancozs-3 filter

kernel (using function imresize from MATLAB). In the optical

flow clustering, the average number of maximum clusters, i.e.,

the size of sets {C(k)}, was 17.25 for CIF sequences and

317.75 for 720p sequences. In the gradient matching process,

the value of rmax varied from 9 to 18, depending on the

sequence. In the codebook step, the square block sizes tested

were 2×2, 4×4, 8×8 and 16×16. For CIF sequences, blocks

of size 4×4 yielded the best results, while size 16×16 yielded

the best results for 720p sequences.

In order to show our improvements over OBMC, we com-

pose the codebook with our technique only, shown in column

“Ours”, in Table I. However, we also show the results for the

combination of our codebook combined to that obtained by

OBMC, shown in column “Ours+OBMC”, in Table I. The

overall results show that our technique not only surpasses

previously presented results, but also works well along with

OBMC, in the mixed-resolution video super-resolution appli-

cation.

VI. CONCLUSIONS

We have proposed a technique for image composition,

applied to mixed-resolution video super-resolution. The super-

resolution is achieved with the construction of a codebook

from the clustering of an optical flow of matched SIFT features

followed by gradient matching. Our results have shown that

this technique works very well alongside OBMC, or even

replacing it. We also improved our previous work by allowing

the algorithm to work without need for manual parameter

setting. The average gains over OBMC of our work alone and

combined with OBMC are of 1.4dB and 1.8dB, respectively.

This technique can be further improved, as a future work

suggestion, in the sense of speeding up the process for larger

video frames. Our experiments have shown that a dense optic

flow may lead to a large number of cluster, which could turn

the algorithm unfeasible for extremely large frame sizes. Any

sort of early stop decision could bring good improvements.
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