978-1-4799-8391-9/15/$31.00 ©2015 IEEE

Clustering of Matched Features and Gradient
Matching for Mixed-Resolution Video
Super-Resolution

Renan U. Ferreira

University of Brasilia
Brasilia, Brazil
Email: renan@unb.br

Abstract—This work presents a novel technique for image re-
construction applied to mixed-resolution video super-resolution.
We segment an image into patches defined by the clustering
of a vector flow generated from matching SIFT features. We
reconstruct the segmented image by applying image projective
transformation to a reference image. By varying the number of
clusters, we composed a sequence of reconstructed images, which
are then used to compose a codebook, through gradient matching.
This idea is extended to use low and high-resolution image
pairs for super-resolution. Our results indicate a 1.4dB gain, on
average, over the use of overlapped-block motion-compensation
(OBMO).

I. INTRODUCTION

Super-resolution (SR) is a process in which a single high-
resolution (HR) image is composed either by several low-
resolution (LR) images [1] or one low-resolution image and
several low-high-resolution image pairs, known as example-
based super-resolution [2]. In example-based super-resolution,
a common approach is the use of pairs of patches for locally
applying SR to an image [3].

In the field of video processing, SR has been used in a
framework of mixed-resolution videos, i.e., videos that contain
both LR or HR frames, in applications such as video coding
with reversed complexity [4]. Since the similarities between
LR and HR frames are intrinsic to the video scene, example-
based SR is an approach that has shown good results. In this
context, Song et al. [5] has proposed using sparsely existing
high-resolution key-frames to super-resolve frames in a low-
resolution sequence by using overlapped-block motion com-
pensation (OBMC) and a dictionary training. Also, Hung et
al. [6] proposed a SR technique through the use of codebooks,
also derived from key-frames and with OBMC, achieving
better results than those in [5].

We have presented, in a previous work [7], a technique
based on SIFT features [8] and gradient matching for super-
resolution of mixed-resolution video frames. One of its draw-
backs was the need for manual parameter settings. In this
work, we propose an improved approach that depends more on
the images’ characteristics, achieved through the clustering of
a matching vector flow. Furthermore, we improved the gradient
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matching step. Our experiments show better results compared
with works based on OBMC, specially for scenes that present
more complex scene variations other than translation, such as
scale, rotation, affine and perspective changes.

We present our work as follows: Section II presents the pro-
posed image compensation technique based on the clustering
of SIFT feature vector flow; Section III details the gradient
matching with compensated images for image construction;
Section IV shows how we combine the two previous steps for
super-resolution; Section V presents our test conditions and
results; and Section VI brings our conclusions to this work.

II. IMAGE COMPENSATION FROM FEATURE CLUSTERING

Let there be a current image A and a reference image B,
which are similar in the sense that they depict a similar scene.
We assume these images share objects and a distinct set of
features, i.e. some features in A are also present in B. We
build a compensated image C' similar to A, by using only
pixels from B, similarly to classical motion compensation
(MC) [9], nevertheless exploring a larger variety of relative
motions and scene variations between the two images, other
than just translation. Figure 1 shows a diagram with the steps
to compose the compensated image.

First, we select the set of shared features by matching
those from both images A and B with Best-Bin-First and
Nearest Neighbors techniques, as proposed by Lowe [8] and
implemented by Hess et al. [10]. The difference between
positions from each pair of matched feature produces a feature
motion vector. We then compose a 4D vector in the form
[z, y, vz, vy]T, referred to as matching vector, in which 2 and
y are the coordinates of a feature in image A, while vx and
vy are the feature motion vector components associated to
the matched feature in image B. The set of all the matching
vectors compose a vector flow, which will be clustered. The
use of 4D vectors is an usual approach in the clustering of
vector flows, as in [11]. Figure 2 depicts an example of an
image where the superimposed arrows represent the feature
motion vectors. For this example, we used two frames from

1202



B A

e

Optical flow
Feature . .
. — | clustering with
Matching
k clusters

; b
Homographies

definition through
RANSAC

Definition of Rol
through Watershed
Segmentation

| '
k homography
matrices
' v

L, Perspective Warped images
Transformation patching
| '
k warped -
images
C(k)

Fig. 1. Diagram of image composition through vector flow clustering.

video sequence mobile. The other superimposed markings will
be explained in the following paragraphs.

To define the clusters, we use euclidean distance between
each matching vector and inner squared distance between
clusters, also known as Ward’s method, which minimizes the
total variance within each cluster [12]. These decisions were
made empirically based on preliminary results. This clustering
allows us to work with image’s segments with arbitrary shapes,
differently from the regular shaped blocks used in MC. Once
the matching vectors are clustered, we must define two major
aspects related to each cluster: a homography matrix and a
region of influence (Rol).

Differently from the translation applied in MC, we perform
a transformation in the reference image B according to the
projective transformation matrix—linear transformation repre-
sented by a non-singular 3 x 3 matrix that can be calculated
from four pairs of matched points in the 2D space [13],
also known as homography—acquired from the feature motion
vectors.

Since each cluster contains several matching vectors, we
use RANSAC to determine the best homography matrix. The
reference image B then suffers a projective transformation
according to each derived matrix and is patched to its related
Rol. For a small number of vectors, however, RANSAC may
fail to produce a realistic homography, which leads to an
erroneous compensated image. We will readdress this problem
later on.

Each Rol is a patch in the compensated image C' to be filled
with the warped version of the reference image B. In order to
define the Rol for each cluster, we first acquire the clusters’

Fig. 2. Example of image segmented according to matching vectors separated
in 15 clusters.

convex hulls. Each convex hull is calculated according to the
values of x and y of the matching vectors, i.e., all matching
vectors in the same cluster are positioned inside the convex
hull, but may point to an outside point.

The convex hulls acquired from the clusters are contours
of convex regions that do not span the entire image, which
forbids them to be used as Rols. These convex regions are
then used to define the borders between all Rols. We create
a binary image in which all convex regions assume value
0, while the background assumes value 1. We then apply
watershed segmentation [14] to this binary image, i.e., each
convex region is a local minimum in the segmentation process.
The segmentation process then defines the borders between
catchment basins, which are our desired Rols. In Figure 2, the
red contours represent the convex hulls of the clustered vectors
while the yellow lines indicated the borders of the Rols.

Since the resulting compensated image depends on the
number of clustered regions, we compose a set {C(k)} of
distinct compensate images, where k indicates the number
of clusters. The size of the set is defined by the maximum
possible number of clusters, following a successive clustering
approach. In this approach, we repeat the entire previously
described image compensation process for each value of &
clusters, in increasing order. However, if a cluster contains
three or less vectors (in which case we could not calculate the
homography), these vectors are excluded from the vector flow
and the remaining vectors are re-clustered according to the
current k value. The algorithm reaches a point at which it is
no longer possible to cluster the remaining vectors for larger
k values, and it stops. At this point, the value of %k defines the
number of elements in set {C(k)}.

For the super-resolution application, we usually need several
reference images B,,. In the case, we get a family of indexed

sets {C(k)}n-
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III. IMAGE CONSTRUCTION FROM GRADIENT MATCHING

In the previous step, we generated a collection of compen-
sated images {C'(k)}. As mentioned before, because of the
use of RANSAC with only a few vectors, some of the images
may have regions which are too distorted when compared to
image A. However, these images may still contain useful high-
frequency information. For this, we use gradient matching to
generate a new set of images

Let again A be the current image we want to reconstruct
and {C(k)} be the set of compensated images. For a given
pixel position (z,7), let A;; be a pixel in A, C; ;(k) be a
pixel in C(k) and VA, ; and VC; ;(k) be their gradients,
respectively. The best match is the index l;:” that satisfies

ki,j = arglfninHVAiJ — VC’%J(]C)” (1)

By finding these matches, we compose a new image D, in
which each pixel is given by D; ; = C,-7j(l%i7j). In the case
of multiple reference images, the gradient matching may be
carried using any of the indexed sets {C'(k)},, or even their
union.

Instead of matching the gradient among pixels as in Eq.(1),
it is found [7] that it is often beneficial to include a region R
around pixel (7, ) in the match as in Eq.(2):

]Aﬂiyj = argmin Z Z ||VAi+s,j+t — Vci+s,j+t(k)||7 (2)
sERtER

The radius r of region R directly affects the final image
result. Because of that, it is possible to build distinct D(r)
images. These images are then combined to yield set {D(r)}.
We limit the maximum value of r, and the number of elements
of {D(r)}, to Tmas so that region R entirely fits inside the
smallest Rol found in the clustering step.

IV. COMBINING IMAGE COMPENSATION AND GRADIENT
MATCHING FOR SUPER-RESOLUTION

As an application, the presented techniques can be used
to build a codebook for super-resolution in substitution to
OBMC, within the method presented in [6]. Our objective is
to super-resolve low-resolution image A using high-resolution
image B. This is achieved by adding some high-frequency
information I°% (calculated using both A and B) to the
upsampled version of A, A" = wu(A), where u(.) is an

interpolation kernel. Thus, we seek AR — A% 1+ 1% Our
technique must then be extended to calculate T SE,

In order to build the mentioned codebook, we need pairs
of LR and HR images. We then calculate a LR version
B! of image B by applying a low-pass filter. This filtering
process is done by decimation-interpolation operation, i.e.,
pre-filtering and downsampling B to the size of A, followed
by upsampling it back to its original size. This process is
represented by B' = u(d(B)), where d(.) is the pre-filtering
and downsampling kernel in the same scale factor as u(.).

We acquire the vector flow from the matching of features
from A" and B. B' is not used because the resampling
process produces artifacts, which may generate spurious fea-
tures that may degrade feature matching. We now find the
compensated images C'(k), by warping image B according
to the found homographies. For each cluster, we can also
apply the homographies to image B', giving us images C' (k).
Note that C' (k) ~ u(d(C(k))), except for the high-frequency
borders of the patches.

The next step is to use image A" and the sets {C'(k)}
and {C(k)} for gradient matching. The matching is then
performed between image A" and images in set {C'(k)},
since they are both approximately in the same resolution.
The matching will again return lg:w». With the indexes found
for each pixel position, we compose two images D' and
D, where pixels in each image are D!, = C! (k;;) and
Dij = Ci (ki ), respectively, where Cl (k) is a pixel in
C'(k) and C; ;(k) is a pixel in C(k). Considering the region
R around each pixel position, we have sets {D'(r)} and
{D(r)}. This pair is then used to build the codebook.

The codebook is populated by pairs of images in order to
follow steps described in [6]. First, for each index r, the image
I containing only high-frequency information is calculated by
I(r) = D(r) - D'(r). The other image in the pair is a LR
image. Initially, we used image D'(r). However, test have
shown that the results could be improved by using images
that are more similar to A". Thus, we create new images L,
calculated for each index r as

L(r) = u(d(A" + I(r))), 3)

The final high-frequency information added to image A",
which yields the super-resolved image, is a linear combination
of images in set {I(r)}, calculated in a block-wise fashion.
Let AY and L4(r) be two collocated square blocks in images
A" and {L(r)}, respectively. We calculate a distortion y(r) =
dist(Ay, Ls(r)) between these two blocks, where dist is any
desired distortion metric, like SAD or SSD, for example. Next,
we calculate weights (), which are inversely proportional to
the distortions ~(r), given by:

Each AY block is then super-resolved by a linear combina-
tion of blocks Is(r) from I(r), i.e.
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TABLE I
PSNR [DB] COMPARISON AMONG SR AND INTERPOLATION METHODS.

Sequence | Bicubic | Lanczos | SRin | MSR | HSR | Our Previous | SR in | Ours Ours
[5] [15] [5] [5] Work [7] [6] + OBMC
Container 279 27.4 30.7 31.9 332 35.0 36.0 36.7 37.3
Hall 29.1 28.2 326 | 374 | 380 403 41.1 | 419 42.0
Mobile 22.9 22.8 25.5 24.5 25.5 28.6 27.1 29.6 30.1
News 29.4 30.1 34.1 31.9 36.1 39.1 38.8 39.5 39.9
Mobcal 27.7 27.8 29.8 30.9 31.0 36.1 35.0 38.1 38.2
Shields 31.1 33.1 34.9 314 32.7 36.4 36.0 36.5 37.1
. followed by gradient matching. Our results have shown that
(5) this technique works very well alongside OBMC, or even

AR =AY+ > a(r)I(r).
r=1

The whole A°" is calculated when the previous algorithm
is applied to all s blocks in A".

V. EXPERIMENTAL RESULTS

Our technique is compared to others under the same test
conditions they have presented. We super-resolve a low-
resolution version (original frame downsampled by a factor
of 2) of the 16th frame of a video sequence, using the 1st and
31st frames as reference images. The tests are run on four CIF
and two 720p sequences and the results are shown on Table
I. All frames used are luminance only.

We compare our results to those directly reported in [5] and
[6]. We also compare to the work [15], for which we ran new
tests, where we composed 1000 patch-pairs with the reference
frames as training sets. The training images where downsized
by a factor of two with a bicubic filter, while the features
extraction was performed using gradient and Laplacian filters.
We also compare to our previous results.

In the entire process, both downsampling and upsampling
were performed with a factor of 2 and used the Lancozs-3 filter
kernel (using function imresize from MATLAB). In the optical
flow clustering, the average number of maximum clusters, i.e.,
the size of sets {C(k)}, was 17.25 for CIF sequences and
317.75 for 720p sequences. In the gradient matching process,
the value of 7,4, varied from 9 to 18, depending on the
sequence. In the codebook step, the square block sizes tested
were 2x 2, 4 x4, 8 x 8 and 16 x 16. For CIF sequences, blocks
of size 4 x 4 yielded the best results, while size 16 x 16 yielded
the best results for 720p sequences.

In order to show our improvements over OBMC, we com-
pose the codebook with our technique only, shown in column
“Ours”, in Table 1. However, we also show the results for the
combination of our codebook combined to that obtained by
OBMC, shown in column “Ours+OBMC”, in Table I. The
overall results show that our technique not only surpasses
previously presented results, but also works well along with
OBMC, in the mixed-resolution video super-resolution appli-
cation.

VI. CONCLUSIONS

We have proposed a technique for image composition,
applied to mixed-resolution video super-resolution. The super-
resolution is achieved with the construction of a codebook
from the clustering of an optical flow of matched SIFT features

replacing it. We also improved our previous work by allowing
the algorithm to work without need for manual parameter
setting. The average gains over OBMC of our work alone and
combined with OBMC are of 1.4dB and 1.8dB, respectively.
This technique can be further improved, as a future work
suggestion, in the sense of speeding up the process for larger
video frames. Our experiments have shown that a dense optic
flow may lead to a large number of cluster, which could turn
the algorithm unfeasible for extremely large frame sizes. Any
sort of early stop decision could bring good improvements.
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