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Compression of 3D Point Clouds Using a
Region-Adaptive Hierarchical Transform
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Abstract—In free-viewpoint video, there is a recent trend to
represent scene objects as solids rather than using multiple depth
maps. Point clouds have been used in computer graphics for
a long time, and with the recent possibility of real-time capturing
and rendering, point clouds have been favored over meshes in
order to save computation. Each point in the cloud is associated
with its 3D position and its color. We devise a method to compress
the colors in point clouds, which is based on a hierarchical
transform and arithmetic coding. The transform is a hierarchical
sub-band transform that resembles an adaptive variation of
a Haar wavelet. The arithmetic encoding of the coefficients
assumes Laplace distributions, one per sub-band. The Laplace
parameter for each distribution is transmitted to the decoder
using a custom method. The geometry of the point cloud is
encoded using the well-established octtree scanning. Results show
that the proposed solution performs comparably with the current
state-of-the-art, while being much more computationally efficient.
We believe this paper represents the state of the art in intra-frame
compression of point clouds for real-time 3D video.

Index Terms—Point cloud compression, 3D immersive video,
free-viewpoint video, RAHT, real-time point cloud transmission.

I. INTRODUCTION

ITH dynamic 3D data, 3D representations of active
Wpeople can be captured and conveyed in real time to
remote locations, enabling free viewpoint viewing and rich
collaboration as if all parties were co-located [1]. An illustra-
tion of free-viewpoint viewing is given in Fig. 1. Dynamic
3D data capture can be implemented using multiple cam-
eras (infrared and regular) while visualization can use special
glasses to render the subject within a synthetic or real scene.
The processing for capture and display can be done in real time
using powerful graphics processing units (GPUs) [2]. We are
seeing the dawn of a new era when real time transmission in
3D is finally becoming a reality.

The compression of data for 3D transmission has
been pursued mostly in the context of compression of
meshes [3]-[12]. However, for real-time processing, the rep-
resentation of scenes as point clouds seems to be more com-
putationally efficient than meshes [2]. Previous approaches to
compressing the geometry of point clouds include [13]-[15].
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In [16] there is an approach to compress both color and
geometry, while [17] presents a method to compress colors
in the cloud, while leaving the geometry to be compressed
using the known octtree method. We believe [17] and [18]
represent the state-of-the-art in point cloud color compression,
with the former focusing on intra-frame compression and the
latter extending the former work to inter-frame compression.
Both use the same codec, applied either to the colors directly
or to their prediction residuals, based on an orthogonal graph
transform and arithmetic coding of carefully modeled coeffi-
cients. The graph transform is a natural choice for the spatial
transform of the color signal due to the irregular domain
of definition of the signal. Unfortunately, the graph trans-
form requires repeated eigen-decompositions of many and/or
large graph Laplacians, rendering the approach infeasible for
real-time processing.

Other approaches to transform signals over irregular
domains of definition have been either to use shape-adaptive
transforms, e.g., [19], or to pad the signal out to a regular
domain and then use an ordinary block transform, e.g., [20].
Unfortunately the former sacrifices orthogonality, while the
latter sacrifices critical sampling, both of which become
extreme in the case of 3D point clouds, as the region of support
becomes essentially only a 2D manifold within a 3D space.

In our work, we develop a region-adaptive orthogonal trans-
form suitable for compression of color signals on 3D point
clouds that not only compares well, in terms of rate-distortion
performance, to the state-of-the-art systems that use the graph
transform, but also is far superior to those systems in terms of
computational complexity, easily enabling color compression
of 3D point clouds in real time. The transform is hierarchical,
resembling an adaptive variation of a Haar wavelet. We couple
the transform with a novel feedforward approach to entropy
coding the quantized transform coefficients. Geometry com-
pression is discussed for completeness and we use the well
established octtree method [13]-[17].

In this paper, we focus on intra-frame compression. Appli-
cation to inter-frame compression is left to subsequent work.
Also, we are only concerned with a real time transmission
system. Each cloud has about 300K-400K points in a voxel
grid and each frame has to be displayed at a rate of at least
30 frames per second (fps), yielding less than 30 ms to fully
process each frame. Hence, we propose a low-complexity
compression system suitable for real-time implementation,
in contrast to the graph-transform method, which can be fairly
complex.

Section II describes the geometry aspects of 3D data and
how we encode the 3D position information. Section III
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Fig. 1.

Random viewpoints of a 3D point cloud frame.

describes the transform used in this work and Section IV
presents the method to encode the resulting coefficients.
Experimental results are presented and discussed in Sec. V
and, at last, Section VI contains the conclusions of the present
work.

II. GEOMETRY ENCODING

In a point cloud representing a 3D object, each volumetric
element or voxel is associated with geometrical or appearance
attributes. Our interest lies on a very simplified model which is
being used for real-time applications. In it, voxels are occupied
or not. An unoccupied voxel is transparent and devoid of
other properties. Occupied voxels, in this simpler model, are
associated with geometry (a position in the space) and a color.
Techniques for capturing and rendering such models can be
found elsewhere [2]. We are only interested in compressing
the point cloud representation, which comprises of a list
voxels {v;}, each being described by its geometry (location
in space) and color (in RGB or YUV color spaces), i.e.,

vi = [xi, yi, i, Yi, Ui, Vi (1)

For a number of practical reasons, the geometry {[x;, y;, z;1}
is encoded using the octtree scanning of the voxels, which has
been shown to be very efficient [2], [14], [16].

A. Octtree Scanning

The octtree is the 3D extension of a 2D quad-tree. Assume,
for convenience, that the volume to be represented is a cube of
dimensions W x W x W meters. In the first level of the octtree,
the signal is partitioned into 8 smaller cubes of dimensions
W/2 x W/2 x W/2, as depicted in Fig. 2. In a second level,
each of the cubes is further partitioned in exactly the same way,
each generating 8 cubes of dimensions W/4 x W/4 x W /4.
If all cubes are split we would obtain 64 cubes of reduced
dimensions. The process can be repeated for L levels yielding
23L voxels of dimensions 27 LW x 27 LW x 2=Lw,

As for encoding the geometry, one could signal with
a binary symbol if the voxel is occupied or not. However,
since we are dealing with signals wherein less than 1% of
total voxels are occupied, we use the octtree scanning to take
advantage of the large unoccupied areas. In the first level,
the entire space is segmented into 8 cubes. For each one
we check if they are occupied or not, i.e., if any of the
{xi, yi, zi} in the list of voxels belong to the cube. If so,
we mark this cube with a binary symbol 1, else we mark
it with a 0. That will take 8 bits. We, then, process the next
level and only the cubes which are marked 1 are subject to
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Fig. 2. In a particular level, a unit cube is divided into 8 sub-cubes, by split-
ting each dimension into two halves. Each sub-cube is further subdivided in
the same manner. After L levels, starting with a cube of sides W we reach
individual voxels whose dimensions are 2~ L W.
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Fig. 3. Spanning the space, traversing the octtree. Unoccupied sub-cubes are
made leaves of the tree and the occupied ones are further subdivided.

further splitting, as illustrated in Fig. 3. A node marked O is
a leaf in the octtree. The process is continued for L levels,
only partitioning cubes which are occupied, resulting in large
unoccupied areas represented by the tree leaves, and occupied
voxels of dimensions 27 W x 27 LW x 27LWw.

B. Encoding Rate

With just one level, there are only 8 sub-blocks, which
are represented with 8 bits. If ny bits of the root are 1’s,
a second level decomposition in the octtree representation
would demand another 8n; bits. If in this second level there
are no bits 1, then the next level would demand 8n, bits and so
forth. Hence, the number of bits used to represent the octtree
is:

L—1
B=8>n, 2)
k=0
where we assume ng = 1.

For an L-level decomposition, we have a representation for
a space of 23 voxels, of which only N, voxels are occupied.
We are interested in the bit-rate R, = B /N,, in bits-per-voxel,
necessary to encode the geometry, i.e., to indicate where the
occupied voxels are.

We are mostly interested in representing the surface of solid
3D objects. If we consider small sub-blocks, the intersection
of the object surface with the block would be approximately
planar (flat). We can, for example, estimate R, if we assume
the voxels lie in a flat surface crossing the entire voxel space.
If one slices a unit cube into two pieces through a planar cut,
the area of the cross section would lie somewhere between
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0 and /2, with a cross section of area 1 being the most
frequent. If the number of levels is L, the space is subdivided
into 23X voxels. Assume also that the voxel space and the
voxels are cubic, for simplicity. A slice of the voxel space
parallel to the external faces should encompass 2%% voxels and
we assume our surface to have a number of voxels proportional
to this number, i.e., N, = f2%L.

In the first level of the octtree we use 8 bits. If a fraction a
of the child nodes (sub-blocks) is occupied, 8a blocks are to
be further subdivided. Still using the planar object assumption,
in average a can be assumed constant throughout all blocks
and levels. Hence, the number of bits used would be 8 + 8a
8 + 8a(8 + 8a...))) for L levels, which amounts to
8 + 8(8a) + 8(8a)? + 8(8a)> + . . .. Hence, our estimate is

B g LI
— ~ k

Ry = 3=~ i > ). 3)

k=0

As L increases,

23+L0!L
R — 4
¢ BBa—1) @

and if we assume typical values of # = 1 and o = 1/2, we get

8
R, ~ gbpv. 5)

This estimate for the geometry bit-rate has been shown to
be very accurate in practice, so that the rule-of-thumb for
geometry encoding is to expect to spend around 2.5 bits per
occupied voxel using octtree scanning, which is confirmed by
the experiments of the authors of [2] and the results in [15].

III. REGION-ADAPTIVE HIERARCHICAL TRANSFORM

We derive a transform inspired by the idea of using the
colors associated with a node in a lower level of the octtree
to predict the colors of the nodes in the next level. We follow
the octtree scan backwards, from voxels to the entire space,
at each step recombining voxels into larger ones until reaching
the root. At each decomposition, instead of grouping
eight voxels at a time, we do it in three steps along each
dimension, (e.g., along x, then y then z), so that we take
3L levels to traverse the tree backwards.

Let g x,y,, be the (scaled) average voxel color at level /,
for x, y, z integers. g x,y,; is obtained by grouping (i.e. taking
a linear combination of) g;41,2x,y,; and g/41,2x+1,y,z, Where
the grouping along the first dimension is an example. We only
process occupied voxels. If one of the voxels in the pair
is unoccupied, the other one is promoted to the next level,
unprocessed, i.€., gi—1,x,y,; = &,2x,y,z if the latter is the
occupied voxel of the pair. The grouping process is repeated
until getting to the root. Note that the grouping process
generates voxels at lower levels that are the result of grouping
different numbers of voxels along the way. The number of
voxels grouped to generate voxel g; x,y,; is the weight w; x y ,
of that voxel.

So far, the notion of grouping neighboring voxels has
been vaguely stated and we have not explained the transform
coefficients to be encoded. For that, at every grouping of
two voxels, say g12x,y,; and g/ 2x+1,y,7, With their respective
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weights, wy 2y y,; and w;2x41,y,;, We apply the following

transform:
8i-1,x,y, 81,2x,y,
h Pl = Tw] wy - ) (6)
I-1,x,y,z 81.2x+1,y,z

where w1 = wy2x,y,; and wy = w;2x+1,y,; and

! [ Vor o } A
Jwi Fwy | —Jw2  Jwi
is the actual transform. Note that the transform matrix changes
at all times, adapting to the weights, i.e., adapting to the
number of leaf voxels that each g,y , actually represents. The
quantities g; x,y,. are used to group and compose further voxels
at a lower level. hy x y . are the actual high-pass coefficients
generated by the transform to be encoded and transmitted.
Furthermore, weights accumulate for the level above. In the
above example,

Twlwz =

Wi-1,x,y,z = W] 2x,y,z + WI,2x+1,y,z- 8)

In the last stage, the tree root, the remaining two voxels
£1,0,0,0 and g1,0,0,1 are transformed into the final two coeffi-

cients as:
§pC | _ £1,0,0,0 9)
[ho,o,o,o } 10001001 2y 00,1 |7

where gpc = £0,0,0,0. Note that since T, ), is orthonormal at
every level, the entire transform, as a composition of orthonor-
mal transforms, is orthonormal. This is an extremely important
property for compression, as the norm of the quantization
error in the transform domain remains the same in the signal
domain.

Formally, the transform can be described recursively as
follows. Let s1 = (s11,...,S1w;) and s2 = (821, ..., $2u,)
be signal vectors defined over non-intersecting domains
(i.e., regions) R; and Ry, respectively, where w; = |Rq|

and w, = |Ry|, and let their transforms be #; =
(t11, ..., ttwy) and = (f21,...,1y,), respectively. Let
§ = (S115---»81w»> 521, ---,S52u,) be the concatenated signal

vector defined over R = R UR;. Then the (w; 4 w,)-point
transform of s is

t = (ati1 + btay, ti2, . . S Duy),

(10)
where a = w1 /(w; + wy) and b = Jw> /(w1 + w3). That

is, the matrix (7) is applied to the first (“DC”) components
of 1 and £, (namely #1; and f21) to obtain the first (“DC”)
and (w; + 1)th components of ¢, while the other components
remain unchanged. As the base case, the transform of a scalar
is the scalar itself. Note that the transform can be performed
“in place.” Also note that the domain of definition is a discrete
abstract set and can be embedded in any dimension.

We use a 2D example to further illustrate the process.
Figure 4(a) depicts a 2D map of voxels (or pixels) labeled {a;}
that one wants to group and transform. The unoccupied voxels
are left empty. In the first level, we group horizontal pairs,
from which we can see that the pair (a¢, a7) is transformed
using Tp; yielding another voxel by and a high-pass coeffi-
cient co. Hence, one can say that the voxel map in Fig. 4(a)

< Huwy, —bt11 +atan, 22, ..
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Fig. 4. Example in 2D to illustrate the grouping to form the hierarchical

transform: (a) voxel map to be transformed into (b) low-pass and (c) high-
pass maps by grouping horizontal neighbors. The low-pass map in (b) is
further subdivided into (d) low-pass and (e) high-pass by grouping this time
the neighbors in the vertical direction. The process is repeated from (d) into
(f) and (g) and from (f) into the two final coefficients in (h). The transforms
are indicated in (i). The voxel weights are indicated along with the labels.

generated a low-pass map in Fig. 4(b) and a high-pass map
in Fig. 4(c). In those, the number in parentheses is the weight
of a given voxel. The map in Fig. 4(b) is further grouped
along the vertical direction yielding the new low- and high-
pass maps in Fig. 4(d) and (e), respectively, which contain
the low-pass voxels {d;} and the high-pass coefficients {e;}.
The map in Fig. 4(d) is further subdivided into the low- and
high-pass maps in Fig. 4(f) and (g), respectively. In the final
step the two elements in Fig. 4(f) are transformed into two
coefficients in Fig. 4(h). ho corresponds to gpc and ip is
a high-pass coefficient. Note that the coefficients to be encoded
and transmitted in this example are co, eo, €1, €2, g0, &1, i0
and ho, which are the same, in number, as voxels in Fig. 4(a).
The transform matrices at each stage are in Fig. 4(i).
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It can be seen that the process reduces to the Haar transform
when the weights are uniform, which is the case when the
region is regular, e.g. fully occupied. Thus we view the
process as a region-adaptive Haar (or hierarchical) trans-
form (RAHT). We define a sub-band as the collection of
all high-pass coefficients that are associated with the same
weights, i.e., iy, x| y,,z; 18 in the same sub-band as Ay, x, y,,z,
if and only if wy, x;,y;,z2; = Wi, xs,y5,20- The DC coefficient is
treated as forming its own sub-band.

There are N, occupied voxels. After transformation, there
are S sub-bands, each sub-band with N; transformed coef-
ficients. Since the transform is non-expansive, the number
of transformed coefficients and occupied voxels is the same,
ie., Z,Sn_:%) Nyn = N,. If H() is our hierarchical transform,
which depends on the geometry of all N, voxels {vx}, then

{fr(m,n)} = H({Y:})
{fu(m,n)} = H({Ui})
{fv(m,n)} = H{Vi}) Y

for 0 <m < S being the sub-band index and 0 < n < N,
being the coefficient index within the mth sub-band.

It is apparent that only modest computation is needed for
the RAHT. As a result, it has been successfully programmed
to process a frame under 33 ms (30 fps real-time system
requirement) using common graphic processors.

IV. COEFFICIENT ENCODING

We quantize the transform coefficients using a uniform
scalar quantizer, and then entropy code each quantized coef-
ficient using an arithmetic coder (AC) [21]. The AC is driven
by a Laplacian distribution whose parameter, unique to each
sub-band, is encoded and transmitted from the encoder to the
decoder.

A. Arithmetic Encoding of a Laplacian
Distributed Coefficient

We assume that each transform coefficient X within a given
sub-band has a Laplacian density with parameter b,

Ix|
JE— b
2w

px) = 12)

i.e., variance 62 = 2 b2, and that it is uniformly scalar

quantized with stepsize Q,
k = round(X/ Q). (13)

The probability that X lies in the kth quantization bin is
thus

2 P(-1/20<X <k+1/20) (14

*k+)0 1 |y

:/ —e b dx (15)
k- 2b
1 _ e 0 0
—e b (e —e ) k#£0

_ ]3¢ Q& eF) ks (16)
1—e 2 k=0,



DE QUEIROZ AND CHOU: COMPRESSION OF 3D POINT CLOUDS USING A REGION-ADAPTIVE HIERARCHICAL TRANSFORM

so that the fractional rate (in natural information units, nats)
used by the AC to encode the quantized coefficient if it falls
into the kth quantization bin is precisely [21]

|kl O ( 0 )
MY £3) k0

! (219) # an
—ln(l—(fE) k = 0.

—Inpr = b
When Q « 2b, this is well-approximated for all k£ by

()
b 2b

This is just a probability model for the AC and any
parameter b can be used, as long as both the encoder and
decoder agree on it. In order to find the best parameter choice,
summing (18) over all symbols &, in a sub-band, taking the
derivative with respect to b, and equating to zero,

N N
d lknlQ 1
ap 2 ke b) = Z(_ b2 +E)=O’

n=1 n=1

r(k,b) =

r(k, b) ~r(k,b) = (18)

19)

we find that the value of b that minimizes the number of bits
needed to encode all N symbols in the sub-band is

1 N
=—>"|kil0.
Nn:l

(20)

B. Conveying the Sub-Band Parameter to the Decoder

At this point let us include the sub-band index in our no-
tation, e.g., b for the optimal parameter of the mth sub-band.

We exphcltly convey the optimal parameters {b},} to the
decoder so that they can be used in the arithmetic coder.
To convey the parameters, we need to quantize and encode
them. Since quantization will introduce some errors in the
parameters, the total number of bits used for the coeffi-
cients will slightly increase. To determine the optimal step-
size for the parameters, we need to trade off this increase
with the number of bits needed to encode the parameters
themselves.

To be precise, suppose we quantize the parameters in the
log domain, ¢}, = Inb},, using a uniform scalar quantizer,
and then entropy code the resulting sequence of symbols. For
a quantized value ¢ = ¢;, +¢, the total number of nats needed
to code the coefficients in sub-band m rises from its minimum

S Fllmns b}) to
Nm Nﬂ1
= Z;(kmna e¢) ~ Zf(kmn,
n=1 n=1
which is the second-order Taylor expansion of f(¢)
around ¢;,. Note that N,,, which is the number of coefficients
in sub-band m, is the second derivative of f(¢) at ¢ = ¢

1) >+ e, (21)

Pf L (k0 (0
a2 ) = 4 Z( (M)) @y
b=,
ka0 kel
_n; o _; o = Np. (23)
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Thus, Ny,€%/2 is the increase in the number of nats needed
by the arithmetic coder to code the coefficients in sub-band
m if the quantized log parameter ¢ + € is used instead
of the optimal log parameter ¢ . Importantly, this increase
is independent of the parameter, which allows the optimal
stepsize of the quantizer to be independent of the parameter
itself. To be specific, if Jy, is the stepsize of the quantizer,
then according to high-rate quantizer theory [22] the expected
squared error of the quantizer is approximately 5,2n /12, while
its expected rate is approximately & — In d,,, where & is the
differential entropy of the random variable to be quantized.
Thus by adding 2 — Ind,, to the expected value of (21),
we obtain the expected total number of nats for sub-band m,

Al N 02
h —1In oy, +Z;r(km,,,bm)+ RLL (24)
n

which is minimized (taking the derivative with respect to J,,
and equating to zero) by

C
N Np

for some constant C, which we find empirically. This equation
tells us to use a quantizer stepsize that is inversely proportional
to the square root of the number of coefficients in the sub-band.
In our experiments, rather than quantize ¢, we quantize b},
directly, which we find as effective in practice. We use a run-
length Golomb-Rice (RLGR) coder [23] as the entropy code
for the sequence of quantized parameters.

Om = (25)

C. Encoding Coefficients

As seen in Sec. II, the geometry (the location of each
occupied voxel) is separately encoded and conveyed to the
decoder using octtrees. The construction of the hierarchical
decomposition depends solely on the geometry, even though
the transform is eventually applied to the color of the voxels.
Hence, both encoder and decoder can exactly know how
many sub-bands there are (S) and how many coefficients
are there in each sub-band ({N,,}). The sub-band parameters
{b}} are dependent on the color data and need to be con-
veyed to the decoder. The transformed coefficients fy (m, n),
fu(m,n), fy(m,n) are then uniformly scalar quantized and
sent to the decoder using arithmetic coding. The compression
steps are:

« Encode and send the geometry using octtree scanning.

« Encode each color component using the region-adaptive
hierarchical transform, uniform quantization, and entropy
coding.

To encode each color component, using luminance as an

example, we take the following steps:

1) Transform the signal using the transform H as in (11):

{fr(m,n)} = H{Y;}).

2) Quantize the transformed coefficients fy(m,n) using
a uniform quantizer with stepsize Q as in (13):
kmn = round(fy (m,n)/ Q).

3) Compute the optimal sub-band parameters b}
using (20): b}, = (1/Nw) 2, lkmn!| Q.
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4) Quantize the sub-band parameters as y, = round
(b},v/Nm/C). The first (highest pass) sub-band has
a large number of coefficients and a small parameter.
The last two (lowest pass) sub-bands have only one
coefficient each, which are very large. As exceptions,
the optimal parameter of the first sub-band is encoded
with a 24-bit floating point representation and the coeffi-
cients of the last two sub-bands are rounded and encoded
using a fixed 16-bit integer representation. The overhead
is insignificant in a cloud with hundreds of thousands of
occupied voxels.
5) Encode and send the set of integers {y,,} using RLGR
encoding.
6) Reconstruct the parameters
bu = ymC/ \/m .
7) Encode and send the set of integers k,, using an AC
with a probability model based on a Laplace distribution
with parameter b
The decoder operates in the reverse manner. It first decodes
the geometry, which is the same for all color components.
Then it decodes all l;m for all sub-bands for the luminance,
followed by all k,,, from which it can reconstruct an approx-
imation of the coefficients as fy(m,n) = kp, Q. Finally it
performs an inverse transform to reconstruct all {1},- }. Note that
Y; # Y; since fy(m,n) # fy(m,n). The process is repeated
for the two chrominance components.

of the sub-bands as

V. SIMULATION RESULTS

We have carried out many tests using frames extracted from
sequences of dynamic point cloud data sets. Frames in the
data set were captured under different conditions. Four of our
frames were captured using a real-time high resolution sparse
voxelization algorithm [2]. The cameras are pointed at the
front of the subject covering roughly a cubic meter of space.
The captured videos are processed on a high-end graphics card
using a sparse voxelization algorithm in real time. The sparse
voxelization algorithm outputs an octtree and we set L = 9,
which yields a 5123 voxel space. We used frames “Andrew”,
“Ricardo”, “Phil” and “Sarah”, for which N, are 286934,
207077, 325077, and 301336, respectively. We also included
frame “Man”, with 223617 occupied voxels, in the test set.
The latter was captured using a non-real-time system [25]
and converted to a mesh representation, which was voxelized
for the present paper. Our test set is rendered in Fig 5, from
random viewpoints. We also included point clouds from other
databases, not necessarily suitable for real-time telepresence,
but helpful to measure the performance of the proposed coder.
One of them is the “Skier” from the ITI database' which has
229492 voxels. The other is a collection of objects from the
3DCOMET dataset [24] tagged as “r_sh_th_04" and referred
to here as “Objects”, which has 111920 voxels. Both “Skier”
and “Objects” were available as meshes and were voxelized
to L =09.

In our experiments, we used C = 20 and varied Q from
10 to 40. We measured rate in bits per occupied voxel (or bpv)
and distortion in peak signal-to-noise ratio (PSNR in dB),

1http://vcl.iti.gr/reconstruction/
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Fig. 5. Random renderings of our test set. From top to bottom: “Man”,
“Andrew”, “Phil”, “Ricardo” and “Sarah.”

comparing the luminance component of the original and
reconstructed frames. The geometry is encoded without loss.

We tested our proposed coder based on RAHT against the
alternatives. To our knowledge, the state-of-the-art coder is
the one based on a graph transform (GT) [17], in which
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Fig. 6. RD curves for frames “Man”, “Andrew”, “Phil”.

the frame is divided into cubes, for example into cubes of
8 x 8 x 8 voxels. The occupied voxels in each cube are
associated with their immediate neighbors in a graph and
weights are attributed to the graph edges based on the distance
in between voxels. The transform is found as the eigenvectors
of the Laplacian matrix of the graph and the associated
eigenvalues are used as estimates of the standard deviations
used for the AC. Both the GT and RAHT coders use AC
and the Laplace distribution. The GT-based coder derives the
standard deviations while our RAHT-based coder explicitly
transmits them.

A special case of the GT is when one connects the voxels
into a line graph in which case the GT becomes exactly the
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Intra-coding of color - Ricardo

45 T T
m 40t -
°
>
o
Z ———DCT
Past l
o —O6— RAHT

—>— GT
RAHT-rigr

30 . . . . . .

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Rate (bpv) (Y+U+V)

45 Intra-coding of color - Sarah
@ 40t 1
o
>
o
z —+—DCT
P35t |
o —O— RAHT

—>— GT
RAHT-rigr
30 . . .
0 0.5 1 15 2
Rate (bpv) (Y+U+V)
45 Intra-coding of color - Skier
40 + .

PSNR-Y (dB)
&

—+—DCT
30k —O— RAHT i
—X—GT
RAHT-rigr
25 1 1 1 1
0 1 2 3 4 5
Rate (bpv) (Y+U+V)
Fig. 7. RD curves for frames “Ricardo”, “Sarah” and “Skier”.

discrete cosine transform (DCT) of the color values, sorted in
some order within the cube.

A lower complexity variation of the RAHT-based coder
that also might be of interest is to replace the AC in the
RAHT with RLGR for each {fy,y,v(m, n)}. We refer to it as
RAHT-RLGR.

Rate-distortion results are shown in Figs. 6, 7, and 8
for our data sets and four coders (RAHT, GT, DCT,
and RAHT-RLGR). From the results, we can infer that the
performance of the RAHT-based coder is comparable to
the GT-based coder, slightly outperforming it in many tests.
However, the GT is much more complex than the RAHT
since it demands computing eigenvalues and eigenvectors of
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large matrices. A single 8 x 8 x 8 voxel cube may demand
processing matrices of dimensions up to 512 x 512, and there
are thousands of occupied cubes. That contrasts with the
RAHT, whose complexity is nearly constant and proportional
to N,. Another advantage of the RAHT is that it can explore
deeper levels of the octtree to remove data redundancies,
in contrast to a relatively small size of the cubes in GT. The
DCT approach has also a low complexity but its performance
is inferior to the RAHT-based coder. Finally, the coder based
on RAHT and RLGR is also a low-complexity option, even
though it has shown a performance inferior to the coder based
on RAHT and AC.

For completeness we also compare our RAHT-based coder
to the Progressive Point Cloud Coder (PPCC) of Huang
et al. [16]. They used a prediction pyramid and Lloyd-Max
scalar quantization for color compression, whereas we use
a critically sampled orthogonal transform and uniform scalar
quantization. They reported color coding results for three data
sets: “Octopus” (466K points), “Santa” (76K points), and
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Fig. 9. Subjective comparison of RAHT performance. A zoom of a view of
frame “Andrew” for 3 cases: (left) original; (center) after color compression
to 2.5 bpv; (right) after color compression to 0.8 bpv.

“FemaleWB” (148K points). The data is no longer publicly
available and we obtained the data sets directly from the PPCC
authors. However, for the “FemaleWB” data set we received,
the size was 122K, rather than the reported 148K, indicating
a probable reprocessing. We voxelized the point clouds “Octo-
pus” and “Santa” to L = 17 and L = 12 in order to ensure that
no two points would coincide in a voxel. Thus, bits per (occu-
pied) voxel (bpv) is equivalent to bits per point (bpp) in this
case. Furthermore, in order to make our results compatible
with those in [16] we computed the PSNR in RGB space.
Results are shown in Fig. 8(b), where it can be seen that the
RAHT-based coder significantly outperforms PPCC.

There is also the color coder in the Point Cloud Library [26]
used in the 3DCOMET test set [24], which simply represents
the colors with fewer bits. Such a method can have its
PSNR theoretically derived using the A%/12 rule for comput-
ing the mean-squared error [22], so that for retaining k bits,
the PSNR (in dB) is 10.75 + 6.02k. Its RD curve would be
so inferior to that of the RAHT-based coder that we did not
include it in any of our plots.

Figure 9 shows an enlarged portion of the projection of
frame “Andrew” for subjective evaluation. Three cases are
presented: (a) without color compression; (b) color compres-
sion at 2.50 bpv and PSNR of 39.8 dB; (c) color compression
at 0.85 bpv and PSNR of 31.7 dB.

VI. CONCLUSIONS

We have presented a new algorithm for the compression
of the colors of 3D point clouds of still frames. We have
developed a region-adaptive hierarchical transform, RAHT,
that works its way up the octtree using an adaptive 2-point
orthogonal transform to ensure the whole transform is non-
expansive and orthogonal. The transform, although adaptive,
can be easily computed in graphics cards or CPUs at a rate
of 30 fps. The coefficients may be encoded using arithmetic
coding driven by Laplacian distribution models, whose para-
meters are specific for each sub-band. The parameters are
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encoded with a custom coder and are transmitted in parallel
to the decoder. The decoder decodes the parameters, and then
configures its arithmetic decoders to decode the RAHT coef-
ficients. The inverse RAHT computation is as complex as the
forward one, making both excellent candidates for real time
transmission of 3D point cloud data.

We conclude that the proposed RAHT-based color coder
can be made to operate at a performance comparable to
the GT-based one for a fraction of its computation cost.
We also conclude, within our coder, the use of Golomb-
Rice codes, although more GPU-friendly than AC, still needs
improvement.

Future work may concentrate on different fronts. We need
to better adapt RLGR to the RAHT coefficients. We also plan
to use different transform sizes and to change them adaptively,
i.e., to transform more than a pair of voxels at a time. Finally,
we plan to use our approach to encode motion vectors and
color prediction residuals for dynamic 3D data.
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