
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 7, JULY 2017 3507

Transform Coding for Point Clouds Using
a Gaussian Process Model

Ricardo L. de Queiroz, Fellow, IEEE, and Philip A. Chou, Fellow, IEEE

Abstract— We propose using stationary Gaussian
processes (GPs) to model the statistics of the signal on
points in a point cloud, which can be considered samples
of a GP at the positions of the points. Furthermore, we
propose using Gaussian process transforms (GPTs), which are
Karhunen–Loève transforms of the GP, as the basis of transform
coding of the signal. Focusing on colored 3D point clouds, we
propose a transform coder that breaks the point cloud into
blocks, transforms the blocks using GPTs, and entropy codes the
quantized coefficients. The GPT for each block is derived from
both the covariance function of the GP and the locations of the
points in the block, which are separately encoded. The covariance
function of the GP is parameterized, and its parameters are
sent as side information. The quantized coefficients are sorted
by the eigenvalues of the GPTs, binned, and encoded using
an arithmetic coder with bin-dependent Laplacian models,
whose parameters are also sent as side information. Results
indicate that transform coding of 3D point cloud colors using
the proposed GPT and entropy coding achieves superior
compression performance on most of our data sets.

Index Terms— Gaussian processes, graph signal processing,
graph Fourier transform, Karhunen-Loeve transform, point
cloud, data compression.

I. INTRODUCTION

COLORED 3D point clouds have recently emerged as an
effective means to represent information in computer-

graphics-based telepresence systems [1]. In order to represent a
person or object in 3D to a remote receiver, instead of sending
multiple camera views of the scene (multiview approach),
we represent the scene as a collection of colored 3D points
arranged in a raster of volumetric elements (voxels) [1], [2].
In general, we are not concerned with transmitting all the
voxels in the raster, but only the voxels at the boundaries
of the objects, which may be visible from a distant point of
view [2]. Dynamic point clouds can be used to convey moving
3D people or objects to the receiver with the aid of special
devices such as near eye displays. Figure 1 shows various
viewpoints of one frame of a voxelized point cloud sequence.

Manuscript received April 22, 2016; revised September 16, 2016 and
February 15, 2017; accepted April 24, 2017. Date of publication
April 28, 2017; date of current version May 19, 2017. The associate editor
coordinating the review of this manuscript and approving it for publication
was Dr. Feng Wu. (Corresponding author: Ricardo L. de Queiroz.)

R. L. de Queiroz is with the Computer Science Department, Universidade
de Brasilia, Brasilia 70910-900, Brazil (e-mail: queiroz@ieee.org).

P. A. Chou was with the Microsoft Research, Redmond, WA 98052
USA. He is now with 8i Labs., Bellevue, WA 98004 USA (e-mail:
pachou@ieee.org).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2017.2699922

Fig. 1. Various viewpoints of one frame of a voxelized point cloud sequence.

Many works have described methods for the compression of
3D objects in a mesh representation [3]–[14]. Compression of
point clouds has also been addressed in a few works [15]–[17].
A method based on the Graph Fourier Transform (GFT) [18]
seems to have been the state-of-the-art in compression of 3D
point cloud colors, until a method known as RAHT (region
adaptive hierarchical ransform) was developed recently [19].
While the GFT requires complex matrix decompositions,
RAHT is a much lower-complexity transform, making it suit-
able for real-time implementation, while being able to match
the GFT with an improved entropy coder. The GFT-based work
was also extended to explore temporal redundancy [20].

In this paper, we propose a method for compressing the
colors of a 3D point cloud, assuming that the geometry of
the point cloud has already been compressed and transmitted.
Our approach is to model the statistics of the point colors
by assuming that they are samples of a stationary Gaussian
Process (GP) defined over an infinite 3D space. The samples
are taken at the corresponding point positions. The covariance
function of the GP is used to derive the covariance matrix of
the colors, which in turn is used to derive the Karhunen-Loève
transform (KLT) of the color signal. We call this KLT the
Gaussian Process Transform (GPT) to distinguish it from other
KLTs, such as the GFT, which assumes a different covariance
structure than that given by a GP of the color signal. The GPT
is in turn used in a transform coding system to code the colors
of the point cloud.

Though we apply this technique to the compression of
3D point cloud colors, the same approach can be used for
compression of other attributes or signals on the 3D points, as
well as on points in higher dimensional spaces.

Section II discusses how we model the color statistics with
Gaussian processes. Section III introduces the GPT. Section IV
describes how we use the GPT for transform coding, and
Section V goes into the details of our entropy coder. Finally,
Section VI provides experimental results, and Section VII our
conclusions.

1057-7149 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3508 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 7, JULY 2017

II. MODELING VOXEL COLORS AS GAUSSIAN PROCESSES

A point cloud is a collection of points {νi } each representing
one or more real-valued attributes at a particular position in
space. Attributes typically include color vectors, but may also
include normal vectors, motion vectors, etc. For concreteness
and without loss of generality, we assume that the attributes
are colors. Thus a point in the cloud may be represented by a
tuple

νi = (xi , yi , zi , Yi , Ui , Vi), (1)

such that x , y, and z describe the point position (geometry)
while Y , U , and V describe the color components of the point.
Though it is not required for our method, for simplicity in
modeling, we constrain the points to lie on a regular grid.
In particular, we divide a bounding cube for the points into
L × L × L voxels, so that we may take xi , yi , and zi to be
integers such that 0 ≤ xi , yi , zi < L. A voxel is said to be
occupied if it contains a point of the point cloud, and points of
the point cloud are identified with occupied voxels. We refer to
the set of occupied voxels as a voxelized point cloud (VPC).
Whenever it is clear from the context we refer to occupied
voxels simply as voxels.

Let v1 . . . , vM be the points of a voxelized point cloud
with integer components, and let Y (v1), . . . , Y (vM) be the
color signal (luminance, for example, or other signal) defined
at those points. We model Y (v1), . . . , Y (vM) as being sam-
ples of a discrete-space stationary Gaussian Process {Y (v)}
defined everywhere on an infinite 3D integer lattice with mean
μ = E[Y (v)] and covariance function

R(d) = E[(Y (v) − μ)(Y (v − d) − μ)]. (2)

That is, E[(Y (vi) − μ)(Y (v j) − μ)] = R(vi − v j). The
mean μ and covariance function R(d) completely characterize
{Y (v)}. As an alternative to the covariance function R(d),
the precision function Q(d) may be used to characterize
the process. As described later in this section, the precision
function is the inverse Fourier transform of the reciprocal of
the Fourier transform of the covariance function. The precision
function is especially useful for characterizing a stationary
Gaussian Process if it is a stationary Gauss Markov random
field (GMRF), in which case the precision function has only
a finite number of non-zero elements.

In this paper, we model the GP {Y (v)} in four different
ways. In the first two ways, we model its covariance function
R(d) either (i) non-parametrically (NP) or (ii) parametrically
as the covariance function of an isotropic Ornstein-
Uhlenbeck (OU) random process, which has a single para-
meter. In the second two ways, we model the precision
function Q(d) either (iii) using coefficients that fall off
inversely with distance (ID) up to a threshold, as commonly
used in graph signal processing, or (iv) using the coefficients of
an auto-regressive (AR) process. In the following subsections,
we introduce these models and explain how we estimate their
parameters from data if necessary.

A. Non-Parametric (NP) Model

Our first model of the process {Y (v)} is non-parametric (NP)
in the sense that our estimate of R(d) is not constrained to be

a member of any family of covariance functions parametrized
by a finite number of parameters. However, we do constrain
R(d) to have reflective symmetry across the planes x = 0,
y = 0, and z = 0; that is, R(±x,±y,±z) are all equal.
We enforce this by assuming that R(d) depends only on |d|,
which is similar to rotational symmetry except that d lies on
a grid, so R(d) cannot be strictly rotationally symmetric.

To estimate R(d) = R(d), where d = |d|, we let �d be
the set of all pairs of voxels (v, m) in a data set such that
|v − m| = d , and let Nd = ||�d || be the number of such
pairs. Note that if (v, m) ∈ �d , then (m, v) is also in the
same set. Let the estimate of its mean be

μd = 1

Nd

∑

v:(v,m)∈�d

Y (v), (3)

such that an unbiased estimate of R(d) is

ϕd(d) = 1

Nd − 1

∑

(v,m)∈�d

(Y (v) − μd) (Y (m) − μd) . (4)

Likewise

ϕd(0) = 1

Nd − 1

∑

(v,m)∈�d

(Y (v) − μd)2 (5)

is an unbiased estimate of the variance and

ϕ(d) = ϕd(d)

ϕd(0)
(6)

can be considered an estimate of the normalized correla-
tion coefficient R(d)/R(0), whose magnitude is at most 1
(ϕ(0) = 1 is the variance of the normalized unit-variance
correlation) by the Cauchy-Schwartz inequality. Our non-
parametric covariance function model for R(d) is

RNP(d) = RNP(d) = ϕ(d)σ 2
Y , (7)

which can be simplified to RNP(d) = ϕ(d) if the absolute
variance is unimportant.

B. Ornstein-Uhlenbeck (OU) Model

Our second model of {Y (v)} is an Ornstein-Uhlenbeck (OU)
process, which is a stationary zero-mean Gaussian Process in
which the covariance matrix is isotropic, or radially symmetric,
and aside from its magnitude has a single parameter ρ, which
models the decay of the covariance,

ROU (d) = σ 2
Y ρ|d|. (8)

Since there is only a single parameter, it is relatively easy
using numerical means to choose the parameter to maximize
the likelihood

p(y) = 1

(2π)�/2|R|1/2 exp

(
−1

2
yT R−1y

)
, (9)

where y = [yi] with yi = Y (vi) and R = [ri j] with
ri j = σ 2

Y ρ|vi−v j |.

DE QUEIROZ AND CHOU: TRANSFORM CODING FOR POINT CLOUDS USING A GAUSSIAN PROCESS MODEL 3509

Fig. 2. Local neighborhoods in Z
3 for dmax = 1,

√
2,

√
3. Blue are d = 1

edges; green are d = √
2 edges; red are d = √

3 edges. Respective local
neighborhoods sizes are 6, 18, 26.

C. Inverse Distance (ID) Model

Our third model of {Y (v)} is a stationary zero-mean GMRF
defined on an infinite 3D lattice, Z

3 = {v}. Such a GMRF
is defined most naturally not in terms of its covariance func-
tion R(d) but rather in terms of its precision function Q(d),
which is related to R(d) through the inverse Fourier transform
of the power spectral density,

S(ω) = 1

(2π)3

∑

d∈Z3

R(d)e−id·ω, (10)

Q(d) =
∫

[−π,π]3

1

S(ω)
eid·ωdω, (11)

provided S(ω) > 0 for all ω ∈ [−π, π]3. Note that R(d)
is real and symmetric, and hence so is S(ω), 1/S(ω), and
Q(d). Also note that R(d) and Q(d) are inverses in the sense
that their correlation is the unit impulse δ(d). This can be
verified by taking the Fourier transform of each (namely, S(ω)
and 1/S(ω)) and multiplying them in the frequency domain
to obtain a constant.

It is convenient to use Q(d) instead of R(d) to characterize
a stationary Gaussian Process if Q(d) is non-zero for only
a finite number of values of d, because the process would
then be finitely parametrized. In this case, the process is a
stationary GMRF defined on an infinite lattice, also known as
a conditional autoregression [25, Sec. 2.6.5].

We model {Y (v)} as a conditional autoregression specified
by an Inverse Distance (ID) weight function,

W (d) =
{

1/|d|, whenever 0 < |d| ≤ dmax,

0, otherwise,
(12)

for some distance cutoff dmax. The precision function can be
defined in terms of the weight function as

Q(d) =
{

−W (d) for d �= 0∑
d′ W (d′) for d = 0.

(13)

Thus Q(d) is non-zero only for |d| ≤ dmax. When applied
to nodes on the integer lattice Z

3, typical cutoffs satisfy
dmax = 1,

√
2,

√
3, leading to the local neighborhoods illus-

trated in Fig. 2.

D. Auto-Regressive (AR) Model

Our last model of {Y (v)} is also a conditional autoregres-
sion. In particular, it is a stationary zero-mean GP {Y (v)}

satisfying the auto-regressive equation

Y (v) = X (v) −
∑

d∈N
adY (v − d), (14)

where X (v) is an iid N(0, σ 2
x) Gaussian white noise, ad is

a coefficient for offset d, and N is a set of offsets in a
neighborhood around 0, such as {d : 0 < |d| ≤ dmax} (or some
subset of it) for some dmax. This process is parameterized by
σ 2

x and {ad : d ∈ N }.
For the moment, so that we can use finite-dimensional

algebra, assume that (14) is defined not on the infinite 3D
lattice Z

3 but on the finite 3D torus Z
3
N , and assume that

v − d in (14) is taken modulo N component-wise. Then we
may write

x = Ay, (15)

where y = [Y (vi)] and x = [X (vi)] are vectors of length
� = N3 and A is an �×� matrix whose (i, j)th entry equals 1
if i = j , equals ad if vi − d = v j (modulo N) for d ∈ N , and
equals 0 otherwise.

Since the probability density of x is

p(x) = 1

(2πσ 2
x)�/2 exp

(
− 1

2σ 2
x

xT x
)

, (16)

the probability density of y can be written

p(y) = |A|
(2πσ 2

x)�/2 exp

(
− 1

2σ 2
x

yT AT Ay
)

(17)

= 1

(2π)�/2|R|1/2 exp

(
−1

2
yT R−1y

)
, (18)

where R = σ 2
x (AT A)−1 is the covariance matrix of y.

The inverse of the covariance matrix is called the precision
matrix [21]. It can be seen that the coefficients qi j in the
precision matrix Q = R−1 = σ−2

x (AT A) of y are the
coefficients of the autocorrelation of the coefficients in A
(scaled by σ−2

x). Specifically, if we extend the definition of ad
to all values of d as

ād =

⎧
⎪⎨

⎪⎩

1 if d = 0

ad if d ∈ N
0 otherwise

then we may write A = [āvi−v j] and

qi j = σ−2
x

∑

k

āvk−vi āvk−v j = σ−2
x

∑

d′
ād′ ād′+vi−v j , (19)

where all subscripts are taken modulo N . Clearly, qi j depends
only on vi − v j .

We are now in a position to remove the toroidal assumption.
We define the precision function in terms of {ad : d ∈ N } as

Q(d) = σ−2
x

∑

d′
ād′ ād′+d, (20)

where now the subscripts are in Z
3. From this, we can see

that Q(d) can be non-zero only when |d| ≤ 2dmax. Thus
the process defined by this precision function is a conditional
autoregression.

3510 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 7, JULY 2017

It remains to specify the coefficients {ad}. In principle,
these can be chosen to fit a set of data y by maximizing
the log-likelihood log p(y) over the variables {ad}. However,
this is an “extremely non-linear” problem that is difficult to
solve [22]. A close approximation is to maximize the pseudo
log-likelihood

−1

2
yT R−1y, (21)

or equivalently, minimize the squared prediction error ||x||2
over the variables {ad}, where the prediction of Y (v) is
− ∑

d∈N adY (v − d) and, therefore, the prediction error is

X (v) = Y (v) +
∑

d∈N
adY (v − d). (22)

The mean squared prediction error can be minimized using the
principle of orthogonality in Hilbert spaces, so that the error
X (v) in the approximation of Y (v) by its projection onto a
span of basis vectors {Y (v − d)} must be orthogonal to each
of the basis vectors. That is, for all d ∈ N ,

0 = 〈X (v), Y (v − d)〉
= 〈Y (v) +

∑

d′∈N
ad′Y (v − d′), Y (v − d)〉

= 〈Y (v), Y (v − d)〉
+

∑

d′∈N
ad′ 〈Y (v − d′), Y (v − d)〉 (23)

Using 〈Y (v − d′), Y (v − d)〉 = KNP(d − d′) as defined in
the previous subsection, we solve for the variables {ad} from
the |N | normal equations,

KNP(d) = −
∑

d′∈N
ad′ KNP(d − d′) (24)

for all d ∈ N .

III. THE GAUSSIAN PROCESS TRANSFORM (GPT)

Let Y1, . . . , YM be zero mean random variables with covari-
ance ri j = E[Yi Y j] < ∞. Since the covariance matrix
R = [ri j] is symmetric and positive definite, its eigen-
decomposition can be expressed

R =
S
T , (25)

where
 is an orthogonal matrix whose columns are the right
eigenvectors of R and S = diag{σ 2

k } is a diagonal matrix of
corresponding positive eigenvalues, or principal components,
sorted as σ 2

1 ≥ · · · ≥ σ 2
M > 0.
T y is the KLT of the vector

y = (Y1, . . . , YM)T .
Different covariance matrices R result in different trans-

forms. Though they are all KLTs, they are distinguishable by
how R is obtained.

In this paper, we obtain R = [ri j] by assuming that
Yi = Y (vi), i = 1, . . . , M , are samples of a zero-mean GP. In
particular, we let

ri j = E[Y (vi)Y (v j)] = R(vi − v j), (26)

where R(d) is the covariance function of the GP, as modeled
for example in Section II. As before, we let
 denote the
matrix of eigenvectors of R.

We call
T a Gaussian Process Transform (GPT) in
recognition of the fact that the covariance matrix R =
[E[Y (vi)Y (v j)]] on which it is based is derived from the
covariance function defining a stationary GP, whose elements
Y (vi) and Y (v j) may be considered samples at respective
locations vi and v j . The transform itself depends on how the
samples are embedded in Euclidean space.

A. Relation to the Graph Fourier Transform

It is important to understand the close relation of the GPT to
the Graph Fourier Transform (GFT) [23]. The GFT is defined
as follows. Let G = (V, E) be an undirected graph, where
V = {v1, . . . , vM } is a finite set of nodes and E = {(vi , v j)} is
a set of edges between nodes in V . (A graph is undirected, also
called bi-directed, if (vi , v j) ∈ E whenever (v j , vi) ∈ E [24].)
Let (G, W) be a weighted undirected graph, where W = [wi j]
is a symmetric non-negative M × M matrix of weights such
that

wi j > 0 if (vi , v j) ∈ E and wi j = 0 otherwise. (27)

W defines the neighborhood structure of V in the graph. Let
D = [di j] be a diagonal matrix such that dii = wii + ∑

j wi j

for all i . The Graph Laplacian of the weighted graph (G, W)
is defined

L = D − W. (28)

Let L =
T �
 be the eigen-decomposition of L, where � is
the diagonal matrix of eigenvalues and
 is the matrix whose
columns are the corresponding right eigenvectors. The GFT
is the linear transform from R

M to R
M represented by the

matrix
T .
We next remark that the GFT is the KLT of a corresponding

GMRF. A GMRF is a finite collection of Gaussian random
variables whose joint distribution has a covariance structure
given by a weighted undirected graph. Specifically, a random
vector y = (Y (v1), · · · , Y (vM))T is called a GMRF with
respect to the undirected graph G = (V, E) with mean vector μ
and a symmetric positive definite precision matrix Q = [qi j]
if and only if its density has the form [25]:

p(y) = (2π)−
M
2 |Q| 1

2 exp
(

− 1

2
(y − μ)T Q(y − μ)

)
, (29)

and qi j �= 0 ⇔ (vi , v j) ∈ E for all i �= j. (30)

From the above definition, it is clear that a GMRF y is
a multivariate Gaussian distribution with mean vector μ
whose covariance matrix R is the inverse of the precision
matrix Q [21].

It is shown in [26, Sec. 2.1] that there is a one-to-one map-
ping from the set of symmetric non-negative weight matrices
W satisfying (27) to the set of symmetric positive semi-definite
precision matrices Q satisfying (30), through the mapping

qi j = −wi j , for all i �= j, (31)

qii =
n∑

j=1

wi j , for all i, (32)

DE QUEIROZ AND CHOU: TRANSFORM CODING FOR POINT CLOUDS USING A GAUSSIAN PROCESS MODEL 3511

and its inverse

wi j = −qi j , for all i �= j, (33)

wii =
n∑

j=1

qi j , for all i. (34)

It can be shown that Q is positive semi-definite if W is non-
negative, and furthermore that Q is positive definite if W has at
least one self-loop (i.e., wii > 0 for some i) in every connected
component [26], [27]. In this paper, for simplicity we deal with
only the case where Q is positive definite. The case where Q is
singular requires more care but results in qualitatively similar
conclusions. For details see [26].

It can be seen that every weighted graph (G, W) corresponds
uniquely to a GMRF with zero mean and precision matrix Q
given by (31)-(32). Moreover, it is easy to verify from (28)
and (31)-(32) that

Q = L (35)

and therefore R = Q−1 =
�−1
T . Hence S = �−1 is
the diagonal matrix of eigenvalues of R, and
 is the matrix
whose columns are the corresponding eigenvectors. Thus the
GFT
T is the KLT of the GMRF.

For a wide class of applications of Graph Signal Processing,
the nodes v1, . . . , vM of V are embedded in a Euclidean
domain R

N . (Here we use boldface for the nodes to indicate
that they are vectors in R

N .) It is common in this case for
the neighborhood structure of V to be inherited from the
neighborhood structure of the containing domain. That is,
wi j = W (vi − v j) for some weight function W (d).

Figure 3 illustrates the relationship between the GPT and
GFT. In the center column, there are three ways to specify a
stationary GP {Y (v)}: through the covariance function R(d),
the precision function Q(d), or the weight function W (d).
R(d) and Q(d) are equivalent via (10)-(11) (assuming the
power spectral density is bounded away from zero over the
cube [−π, π]3), while Q(d) and W (d) are equivalent via (13)
and its inverse

W (d) =
{

−Q(d) for d �= 0∑
d′ Q(d′) for d = 0.

(36)

The functions R(d), Q(d), and W (d) induce what could be
regarded as infinite block Toeplitz matrices R∞, Q∞, and
W∞, respectively, having row and column indices v and v′
and elements at (v, v′) given by R(v − v′), Q(v − v′), and
W (v − v′). Given a finite collection of points v1, . . . , vM ,
the infinite matrices R∞ and W∞ can be restricted to
the finite matrices Rprocess

M = [R(vi − v j)] and WM =
[W (vi − v j)] by considering only rows and columns in the
collection v1, . . . , vM . Then, WM and Qgraph

M are equivalent
via (31)-(34). Note that the finite matrices Rprocess

M , WM , and
Qgraph

M are block Toeplitz. However, the inverse of a finite
Toeplitz matrix is generally not Toeplitz, and hence neither
Rgraph

M (the inverse of Qgraph
M) nor Qprocess

M the inverse of
Rprocess

M) are generally Toeplitz. Thus, Rprocess
M and Rgraph

M
cannot be equal (since one is Toeplitz and the other is not),
and, hence, their KLTs cannot be equal. One is the GPT
T

G PT

Fig. 3. Relationship between GPT and GFT.

and the other is the GFT
T
G FT . These are KLTs of the random

variables Y (v1), . . . , Y (vM).

IV. TRANSFORM CODING WITH THE GPT

We now wish to use the GPT for coding voxelized point
clouds. We segment the L × L × L voxel grid containing
the VPC into blocks of N × N × N voxels. Each block may
have anywhere between 0 and N3 occupied voxels. We are
concerned only with occupied blocks, that is, blocks with one
or more occupied voxels. For a given occupied block, let
M ∈ {1, . . . , N3} be the number of occupied voxels in the
block and let a voxel νi (0 ≤ i < M) within the block have
a 3D integer position vi = (xi , yi , zi) and a color signal ci ,
where ci can be any of Yi , Ui or Vi with its global mean
removed. We assume the covariance ri j = E[ci c j] between the
colors of any two voxels in the block (νi and ν j , 0 ≤ i, j < M)
is given by one of the covariance matrices

R process
M =
G PT SG PT
T

G PT (37)

Rgraph
M =
G FT SG FT
T

G FT (38)

where in turn Rprocess
M is determined by one of the first two

methods in the previous section (NP or OU) and Rgraph
M is

determined by one of the second two (ID or AR). In general,
let Rcc = [ri j] denote the covariance matrix and let
 denote
the matrix of eigenvectors of Rcc. If c = [ci] is an M × 1
vector of colors in the block, then

f =
T c (39)

is the M ×1 vector of its transform coefficients, whose M ×M
covariance matrix is given by

R f f = E[f fT] =
T Rcc
 = S, (40)

where S = diag{si }. Thus si = σ 2
f (i) is the nominal variance

of each transform coefficient.
We quantize the transform coefficients using a uniform

scalar quantizer with stepsize Q, and entropy code the quan-
tized coefficient. This, however, is not sufficient for the
decoder to reconstruct the color vector c. We need also to
convey the transform
T for each cube.

We next examine what information about the transform
needs to be conveyed to the decoder for each of models
described in the previous section. We begin by assuming that
the geometry information [vi] has already been encoded and
conveyed to the decoder. The geometry is of interest in its

3512 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 7, JULY 2017

own right and must be conveyed for other reasons. How the
geometry is encoded is outside the scope of this paper.

1) Non-Parametric GPT (NP-GPT): In the non-parametric
covariance model, ri j = RN P (di j), where di j = |vi −v j | is the
Euclidean distance between voxels νi and ν j . In order for the
decoder to reconstruct
 and {sk} (from the ri j), we convey
RN P (d) to the receiver. The distance between voxel centers
in the N × N × N block can be no greater than dmax = �(N −
1)

√
3
. Thus it suffices to convey RN P (d) only for d between

0 and dmax. In our tests, it was even sufficient to convey values
of RN P (d) for values of d in steps of 0.5 from 0 to dmax, and to
interpolate the intermediate values from those. Thus, for N =
8, we convey only 25 values of RN P (d) to the decoder, which
fit within a hundred bytes without coding. Once the decoder
recovers RN P (d) for d ∈ [0, dmax], it assembles, for each
block, R = [RN P (di j)] and performs an eigen-decomposition
on R to obtain
 and {sk}.

2) Ornstein-Uhlenbeck GPT (OU-GPT): In the OU model,
ri j = ROU (di j) = σ 2ρdi j . The scale factor σ 2 can be ignored,
as it does not affect the GPT. Thus we convey only ρ to the
decoder, requiring only four bytes without coding. Once the
decoder recovers ρ, it forms the covariance matrix R = [ρdi j],
where di j = |vi − v j |, and performs the eigen-decomposition
of R to determine the GPT.

3) Inverse Distance GFT (ID-GFT): The GFT is given by
weights on the graph of nodes corresponding to occupied
voxels, such that the weight of the edge between voxels at
vi and v j is wi j . We use weights determined by the inverse
distance model (12) for various values of dmax. The number of
such weights is the number of possible distances di j satisfying
0 < di j ≤ dmax, which for dmax = 1 is one, for dmax = √

2
is two, and for dmax = √

3 is three. Again the necessary
information fits into four bytes per weight without coding.
The decoder calculates the weights and forms the adjacency
matrix W = [wi j], the diagonal matrix D = [diag(

∑
j wi j)],

and the Laplacian matrix L = D − W. The covariance matrix
R is the inverse of the Laplacian matrix and hence has the
same eigen-structure: R =
S
T and L = R−1 =
�
T ,
where � = S−1. For this reason the decoder can obtain the
GPT from an eigen-decomposition of L directly.

4) Auto-Regressive GFT (AR-GFT): In the Auto-Regressive
model, we convey the coefficients {ad} of the conditional
autoregression to the decoder. The coefficients are determined
by solving the normal equations (24) involving KN P , thereby
reducing the number of coefficients to at most |N |. The
number of coefficients is actually substantially fewer than that,
due to symmetry. For example, if N = {d : 0 < |d| ≤ dmax},
the number of independent coefficients for dmax = 1 is one, for
dmax = √

2 is two, and for dmax = √
3 is three. These fit into

four bytes per coefficient without coding. Once the decoder
recovers the coefficients {ad}, it computes Q(d) from the
autocorrelation (20), determines W (d) using (36), extracts the
finite weight matrix WM , computes Qgraph

M using (33)-(32),
and performs an eigen-decomposition on this submatrix to
determine the GFT.

In terms of computation, in addition to the obvious require-
ment of performing an M × M eigen-decomposition for each
N × N × N block having M occupied voxels, the non-

parametric and auto-regressive models require computation of
the covariance function RN P (d). If there are N0 occupied
voxels in the entire VPC, computing RN P (d) involves a
number of computations proportional to N2

0 , which can be
quite demanding. The OU model requires determination of ρ,
which in principle should be optimized, e.g., by maximizing
the likelihood over the N0 voxels. However, we have found
in practice that performance is not sensitive to the exact value
of ρ and a value of 0.95 works well across all our data sets.
Hence the OU-GPT and the ID-GFT are much less complex
than the NP-GPT and AR-GFT.

V. THE ENTROPY CODER

We now turn our attention to the entropy coder for the
transform coefficients. The tricky part here is that the number
of transform coefficients in each block is variable. More-
over, even for blocks with the same number of transform
coefficients, the coefficients may not correspond to the same
set of “frequencies” or eigenvalues. Thus there is no natural
grouping of coefficients with the same set of statistics, which
is traditional for entropy coding. To solve the problem, we
bin the coefficients by their eigenvalues λ into Nb bins. Then
for each bin we calculate the standard deviation of the coef-
ficients in that bin. These standard deviations are uniformly
scalar quantized with stepsize Qs and are entropy coded and
transmitted as side information. For each bin, the quantized
standard deviation is used as the parameter of a Laplacian
distribution to model the distribution of the coefficients in the
bin. The coefficients in the bin are uniformly scalar quantized
with stepsize Q and are arithmetic coded according to a
discrete distribution induced by the Laplacian distribution for
the bin.

Detailed instructions for encoding the colors {ci } for all Nv

occupied voxels in the voxelized point cloud are as follows:
1) Decide on encoder parameters Q, Qs , Nb . Encode and

transmit them.
2) Encode the geometry information {vi } using, for exam-

ple, octrees.
3) From the geometry, derive the GPT
T and the corre-

sponding eigenvalues {λi } for each occupied block.
4) Transform all blocks and assemble all {λi }, and { fi },

0 ≤ i < Nv , for the whole cloud.
5) Find λmax = maxi (λi).
6) Divide the λi into Nb bins as λ

q
i = round(λi Nb/λmax).

7) Compute the standard deviation of the coefficients

whose λ fall in each bin, i.e., ηk =
√

E[f 2
i |λq

i = k].
8) Quantize all ηk , 0 ≤ k < Nb , as η

q
k , e.g. η

q
k =

round(ηk/Qs).
9) Encode and transmit all η

q
k .

10) Reconstruct standard deviations as η̂k , e.g. η̂k = η
q
k Qs .

11) Quantize all fi , 0 ≤ i < Nv , as f q
i = round(fi/Q).

12) Encode and transmit all f q
i using an arithmetic coder

with a model of a Laplacian distribution with standard
deviation η̂k as

p(x) = 1√
2η̂k

e
− |x |√2

η̂k , (41)

DE QUEIROZ AND CHOU: TRANSFORM CODING FOR POINT CLOUDS USING A GAUSSIAN PROCESS MODEL 3513

such that the �-th quantizer bin has probability

p� = e
− |�|Q√

2
η̂k sinh

(
Q√
2η̂k

)
, (42)

while the central one has probability

p0 = 1 − e
− Q√

2η̂k . (43)

Detailed instructions for decoding the colors {ci } for all Nv

occupied voxels in the voxelized point cloud are as follows:
1) Decode the parameters Q, Qs , Nb .
2) Decode the geometry information {vi}.
3) From the geometry, derive the GPT
T and the corre-

sponding eigenvalues {λi } for each occupied block.
4) Decode all Nb quantized values of η

q
k .

5) Reconstruct all standard deviations η̂k (e.g. η̂k = η
q
k Qs),

and with them build all the probability tables {p�}.
6) Find λmax = maxi (λi).
7) In order to decode the i -th coefficient, from λi , find

k = round(λi Nb/λmax).
8) Look-up the standard deviation η̂k of the k-th bin.
9) Decode f q

i with an arithmetic coder with the previously
constructed probability table for η̂k .

10) Reconstruct all coefficients f̂i = f q
i Q.

11) Inverse transform all blocks to obtain {ĉi }.
We have found it sufficient to use Qs = 1 for large ηk ,

with finer steps for small deviations like ηk < 2. One can use
smaller Qs but we used a coarse floating point representation
spending 20 bits per sample. We also found Nb = 60 to be
adequate such that 3600 bits are used for encoding all η

q
k for

the 3 color components.
The proposed entropy coder uses arithmetic coding and

Laplacian models just as in [18] and [19]. However, in [18],
each quantized GFT coefficient is entropy coded using a vari-
ance inversely proportional to its corresponding eigenvalue,
while in [19], the RAHT coefficients are bucketed according
to their “weights” (the number of points contributing to the
coefficients), and for each bucket the actual variance of its
coefficients is encoded and transmitted as side information
before entropy encoding the coefficients using that variance.
This was shown to be more effective than using the variances
predicted by the eigenvalues. In contrast, in this paper, we
use a third approach. In the absence of “weights” for the
coefficients, the coefficients are bucketed according to their
corresponding eigenvalues, and for each bucket the actual
variance of the coefficients is explicitly conveyed to the
receiver.

VI. EXPERIMENTAL RESULTS

We evaluate the proposed GPT and the entropy coding over
point cloud colors of five data sets, known as Man, Andrew,
Phil, Ricardo, and Sarah. Man is shown in Fig. 1; the rest
are shown in Fig. 4. The data sets are point clouds each
corresponding to one frame in a sequence of point clouds
of the same name.1 For these point clouds, the numbers of
occupied voxels Nv are 223617, 286934, 325077, 207077,

1frames 37, 622, 244, 39, and 234, respectively

Fig. 4. Renderings of Andrew (top left), Phil (top right), Ricardo (bottom
left), and Sarah (bottom right).

and 301336, respectively. Point cloud Man is a full body
captured as a mesh using 24 RGBD pods in a non-realtime
capture system [28], then voxelized into a point cloud. The
other point clouds are front-half bodies captured directly
into voxels using 4 RGBD pods in a realtime telepresence
system [2]. All point clouds are represented by voxels in an
L × L × L integer grid with L = 512. We break the L × L × L
grid into smaller N × N × N blocks with N = 8. This
value was decided upon comparing against values of N = 4
and N = 16 in simple tests. Larger blocks take even longer
to compute with no evidence of significant advantage, while
smaller blocks have slightly inferior performance. An adaptive
block size algorithm seems to be an interesting alternative, left
for future studies. With N = 8, the number of occupied voxels
in each occupied block may vary from 1 to 512. Nevertheless,
we have found a mean of 58 occupied voxels per block, across
all the point clouds tested.

In our tests, we opted for an unassuming Matlab® imple-
mentation that takes tens of seconds to compute each frame,
with modern CPUs. This is no parameter for a real-time
implementation, wherein GPU programmers need to make the
encoding to fit within 1/30 of a second.

The non-parametric covariance functions KN P (d) measured
for each data set are shown in Fig. 5. The covariance functions
appear to be diverse, both in slope and curvature, which is an
indication of how hard it may be for any model to work well
across all point clouds.

Our experiments were, then, divided into two parts. Firstly,
we evaluated the potential compression of all the 4 GPTs
(NP-GPT, OU-GPT, ID-GFT, AR-GFT) using traditional the-
oretical criteria such as coding gain and energy compaction.
These tests are independent of the quantization and entropy
coding schemes. Energy compaction is measured by ordering
all coefficients according to their eigenvalues. Eigenvalues are
associated with coefficients via the eigenvectors used to obtain
the coefficients. The larger the eigenvalue of R the lower the

3514 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 7, JULY 2017

Fig. 5. Covariance function KN P (d) for each data set.

frequency associated to its corresponding eigenvector and we
arrange eigenvalues in decreasing magnitude. The total energy
in the transform coefficients { fi } is the same as that in the
signal {ci }, due to orthogonality of each transform. That is,∑Nv

i=1 f 2
i = ∑Nv

i=1 c2
i .

We only evaluate the luminance component Yi , with the
global mean removed, i.e., ci = Yi − μ, where μ =
(
∑Nv

i=1 Yi)/Nv . We tested for all images in our dataset. Fig-
ure 6 shows the fraction

∑αNv
i=1 f 2

i /
∑Nv

i=1 f 2
i of the total

energy captured in the bottommost (lowest-frequency) fraction
α of transform coefficients, as a function of the fraction α.
It can be seen that the NP-GPT and OU-GPT generally have
the highest energy compaction, with the OU-GPT edging out
the NP-GPT in many cases. The AR-GFT (dmax = 1 and
dmax = √

3) does not perform as well as the others. One reason
that the NP-GPT may sometimes perform worse than the
OU-GPT is that the method of estimating RN P (d) described
in II-A is not guaranteed to produce a non-negative definite
covariance matrix R; negative components must be truncated.
This is due to the sparse nature of the data, which necessitates
using different subsets of data to estimate RN P (d) at different
d, and also interpolation of RN P (d) at different d = |d|. In any
case, the difference between NP-GPT and OU-GPT is slight.

The transform coding gain [30] summarizes each energy
compaction curve in a single number, as the ratio of the
arithmetic to geometric means of the energy in each frequency
band. Since our “frequency bands” are not fixed, we partition
the coefficients, ordered (as above) by their eigenvalues, into
contiguous bins with 100 coefficients per bin. The energy is
computed for each bin, and the ratio of the arithmetic and
geometric means of the bin energies is computed to estimate
the transform coding gain. The estimate is insensitive to the
number of coefficients per bin. Table I shows the coding
gain in dB for the four transforms where both GFT types
are evaluated with dmax = 1 and dmax = √

3. Again the
OU-GPT has a distinguished performance compared to the
others.

Preliminary results of the energy compaction and transform
coding gain were presented in [29]. However, the experimental
results in [29] are incorrect. This paper corrects those results.

TABLE I

TRANSFORM CODING GAIN (dB)

Fig. 6. Energy compaction for NP-GPT, GMRF-GPT, OU-GPT, and GT for
each data set. (a) Man. (b) Andrew. (c) Phil. (d) Ricardo. (e) Sarah.

The results in Fig. 5 and Table I should replace those in [29].
Beyond correcting some results in [29] and being more

complete theoretically than [29], this paper focuses on using
the Gaussian Process transforms for transform coding, which
includes quantization and entropy coding.

Thus, in the second part of the experiments we exam-
ine the point cloud compression performance of the various
transforms when paired with our entropy coder. Because the
AR-GFT is much more complex to implement than the
ID-GFT, and because of the above mentioned energy com-
paction tests, we decided to run compression tests comparing
the NP-GPT, OU-GPT, and the ID-GFT for (dmax = √

3).
We also tested the RAHT coder of [19]. RAHT is an extremely

DE QUEIROZ AND CHOU: TRANSFORM CODING FOR POINT CLOUDS USING A GAUSSIAN PROCESS MODEL 3515

Fig. 7. Rate (bpv) vs. distortion (PSNR in dB for the Y component) for
Man, Andrew, and Phil.

low-complexity transform, similar to the Haar Transform,
suitable for point clouds, which, when paired with an entropy
coder similar to the one in this paper, has been shown to match
the performance of the graph transform and entropy coder that
was the state-of-the-art prior to [19]. The side information
required for the transform parameters, if any, is included in
the bit rate. The bit rate accounts for all the three color
components (Y , U and V) and is given in bits per occupied

Fig. 8. Rate (bpv) vs. distortion (PSNR in dB for the Y component) for
Ricardo and Sarah.

voxel (bpv).
Figures 7 and 8 show the distortion-rate performances of all

transform coders on the five data sets. The GPT (and GFT)
with the new entropy coder usually outperforms RAHT. It is
not surprising that RAHT is outperformed by the other trans-
forms, as it is a very low computational complexity coder
based on the Haar Transform, and it is not adaptive to the
signal statistics. Moreover, it is based on a different entropy
coder. OU-GPT seems to perform better on the data sets whose
covariance functions conform to an exponential 0.95n model.
The better the exponential fit to the covariance function, the
closer the performance of OU-GPT to that of NP-GPT. Only
in one case the GFT was the best, compared to the GPTs.
NP-GPT is better than ID-GFT in 4 out of 5 cases. The
drawback of NP-GPT is the extra computation necessary
to compute the covariance function KN P (d). Comparing
OU-GPT with ID-GFT is a 3-to-2 split decision in favor of
OU-GPT. Overall, NP-GPT is in all cases either the best or
second best and if we were to rank them somehow, despite
the non-unanimous results, the NP-GPT may come up on
top. Hence, we are confident to say that GPT (in its NP- or
OU- forms) may be the new state-of-the-art for compressing
point cloud attributes.

3516 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 7, JULY 2017

VII. CONCLUSIONS

We presented an approach to compress the colors or other
attributes of static 3D point clouds based on transform coding,
using what we call a Gaussian Process Transform or GPT. The
GPT is the KLT of the points as if they were samples of a
3D zero-mean Gaussian process. We studied four models for
representing the covariance function of the Gaussian process,
and discussed the connection between GPT and GFT (Graph
Fourier Transform). In particular we discussed in detail two
GPT models (the non-parametric or NP model, which is based
on direct measurement of the covariances, and the Ornstein-
Uhlenbeck or OU model) and two GFT models (inverse-
distance or ID, and autoregressive or AR). All models require
transmitting a small amount of side information, representing
the model, to the decoder. For entropy coding the quantized
transform coefficients, we bin the coefficients according to
their corresponding eigenvalues, and use arithmetic coding
driven by models of Laplacian distributions with different vari-
ances for each bin. The variances are sent as side information
to the decoder.

Experimental results show that the NP-GPT and OU-GPT
outperform both the ID-GFT and AR-GFT, in terms of energy
compaction, transform coding gain, and distortion-rate perfor-
mance when using the proposed entropy coder. The ID-GFT
was the previous state-of-the-art in compression of voxelized
point clouds. One hypothesis as to why the NP-GPT and
OU-GPT outperform the ID-GFT is that the former are
matched to the statistics of the data, whereas the ID-GFT
is based on the Laplacian of a graph whose vertices are
connected to each other based only on Euclidean distance.
However, we introduced the AR-GFT to show that matching
the weights of the graph transform to the data by maximiz-
ing the pseudo-likelihood does not improve the performance
of the GFT.

Thus, transform coding using the GPT (in its OU- or
NP- forms) with the proposed entropy coder is the new state-
of-the-art in the compression of voxelized point clouds. The
method may also be applied to the processing of arbitrary
signals on point clouds in higher dimensional spaces.

ACKNOWLEDGMENT

The authors thank Charles Loop and Qin Cai of the
Microsoft I3D group for providing the Andrew, Phil, Ricardo,
and Sarah sequences, and thank the Microsoft HCap group
for providing the Man sequence.

REFERENCES

[1] C. Zhang, Q. Cai, P. A. Chou, Z. Zhang, and R. Martin-Brualla,
“Viewport: A distributed, immersive teleconferencing system with
infrared dot pattern,” IEEE Multimedia, vol. 20, no. 1, pp. 17–27,
Jan./Feb. 2013.

[2] C. Loop, C. Zhang, and Z. Zhang, “Real-time high-resolution sparse
voxelization with application to image-based modeling,” in Proc. High-
Perform. Graph. Conf., Jul. 2013, pp. 73–79.

[3] O. Devillers and P.-M. Gandoin, “Geometric compression for interactive
transmission,” in Proc. Vis., Oct. 2000, pp. 319–326.

[4] X. Gu, S. J. Gortler, and H. Hoppe, “Geometry images,” in Proc. Annu.
Conf. Comput. Graph. Interact. Techn., Jul. 2002, pp. 355–361.

[5] H. M. Briceno, P. V. Sander, L. McMillan, S. Gortler, and H. Hoppe,
“Geometry videos: A new representation for 3D animations,” in Proc.
ACM SIGGRAPH/Eurograph. Symp. Comput. Animation, Jul. 2003,
pp. 136–146.

[6] S. Gupta, K. Sengupta, and A. Kassim, “Registration and partitioning-
based compression of 3-D dynamic data,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 11, pp. 1144–1155, Nov. 2003.

[7] T. Ochotta and D. Saupe, “Compression of point-based 3D models
by shape-adaptive wavelet coding of multi-height fields,” in Proc.
Eurograph. Symp. Conf. Point-Based Graph., 2004, pp. 103–112.

[8] H. Habe, Y. Katsura, and T. Matsuyama, “Skin-off: Representation and
compression scheme for 3D video,” in Proc. Picture Coding Symp.,
2004, pp. 301–306.

[9] J. Peng, C.-S. Kim, and C.-C. J. Kuo, “Technologies for 3D mesh
compression: A survey,” J. Vis. Commun. Image Represent., vol. 16,
no. 6, pp. 688–733, Dec. 2005.

[10] S.-R. Han, T. Yamasaki, and K. Aizawa, “Time-varying mesh compres-
sion using an extended block matching algorithm,” IEEE Trans. Circuits
Syst. Video Technol., vol. 17, no. 11, pp. 1506–1518, Nov. 2007.

[11] L. Váša and V. Skala, “Geometry-driven local neighbourhood based
predictors for dynamic mesh compression,” Comput. Graph. Forum,
vol. 29, no. 6, pp. 1921–1933, Sep. 2010.

[12] H. Q. Nguyen, P. A. Chou, and Y. Chen, “Compression of human body
sequences using graph wavelet filter banks,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., May 2014, pp. 6152–6156.

[13] R. Mekuria, M. Sanna, S. Asioli, E. Izquierdo, D. C. A. Bulterman,
and P. Cesar, “A 3D tele-immersion system based on live captured
mesh geometry,” in Proc. ACM Multimedia Syst. Conf., Oslo, Norway,
Feb. 2013, pp. 24–35.

[14] J. Hou, L. Chau, N. Magnenat-Thalmann, and Y. He, “Compressing
3-D human motions via keyframe-based geometry videos,” IEEE
Trans. Circuits Syst. Video Technol., vol. 25, no. 1, pp. 51–62,
Jan. 2015.

[15] R. Schnabel and R. Klein, “Octree-based point-cloud compression,” in
Proc. Symp. Point-Based Graph., Jul. 2006, pp. 111–120.

[16] Y. Huang, J. Peng, C.-C. J. Kuo, and M. Gopi, “A generic scheme for
progressive point cloud coding,” IEEE Trans. Vis. Comput. Graphics,
vol. 14, no. 2, pp. 440–453, Mar./Apr. 2008.

[17] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and
E. Steinbach, “Real-time compression of point cloud streams,” in Proc.
IEEE Int. Conf. Robot. Autom., May 2012, pp. 778–785.

[18] C. Zhang, D. Florêncio, and C. Loop, “Point cloud attribute compression
with graph transform,” in Proc. IEEE Int. Conf. Image Process., Paris,
France, Oct. 2014, pp. 2066–2070.

[19] R. L. D. Queiroz and P. A. Chou, “Compression of 3D point clouds using
a region-adaptive hierarchical transform,” IEEE Trans. Image Process.,
vol. 25, no. 8, pp. 3947–3956, Aug. 2016.

[20] D. Thanou, P. A. Chou, and P. Frossard, “Graph-based motion estimation
and compensation for dynamic 3D point cloud compression,” in Proc.
IEEE Int. Conf. Image Process., Sep. 2015, pp. 3235–3239.

[21] Y. Dodge, The Oxford Dictionary of Statistical Terms. London, U.K.:
Oxford Univ. Press, 2003.

[22] J. D. Markel and A. H. Gray, Linear Prediction of Speech. Berlin,
Germany: Springer-Verlag, 1976.

[23] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98,
May 2013.

[24] J. Edmonds and E. L. Johnson, “Matching: A well-solved class of integer
linear programs,” in Combinatorial Optimization—Eureka, You Shrink!
(Lecture Notes in Computer Science), vol. 2570. Jan. 2003, pp. 27–30.

[25] H. Rue and L. Held, Gaussian Markov Random Fields: Theory and
Applications. Boston, MA, USA: Chapman, 2005.

[26] C. Zhang, D. Florencio, and P. A. Chou, “Graph signal processing—
A probabilistic framework,” Microsoft Res., Redmond, WA, USA,
Tech. Rep. MSR-TR-2015-31, Apr. 2015.

[27] F. Dorfler and F. Bullo, “Kron reduction of graphs with applications to
electrical networks,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60,
no. 1, pp. 150–163, Jan. 2013.

[28] A. Collet et al., “High-quality streamable free-viewpoint video,” ACM
Trans. Graph., vol. 34, no. 4, Aug. 2015, Art. no. 69.

[29] P. A. Chou and R. L. de Queiroz, “Gaussian process transforms,” in
Proc. IEEE Int. Conf. Image Process., Phoenix, AZ, USA, Sep. 2016,
pp. 1524–1528.

[30] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression.
Norwell, MA, USA: Kluwer, 1992.

DE QUEIROZ AND CHOU: TRANSFORM CODING FOR POINT CLOUDS USING A GAUSSIAN PROCESS MODEL 3517

Ricardo L. de Queiroz (F’–) received the Engineer
degree from the Universidade de Brasilia, Brazil,
in 1987, the M.Sc. degree from the Universidade
Estadual de Campinas, Brazil, in 1990, and the Ph.D.
degree from The University of Texas at Arlington,
in 1994, all in electrical engineering.

From 1990 to 1991, he was a Research Associate
with the DSP Research Group, Universidade de
Brasilia. He joined Xerox Corp. in 1994, where he
was a member of the research staff until 2002. From
2000 to 2001, he was also an Adjunct Faculty with

the Rochester Institute of Technology. He joined the Electrical Engineering
Department, Universidade de Brasilia, in 2003. In 2010, he became a Full
(Titular) Professor with the Computer Science Department, Universidade de
Brasilia. In 2015, he has been a Visiting Professor with the University of
Washington, in Seattle, USA.

He was a past elected member of the IEEE Signal Processing Society’s
Multimedia Signal Processing and the Image, Video and Multidimensional
Signal Processing Technical Committees. He is an Editor for the IEEE
TRANSACTIONS ON IMAGE PROCESSING and a past Editor for the EURASIP
Journal on Image and Video Processing, the IEEE SIGNAL PROCESSING
LETTERS, and the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR

VIDEO TECHNOLOGY. He has been appointed an IEEE Signal Processing
Society Distinguished Lecturer for the 2011–2012 term.

Dr. de Queiroz has been actively involved with the Rochester chapter of the
IEEE Signal Processing Society, where he served as the Chair and organized
the Western New York Image Processing Workshop since its inception until
2001. He helped organizing the IEEE SPS Chapters in Brazil and chaired
the Brasilia IEEE SPS Chapter. He was the General Chair of ISCAS’2011,
MMSP’2009, and SBrT’2012. He was also part of the organizing committee
of ICIP’2002, ICIP’2012, ICIP’2014, and ICIP’2016. His research interests
include image and video compression, multirate signal processing, and color
imaging. He is a member of the Brazilian Telecommunications Society.

Philip A. Chou received the B.S.E. degree in
electrical engineering and computer science from
Princeton University, Princeton, NJ, USA, in 1980,
and the M.S. degree in electrical engineering and
computer science from the University of Califor-
nia at Berkeley, Berkeley, USA, in 1983, and the
Ph.D. degree in electrical engineering from Stanford
University in 1988. From 1988 to 1990, he was
a member of Technical Staff with AT& T Bell
Laboratories in Murray Hill, NJ, USA. From 1990
to 1996, he was a member of Research Staff with

the Xerox Palo Alto Research Center in Palo Alto, CA, USA. In 1997, he was
the Manager of the Compression Group, VXtreme, an Internet video startup
in Mountain View, CA, USA, before it was acquired by Microsoft. From
1998 to 2016, he was a Principal Researcher with the Microsoft Research,
in Redmond, Washington, DC, USA, managing the Communication and
Collaboration Systems Research Group from 2004 to 2011. He served as a
Consulting Associate Professor with Stanford University from 1994 to 1995,
an Affiliate Associate Professor with the University of Washington from 1998
to 2009, and an Adjunct Professor with The Chinese University of Hong Kong
since 2006. He is currently with 8i Labs., where he leads the effort to compress
and communicate volumetric media for augmented and virtual reality.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

