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Abstract—Biometric systems based on face recognition have
been shown unreliable under the presence of face-spoofing
images. Hence, automatic solutions for spoofing detection became
necessary. In this paper, face-spoofing detection is proposed by
searching for Moiré patterns due to the overlap of the digital
grids. The conditions under which these patterns arise are first
described, and their detection is proposed which is based on peak
detection in the frequency domain. Experimental results for the
algorithm are presented for an image database of facial shots
under several conditions.

Index Terms—Biometrics, face-spoofing detection, face recog-
nition.

I. INTRODUCTION

In recent years, researchers have devoted great attention to
biometric systems and its many challenges, such as security
evaluation and vulnerability assessment. In particular, face
recognition systems have been widely studied, as they offer
a simple and effective method for human authentication,
requiring only regular cameras and specialized software [1].

Face recognition systems, however, rely on flat images in
order to detect people, so that they can be easily spoofed
by printed photographs and mobile displays. Several face
spoofing-detection methods have been proposed [2]–[19].
Some of the approaches include image-quality analysis, mo-
tion analysis, texture analysis, or a combination of these.

Among the image-quality approaches, Li et. al. define a
high-frequency descriptor and a lower threshold to differenti-
ate regular and face-spoofing images [2]. Zhang et. al. detect
printed and displayed face-spoofing images by using a support
vector machine (SVM) to search for a lack of high-frequency
information [3]. Tan. et. al. search for implausible illumination
changes and for low image quality in the detected-face image
[4]. Peixoto et. al. also search for low image quality, but
also adapt input images subject to bad illumination conditions,
based on contrast-limited adaptive histogram equalization [5].
Galbally et. al. search for low image quality using 25 general
image quality features extracted from one image, such as peak-
signal-to-noise ratio and the structural similarity index [6].

Anjos and Marcel search for motion inconsistencies in
sequences of detected faces by comparing features in the
detected-face region and the rest of the image, such as mean
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and standard deviation [7]. The comparison is carried using
a multi-layer perceptron classifier. De Marsico et. al. employ
a set of facial points in different frames in order to exploit
geometric invariants [8]. Kollreider et. al. compare the motion
of different parts of the detected face, which will be more
diverse on a real, tridimensional face [9].

Among the texture analysis approaches, Pinto et. al. search
in the frequency domain for noise signatures in time generated
by the recaptured video to distinguish between fake and valid
access [10]. Määttä et. al. search for texture inconsistencies in
the detected-face image by applying local-binary-pattern codes
on a block basis, calculating the histograms and classifying
the information with a SVM [11]. Chingovska et. al. build
upon the previous work by testing different classifiers [12].
Bharadwaj et. al. apply texture analysis to motion-magnified
sequences [13],[14]. Kim et. al. analyse texture by mixing
information of the power spectrum with local binary patterns
[15]. Pereira et. al. analyse spatial and temporal textures using
local binary patterns in the X-Y, X-T and Y-T dimensions [16].
Bai et. al. calculate the histogram of gradients of the specular
component of the detected-face image in order to detect face-
spoofing images [17].

Also, Schwartz et. al. analyse diverse spatial and temporal
features, such as the histogram of oriented gradients, color
frequency, gray level co-occurrence matrix, and histograms
of shearlet coefficients, and integrate these features with a
weighting scheme based on partial least squares [18]. Pereira
et. al. employ two previous methods in order to detect face-
spoofing images and videos [7],[12],[19].

Even though these references obtain great success in de-
tecting face-spoofing images, they generally rely on highly
empirical methods, so that replicating these results in differ-
ent circumstances can be very difficult. SVMs, for instance,
require balanced training databases suited for the conditions
under which they are supposed to work [20]. In this paper,
face-spoofing 2D detection is proposed by searching for Moiré
patterns, which can be theoretically modeled as the overlap
of the digital grids in the face-spoofing display and in the
face-recognition camera. Unlike Li et. al. [2] and Zhang et.
al. [3], who assume that face-spoofing images contain fewer
high-frequency content than regular face images, we search for
distinct patterns that are high-pass in nature. Like Zhang et.
al. [3], we employ Difference-of-Gaussians (DoG) filters, but
with a different objective: isolating high-frequency patterns in
the frequency domain. Our approach is simpler than searching
for textures in the spatial domain, as it does not require large
training databases for descriptors such as local binary patterns.
A theoretical analysis is first presented in order to define
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the conditions under which the Moiré patterns arise, followed
by the algorithm proposed for the detection of face-spoofing
images. Experimental results for the algorithm are presented
for a database of face images shot under several conditions.

II. DIGITAL ARTIFACTS ON FACE-SPOOFING IMAGES

Face recognition systems can be easily spoofed by images
of trusted users on printed photographs or on mobile displays.
However, as these spoofing techniques rely on digital media, as
opposed to the analog reality of the trusted user, the digital grid
of the face-recognition system camera overlaps with the grid
of the digital media. In the case of printed photographs, the
image grid of the camera overlaps with the printing halftoning
dots, and in the case of mobile displays, it overlaps with the
pixel grid. The proposed method searches for artifacts due to
the overlapping of digital grids.

Figure 1 shows one of the most common artifacts of this
kind: Moiré patterns [21]-[24]. Figure 1(a) shows a portion of
test image Lena, and Fig. 1(b) is a photograph of (a), captured
from a 13-inch display of a Macbook Pro using an iPhone 4
camera, without any compression artifacts. Figures 1(c) and
(d) show details of Figs. 1(a) and (b), respectively, illustrating
the patterns that occur after an image is recaptured from a
screen. Note that these patterns are not present in the original
image in Fig. 1(c).

The detection of Moiré patterns at the spatial domain can be
very complex, since there is no a priori method to distinguish
this kind of pattern from any other. In the frequency domain,
however, the analysis can be further simplified. Figures 1(e)
and (f) show the absolute values of the discrete Fourier
transforms (DFT) of Figs. 1(a) and (b), respectively, after a
logarithmic scaling for viewing purposes. Figure 1(f) shows
very distinctive peaks at mid and high frequencies. Such peaks
are due to the overlapping of pixel grids between the camera
and the screen.

Moiré patterns have been thoroughly studied [22]-[24].
In order to simplify the analysis, let us look at the one-
dimensional case. Consider a continuous-space low-pass func-
tion f(t), which is to be sampled with period T1, rendering
fs(nT1). The Fourier transforms of f(t) and fs(nT1) are F (ω)
and Fs(ω) =

∑
k F (ω−2πk/T1), respectively. When fs(nT1)

is displayed on screen, fsd(t) is rendered, which is equivalent
to the convolution of fs(nT1) with a boxcar function, or to
the multiplication of Fs(ω) with a sinc function. Figure 2
illustrates this process.
fsd(t) is then recaptured by a digital camera with sampling

interval T2. In order for Moiré patterns to emerge after
recapture, the sampling frequency 1/T2 on the digital camera
must be larger than the screen sampling frequency 1/T1, or
T1 > T2 [22]. Otherwise, the spectral repetitions shown in
Fig. 2(f) at frequencies 1/T1, 2/T1 and so on will fall out of
the frequency range of the recaptured image. It is important to
point out that prior to resampling, low-pass filtering may take
place, due to motion blur, lens defocus, diffraction and pixel
response, among others, reducing the strength of the spectral
repetitions and of the Moiré patterns.

The sampling interval T2 depends on two factors: the size of
the camera’s pixels and the distance between the screen and

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Example of Moiré patterns due to the overlapping of digital grids. (a)
Portion of the Lena test image. (b) Photograph of (a) on a 13-inch Macbook
Pro screen and shot by an iPhone 4 camera without any compression artifacts.
(c)-(d) Details of (a)-(b), respectively. (e)-(f) Absolute values of the discrete
Fourier transforms of (a)-(b), respectively, after a logarithmic scaling for
viewing purposes.

the camera. As the distance from the camera to the screen
increases, the sampling interval T2 increases proportionally,
reducing the capture resolution. The relation between T1 and
T2 indicates if Moiré patterns are bound to occur, but it turns
out to be very hard to directly measure. The sampling interval
ratio SR = T1/T2, however, can be approximated by the pixel
ratio PR:

PR = N2/N1, (1)

where N1 and N2 represent the pixel lengths of a given feature
on the screen and on the camera, respectively.

As the distance from the camera to the screen increases,
T2 also increases, decreasing SR. The pixel length N2 of the
given feature on the camera will decrease proportionally, and
so will PR. Since it is necessary that T1 > T2 for the Moiré
patterns to emerge, and assuming SR ≈ PR, it immediately
follows that:

PR > 1. (2)

Figure 3 illustrates the dependency of the capture resolution
on the distance from camera to screen.
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Fig. 2. Image display on screen (one-dimensional analysis): (a) continuous-
space low-pass function f(t) and (b) its Fourier transform F (ω); (c) sampling
fs(nT1) of f(t) at regular intervals T1 and (d) its Fourier transform Fs(ω);
(e) fsd(t) representing fs(nT1) displayed on a screen, which is equivalent
to the convolution of fs(nT1) with a boxcar function and (f) the Fourier
transform Fsd(ω) of fsd(t), represented by the multiplication of Fs(ω) with
a sinc function.

III. PROPOSED ALGORITHM

The proposed algorithm assumes that regular, non-face-
spoofing images contain most of their energy at the low
frequencies, while face-spoofing images contain unusual peaks
at higher frequencies.The goal is to find peaks at frequencies
other than the baseband.

Fig. 3. Image recapture: a screened image is captured by an imaging system
from a distance d. A given feature presents a length of N1 pixels on the
screen, and a length of N2 pixels after recapture.

There is no easy way to determine a priori how much
of the baseband needs to be ignored, so that the algorithm
needs to search for peaks at different frequency bands. In
essence, the algorithm works as follows. Given an image I
of a detected face, distinct band-pass-filtered versions of this
image are generated, and a peak detector is applied to the
absolute value of the DFT of each of these filtered versions.
If any strong peak is detected, the image is considered a face-
spoofing image.

Each band-pass-filtered version of I (IBP ) is obtained
through convolution of I with a difference-of-Gaussians (DoG)
filter [25]:

D(σ, k) = G(0, σ2)−G(0, kσ2), (3)

where G(0, σ2) is a 2D-Gaussian function with zero mean and
standard deviation σ. The argument k determines the width of
the frequency band, and σ defines the center of the frequency
band. In the proposed algorithm, several DoG filters are tested,
with σ varying from σ0 to σmax in increments of ∆. Figures
4(a)-(f) illustrate the frequency response of DoG filters for
k = 2, σ0 = 0.1, σmax = 1.1 and ∆ = 0.2.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Absolute values of the DFT of DoG filters for k = 2: (a) σ = 0.1;
(b) σ = 0.3; (c) σ = 0.5; (d) σ = 0.7; (c) σ = 0.9; (d) σ = 1.1.

Band-pass filtering of I is followed by peak detection in the
frequency domain. The peak-detector algorithm is based on
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maximum-correlation thresholding [26], which works as fol-
lows: given any image A, its thresholded version B = T {A}
is defined as

B(u, v) = T {A(u, v)} =

{
1, A(u, v) > t
0, A(u, v) ≤ t . (4)

In this case, t is the value that maximizes the correlation ρAB
between A and B = T {A}, which is defined as:

ρAB =
EAB − EAEB√

(EAA − E2
A)(EBB − E2

B)
, (5)

where

EA =
n∑

g=0
g p(g)

EAA =
n∑

g=0
g2 p(g)

EB =
t∑

g=0
µ0(t) p(g) +

n∑
g=t+1

µ1(t) p(g)

EBB =
t∑

g=0
µ2
0(t) p(g) +

n∑
g=t+1

µ2
1(t) p(g)

EAB =
t∑

g=0
g µ0(t) p(g) +

n∑
g=t+1

g µ1(t) p(g)

. (6)

Here, g is one of the n + 1 possible grey values of
A(u, v) and p(g) is the probability of the grey level g.
p(g) is approximated by the histogram of A(u, v). µ0(t)
and µ1(t) are the below- and above-threshold means, such
that µ0(t) = (

∑t
g=0 g p(g))/(

∑t
g=0 p(g)) and µ1(t) =

(
∑n

g=t+1 g p(g))/(
∑n

g=t+1 p(g)).
If there are peaks on |F{IBP }| (the absolute values of the

DFT of any of the band-pass-filtered versions of I), maximum-
correlation thresholding of this image will emphasize those
peaks, and very few of its pixels will have a higher value than
the threshold t. If |F{IBP }| does not contain peaks, more of
its pixels will have a higher value than t.

In this manner, the peak-detector algorithm consists in
thresholding |F{IBP }| and counting the percentage p of pixels
with a higher value than the threshold t:

p =
1

WL

W∑
u=1

L∑
v=1

T {|F{IBP }|}, (7)

where W is the image’s width and L its height. If p < pmin,
I is considered a face-spoofing image. The value pmin is a
simple percentage of the whole image, and it is supposed to
be very small when peaks are present in |F{IBP }|.

The algorithm is repeated for different values of σ, and if
no peak is found for all band-pass versions of I, it is con-
sidered a non-face-spoofing image. The proposed algorithm is
summarized in Figure 5.

Figure 6 shows output samples of the proposed algorithm.
Figures 6(a) and (b) show |F{IBP }| of the detected faces in
Figs. 1(a) and (b), with σ = 0.1 and k = 2. Figures 6(c) and
(d) show maximum-correlated thresholded versions of Figs.
6(a) and (b), respectively. It can be seen in Fig. 6(d) that
distinctive peaks are emphasized by the algorithm.

Fig. 5. Face-spoofing detection algorithm based on Moiré-pattern analysis.

(a) (b)

(c) (d)

Fig. 6. Output samples of the proposed algorithm. (a)-(b) Absolute values
of the DFT of the detected faces in Figs. 1(a)-(b) after convolution with a
DoG filter, with σ = 0.1 and k = 2. (c)-(d) Maximum-correlated thresholded
versions of (a)-(b), respectively. Logarithmic scaling was applied to (a)-(b) for
viewing purposes.

IV. EXPERIMENTAL RESULTS

The proposed algorithm was validated with a large face-
spoofing database, using images of 50 individuals under 13
conditions, in a total of 650 images. Face detection was
performed using the OpenCV implementation of the Viola-
Jones algorithm [30],[31]. In order to avoid border-continuity
artifacts, a Hanning window was applied prior to the cal-
culation of the DFTs, and the following parameters were
empirically chosen: σ0 = 0.1, σmax = 2.1, ∆ = 0.2 and
pmin = 10−3. 9× 9 kernels were used in the implementation
of the DoG filters. The proposed algorithm was applied to the
luminance component of the face-detected images.

Two separate experiments were made in order to account
for the peculiarities of the many face-spoofing databases
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available online. Subsection IV-A presents the results with the
Replay Attack Corpus, made available by the Idiap Research
Institute, Martigny, Switzerland [12]. Subsection IV-B presents
the results with a newly created face-spoofing database, the
Moiré database, which better reflects the conditions described
in Section II.

A. Experiments with the Replay Attack Corpus

Several authors make face-spoofing databases available,
such as Zhang et. al. [3], Tan et. al. [4], Anjos and Marcel
[7] and Chingovska et. al. [12]. These databases present faces
of several individuals under many circumstances, resulting in
hundreds of compressed video sequences. They also use low-
resolution cameras, such as webcams. Compression artifacts
and the lack of high resolution may hinder our algorithm
ineffective, since we need to capture subtle Moiré patterns.
That does not compromise our algorithm, it only reflects
conditions that can be easily met by a real camera setup, that
may not be present in building all databases.

To illustrate our concerns, we ran tests on the first 50
frames of four video sequences in the Replay-Attack Corpus.
Figures. 7(a)-(d) present detected faces in the first frame of
each of the used sequences. In a total of 200 frames, none of
them were detected as attacks. For example, the DFT of Fig.
7(d) is presented in Fig. 7(e), which clearly does not present
distinctive peaks as Figs. 1(f) and 6(b) nor yields distinctive
secondary DFT peaks as in Fig. 7(f), thus making the database
image capture conditions unsuitable to the proposed algorithm.

B. Experiments with the Moiré database

In order to generate face-spoofing images for our tests,
a database comprised of 50 images of individuals under 13
different conditions was generated, with images from the MIT-
CBCL Face Recognition Database, the Extended Yale Face
Database B and the Frontal face dataset from the Computa-
tional Group at Caltech [27]-[29]. Even though the databases
contain hundreds of images of the individuals under different
poses and lighting directions, we fortuitously chose those with
frontal pose and relatively frontal lighting, since the face-
detector performance is not an issue in this work. Figures
8(a)-(c) present samples of the used databases.

The aforementioned images were photographed under sev-
eral conditions: (i) displayed on a 13-inch Macbook Pro screen
and captured by an iPhone 4 camera; (ii) displayed on a
13-inch Macbook Pro screen and captured by an iPad Mini
camera; (iii) displayed on an iPad Mini screen and captured
by an iPhone 4 camera; and (iv) displayed on an iPhone 4
screen and captured by an iPad Mini camera. Figures 8(d)-
(f) present samples of Figs. 8(a)-(c) under conditions (ii)-(iv),
respectively.

In all of these conditions, images were taken at different
distances from the displays, in order to evaluate how the
proposed algorithm operates under these circumstances. These
different conditions were chosen so that two fundamental
factors could separately be accounted for: (a) the distance
between the display and the camera; and (b) the pixel res-
olution. In all of the aforementioned conditions, images were

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Algorithm output for some of the images in the Replay-Attack database
[12]: (a)-(d) are, respectively, detected faces in the first frame of video
sequences attack highdef client004 session01 highdef video adverse.mov,
attack highdef client006 session01 highdef video controlled.mov,
attack highdef client001 session01 highdef photo adverse.mov and
attack highdef client002 session01 highdef photo controlled.mov, (e) is the
absolute value of the DFT of (d), and (f) is the output of the algorithm for
(d). (a)-(b) are found under the train/attack/hand/ folder, and (c)-(d) are
found under the train/attack/fixed/ folder. Logarithmic scaling was applied
to (e) for viewing purposes.

captured as uncompressed TIFF files [32], so as to avoid
affecting the results by lossy-compression artifacts. Table I
summarizes all tested conditions. The full database can be
found at http://image.unb.br/queiroz/moiredatabase.

Figure 9 presents the false living rate under each condition
in Table I as a function of the average pixel ratio PR. For
each condition, the false living rate refers to the percentage
of spoofing images that were not detected as such, and the
average pixel ratio is measured as the average ratio of the
widths of the detected faces on the capturing system (N2)
and on the face-spoofing screen (N1). Condition 0 is not
depicted, as the pixel ratio cannot be defined in this case.
Under condition 0, no false positives were detected, yielding
a null false spoofing, i.e. no non-spoofing image was detected
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Samples of the Moiré database, created to validate the proposed
algorithm: (a)-(c) are, respectively, in the MIT-CBCL Face Recognition
Database [27], the Extended Yale Face Database B [28] and the Frontal Face
dataset from Caltech [29], and (d)-(f) are face-spoofing attacks for (a)-(c)
under different conditions.

TABLE I
TESTED CONDITIONS FOR THE FACE-SPOOFING IMAGE DATABASE.

Condition Display Capture Distance Average PR
0 Original image
1 Macbook Pro iPhone 4 ≈ 20cm 3.08
2 Macbook Pro iPhone 4 ≈ 30cm 1.93
3 Macbook Pro iPhone 4 ≈ 40cm 1.40
4 Macbook Pro iPad Mini ≈ 20cm 2.97
5 Macbook Pro iPad Mini ≈ 30cm 1.99
6 Macbook Pro iPad Mini ≈ 40cm 1.46
7 iPad Mini iPhone 4 ≈ 15cm 2.63
8 iPad Mini iPhone 4 ≈ 20cm 1.91
9 iPad Mini iPhone 4 ≈ 25cm 1.67

10 iPhone 4 iPad Mini ≈ 10cm 1.86
11 iPhone 4 iPad Mini ≈ 15cm 1.22
12 iPhone 4 iPad Mini ≈ 20cm 0.92

as a spoof.
It can be seen from Fig. 9 that the condition in Eq. 2 holds

true, and that the algorithm becomes more reliable as the pixel
ratio increases. For PR > 2, no false negatives are reported.
This behaviour is expected for the algorithm, since the increase
in the pixel ratio reduces the effect of low-pass filtering due
to motion blur, lens defocus, diffraction and pixel response,
among others. For 1 < PR < 2 however, a perfect score
cannot be guaranteed for the algorithm.

This result suggests that the proposed algorithm requires
a maximum distance between the screen and the capturing
system in order to detect face-spoofing images. This can be
achieved by requiring a minimum size for the detected face, so
that an image in a tablet, laptop or smartphone would need to
be close enough to the capturing system for the Moiré patterns
to emerge. Also, the proposed algorithm requires a minimum
resolution for the capturing system, so that low-resolution
cameras such as cheaper webcams may not be adequate for
the task at hand.

In order to clarify these remarks, Fig. 10 presents further
details of the results of the proposed algorithm. Figures 10(a),
(d) and (g) represent cases of a true negative, a true positive
and a false negative, respectively. Figures 10(b), (e) and (h)
present the absolute values of the DFT of Figs. 10(a), (d) and
(g), respectively, after convolution with DoG filters. Figures

Fig. 9. False living rate for the proposed algorithm as a function of the
average pixel ratio. The data was computed under conditions 1-12 in Table
I. Condition 0 represents non-face-spoofing images, for which the false spoof
rate was found null.

10(c), (f) and (i) present the thresholded versions of Figs.
10(b), (e) and (h), respectively.

It can be seen from Fig. 10 that the algorithm is effective
as long as the peaks of interest in the DFT are sufficiently
prominent, such as in Figure 10(e). At large distances from
the display to the camera and for low-resolution screens,
these peaks do not appear, and the algorithm is not able to
correctly detect face-spoofing images. This is the case for
Figure 10(h), which was obtained under condition 12, an iPad
Mini photographing an iPhone 4 at a 20 cm distance.

We also evaluated the proposed algorithm’s performance
as opposed to Zhang et. al.’s algorithm [3], which involves
the training and testing of support vector machines. Since the
Moiré database contains 50 non-spoofing images and 50 ×
12 = 600 spoofing images, it represents a very unbalanced
dataset for training and testing, yielding unsatisfactory results
[20]. The best solution found was to train and test separate
SVMs for each condition. For instance, we chose 25 images
from Condition 0 and 25 images from Condition 1 to train the
SVM, which was tested on the remaining 25 images from each
of these Conditions. We repeated this for Conditions 0 and 2,
0 and 3 and so on. We used the LIBSVM library, employed a
radial basis function (RBF) kernel, and chose the best results
from a wide range of C and γ values [33].

Figures 11 and 12 present the false living rate and false
spoofing rate, respectively, for Zhang et. al.’s algorithm, com-
pared to ours. Results indicate that, in terms of false living
rate, the proposed algorithm is outperformed for low pixel
ratio values (PR ≈ 1), but Zhang et. al.’s algorithm cannot
guarantee a null false living rate without sacrificing the false
spoofing rate. As shown in Fig. 12, Zhang et. al.’s algorithm
also does not guarantee a null false spoofing rate, as opposed
to the proposed algorithm. The results shown in Figs. 11 and
12 may not be fully representative of the method, given the
reduced number of training images, but they also show that
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spoofing detection based on empirical classification, such as
SVMs and neural nets, can be highly dependent on the training
dataset, making it much more difficult to implement in real-
world situations.

Fig. 11. False living rate for Zhang et. al.’s algorithm [3] as a function of the
average pixel ratio. The data was computed under conditions 0-12 in Table I.
The results for the proposed algorithm are also shown for comparison.

Fig. 12. False spoofing rate for Zhang et. al.’s algorithm [3] as a function of
the average pixel ratio. The data was computed under conditions 0-12 in Table
I. The results for the proposed algorithm are also shown for comparison.

V. CONCLUSIONS

In this paper, a face-spoofing detection algorithm was pro-
posed based on the detection of Moiré patterns due to the
overlap of digital grids. The conditions under which these
patterns arise were described and experimentally verified. The
effectiveness of the proposed algorithm was also verified by
running tests on a database of face images shot under several
conditions. Results show that, under the right conditions, face-
spoofing detection can be performed with great accuracy.
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Fig. 10. True negative, true positive and false negative examples: (a) detected face in Figure 8(a); (b) natural logarithm of the absolute values of the DFT
of (a); (c) Output of the algorithm for σ = 0.1, yielding a true negative; (d) detected face I for Figure 8(b) under Condition 1; (e) natural logarithm of the
absolute values of the DFT of I ∗ D(0.1); (f) Output of the algorithm, yielding a true positive; (g) detected face for Figure 8(e) under Condition 12; (h)
natural logarithm of the absolute values of the DFT of (a); (i) Output of the algorithm for σ = 0.1, yielding a false negative. Images are best seen on a screen.


