SUBMITTED TO IEEE SIGNAL PROCESSING LETTERS

Integer Alternative for the Region-Adaptive
Hierarchical Transform

Gustavo P. Sandri, Member, IEEE, Philip A. Chou, Fellow, IEEE, Maja Krivokuca, and Ricardo L. de
Queiroz Fellow, IEEE

Abstract—A recently-introduced coder based on region-
adaptive hierarchical transform (RAHT) is being considered as
a standard for the compression of point cloud attributes at
MPEG (Moving Picture Experts Group). The RAHT coefficients
can be encoded in many ways and the transform is based on
a series of orthogonal 2x2 transform matrices with geometry-
dependent floating-point entries. In order to remove computation
ambiguity and facilitate deployment, fixed-point operations are
often preferred. In this paper, we present an alternative RAHT
description that allows for fixed-point implementation of its
transform steps. It is based on matrix decompositions akin to
lifting steps and a scaling of the quantization steps. Results
are presented to show that the new fixed-point transform is,
in practical terms, equivalent to the floating-point RAHT. For
that we use a reasonable number of precision bits for the integer
operations, e.g. 8 bits or more.

Index Terms—point cloud compression, MPEG PCC, RAHT.

I. INTRODUCTION

HE region-adaptive hierarchical transform (RAHT) was

recently introduced in order to compress color informa-
tion and other attributes of point clouds [1],[2]. RAHT is a
hierarchical orthogonal sub-band transform that resembles an
adaptive variation of a Haar wavelet transform. Unlike images
which are dense, point clouds are sparsely occupied [3],[4]
and RAHT adapts its coefficients to the location of occupied
voxels [1]. RAHT coefficients, like in typical transform coders,
are then quantized and entropy coded.

Real-time point cloud compression has received increased
attention with recent developments in applications such as 3D
telepresence systems [5]-[7]. There is also a recent interest in
augmented reality systems and autonomous automotive navi-
gation, which has further sparked interest in the use of point
clouds as a means to represent 3D objects and has motivated
the need for efficient point cloud compression techniques.
The Moving Picture Experts Group (MPEG) and the Joint
Photographic Experts Group (JPEG) have identified this trend
and have recently initiated activities towards the standardiza-
tion of point cloud compression technologies [8]-[11]. RAHT
has been proposed to MPEG [12] as a means to efficiently
encode the attributes of point clouds, and has been accepted
by the MPEG-3DG/PCC (MPEG 3D Graphics/Point Cloud

G. Sandri is with the Department of Electrical Engineering, University of
Brasilia, Brazil, e-mail: gustavo.sandri@ieee.org

P. Chou is with Google, Seattle, Wa, USA, e-mail pachou@ieee.org

M. Krivokuéa is with INRIA, Rennes, France, e-mail:
jakri01 @ gmail.com

R. de Queiroz is with the Computer Science Dept, University of Brasilia,
Brasilia, Brazil, e-mail queiroz@ieee.org

ma-

Coding) group as part of the Test Model for geometry-based
point cloud compression (G-PCC) [13]. RAHT, however, is
originally based upon a series of operations on real numbers.
In standardization activities, recommendations should be as
precise as possible, and operations with real numbers are
usually challenging since floating-point operations often vary
with hardware and software. In order to remove any ambiguity
of floating-point operations inherent to RAHT, in its original
proposal, we present a novel RAHT description which is
designed to accommodate fixed-point arithmetic.

II. INTEGER-BASED TRANSFORM

RAHT is a variation of the Haar transform, which takes
into account empty voxels. If a voxel to be transformed has
no immediate neighbor, it is passed to the next level. If two
neighbors exist, they are transformed, yielding a low-pass
and a high-pass coefficient. The low-pass coefficient is then
connected to other low-pass coefficients in a hierarchical and
recursive manner. If a coeffcient has no immediate neighbor,
it is passed to the next level, otherwise the pair is transformed,
generating another pair of low- and high-pass coefficients.
The problem is that, unlike with dense data, along this tree
two low-pass coeffcients about to be transformed represent
averages over different numbers of voxels (we call these num-
bers weights) [1]. The difference in weights is accounted for
in RAHT as follows. Let two neighbor low-pass coefficients,
Fri1,2n, and Fyqq 2,41 at level £+ 1 be combined to form a
low- and high-pass pair of coefficients, Fy ,, and Gy ., at level
£.1f weyq,2n, and wyiq 2541 are the respective weights of the
input coefficients, then

Fé,n _ a b F€+1,2n (1)
Gon b a Foi1,2n4+1

where

o2 = We+41,2n b2 — We+1,2n

,)
Wet1,2n T Wet1,2n+1 Wet1,2n+1 + w€+1,2n+%2

Note that a® + b?> = 1 so that the transform is orthonormal,
i.e. a Givens rotation. The typical butterfly used to describe its
implementation is depicted in Fig. 1. If any of the weights are
zero, the transform does not need to be computed, since either
a =1 and b = 0 or vice-versa. If the weights are equal, a =
b = 1/4/2, and the transform is a 45 degree rotation, which
is the Haar transform [14]. The Haar transform is popular for
dense data like in images. This would be the case if all voxels
are occupied. RAHT is intended for sparse data, where only

SUBMITTED TO IEEE SIGNAL PROCESSING LETTERS

some of the voxels in the voxel space are occupied, hence the
need to track the weights of the coefficients.

Only the low-pass (F') coefficients are passed to further
transforms. If we define, for simplicity of notation, wy =
We41,2n and W1 = W41 2n+1, then

N

NGO
|: Ff,n —_ Vwo+wi wo w1 F£+1,2n (3)
Ge VAT o Foiion41 |7
" Vwotwi wo+ w1 Hlant

This equation can be rewritten as

L wo w1 Feyion
Vwo+wy — wo+w1y wo+wy wo
G, Ywotw ~1 1 Fegions1
&n ™ Jwowr w1
“4)
or, assuming
F,
Fip= o ®
’ wo + Wi
and
Vwo + wi
Gl =G, (6)
Vv WoWt
then the direct transform can be written as
[F,] B { a? b2] [Fiiion |)
! - /A M
£n -1 1 F£+1,2n+1 |
Similarly, for the inverse,
FE/Jrl,Qn :| _ |: 1 _22 :| |: FZ/,n | (8)
/ = ’ .
L Fz+1,2n+1 I a 4n |

If we consider that a®> = 1 — b? and the following matrix
decomposition [14]

[a2 2 1 b2 1 0
R R PRI T
then
F.,]1 [1 @ 1 0 F 1on
EAR R ER e

which is implemented with two additions and one multiplica-
tion, and where ® is a fixed-point approximation of b2, and
b? = wy/(wo + wi). The butterfly to implement the Givens
rotation corresponding to each RAHT step is then simplified
to the one depicted in Fig. 1. The fixed-point approximation
involves an integer division and a choice of the number of
precision bits. The result is a fast transform without using
floating point arithmetic.

There is a problem, though, with the proposed transform.
Since there are scalings in both input and output samples, as
we use F; E/,n and Gg’n (equations 5 and 6), the transform itself
is no longer orthonormal. Coefficients F, An and Gzn have an
embedded gain compared to the original F} ,, and Gy,

Fortunately, we can compensate them during quantization.
If we assume, for simplicity of notation, a constant step size
A for all levels and coefficients £ , and Gy, the corrected
stepsizes for the scaled coefficients should be

E+1,211 E.n
b
(a) b
F‘[+1‘271+l —> G[.ll
a
a
E’” F}+l,2/1
(b)
G’[‘n —>E+1,211+l
a
’
Fligon —— + D 7,
y ,
(c) -1 ®
FV Y
1+1,2n+1 > G,’,7

'
E+1,2/1+[

Fig. 1. Lifting-style integer computation of the RAHT butterflies: (a) original
butterfly for the forward transform; (b) the butterfly for the inverse transform;
(c) the simplified fixed-point butterfly; with (d) its inverse counterpart.

S S N AL
Vwo +wy’ b Jwowy

Recall that wy and w; are notational simplifications. If wy
and w; are the weights of the input low-pass (/) coefficients,
wp~+w is the weight of the output low-pass coefficient. Hence,

F lin o F 4n
\/wé+1,2n + We41,2n+1 \/w&n
and the scaled output of one transform stage is at the proper
scale to be input to the next stage. When we reach the top
of the tree, for example at level 0, the overall DC coefficient
for the whole point cloud, Fp,, is quantized using step size
A/\/won- This requires us to compute one square root per
point cloud. However, the high-pass coefficients, G/, are

ln>
always quantized and encoded. For G, the step size should
be

Fj,— A (11)

Fp, = . (12)

A \/we+1,2n + w€+1,2n+1’ (13)

We41,2nWe+1,2n+1

which demands the computation of a fixed-point square root
per coefficient. Along with the square root, it also demands an
addition, a division and a multiplication, all using fixed-point
arithmetic.

Both the proposed fixed-point implementation and the
floating-point one have the same complexity O(nlog(n). They
differ in how the transform is computed. In the fixed-point
implementation we need to convert the point cloud color to a
fixed-point representation prior to the transform. Furthermore,
the transform is executed using only integer operations (sum,
subtraction, multiplication, division and square root). We need

SUBMITTED TO IEEE SIGNAL PROCESSING LETTERS

to compute as many fixed-point square roots as RAHT coef-
ficients, which is the same number as occupied voxels in the
point cloud. Therefore, we recommend using a fast fixed-point
square root approximation.

III. EXPERIMENTS

We compared our fixed-point RAHT implementation to
the floating-point one, within the context of a RAHT-based
point cloud coder. In our naive implementation, the fixed-
point RAHT is actually slower than the floating-point one. It
actually changes from computer to computer and depends on
architecture and compilers. At the same time, the fixed-point
implementation heavily depends on the integer-only square-
root computation, which, in our implementation, is recursive.
Since we used a simple algorithm, far from optimized to
any architecture, we believe this time could be significantly
reduced.

In order to analyse the impact of fixed-point arithmetic we
measure the effect of the change on the coder performance in
terms of rate-distortion (RD) curves. Rate is computed as the
number of bits used to write the encoded file to disk divided
by the number of occupied voxels in the point cloud, i.e., the
number of bits to encode all YUV color components, while
distortion is measured as peak signal-to-noise ratio (PSNR)
comparing the original and reconstructed Y -channel attributes.
The PSNR for the U- and V-channels are very similar to that
of the Y -channel, being around 91% and 87% the value of the
Y -channel PSNR, respectively, regardless of the rate. In our
tests, we used the same number of precision bits for both &
and the square root computation.

Our test set is illustrated in Fig. 2 [15],[16]. Rate-distortion
curves are shown in Fig. 3, comparing the floating-point im-
plementation against fixed-point implementations with varying
precision. The two sets of curves are very similar and show the
curve for an 8-bit implementation to superimpose the floating-
point one. The curve sets for the other point clouds were
omitted because, qualitatively, they are the same as those two.
In order to better appreciate how close the curves are, the
average PSNR difference between fixed-point curves and the
floating-point one was computed for every point cloud and the
results are shown in Table L.

IV. CONCLUSION

We have introduced a new RAHT definition that allows
for fixed-point implementation (that is emulated by integer
operations) without impacting the compression performance.
Its applications are in real-time point cloud transmission (e.g.
augmented reality, autonomous navigation, etc.). This result
can effectively change the RAHT coder description in the
context of point cloud compression standardization. Results
show that 8-bit fixed-point precision may be good enough
for our compression applications, and any representation using
10 bits and above yields negligible compression performance
impact. The proposed fixed-point RAHT implementation has
already been incorporated into the software base (Test Model
13) of the MPEG G-PCC point cloud codec [13]).

Fig. 2. Rendering of a view of our point cloud test set. From left to right,
top to bottom: Andrew, Ricardo, Phil, David, Sarah, longdress, loot, soldier,
and redandblack.

REFERENCES

[1] R. L. de Queiroz and P. A. Chou, “Compression of 3D point clouds
using a region-adaptive hierarchical transform,” IEEE Transactions on
Image Processing, vol. 25, no. 8, pp. 3947-3956, Aug. 2016.

[2] G. Sandri, R. L. de Queiroz and P. A. Chou, “Comments on ’Com-
pression of 3D Point Clouds Using a Region-Adaptive Hierarchical
Transform’,” arXiv:1805.09146v1 [eess.IV], 23 May 2018.

[3] M. Gross and H. Pfister (eds.), Point-Based Graphics, Elsevier, Burling-
ton, MA, USA, 2007.

[4] R. B. Rusu and S. Cousins, 3D is here: Point Cloud Library (PCL),
Proc. IEEE Intl. Conf. on Robotics and Automation, ICRA, Shanghai,
China, pp. 1-4, May 2011.

[5] S. Orts-Escolano et al., “Holoportation: virtual 3D teleportation in
real-time,” Proc. 29th ACM User Interface Software and Technology
Symposium, Tokyo , Japan, Oct. 2016.

[6] C. Zhang, Q. Cai, P. Chou, Z. Zhang, and R. Martin-Brualla, “Viewport:
a fully distributed immersive teleconferencing system with infrared dot
pattern,” IEEE Multimedia, vol. 20, no. 1, pp. 17-27, 2013.

[71 A. Collet, et al., “High-quality streamable free-viewpoint video,” ACM
Trans. on Graphics, Vol. 34, No. 4, Article 69, Aug. 2015.

[8] C. Tulvan, R. Mekuria, Z. Li, and S. Laserre, Use cases for point cloud
compression, ISO/IEC JTC1/SC29/WG11 MPEG, document N16331,
Jun. 2016.

[91 R. Mekuria, C. Tulvan, and Z. Li, Requirements for point cloud
compression, ISO/IEC JTC1/SC29/WG11 MPEG, document N16330,
Jun. 2016.

[10] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A.
Chou, R. A. Cohen, M. Krivokuéa, S. Lasserre, Z. Li, J. Llach, K.
Mammou, R. Mekuria, O. Nakagami, E. Siahaan, A. Tabatabai, A.
Tourapis, and V. Zakharchenko, “Emerging MPEG Standards for Point
Cloud Compression,” IEEE J. Emerging Topics in Circuits and Systems,
accepted for publication, 2018.

[11] T. Ebrahimi, S. Foessel, F. Pereira, P. Schelkens, “JPEG Pleno: toward
an efficient representation of visual reality,” IEEE Multimedia, Vol. 23,
No. 4, pp. 14-20, Nov. 2016.

SUBMITTED TO IEEE SIGNAL PROCESSING LETTERS 4

TABLE I
AVERAGE PSNR DIFFERENCE BETWEEN FIXED- AND FLOATING-POINT RAHT CODER IMPLEMENTATIONS. THE AVERAGE WAS COMPUTED IN THE RATE
RANGE FROM 0.3 TO 3 BITS PER OCCUPIED VOXELS. PRECISION OF THE FIXED-POINT IMPLEMENTATION IS INDICATED.

andrew david phil ricardo sarah longdress loot redandblack soldier

1 bit 8.200 8.571 8251 8.602 9.252 7.832 8.559 7.771 8.189
2 bits 2.685 2.561 2.615 2.671 2.856 2518 2.681 2.405 2.622
3 bits 0.998 1.001 0.952 1.009 1.106 0.937 0.977 0.855 0.947
4 bits 0.430 0.497 0414 0.472 0.481 0.390 0.424 0.348 0.391
5 bits 0.193 0.170 0.174 0.210 0.234 0.179 0.186 0.158 0.173
6 bits 0.095 0.081 0.085 0.076 0.098 0.084 0.080 0.074 0.083
7 bits 0.044 0.043 0.040 0.043 0.058 0.042 0.039 0.036 0.040
8 bits 0.022 0.027 0.021 0.030 0.037 0.020 0.018 0.018 0.016
9 bits 0.014 0.016 0.013 0.019 0.030 0.010 0.012 0.009 0.010
10 bits 0.007 0.013 0.007 0.016 0.025 0.005 0.007 0.005 0.005
11 bits 0.004 0.018 0.005 0.016 0.039 0.002 0.005 0.003 0.003
andrew

40 -

35 -

PSNR [dB]

—eo— float point
—©— 8 bits
25 - 4 bits
—&— 3 bits
—4— 2bits

1 bits

20 1 1 1
0 0.5 1 15 2 25 3

Rate (Y+U+V) [bits per occupied voxels]

longdress

35 -

30 -

PSNR [dB]

—e— float point
—E— 8 hits
20 - 4 bits
—&— 3 bits
—4— 2bits

1 bits

15 L L L L L |

0 05 1 15 2 2.5 3
Rate (Y+U+V) [bits per occupied voxels]

Fig. 3. PSNR curves comparing the floating-point implementation with the
fixed-point ones for two point clouds and different numbers of precision bits.
Qualitatively, all sets of curves for all nine point clouds in our test set are
very similar.

[12] P. A. Chou and R. L. de Queiroz, Transform coder for point cloud
attributes, ISO/IEC JTC1/SC29/WG11 MPEG, input document m38674,
May 2016.

[13] K. Mammou and P. Chou, “PCC Test Model Category 13 v2,” ISO/IEC
JTC1/SC29/WG11 MPEG document N17519, Apr. 2018.

[14] G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-
Cambridge Press, Wellesley, MA, USA, 1996.

[15] C. Loop, Q. Cai, S.O. Escolano, and P.A. Chou, “Microsoft voxelized
upper bodies - a voxelized point cloud dataset,” in ISO/IEC JTC1/SC29
Joint WGI11/WG1 (MPEG/JPEG) input document m38673/M72012,
May 2016.

[16] E. d’Eon, B. Harrison, T. Myers, and P. A. Chou, “8i Vox-
elized Full Bodies - A Voxelized Point Cloud Dataset,” in
ISO/IEC JTC1/5C29 Joint WG11/WG1 (MPEG/JPEG) input document
WG11M40059/WG1M74006, Geneva, January 2017.

