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Abstract. A new fransionm coder based on the zanal sampling steat-
gy, which oulpedonms the JPEG baseline coder with comparabie
computational complexity, is presented. The primary fransform used
ig e 8- @-pixal-block diserete cosing transform, altfhough it can be
replaced by otfer ransforms, such as the lapped orthogonal rans-
form, without any change in the algonthm, This coder is originaly
basad on the Chen-Smith coder, thersfore, we call it an Imprcved
Chen-smith (105 codsr However, because many new lealures
were incofporated in this improved veesion, # laegely culpedorms its
predecessor Key aporoaches in the OS5 coder, such as a naw qusan-
fizer design, antfmetic coders, nomintoger bit-rale aliocation, deci-
maled varance maps, dislance-basaed hlock classification, and hu-
man visual sensiifvily weighling, are essentizl for s high
parfarmance. Image comprassion programs were developed and ap-

plicd to several tesl images. The resulls show that the 105 perfarms
substantially befter than the JPEG coder,

1 Introduction

Transform coders'™ have heen wide Iy used for image
compression. In particular, the Toint Photographic Expens
Group (JPEG)™ baseline algorithm is now widely used for
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lossy compression of gray-scale and color images. In trans-
form image coding, the transform is anly a pant of the overall
compression scheme, because the coding process may in-
volve more processing o implement quantizers, butfers,
variable-length coders, ete."" The transtorm by itsell does
nal imply any compression, but it makes easier the task of
discarding signal information in the transform domain with-
out affecting much of the subjective quality of the recon-
structed image. Although various discrete wansforms have
been investigated for application o image coding, only the
discrete cosine transform (DCT) has emerged as the most
practical and efficient transform ™ Recently, the Japped or-
thogonal transform has been extensively simulated and has
proven 1o he advantagecus over the DCT in terms of reduc g
blocking artifacts, mainly at low bir rates.'™" Details of
translorm coding of images can be found in Refs, | through
13, The spectrum of applications of image compression in-
cludes dilferent disciplines such as medical Haging, remaole
sensing, consumer electronics, printing and publishing. de-
fense, television, sports, communications, storage, ete.
Commonly, in the block transform coding approach, the
image is decomposed into blocks of M % M samples {picture
elements or pixels), and each block is transformed using
2-1¥ ransforms oblained from a separable transform applied
e rows and columns of the block. The image sumples are
denoted as x(n,.n,) for O=n =N —1 and 0=n,=N, -1,
where N, 2N, are the dimensions L:-i the image, Assume M
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divides both & and A, . Each image block is thus represented
by the samples o, (mny=ximM+i aM+ji) lTor 0=
(. i1=M—1, with :'.j.m, and a integers, The block is also
referred te as having position (), and the sample position
inside the hlock is given by (7,71 Similarly, the notation
for the sample in positdon (7)) of a wansformed block
is X (mana) for O=(ijiy=M-—1, O=m=N, -1, and
O=n=Ng, — |, where Ny, and &, are the number of blocks
in the vertical and horizontal directions, respectively. We also
dencte Np=~N; Ny as the wolal number of blocks in the
nage. The ransformed samples are relerred to here as coef-
ficients, and the imuage samples are referred to as pixels, The
samples X tnna) are called the do coefficients, and the re-
maining M?— 1 elements of each block are called the ac
coefficients, Thus, the ac indices are those in the set Y=
{ij|0=(, j=M=1, (i j)=(0, ). The process of block seg-
mentation is illustrated in Fig, [,

Figure 2 illustrates the method for image compression
through wransforms. This method transforms the image, quan-
tizes coelficients, and encodes the quantizer output to form
a hit stream that will be transmitted or stored, The inverse
operation is carried out o reconstruct the image. The
compression is achieved by coding more efficiently (with
mire bits) the coclficients that are more important, i.e., that
carry more energy of the input block. In adapuve tansiorm
coders. hlocks with more ac enerey are allocated more bits
thun blocks with low ac content.

The main approaches vsed to encode the coeflicients are
known as thresholding and zonal sampling ™ Thresholding is
the main philosophy behind JIPEGS*" Init, all coeflicients
are quantized, and all quantized cocficients are input o a
hinary encoding procedure to reduce the redundancy of the
datathrough run-length and variable-length coders. The xonal
sampling strategy 15 based on the selection of some cosffi-
cients for transmission, while discarding the remaining coef-
ficients,™'* A first step for achieving signal compression is
1o allocate a different number of bits w each resion. Regions
with less concentration of energy recerve fewer bits, whereas
regions with greater concentration of energy receive more
bits, The Chen-Smith {CS) coder’ and the improved Chen-
Smith {(1CS) coder are based on an adaptive zonul sampling
scheme,

This paper is organized as follows, Section 2 is devoted
o the explanation of the basic concepts of the C85 and 1CS
coders, Section 3 is concerned with the features incorporated
it the 1CS5 coder, which will help explain its better per-
formance. Section 4 presents results of tests vsing the 1CS
coder and relating it o both C5 and JPEG coders. Finally,
Sec. 5 containg our conclusions,

2 Coder Outline

In this section we review the basic concepls commaon to the
CS and 1CS coders and also give an overview of the specific
improvements that characterize the [CS coder,

2.1 Chen-Smith Coder

Chen and Smith'" devised a technique to distribute different
bit allocations to different blocks of the signal, according to
the ac energy of the blocks. The briel description of the
algorithm follows:
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Fig. 1 luslration of the position of the transformed coeflicients:
(a) An M, image is divided into My, =M. Blocks, sach of the
gize Mx A A 2-D transtorm is applied to each bleck, resulting in
M2 transtorm coefficients. A transformed tlack is dustrated in [[+30
indicating the postion of the de coefficient and of the highest fre-
guency ac coefficient.
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Fig. 2 Basic concepls of transtorm coding.

I, Transform the image using hlocks of M 3 M pixels,
2. Quantize and code separately the de coefficients using
uniform quantizers.

3. Compute the ac energy of cach hlock as
Einnmy= 2 X im.n) . (1)
T

sort the energies, and classify the blocks (in sored
order) into M equally populated classes. Thus, there
will be &g/ blocks in each class. Construct the ¢lass
map O with the classilication of each block, for
example, Clma) =k if block (wree) belongs to the class
k=1, ... Nl

4. For all blecks belonging to the same class, compute
the average variance ol the transform coefficients and
then their standard deviations, Construct & standard
deviation maps with the standard deviation of the coef-
ficients. found from

uri{a',_,."]—zz_:}{; {nrn) for {ijrel | D)

ety

where @, = {m.n | Cimni =k} is the set of blocks thar
belong o cluss &

“h

Merge all N ac standard deviation maps and decide
the hit allecation, using the standard log-variance
rule.”” From all Uf{."._j b find an equivalent set of rates
Fold, 4 e minimize the distortion fora given bit hudger,
A constraint is imposed that each R, (i, j ) is an integer
lving between Dand B where &, 15 the maximum
number of bits for which there is a gquantization table
available, Create N bit-allocation maps with a ocne-
te-one correspondence with the elements of the stan-
dard deviation maps,
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b, Reestimate the standard deviations using the bit-
allocation maps:

ol =i 2T for 1=k=N,. {(ij)le¥ .

(3

where ¢ is a normalization Factor. We suggest choosing
¢ as the maximom o 4,7 ), for which K, (i i1=1, w
avoid excessive clipping.

. Send the class map, the normalization cocllicient o,
and the bit-allocation maps as side information, For
example, il we chose No=8 and 8, =7 we can en-
code the maps with 3 bits/sample, and ¢ can be e(11-
ciently quantized witl 16 bits or less.

4. Cuantize, encode, and send all the coellicients, using
the reestimated variances. A coefticient X, | (m.5)
[Bleck (waned]. which belongs o class & [l =L,
15 scaled |divided by .00, 1], applied o a quantizer
with 2495 Jevels, and encoded with &, (om0 bits, 1
R i v=0, the particular coefficient 15 not transmitted.

The decader may first decode the side information and
the de coethcients, the class map, the bit-allocation maps.
and the normalization factor o From them. the decoder can
reconstruct the standard deviations vsed to scale the quan-
tizers as in Eq. (3 With the maps reconstructed, and with
the knowledge of the transmission order, the decoder can
exactly determine the position of the incoming cocllicient,
the class of its block, how many bits were assizoed w it, and
the variance used for quantization. Therefore, the receiver
can decode the coetficients, apply an inverse transform, and
abtain the reconstructed image.

Ifwe use &) bits 1o encode each bit-allocation map sample,
f5 bils o encode cach class map sample, By hits to encode
o, and & bits to encode each de coefficient. then the total
number of bits used 1o encode the overhead, the de coeffi-
cients, and the ac coctlicients (B, B, and &, respectively)
wild be

B, =No(M?— )b+ Npb,+b,; , {4
By =Naby, (3)
By=RypeNuM*— By — B, . (6)

where Ry, is the overall bit rate (o encode the whole image
in bats per pixel. The budget of bits available for the rate-
allocation procedure is given by

hY
£ o M~ L
Y, 2R )=B.=S(M2-1) . (7

e Aol Ny

For example, a 256- X 256-pixel image s compressed using
Ne-=8 classes to a rate of | hitpixel. There are &, = 1024
blacks in the image, and we assume 8B, =7 and b, =7,
Hence, By =3, bo=73, b= 16, and the overhead is respon-
sthle Tor 7% of the total bit rate, the de coefficients for |15,
and the remaining 82% ((1L82 bits/pixel) is spent with the ac

-

coellicients. One disadvaniage of this coder arises from the
recstimation procedure, which could he avoided with the
transmission of the standard deviaton maps instead of the
bit allocation maps. However, if we code each standard de-
viation with 16 bits, the part allecated for overhead would
mcrease 1o 7%,

2.2 Improved Chen-Smith Codar

The 1C5 coder incorporates ke features o overcome maost
of the preblems present on the original CS coder, These
teatures, which arc explained in the next section, are the
Fllowing.

o Distance-based block classification is an oplion.

o The standard deviation maps are sent o the receiver
instead of the bit-allocation maps. This allows the re-
ceiver 1o have precise estimates of the variances. largely
reducing quantization mismatches. However, we do
transmil the maps, expending an amount of bits com-
parable to o lower than the amount needed 1o encode
the il allocation maps.

o Because the receiver knows the standard deviations, we
can weight the standard deviation maps vsed lor bt
allocation, leaving the estimates used for quantization
intact, and without increasing overhead far this step.

o OQuantizers are designed following the Gaussian proh-
ability density funetion { PREF ), for reasons we will ex-
plain later. The quantizers are oplimized constrained 1o
their output entropy. and the Lloyvd-Max algorithin is
not used, Arbitrary noninteger entropy values can he
used.

o A bit rate allocation method is applicd w allocare frac-
tional and non-negative entropic bit rares to each cocls
fictent in a purticular class, Cverall distortion is mini-
mized because of the quantizer design algorithm,

¢ Arithmetic coding is applied to all quantized coelti-
clents

As lor the 105 coder, a briel description of the algorithm
lexllevars:

L. Transtorm the image vsing blocks of M =M pixels,

2. Quantize and code separately the de coeflicients using
uniform quantizers,

3. Classify blocks either using ac-gnergy-based or
distance-based methods.

4. For each class, compute the standard deviation maps.
Reestimate the standard deviations using decimation/
interpolation of the ariginal map.

6. Send the class map, the standard deviation maps, and

the human visuzl sensitivity (1VS) model sampling

frequency £."'° The standard deviation maps are de-
cimated in two dimensions, as we will discuss later,

Weight the standard deviation maps using an HVS

maodel and decide the bit allocation. Allow noninteper

non-negative bit rates according to the quantizers avail-
able,

8. Quantize, encode, and send all the coefficients using
the reestimated variances.
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Al the receiver side we first decode the side information
and the de coefficients, Then, a bit-allocation reutine identical
tothe one used in the transmitter side is used. With the maps
reconstructed. and with the knowledge of the transmission
order. the receiver can decode the coefficients, apply an in-
verse transform, and abtain the reconstructed image,

The amount of bits spent with overhead and with the
coelficients 15 similar w the number found for the C5 coder,
excepl that the standard deviation maps are encoded in place
of the hit-allocation ones. However, as we discuss later, this
is done withoul increasing the overhead,

3 Features

We now explain in more detail the ke features introduced
in the [CS coder and how these features enhance coder per-
formance.

3.1 Oistance-Based Classification

Define the distance between two blocks as

Binar oy gy pis) = Z (X )| — X.'_r["”?-"‘.?:'“: .

(8)

[nthe 1S, we seek 1o minimize the distance among all hlocks
that belong to o particular class. Thus, & vector quantization
(V) codebook design procedure is carried. ™™

In Table | we have computed the signal-to-noise rano
(5NE)Y in decibels using botly classification procedures {ac-
energy-based and distance-based ) for the test image **Lena,”™
with several values of V.. and using the DOT over blocks of
B8 pixels. The SNR was computed as

SMR=10 log,, .'~‘| ,:L” ,
E 2 [.ﬂ.{.':-,.l.r_.}—.;l“.rn..rrzjl:

=1l =i

)]

where x(n),n,) and % (n;,0,) represent the original and re

constructed images, respectively. We can see from Table |
that distance-based classification works better than ac energy
classification as the number of classes increases, Note that
the overhead necessary 1o transmit the classes has been taken
into accoeunt in the bit rates. Therelore, it does pay off 1o use
a higher number of classes. The price 1o be paid is in the
increased computational complexity of the classification pro-
cedure,

3.2 Side Information

The transmission of the standard deviation maps instead of
the hit allocation maps allows the receiver to have accurate
standard deviation maps, so that different maps can be vsed
for hit allocation and for quantzation, The map used lor bit
allocation is weighted by an HVE model, so that more bits
can be given W more important coefficients, in a subjective
sense. This cannot be done in the original C5 coder. Because
the hit allocation maps are transmitled as side information,
it they are weighted beforchand, the standard deviation used
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Table 1 SNS (in d2) results using image “Lena,” DCT, and B- » B-
pixel blocks. B is the bil rate in bits per pinel achisved.

-

Image Lenz, 236 « 236 pisels

A Energy classification Distange-based classi ication

Wumber of classes Mumber of classes
B 2 32 | 2 4 | & | 32
D4 228 230 1.2 223 | 2246 (228 | 226|215

| 245 (242 | 250 | 253 | 256 | 25.2
| 8| 270 2T4 26,7 (259 | 267 | 274 | 278 | 27.6
10| 284 | 200 286|272 | 280 | 280 206 205
[1.5] 314 | 322 | 32 320|298 | 310 319 | 329 | 330

Q6 350 | 255

O x x % o » o

X oOX X X 0 X o

X X X X 0 o o o
X X X X 0 x o X
o & o o 0 o o 0
XX o ¥ o x o X
o o @ © 0 ° o 0

x oM ¢ X o0 ¥ o X

Fig. 3 Transmission of standard deviation maps for each block in &
class, [« represents samples retained in an 8«8 block, O repre-
sents discardad samples, and [ represents the de coefficient, for
which ng devigtion is computecd.

tor dequantize the coefficient would also be affected, causing
severe guantizer mismatch in the reconstruction process.
However_ we cannet waste much information to send accurate
maps, us we discussed earlier. The map of standard deviations
in a block is a reasonably smooth function. Therefore, one
can decimale this map by discarding some samples and, in
most cases, the deleted samples can be very well approxi-
mated by interpolation. We retain the samples indicated in
Fig. 3. and the interpolation can be a simple average of the
nearest neighbors, The remaining samples are uniformly
quantized and encoded using an adaptive method. Samples
are scanned in a reversed rigzag path (from higher frequency
coefficients o lower frequency ones), and it is expected o
have high-frequency coefficients with less amplitude than
coefficients with lower frequency, Then, the number of hits
given to them is increased as we go along the path, The
average bil rate to transmil these samples is smaller than 3
bitsfsample, Thus, for £, =7 we can have some savings
compared 1o the criginal CS method. Note that the bit allo-
cation map is no langer transmitted. The decoder runs its
own rate-allocation procedure based on the standard devia-
ticm maps available, and hoth encoder and decoder remain
synchronized.

3.3 Human Visual Sensitivity Weighting

The human eye has discriminative sensitivity to different
spatial frequencies. The HVS weighting array is meant to
devise the relative importance of each ransformed coefficient
for the reconstructed image, in the subjective viewpoint of a
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human ohserver." 2 IF the |-D weighting model is given by
wi ), where (s the radial frequency in eycles per degree of
the visual angle subtended. then the HYVS array composed
by elements n;; for 0=(i, j )=M — | is found by

wi f; ; }

T Foa L] []UJ
Toar (o)
where (00 = Ihg':l aelm) =1 (n=0),
Fiit+ 7
= T i
fii 2M E

and £ 15 o sampling frequency parameter, which can be varied
nc‘coj'ding toe the ratio of the distance of the viewer o the
screen width and according to the number of pixels displayed
per line'™ " and is passed to the receiver as side information,
Ifweset =10, wearcactually lurning of T the HY S weighting
process, becavse all coefficients would receive equal weights,
Furthermaore, the model is relative, such that the maximum
vilue in the array can be sel o unity. We used the following
[-T3 model '™

wi 1= 2.46(0.1 +0.25F) expl —0.25f) . (12)

Then we use o, 7),, 45 inpul o the bit-rate-allocation process
instead of using only the standard deviatons (}U.I':'D'“ [n
this way, the rate-allocation process will save bits from less
unportant coefficients to give to subjectively more important
ones, and, as we discussed before, &, would still he available
for scaling the coefficients in the quantization process.

3.4 Design of the Quantizers

The CS coder uses quantizers optimized by the Lloyd-Mazx
method ™ assuming o Laplacian PDF. Although this is a
common practice for quantizing DCT coefficients, it is not
a good echnique in coders such as C8 or 105

It has been reported that the distribution of the DOT coel
ficients follows approximately a Laplacian PDE "' How-
ever, this Tact has little relevance te us, because the mean-
ingful PDF (ol the sample input w the guantizers) is the
conditional PDF given the class index. Suppose we use o
large number of classes, so that fewer blocks would he in-
cluded in one class, and suppose we were using a distance-
hased classification, and examinimg the PDF of all samples
Xip{mn} for a given (i f) and (mie . These samples
will have an estimated standard deviation & (ig% If
ol 1 is large, we expect the coefficients 1o have large val-
ues, due to the elassification procedure, and not values close
to zero as in the Laplacian medel. The resulting canditional
PO uppmxinuilcx a sum of two Gaossian PDEs, as shown
in Fig. 4. The reason for the two lobes in Fig. 405 duoe o
the uncertainty about the coefficient sign. As the number of
classes decreases, the two Gaussian functions are merged and
the resulting PDF becomes approximately Gauvssian. Similar
reasoning applies o the use of ac energy classification; how-
ever, as many energy distribution patterns can be found in
different blocks with similar ac energy, the conditional PIOF
does not present the twao lobes, but the Gavssian PDE fits
well to most input distributions tested. Note that low-
frequency coefficients are generally larger, and the high-

gl

‘\ fixlo)

Fig. 4 Typreal conditional PDF for a high number of classes and the
estimated standard deviation .

| S N |
= 0 T

frequency components are generally small and do net influ-
ence the classification process much, Thus, the conditional
P is not as important o them, and they are expected to
Folloms more closely the Laplacian PDE. However, they also
have lower energy concentration and lower importance to
the recanstruction of the image. Furthermaore, the use of a
Gavssian PDE leads to quantizers that are more robust against
PDF mismatches, compared to the Laplacian PDF® These
facts led us to choose the Gaussian PDF as the model For
quantizer design,

Assume the range of real numbers is divided into L non-
overlapping segments [, (1=k=1), with each segmenl! rep-
resenting one quantization level, So a sample with amplitude
X=x and estimated standard deviation o will be recon-
structed as X=ux, iF (ofoed, where x; 15 the reconstruction
value of the i"thquantizer level, and i is the symbaol associated
with the quantizer output. 1 the input sample {X/o) has a
POF al f(x), the probability of occurrence of the ©“th sym-
bol 1k

Fin) dn (13)
L

pEPr(Ximel )=
and the entropy of the guantizer output s

r
H= Zp, loga g, . ey
i ]

The average distortion 2 allowed by the quantizer is defined
as the standard deviation of the quantizer error o as

J (A=, P F(A) di
Moz iy

I
_ .- 1.
D=g, with o = 2,

i=1 I

—_— . (15)

The Llovid-Max quantizer design technigue™ is optimal
in a sense that it will minimize O tor a given PRF and L.
thus finding

tin 2L, fix) . (16
s

Because we will apply efficient entropy coding procedures
Lo the quantizer ocutpul, we are interested i minimizing the
distortion subject to g particular output entropy, independent
of the number of levels achieved, This is the entropy-
constrained version of the Lloyd-Max algorithm.™ and it is
useid in the design of the gquantizers in the [CS coder, where
the algorithm searches Tor

Javrnal of Electronie fmaging £ Aprif 1895 7 Vol. 4{2) 7/ 155
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min D|H, fix) . {17
&

The main advantage of using entropy-constrained scalar
quantizers (ECS0s) is that we can obtain any desired entropy.
This is important mainly at low bit raes, where the available
entropies Tor Max quantizers are too few. For example, below
2 bits/sample there exist only three Max quantizers, with
entropies of 1.0, 154, and 1.9 bitsSsample, Therefore, with
ECSCQs we can get bit allocations closer wo the true optimum,

We have designed 23 quantizers with entropy rales rang-
ing from H=0to =375 in steps of 0.25 bits, i.e., .25,
0.50, 0.75, ..., 5.75 bits. The number of levels L ranges
from 3 o 75, As is usual with BECSOs, the reconstruction
levels of the quantizers are approximately uniformly distrib-
uted, except near the origin, where they are further spaced
[that is hasically how the entropy H gets 1o be much lower
than log, £ (see Ref. 223]. The plot ol £ as a function of H
for the set of quantizers used in this paper is shown
in Fig. 5.

3.5 Quantizer Allocation
We have available 2 setof ¥; quantizers, each one associated
with an average normalized distortion (due o unit variance
inputy, and a quantizer entropy value forming a pair
(H,, D) for 0=i=N;. There are actually Ng + | quantizers,
because for the Arst guantizer it is assumed (H, =10, Oy, = 1),
and this quantizer is included justte simplify the presentation.
This means that a particular cocllicient assigned to it is not
transmitted and is reconstructed as zero.

Let QN x| be a function returning the quantizer number
i such that £ s the distortion (in the set of available quan
Lizersh closest to the real number o There are & =f'-'f.tﬂ'i‘: -1
difTerent coefficient classes and ac requency bands 1o which
we have to assign quantizers, [f all classes are merged and
coefficients are displaced lexicographicatly, we can say that
we have variables (X, ..., X0 with respective standard de-
viations given by (o, ... 0,0 t0 which we have o assign
quantizers (g, .. geb Tor D=g =N, An optimal allocation
will distribute the sume distortion to all X, unless the required
distortion is greater than o, in which case the total distortion
is o,

Constrained disfortion. I X, is allocated® to a quantizer
with distortion d=1, the total distortion suffered by X, is
=g, Se for a given distortion parameler 8, we have
g:;= N {llea,) for i=1, ., & . (18}
Constrained bit rate.  We can interact § until the bit rate
is close enough to the total budget bit rate & available, Let
{r,, d, 3 be the entropy/distortion pair of the guantizer assigned
1o X,. 5o we have o recursion as

1. r,=HONBc)) fori=1, . K
2. i [(K | r)— B|<e. then return, or else adjust # and

continue, where £ is a small control nomber and
Hii=H,,

“If X, is allocatesd to quantiees O, ol = 0= 1 and wal distomion is o,
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Fig. 5 Disworlion Oxanlrepy | H) function for the cptimal EC5Qs
uzed in this paper and for Lloyd-Max guantizers. With EC50s, en-
tropies below one bit per sample can easily be oblained.

The solution is optimal provided that Mp—e, the esli-
mated standard deviations are accurate, the distribution of all
X, follows the assumed PDF, and the quantizer output is
encoded by a perfect entropic coder. However, the abave
algorithm is our “hest shot™” given the setof quantizers avail-
able. We are using quantizers whose output entropy is spaced
by quarter-bit intervals, in order 1o approximate ideal con-
dirions.

3.6 Arthmetic Coding

Arithmetic coders® ™ are applied w the quantizer output to
provide near perfect entropic coding. To do that more effi-
ciently. we applied one arithmetic coder for all cocfTicients,
instead of using one arithmetic coder Tor each quantizer. As
each coellicient is quantized. new information regarding L
and p,(1={=2L) for the particular quantizer in use is loaded.
The ougpur bitstream will convey information from all quan-
lizers together, but, because we know precisely the order in
which cach quantiver was used, we can recover all coethi
cients. This ensures that each quantizer cutput is encoded 1o
a rate near to its entropy. and, compared o a set of N distinet
arithmetic coders operating in parallel, it simplifies imple-
mentation.

3.7 Other Transforms

Another point favoring the vse of the 105 coder is its inde-
pendence of the transform used. No parameter was designed
for the DCT," and most of the parameters are gither computed
or assumed. Therelore, we can easily replace the DCT by
translorms with better performance such as the LOT ar the
extended lapped transforms’ ' without any algorithm change.

4 Image Compression Performance

We have devised an image compressing protetype based on
the [C8 coder, written in C and using a PC 436 DX-33 as
the platform. The prototype accepts input parameters, which
allow us to change number of classes, image size, transform
used, classification method, target bit rate or distortion, and
the HY'S parameter . For a fair performance comparison,
we also developed a JPEG baseline coder using similar rou-
tines. We wsed the quantization matrices suggested as an
example in the JPEG baseline recommendation™ this is usual
in many JPEG implementations. ITn our hit-rale computations

PAN exceplion s the HYE Tueticn, which would slightly change, However, this

Fanetion can e easily changed w0 accommedate other ranstorms M
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for JPEG we have not included the overhead necessary 10
transmit the quantization matrices, A truly JPEG-compliant
encoder must include those matrices in the encoded bil
stream, and so its performance would be somewhal worse
than that of our JIPEG encoder,

Although the 1CS coder incorporated many sophisticated
technigues, such as arithmetic coding, optimal bit allocation,
ele.. JPEG is still not much faster than the 1C5 coder. For
example, decoding of 236 256 pixels takes 2 s with the
JPEG algorithm and 3.2 s with the ICS (using the DCT and
ac energy classification). The reason lor this relatively small
difference in speed is because the most complex operations
in the 1CS coder, such as the quantizer allocation, erc., are
carried over a small set of data. The time-consuming oper-
ations are those applied over the whole image, such as the
DCT, classification, and arithimetic coding. Also, for low bit
rates, only a reduced set of cocfficients is actually quantized
and coded,

i our test, we have comparisons of classilication methods
for the 1CS coder in Table 1. The best entries in that table
ifor each hit rate and for both classification methods) wers
selected and used in Table 2 to compare the performance of
the 1CS coder with the T8 coder and the JPEG coder, From
these results, we can clearly see the best performance of the
105 coder. We also carried other obhjective comparisons {us-
ing several test images) between the 1CS (using ac-energy-
based or distance-based classification), and the IPEC coder,
as shown in Fig. 6. In these simulations, we have tumed off
the HVS weighting by setting f,=0. Note the greater per-
formance difference for smaller images {256 % 250 pixels).
In this size range, for DCT-hased coders using scalar quan-
tization, and for a detailed monochrome image, a reasonable
compromise between image quality and compression gen-
erally lies between 0.6 and 1.2 bitipixel. In this range, the
ICS cader is up o 2.5 dB better than the JPEG,

Figure 7 shows the resulting reconstructed images using
the ICS coder for images “*Lena™ and “*building™ at 0.8 bit/
pixel, withf, =32, which is well suited for someane observing
the image at a distance four 1o six times longer than its width,
assuming 256 % 256-pixel images. This situation is typical
of someone working in front of a computer where the image
is displayed on a medium-to-high resolution monitor. Also,
in Fig. 7, a comparison is made between 1CS and JPEG
coders, for the same bit rates.

5 Conclusions

A new transform coder based on the well-known Chen-Smith
coder is developed, which outperforms the JPEG baseline
coder. Our rests have shown that this compression gain comes
with only a small expense of compression speed. Essential
factors for its higher performance {compared to the C8 coder)
are the new quantizer design, the use of arithmetic coders,
noninteger bit-rate allocation, decimated vanance maps,
distance-based block classification, and HY'S weighting. For
low hit rates, blocking effects are present in both JPFEG and
1S (with HVS weighting switched off) as is common with
DOT-hased coders. However, as we turn on the HYS weight-
ing. these blocking effects are largely reduced or eliminated.
In fact, all images coded with the [CS coder presented no-
ticeably better subjective quality when compared with cor-
respondent images coded with the JPEG coder.

Table 2 Cbjsclve comparison of performance (SMA in decuhclsﬁ
armong different image codears, using 256- « 256- pigelimage “Lena,”
and 8% 8 DCT, IS antries are for the test results in pravious tables
for dislance-based and ac energy classifications {(ICSde and 1CSaz,
respectively), and bit rate is given in bit ser pixel.

[Bitrate | TFEG | €5 [ 1050k IS0 |

04 [213 [213] 228 | 230
na | 237 | 231 256 255
0s 254 | 245! 118 | w4
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Fig. 6 Difference in SMA,; between 105 coder and JPEG coder,
using different images, DCT, and both classification methods. For
the distance-based classification method we selected Ne= 16, whilz
for ag ensrgy classification we used No=4. The values plottad cor-
raspond to SMR (IG5 — SR & (PES) for different bit rates with-
out HVS weighting. {a} 256-x256-pixel image “Lena,” (o) 256-
= 256.pixel image "building.” {c) 512-x512-pixel image “jet”
(gl 512-% 512-pixel image “locomotive.”

Although the [CS coder presents significant performance
gaing over the JPEG, there are some points that could be
added o our current prototype in order to improve ils per-
formance, such as hetter coding of the de coefficients, which
novw are coded using unilirom quantization and a fixed-length
code. The de coefficients are coded first with the same guan-
tizer, and this procedure is independent of the desired bit rate,
which explains the performance of the 1C5 coder against the
JPEG coder for very low bit rates in Fig, 6. Technigues such
as differential pulse code modolation (with a quantizer whose
step sizes can be increased as we decrease the bit rate) and
arithmetic coding can be used w elficiently reduce the budget
of hits spent for the transmission of the do coefficients. This
poine will receive attenticn in the future,
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ia) k)

i) {d}

Fig. 7 Reconstructed images using 105 coder, DCT, 256- x 256-pixel images, =32, and distance-
bazed classification for 16 classss, (a) Original image “Lena” ang (b} itz raconstructed version at 0.8
bit/pixel. {c) Zoom of (b). (d) Same resut as in ie) with the JPEG coder. {Continued on next page)
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(2]

Fig. 7 {Continuad from previous page.) (e} Original image “building” and (f) its reconstructed varsion
at 0.8 bit'pixal. (g} Zoom of . {h) Same result as in (g) with the JPEG coder,
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