
ON QUANTIZATION OF IMAGE CLASSIFICATION NEURAL NETWORKS FOR
COMPRESSION WITHOUT RETRAINING

Marcos Tonin and Ricardo L. de Queiroz

Eletrical Engineering and Computer Science Departament
Universidade de Brası́lia, Brazil

marcosvtonin@gmail.com and queiroz@ieee.org

ABSTRACT

We studied the quantization of neural networks for their com-
pression and representation without retraining. The goal is
to facilitate neural network representation and deployment
in standard formats so that general networks may have their
weights quantized and entropy coded within the deployment
format. We relate weight entropy and model accuracy and
try to evaluate distribution of weights against known dis-
tributions. Many scalar quantization strategies were tested.
We have found that weights are typically approximated by a
Laplacian distribution for which optimal quantizers are ap-
proximated by entropy-coded uniform quantizers with dead-
zones. Results indicate that it is possible to reduce 8-fold
the size of the popular image classification networks with
accuracy losses near 1%.

Index Terms— Neural network compression, weight
quantization, ONNX file compression.

1. INTRODUCTION

The use of artificial intelligence (AI) to solve problems in di-
verse areas of knowledge is increasingly frequent and intense.
One of the reasons for this high frequency is the applicability
in different contexts and the ability to respond to real chal-
lenges [1], such as safe driving in autonomous cars [2].

AI often uses neural networks (NN) [1], which have been
used in different applications, such as image classification,
object detection, body analysis, machine comprehension, ma-
chine translation. NN models are made of weights, biases,
computational units, and layers [1].

In Internet of Things (IoT) [3] and Edge Computing [4],
typical equipments have limited resources and energy [5, 6].
Hence, the NN models should be compacted and reduced.
These constraints have given rise to interest in NN compres-
sion. Since NN is used in the most diverse devices and var-
ied occasions, the interoperability of the NN becomes a crit-
ical point in their development. The Open Neural Network
eXchange (ONNX) format allows interoperability between
frameworks to train the model in one tool and use another
for inference and prediction [7]. ONNX works by defining

a standard set of operators and default data types, in addi-
tion to weights and biases. The weights can be represented
as 32-bit floating-point as specified in IEEE 754 [8], a float.
There is also the possibility to store the parameters as a 64-bit
floating-point, a double. There are ONNX models for object
detection, gesture analysis, text translation, image classifica-
tion, etc., for example, MobileNet, AlexNet, GoogLenet and
VGG [7].

There are several works on NN compression. However,
most involve retraining the model or changing its structure
(e.g., insertion or removal of layers), such as the methods that
use pruning [9, 10, 11, 12, 13], layer quantization [14], weight
sharing [15] and quantization in general [16]. We are inter-
ested in compression without retraining. For example, Seo
and Kim use a hybrid method with uniform compression fol-
lowed by K-means clustering [17]. Dupuis et al. achieve
compression by sharing weights among layers [18].

Among the compression with retraining efforts, we have
the MPEG’s call for NN compression (MPEG–NNR), which
aims at defining a compressed, interpretable and interopera-
ble representation for trained NN [19]. Also, MPEG-NNR
recommends interoperable formats like ONNX and NNEF
(Neural Network Exchange Format) for a compressed rep-
resentation of NN. MPEG-NNR’s call for proposal has the
following requirements [19]: efficient representation of the
model (the size of the compressed model has to be at least
30% smaller than the original model); to support different
types of NN (CNN, RNN and others); the compressed rep-
resentation may contain all the parameters and weights of the
NN; the possibility of performing the inference of the com-
pact model; the method to compress the NN independently
of the dataset used to train the original model; low computa-
tional power and memory consumption to perform decoding.

We, however, are interested in reducing the size of net-
works in ONNX format without retraining them and without
imposing a significant performance impact.

2. WEIGHT QUANTIZATION

If one is to look for data inter-dependence within NN, there
must be an implicit ordering among the data. Weights and

biases of the NN model are separated into layers, which are
usually ordered from the input to the output one. However,
there is no exact ordering, and we could not find clear peaks
in spectral analysis or correlation functions to warrant vec-
tor quantization or transformation. Therefore, as we found
no dependence between the coefficients, we focus on scalar
quantization.

Table 1. Some ONNX’s models.

Models File size
(MB)

Percentage ratio
of weights and biases

in the file(%)
Caffenet 232.57 99.999

Efficientnet-lite4 49.54 99.841
GoogLenet 26.72 99.907
Mobilenet 13.59 99.366

Resnet 170.40 99.930
Shufflenet 5.46 99.246
Squeezenet 4.73 99.713

VGG 548.15 99.997

Most of the data in an ONNX file are weights and bi-
ases, as shown in Table 1. Their amplitude distribution is
usually concentrated around zero and is approximately sym-
metric around zero. The weights distribution of Googlenet
and the Shufflenet models are shown in Fig. 1.

Fig. 1. Weights histogram for Googlenet and Shuflletnet mod-
els.

We analyzed the weight histograms and compared them
to known probability density functions (PDF), such as Alpha,
Cauchy, Exponential, Logistic, Gamma, Laplace, Gaussian,
and Uniform [20, 21, 22]. In order to evaluate distribution dis-
tances, we used two distance metrics: sum of squared errors
(SSE) and Kullback-Leibler divergence (KLD). Let P (i) be
samples of the model distribution, while Q(i) be similar sam-
ples of the reference, standard distribution. Then

SSE =

n∑
i=1

(P (i)−Q(i))2, (1)

KLD(P ||Q) =

n∑
i=1

P (i) log
P (i)

Q(i)
. (2)

Both SSE andKLD measure the similarity between two
distributions. The KLD measures the information lost when

Table 2. SSE between standard and NN model distributions.

Models 1st most
similar dist.

2nd most
similar dist.

3rd most
similar dist.

Caffenet Laplacian Logistic Gaussian
efficientnet Laplacian Logistic Gaussian
GoogLenet Laplacian Logistic Gaussian
Mobilenet Laplacian Gaussian Logistic

Resnet Laplacian Logistic Gaussian
Shufflenet Cauchy Laplacian Logistic
Squeezenet Logistic Laplacian Gaussian

VGG Alfa Laplacian Logistic

Table 3. KLD between standard and NN model distribu-
tions.

Models 1st most
similar dist.

2nd most
similar dist.

3rd most
similar dist.

Caffenet Gaussian Laplacian Cauchy
Efficientnet Laplacian Logistic Gaussian
GoogLenet Laplacian Logistic Gaussian
Mobilenet Laplacian Logistic Alfa

Resnet Laplacian Logistic Gaussian
Shufflenet Cauchy Laplacian Logistic
Squeezenet Laplacian Logistic Gaussian

VGG Alfa Laplacian Logistic

Q is used to estimate P , and SSE is the norm of the error in
between distributions.

Tables 2 and 3 rank PDFs that are most similar to the
weights histogram of NN models. In Table 2, referring to
the SSE, we found that the Laplacian distribution is a good
approximation since the first or second distribution best ap-
proximates the models. Moreover, the KLD metric (Table 3)
has the Laplacian distribution always among the three best ap-
proximations to the models. Hence we can conclude that the
Laplacian distribution is a reasonable approximation. Thus,
we can use Sullivan’s results [23] for entropic coding of quan-
tized values, which reports that, for Laplacian distributions,
the optimal quantization is approximated by uniform quanti-
zation with dead-zones.

Uniform quantization can be midtread or midrise, as de-
scribed in Table 4. With a dead-zone, the level around zero
has a different range, as described in Table 4. In Table 4, X
represents the value of a weight to be quantized, Xq the value
passed to the decoder, and X̂ the value reconstructed by the
decoder. ∆ is the size of the quantization steps and s(X) is
the sign function returning 1 if the number is positive and -1
otherwise. σ defines the relative size of the dead-zone related
to the quantization step. Note that σ = 0 implies the midrise
quantizer, while the midtread quantizer has σ = 0.5. The
dXe operator is the ceiling (top) rounding of X .

In non-uniform quantization, step sizes are unequal, for

Table 4. Uniform Quantization Formulas.

Xq X̂

Midtread round(X∆) ∆Xq

Midrise s(X)dX∆ e s(Xq)∆(Xq − 1
2)

Dead-zone
0, |X| < σ∆

s(X)d(|X|∆ − σ)e

0, Xq = 0

s(Xq)∆(|Xq|+ σ − 0.5)

example, using logarithmic functions. Usually, steps near the
origin are smaller. We performed tests with the non-uniform
”µ-law” quantization. Another way to perform non-uniform
quantization is to use different floating-point formats. The
standard format is the 32-bit float [8]. There are IEEE-defined
versions for 16-bits and 8-bits (half-precision and minifloat,
respectively). Other float versions can be defined using the
format:

s0 e0 e1 ... ep−1 m0 m1 ... mq−1, (3)

where the sign s0 is a bit, followed by p exponent bits and q
mantissa bits.

3. RESULTS

Tests were performed using the ImageNet Large Scale Vi-
sual Recognition Challenge 2012 (ILSVRC 2012) validation
dataset, composed of 50000 images [24]. These images have
a classification among 1000 possible classes. The networks
used here are presented in Table 1 (all of them are CNN type
in ONNX format). In order to evaluate the performance of
the image classification models, we use the accuracy Top 1
(acc1) and the accuracy Top 5 (acc5). acc1 computes 1 if the
top class of the model matches the ground truth and 0 oth-
erwise; acc5 computes 1 if any of the top 5 highest classes
outputs of the network matches the ground truth and 0 oth-
erwise. So, for the 50000 validation images, acc1 indicates
how many images the model was able to correctly predict,
just considering the top class, while acc5 indicates how many
images the model was able to correctly predict, considering
the top 5 classes. We have also computed the entropy of the
NN weights, which estimates how many bits in average an
encoder would spend to encode each quantized weight.

Table 5 shows entropy and accuracy results for the un-
quantized models. We evaluate the uniform quantization
(midrise and midtread), non-uniform quantization (floats rep-
resentations and ”µ-law”) and, also dead-zone quantization
(σ as 0.1, 0.25, 0.4, and 0.7). Note that midrise is the case
σ = 0 and midtread is the case σ = 0.5. For the midrise,
midtread and dead-zone quantizations, we vary the number
of bits from 24 to 2 bits (2b, 2 ≤ b ≤ 24), with the weights
ranging from −1 to +1; As for the non-uniform (µ-law)
quantization, we vary µ from 224 to 22. The float represen-
tation was chosen with 16, 12, 10, 8, 7, 6, 5, 4 and 3 bits

Table 5. Entropy and accuracy results for uncompressed
models.

Models Entropy acc5 (%) acc1 (%)
caffenet 25.213 79.522 56.264

efficientnet-lite 23.513 93.684 77.734
googLenet 22.653 88.34 67.774
Mobilenet 21.673 88.934 69.3

Resnet 24.734 93.614 77.214
shufflenet 20.391 68.134 42.422

squeezenet 20.221 77.38 53.77
VGG 25.661 91.816 73.646

according to Eq. 3 and IEEE 754.
Figure 2 compares the acc1 results for uniform quantiza-

tion schemes. The RD results of the acc5 metric has quali-
tatively similar behaviors to acc1, but they are not quantita-
tively identical. Thus, when acc1 tends to decrease, acc5 also
decreases at a slower rate. For simplicity, The results for the
acc5 metric were not shown. In Fig. 2, except for the Mo-
bilenet case, a better result is achieved for midrise, midtread,
or dead-zone with σ = 0.4. For most networks, the results do
not vary much. The Mobilenet network is the most sensitive
to dead-zone step size. For this model, σ = 0.7 yields the
best results.

Table 6. Best RD results for a 1% accuracy drop.
Models

(Method)
Level
Bits

Entropy
achieved

acc5 (%)
achieved

acc1 (%)
achieved

caffenet
(Midrise) 8 1.828 78.958 55.5

efficientnet
(σ = 0.7) 9 6.528 93.374 77.194

googLenet
(σ = 0.4) 8 3.06 87.938 67.03

mobilenet
(σ = 0.7) 14 11.914 88.482 68.304

resnet
(σ = 0.7) 13 7.736 93.322 76.632

shufflenet
(Midrise) 9 6.078 67.512 41.77

squeezenet
(Midtread) 8 4.67 76.578 53.2

VGG
(σ = 0.7) 9 2.653 91.698 73.576

Table 6 refers to the point with the best performance
shown in Fig. 2. The best performance point is the point with
the lowest entropy, such that there is a maximum difference
of 1% in the acc1 and acc5 metrics compared to the model’s
initial accuracy.

Figure 2 and Table 6, indicate that a better result is
achieved for midrise, midtread, or dead-zone with σ = 0.4
or σ = 0.7. For most networks, the results do not vary much

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 2. Rate and distortion (RD) comparisons (entropy × accuracy) among uniform and non-uniform quantization for different
networks. Results for the acc1 metric are shown, since graphics for the acc5 are very similar.

(considering midrise, midtread and dead-zone methods). The
network that shows the most divergence of results is Mo-
bilenet, which has a noticeable difference in behaviour, when
comparing dead-zone methods against non-uniform ones,
midrise and midtread. In this case, the dead-zone quantizer
with σ = 0.7 yields the best performance.

4. CONCLUSIONS

Results in Table 6 and Fig. 2 show us that, for most networks,
it is possible to get rates close to 5 bits by weight without
causing significant losses. For acc1, as for acc5, a maxi-
mum accuracy of 1.0% was achieved. After choosing the best
quantizer and step size, an average of 5.62 bits/weight was
achieved, representing a 5.6× reduction in the size of the NN
originally with 32 bits. The proposed method can be useful to
achieve the objectives proposed in the MPEG-NNR call [19].
For simplicity, only 8 NN models have been shown. We have

tested others models, including non-image-related ones, with
similar results. We hope these results could be characteristic
and provide a general trend.

Future work may include tests with more NNs, and com-
bine quantization with retraining methods.

5. REFERENCES

[1] M. Mohammed, M. B. Khan, and E. Bashier, Machine
Learning: Algorithms and Applications, CRC, 2017.

[2] D. Feng, L. Rosenbaum, and K Dietmayer, “Towards
Safe Autonomous Driving: Capture Uncertainty in the
Deep Neural Network For Lidar 3D Vehicle Detection,”
in 2018 21st Intl. Conf. on Intelligent Transportation
Systems (ITSC), 2018, pp. 3266–3273.

[3] M. Mahdavinejad et al, “Machine learning for internet

of things data analysis: A survey,” Digital Communica-
tions and Networks, vol. 4, no. 3, pp. 161–175, 2018.

[4] J. Ren, Y. Pan, A. Goscinski, and R. A. Beyah, “Edge
computing for the internet of things,” IEEE Network,
vol. 32, no. 1, pp. 6–7, 2018.

[5] Y. Zhang, W. Ding, and C. Liu, “Summary of convolu-
tional neural network compression technology,” in 2019
IEEE Intl. Conf. on Unmanned Systems (ICUS). IEEE,
2019, pp. 480–483.

[6] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient
processing of deep neural networks: A tutorial and sur-
vey,” Proc. of the IEEE, vol. 105, no. 12, pp. 2295–2329,
2017.

[7] J. Bai et al, “ONNX: Open neural network exchange,”
https://github.com/onnx/onnx, 2019.

[8] Institute of Electrical and Electronics Engineers, “IEEE
Standard for Floating-Point Arithmetic,” IEEE Std 754-
2008, pp. 1–70, 2008.

[9] S. Han, H. Mao, and W. J. Dally, “Deep compres-
sion: Compressing deep neural networks with prun-
ing, trained quantization and huffman coding,” arXiv
preprint arXiv:1510.00149, 2015.

[10] L. Li, Z. Li, Y. Li, B. Kathariya, and S. Bhattacharyya,
“Incremental deep neural network pruning based on hes-
sian approximation,” in 2019 Data Compression Conf.
(DCC). IEEE, 2019, pp. 590–590.

[11] X. Dong, S. Chen, and S. Pan, “Learning to prune
deep neural networks via layer-wise optimal brain sur-
geon,” Advances in Neural Information Processing Sys-
tems, vol. 30, 2017.

[12] W. B. Zhao, Y. Li, and L. Shang, “Fuzzy pruning for
compression of convolutional neural networks,” in 2019
IEEE Intl. Conf. on Fuzzy Systems (FUZZ-IEEE). IEEE,
2019, pp. 1–5.

[13] T. Serra, A. Kumar, and S. Ramalingam, “Lossless com-
pression of deep neural networks,” in International Con-
ference on Integration of Constraint Programming, Ar-
tificial Intelligence, and Operations Research. Springer,
2020, pp. 417–430.

[14] X. Zhu, W. Zhou, and H. Li, “Adaptive layerwise
quantization for deep neural network compression,” in
2018 IEEE Intl. Conf. on Multimedia and Expo (ICME).
IEEE, 2018, pp. 1–6.

[15] J. Kim, M. Lee, J. Kim, B. Kim, and J. Lee, “An efficient
pruning and weight sharing method for neural network,”
in 2016 IEEE Intl. Conf. on Consumer Electronics-Asia
(ICCE-Asia). IEEE, 2016, pp. 1–2.

[16] J. Faraone et al, “Syq: Learning symmetric quantiza-
tion for efficient deep neural networks,” in Proc. of the
IEEE Conf. on Computer Vision and Pattern Recogni-
tion, 2018, pp. 4300–4309.

[17] S. Seo and J. Kim, “Hybrid approach for efficient quan-
tization of weights in convolutional neural networks,” in
2018 IEEE Intl. Conf. on Big Data and Smart Comput-
ing (BigComp). IEEE, 2018, pp. 638–641.

[18] E. Dupuis, D. Novo, I. O’Connor, and A. Bosio, “Sen-
sitivity analysis and compression opportunities in dnns
using weight sharing,” in 2020 23rd Intl. Symposium on
Design and Diagnostics of Electronic Circuits & Sys-
tems (DDECS). IEEE, 2020, pp. 1–6.

[19] “Core Experiments for Incremental Neural Network
Compression,” Oct. 2021, ISO/IEC JTC 1/SC 29/WG
04, output document WG04N151.

[20] A. Papoulis and U. Pillai, Probability, random variables
and stochastic processes, McGraw-Hill, 4th edition,
Nov. 2001.

[21] A. A. Salvia, “Reliability application of the alpha dis-
tribution,” IEEE Transactions on Reliability, vol. R-34,
no. 3, pp. 251–252, 1985.

[22] J. S. deCani and R. A. Stine, “A note on deriving the in-
formation matrix for a logistic distribution,” The Amer-
ican Statistician, vol. 40, no. 3, pp. 220–222, 1986.

[23] G. J. Sullivan, “Optimal entropy constrained scalar
quantization for exponential and laplacian random vari-
ables,” in IEEE Intl. Conf. on Acoustics, Speech and
Signal Processing. IEEE, 1994, pp. V–265.

[24] O. Russakovsky et al, “Imagenet large scale visual
recognition challenge,” Int. J. Comput. Vision, vol. 115,
no. 3, pp. 211–252, Dec. 2015.

