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ABSTRACT

We introduce Region-of-Interest (ROI) coding for point cloud
attributes, using an input-weighted distortion measure where
the weights are determined by the ROI. In terms of coding,
we use the Region Adaptive Hierarchical Transform (RAHT),
which relies on a set of weights. We use a measure-theoretic
interpretation of RAHT to determine that the weights of the
transform should be set to the weights of the distortion mea-
sure. The ROI is chosen as the 3D region of the face, which
is detected from a set of 2D projections using the well-known
Viola-Jones algorithm. Experimental results show subjec-
tively meaningful improvements (7-8 dB PSNR) in a face
ROI with subjectively insignificant degradations (under 1 dB
PSNR) in the non-ROI.

Index Terms— Point cloud, region of interest, RAHT

1. INTRODUCTION

Point clouds, which represent the 3D world by sampling, have
become increasingly important in recent years because of the
proliferation of computational imaging aimed at 3D sensing.

Like raw images and video, point clouds and point cloud
sequences contain large amounts of data. Therefore point
cloud compression is required in any practical application.
MPEQG is currently standardizing a format for point cloud
compression (PCC) to serve this purpose [1].

Like images and video, point clouds often have regions of
interest (ROI) that have special semantic or perceptual signifi-
cance or salience — for example faces — for which preservation
of high fidelity during compression could be important. For
images and video, ROI-driven compression, or ROI coding,
is well studied. (See, e.g., [2].) However, for point clouds,
there is little prior literature on ROI-coding. In this paper, we
propose ROI coding for point clouds.

Point clouds consist of geometry and attributes. The
geometry part of a point cloud is simply a list of 3D po-
sitions {x;} = {(xs,vi,2:)}, i« = 1,...,N, where N
is the number of points in the point cloud. The attribute
part of the point cloud is a corresponding list of attributes
{a;} = {(ai1,...,a;p)}, i=1,..., N, where D is the num-
ber of attributes per point. Commonly, the attributes include
color components (Y;,U;,V;), but may also include trans-
parency, normals, motion vectors, and so forth. Once the

geometry is given, the attributes may be thought of as a signal
defined on a set of points.

Most point cloud codecs in the literature compress the ge-
ometry first and then compress the attributes given the ge-
ometry. Typical approaches to attribute coding include trans-
form coding using the Graph Fourier Transform (GFT) [3, 4,
5, 6, 7, 8], the Gaussian Process Transform (GPT, which is the
KLT of a Gaussian Process) [9, 10], and the Region Adaptive
Hierarchical Transform (RAHT) [11, 12]. RAHT, unlike the
GFT or GPT, does not require an eigen-decomposition, and
has been one of the transforms initially adopted into MPEG
PCC [1]. ROI coding for point clouds may be applicable to
geometry, attributes, or both. For example, for geometry com-
pression, the ROI may be used to adjust the geometric level
of detail by adjusting an octree depth. However, in this paper
we focus on ROI coding of attributes. For attribute compres-
sion, the ROI may be used for example to adjust the stepsizes
of various transform coefficients, as is common in image and
video ROI coding. However, we take a different approach.

Inspired by a recent measure-theoretic interpretation of
RAHT [13], in which RAHT is shown to be a separable 3D
wavelet transform that is orthonormal with respect to a uni-
form counting measure on the set of points, we achieve ROI
coding by modifying the measure, and then using RAHT as
usual. Modifying the measure is equivalent to modifying the
weights in a weighted distortion measure. Hence one may
consider our approach to ROI coding as modifying the distor-
tion measure in accordance with the ROI, and then coding to
minimize the modified distortion measure, formally known as
an input-weighted distortion measure [14, 15, 16].

Our approach to ROI coding has the advantage that it is
codec-independent. Instead of hacking each codec in a spe-
cific way to adjust its fidelity in the ROI, we advocate us-
ing the ROI to modify the distortion measure. The modi-
fied distortion measure is then available to any codec for its
usual optimization, e.g., rate-distortion optimization. There
is a simple mapping from the ROI to the distortion measure,
which can be quantified (for example using perceptual exper-
iments) independently of any particular codec. As our codec,
we choose transform coding with RAHT because RAHT is
automatically optimized for the distortion measure by virtue
of its measure-theoretic interpretation.

Our contributions include the following. We believe this
is the first published work on ROI coding for point clouds.



We take a novel approach to ROI coding by modifying the
distortion measure. We use a measure-theoretic interpretation
of the RAHT, which is a transform used in the MPEG PCC,
to perform encoding under the modified distortion measure.
Finally, we show how to use existing 2D ROI detection to
accomplish 3D ROI detection. Experimental results reveal
subjectively meaningful improvements (7-8 dB PSNR) in a
face ROI with subjectively insignificant degradations (under 1
dB PSNR) in the non-ROI, with no alteration in the encoding
other than the weights.

2. ROI-WEIGHTED DISTORTION MEASURE AND
MEASURE-THEORETIC RAHT

We consider a single scalar attribute, say Y;, on points x;,
i=1,..., N, of the point cloud. The weighted squared error
between Y = {Y;} and its reproduction Y = {Y;} is defined

=Y wi(Yi = Vi), (1

where w;, ¢ = 1,..., N, are the weights. If the weight w;
reflects the semantic or perceptual importance of the point x;,
then d(Y,Y’) may be called a ROI-weighted distortion mea-
sure. A codec that minimizes this distortion measure sub-
ject to a rate constraint will tend to reproduce Y; as Y; with
squared error inversely proportional to w;. For example, sup-
pose w; = 16 when x; € R and w; = 1 otherwise, where
R is a region of interest. Then the root mean squared (RMS)
error in the ROI will be about 1/4 the RMS error elsewhere.
This is a natural way to specify the objective of ROI coding.

The weights in the weighted square error may be inter-
preted as a measure. A measure on a measurable space is
a function p that assigns a real number to each set such that
the measure of the union of any sequence of disjoint subsets is
the sum of measures of the subsets. Examples of measures are
the Lebesgue measure on the real line, the counting measure
on the integers, and any probability measure on a probability
space. We focus on R3 as the measurable space, and define
1(S) = 2., e5 wi for any measurable set S C R®.

The definition of measure induces the definition of the in-
tegral, [ f(x)du(x) = liminf.0 >, u({f(x) > ne}) =
>, wifi, where f; = f(x;). In turn, the definition of the
integral induces the definition of the inner product, (f,g) =
J f(x)g(x)dp(x) = 3", w; fig;. In turn, the definition of the
inner product induces the definitions of orthogonality, f L
g% (f,9) = 0.and norm, ||f]| = ({f. f))"/2. Altogether,
these induce a Hilbert space. The weighted squared error (1)
between Y and Y’ is precisely the squared norm If = f1]% of
this Hilbert space, where f; = Y; and fl =Y.

RAHT is region-adaptive to remain orthonormal regard-
less of the locations of the points. Recently RAHT has been
shown to be interpretable as a separable piecewise constant
spline wavelet that is orthonormal with respect to the inner
product (f,g) defined by the weights w; [13]. Thus if the

weights are set to the weights in the ROI-weighted distortion
measure, the transform will remain orthonormal, and more-
over uniform scalar quantization of the transform coefficients
with the quantization stepsize set to a constant will minimize
the ROI-weighted distortion measure, at least at high rates.

To be specific, let R? be partitioned uniformly into cubes
of size 27 x 27™ x 27 ™, half-cubes of size 27 x 27™ X
2-(m+1) " and quarter-cubes of size 2™ x 2~ (m+1)
2-(m+1) "and let F3ms Fam+1, and Fz,, 40 be the spaces
of all functions f, : R? — R that are piecewise constant on
these blocks, for £ = 3m, 3m + 1, and 3m + 2, respectively.
The nested sequence of function spaces Fo C F; C --- C
F¢ C Fyy1 C --- approximates ever more finely (with re-
spect to the norm, i.e., the weighted squared error) the space
of piecewise continuous functions.

Now let By, denote a block at level ¢ indexed by n, let
1, (x) be its indicator function, and let wy,, = p(Be,n) be
its measure. Then J is spanned by the basis functions

¢£,n(x) = wé_,vlz/ngz,n(x)’ @)

which are orthogonal to each other and are normalized with
respect to the inner product and norm induced by the weighted
measure. Similarly, let By11 ,, and Byi1,,, denote the sub-
blocks of By ., and let G, be the orthogonal complement of
F¢in Fy11. Then Gy is spanned by the basis functions

1 1
TWyi1n, 1Be+17ﬂ0 (X) + Wpi1m, 1Be+1’ﬂ1 (X)

—1 —1 —1/2
(w£+1,no + we+1,n1) /

Yen(x) =

3)
which are orthogonal to each other and to the functions (2),
and are normalized, as can be verified by the diligent reader.
Thus any function f;11 € Fy41 can be written as

Z Fé n(bl n ) + Z G&nw&n (X), (4)

where the Fy, = (fo11,¢en) are known as low-pass coef-
ficients and the G¢,, = (fo+1,¢,n) are known as high-pass
coefficients. After some algebraic manipulation, (2) and (3)
can be expressed recursively as the “two-scale equations”

¢Z,n,(x) a¢€+1,ng + b¢€+1,n1 (5)
w[,n(x) = _b¢€+1,no + a¢€+1,n17 (6)

where @ = Yrtbro and h = Vjﬂl Substituting these

Jep1(x

into the deﬁmtlons of Fy, and Gy ,,, we obtain

Ff,n _ a b FZ+1,n0 (7)
Gf,n b a F€+1,n1 ’
which is a Givens rotation whose angle of rotation depends

on the relative weights of the sub-blocks.
RAHT applies (7) recursively to expand f;, € Fp, as

L-1
= Z FO,n(bO,n(X) + Z Z GZ,nwé,n(x); (8)

/=0 n
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Fig. 1. Face detection in point clouds using projections and
the Viola-Jones algorithm.

2D projection

where L is chosen large enough so that each cube By, ,, con-
tains at most a single point, say x; with value f; = f(x;). The
number of coefficients is IV, i.e., RAHT is critically sampled.

(For details, see [13].) Note that ¢, ,,(x) = w;l/ngL’n (x),

and therefore Fy, ,, = (f, ¢rn) = wil/zfi. This generalizes
RAHT in [11], for which w; = 1 for all points¢ =1,..., N.
The RAHT coefficients are uniformly scalar quantized
with stepsizes A(Fp ) and A(Gr ), £ =0,...,L — 1, and
are entropy coded. Because Givens rotations are orthonormal,
energy is preserved. Thus the squared quantization error is

L—-1 N
Z(Fo,n_FO,n)2+Z Z(Gé,n_éﬁ,n)Q = Zwi(fi_fi)Zy
=1

n {=0 n
©))
which is the same as the ROI-weighted distortion measure (1)
when f; = Y;. Since a constant stepsize A = ()t min-
imizes the squared quantization error subject to an entropy
constraint, at least at high rates [14], setting the stepsizes of
the RAHT coefficients to a constant also minimizes the ROI-
weighted distortion measure desired for ROI coding.
In summary, with RAHT, at the encoder, voxels in ROI
should have initial weights set to w; = w and initial attributes
scaled by \/w. The decoder should scale back the attributes.

3. REGION-OF-INTEREST DETERMINATION AND
SIGNALING

In our work, the ROI is chosen to be the subject’s face in
the point cloud. As our brain is more sensitive to artifacts
introduced in the face on reconstructed images, we believe
that prioritizing the subject’s face quality during compression
will lead to a better subjective quality.

The face as the ROI is identified as illustrated in Fig. 1.
The point cloud is rotated to a given viewing angle defined
by a pair of azimuth and elevation angles, and then projected
to a 2D image. Using the Viola-Jones algorithm [17], the

(a) width =1

(b) width =2 (c) width =4 (d) width =8

Fig. 2. Holes in the ROI

face is detected and the corresponding voxels are marked as
face. The process is repeated for different viewing angles. We
chose to vary the azimuth starting at 0° up to 250° in steps
of 10°, and vary the elevation from —70° up to 90° in steps
of 10°. Those voxels marked as face in at least 20% of the
viewing angles are marked as being in the ROL

This process generates some holes in the ROI as some
voxels in the face are occluded depending on the viewing an-
gle. This is most visible on the cheeks, since most of the
projections where Viola-Jones is able to detect the face are
frontal or semi-frontal projections. Fig. 2(a) shows an ex-
ample of these holes. To overcome this problem we expand
the ROI to its neighboring voxels. The point cloud is regu-
larly divided in cubes of fixed width, referred as blocks. If
at least one voxel inside each cube is marked as ROI, all the
other voxels inside the same cube are also marked as ROL. In
Fig. 2, we show the result of expanding the ROI using cubes
with different widths. Larger widths results in fewer holes
and we decided to use cubes with width equal to 8 in the rest
of this work. This ROI expansion method was chosen because
of its simplicity, since it can be easily implemented using the
Morton code associated to each voxel.

The ROI location needs to be conveyed to the decoder.
Let there be M occupied blocks, so that we need to en-
code a binary vector b = [bg,by,...,bp—1] indicating
whether each block belongs or not to the ROI. If we sort
the blocks along their Morton codes, to preserve neighbor-
hoods, the b; bits can be used to to generate a differential

vector b = [%, bi,...,by—1| where

(b i=0
bi: 1 bi_l%bi,i>0 .
0 bi—1=0b,1>0

(10)

Vector b has long sequences of zeros. It is encoded with an al-
gorithm based on the run-length Golomb-Rice coder, with the
exception that only the run-lengths are encoded with Golomb-
Rice. Other binary coders may be used as well.

4. EXPERIMENTAL RESULTS

To test our proposed encoder we used 6 point clouds: Boxer,
Longdress, Loot, Redanblack, Soldier and Thaidancer, all
voxelized with depth 10 (i.e. 1024 x 1024 x 1024 voxels),
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Fig. 3. Average rate-distortion curves.

yielding 849452, 857966, 805285, 757691, 1089091 and
689953 occupied voxels, respectively [18, 19].

Fig. 3 shows the average rate-distortion curves com-
puted for the 6 tested point clouds. Bits for the side infor-
mation are included. Weights for ROI voxels were set to
w =1,2,4,8, 16, while weights outside the ROI have weight
1. In Fig. 3(a) the PSNR is computed only for voxels in the
ROIL. When w = 1 there is no difference in weight for voxels
inside and outside the ROI and, in this particular case, there
is no need to encode vector b. As w increases, the transform
favors voxels in the ROI and we see an increase in PSNR for
any given rate, because larger weights for voxels in the ROI
result in better reconstruction quality. The effect is the op-
posite for voxels outside the ROI (Fig. 3(b)), since there is a
transfer of bits from the rest to the ROI, for the same bit-rate.
The drop in overall PSNR is negligible (Fig. 3(c)), while the
weighted PSNR (i.e. 10log 255%/W M SE, where WM SE
is the weighted mean squared error), slightly improves with
w > 1 (Fig. 3(d)).

In Fig. 4, the point cloud Thaidancer was encoded with
different ROI weights. Subjectively, Fig. 4(b) seems to have
a better quality since our brain is more sensitive to artifacts in
the face than in rest of the scene. Fig. 5 shows a close up of
the face for the reconstructed point clouds shown in Fig. 4.

5. CONCLUSION

We introduced ROI coding for point clouds, taking a novel
approach to ROI coding by modifying the distortion mea-
sure to a weighted distortion measure. The weights of the
weighted distortion measure are reflected in the measure un-
der the RAHT transform. To detect the 3D ROI, we com-
bined 2D ROI from the well-known Viola-Jones algorithm.
Experimental results reveal subjectively meaningful improve-

ments (7-8 dB PSNR) in the ROI with subjectively insignifi-
cant degradations (under 1 dB PSNR) outside the ROI, with
no change in encoder or decoder complexity.

Future work includes optimizing the ROI weights us-
ing perceptual studies, extending the approach to multi-level
weights (e.g., from saliency maps), optimizing the side infor-
mation, and applying ROI coding to point cloud geometry.

(b) weight = 16,
Qstep = 1527
file size = 11162 bytes

(a) weight =1,
Qstep = 128,
file size = 11225 bytes

Fig. 4. Point cloud Thaidancer (N, = 689953) coded with
different weights for voxels in the ROI. The Qp Was ad-
justed to result in similar file sizes.

(a) weight =1 (b) weight = 16

Fig. 5. Close up in the face of the reconstructed point clouds
shown in Fig. 4
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