
COMPRESSION OF PLENOPTIC POINT CLOUDS USING THE REGION-ADAPTIVE
HIERARCHICAL TRANSFORM

Gustavo Sandri∗

University of Brasília
Department of Electrical Engineering

Brasília, Brazil

Ricardo de Queiroz∗

University of Brasília
Department of Computer Science

Brasília, Brazil

Philip A. Chou

8i Labs
Los Angeles
United States

ABSTRACT

Point clouds have recently gained interest for the represention
of 3D scenes in augmented and virtual reality. In real-time ap-
plications point clouds typically assume one color per point.
While this approach is suited to represent diffuse objects, it
is less realistic with specular surfaces. We consider the com-
pression of plenoptic point clouds, wherein each voxel is as-
sociated to colors as seen by different angles. We propose
an efficiently compressible representation to incorporate the
plenoptic information of each voxel. We have proposed three
compression methods, one based on a cylindrical projection
and two others based on the intersection of the line of view
with the voxel’s face, one using flat boundaries and the other
using a spherical boundary. Extensive tests have shown that
the last two have the best performance, which are much su-
perior than independently encoding the color attributes from
each of the cameras point of views.

Index Terms— point cloud, plenoptic, compression, aug-
mented reality, virtual reality.

1. INTRODUCTION

The region-adaptive hierarchical transform (RAHT) [1] is an
algorithm for compression of voxelized point clouds (PCs)
with a quality comparable to coders based on the Graph
Transform [2] and Gaussian Process Model [3], at a fraction
of their complexity. An occupied voxel is associated to a
color attribute (in RGB or YUV space). When rendering a
view of the scene, these voxels act as a source of light, emit-
ting the same color in all directions. The representation of a
scene by single color voxels might not be realistic for specu-
lar surfaces where the color of a given point varies according
to the viewing angle. The extreme case is a mirror, which re-
flects its surroundings. A more realistic representation should
allow a voxel to change its color according to the viewing
angle. For that, we need to attribute to a voxel the color as
seen in a plurality of directions. We refer to this data as the

∗This work was partially funded by CAPES and CNPQ under grant
308150/2014-7.

plenoptic information, as it is based on the plenoptic function
representing a scene.

The 5-dimensional plenoptic function represents the chro-
maticity of light observed from every position and direction
in a 3-dimensional (3D) space [4] as

P (x, y, z, θ, φ), (1)

where (x, y, z) are the coordinates of a point in space, θ the
azimuth and φ the elevation angle. The plenoptic information
of a voxel is obtained by fixing (x, y, z) at the voxel position
and letting θ and φ vary according to the viewing angle.

Plenoptic PC can be produced by processing the informa-
tion captured by an array of cameras combined with depth
maps [5, 6], or from light-field cameras [7]. In this fashion,
the number of sampled viewing directions is determined by
the number of cameras employed and the plenoptic informa-
tion is derived from the colors as seen by each of the cameras.
Hence, it is more practical to encode the colors from each
camera (sample) instead of encoding the continuous function
covering all (θ, φ). In this sense, the information is a vector
of color components per voxel.

(a) Non-plenoptic voxel (b) Plenoptic voxel

Fig. 1. A non-plenoptic voxel has no directional color infor-
mation. Such information is present in a plenoptic voxel and
can be used to represent a scene in a more realistic way.

In this work, we propose to incorporate the sampled
plenoptic information into each voxel by two methods: sub-
dividing the voxel into subvoxels were the subvoxels position
represents the cameras displacement and by using a pro-
jection map of the cameras displacement. We assume that



Z

Y

X

Fig. 2. Capture of the plenoptic information of a voxel.

both the encoder and decoder know the original geometry
of the PC and camera displacement (encoded with another
algorithm) and we focus only in color compression. It con-
trasts to other methods such as those using surface light field
representation [8, 9].

2. VOXEL SUBDIVISION

Consider the voxel in Fig. 2, whose colors are captured by
five cameras placed on the depicted directions.

The sampled plenoptic information comprises not only
the color, but also the direction of the cameras. If we divide
the voxel intoM partitions along each axis (M = 4 in Fig. 3),
we obtain M3 cubes with 1/M of the original width. Each of
these cubes resulting from the division resemble voxels and
we refer to it as subvoxel. We will show that the plenoptic
information can be associated to subvoxels by means of the
subvoxel position.

subvoxel
voxel

X
YZ

subvoxelvoxel

X
YZ

(a) Face crossing point Sphere crossing point

Fig. 3. A voxel is divided into subvoxels and its subvoxels are
employed to incorporated the plenoptic information.

After attributing the plenoptic information to the subvox-
els, we can now apply RAHT-based coder [1] to the cloud of
subvoxels. This process is transparent for RAHT because it
treats the subvoxels as voxels.

In order to associate the viewing direction and color to
the subvoxel position we devised two different methods. For
the first one, named “face crossing point”, the line connect-
ing the voxel center and a camera, simply referred as view-
ing line, can be used to represent the viewing direction. This
line crosses one of the subvoxels at the voxel’s faces. Hence,

in this method, the direction is represented by indicating the
subvoxel position on the voxel’s faces crossed by the given
viewing line. The color as viewed in that direction is associ-
ated to this subvoxel (see Fig. 3-(a)). All subvoxels that were
not crossed by any viewing line remain unoccupied, as well
as all the subvoxels not belonging to any of the voxel’s faces.

We can improve the face crossing point method by, in-
stead of using the subvoxels on the voxel’s face, using those
that are crossed by a sphere surface tangent to the voxel’s
faces. In this fashion, the occupied subvoxels will be dis-
tributed in a spherical-like way, instead of a cube-like way,
thus avoiding the distortions near the voxel’s corner (see
Fig. 3-(b)). This method is named “sphere crossing point”.

3. CYLINDRICAL PROJECTION

A third method that we propose to represent the plenoptic in-
formation is by means of a projection map. The direction of
the cameras relative to each voxel can be described in cylin-
drical coordinates by the azimuth angle −π ≤ θ < π and the
elevation −1 ≤ h ≤ 1, resulting in a θ × h plane.

One may divide the camera directions (θ × h) plane into
sub-regions of equal area as depicted in Fig. 4.

0 divisions

1 division

2 divisions

3 divisions

θ

h

Fig. 4. Subdivision of the θ × h plane

We may further divide each sub-region several times until
attaining the desired precision. The smaller the sub-region,
the more precise the camera position is represented. After
dividing the plane, several sub-regions remain unoccupied.
This representation is similar to voxelized point clouds in the
3D space. Therefore, we apply the RAHT-based coder to the
colors associated with each camera (sub-region), through a
2D quad-tree decomposition rather than the 3D octree.

The RAHT results in several high-frequency components
and one DC value. The resulting DC value for each θ × h
plane represents the average voxel color as seen by all cam-



eras. This DC value is then associated to each voxel and
we apply the RAHT-based coder to all voxels in their spacial
(x, y, z) positions.

4. EXPERIMENTS

We carried tests on 5 realistic real-time-captured scenes. They
were recorded with up to 13 cameras and around 3 million
points (see Table 1 and Fig. 5). These images were voxelized
using 11 bits of spatial resolution (octree with a depth level
L = 11), resulting in around 2 million voxels. For the subdi-
vision of the voxels into subvoxels was chosen M = 26. The
θ × h plane was divided 6 times.

Table 1. Database
Number of

Image Occupied voxels Cameras
boxer 2056256 13

longdress 1860104 12
loot 1858707 13

redandblack 1467981 12
soldier 2365732 13

“boxer” “longdress” “loot”

“redandblack” “soldier”

Fig. 5. Rendered Images. Point clouds are a courtesy of 8i R©.

Colors are represented in the RGB space. In our experi-
ment, the quantization step was varied between 15 and 500.
We compared our methods to RAHT applied independently to
each camera, simply refered as ‘independent’. The results in

terms of rate-distortion (RD) curves are shown in Fig. 6 and 7
where the PSNR was calculated using all color components.

0 0.2 0.4 0.6 0.8 1
bits/occupied voxels/cameras

25

30

35

40

PS
N

R
 [d

B]

sphere crossing point
face crossing point
cylindrical projection
independent

(a) boxer

0 0.2 0.4 0.6 0.8 1
bits/occupied voxels/cameras

25

30

35

40

PS
N

R
 [d

B] sphere crossing point
face crossing point
cylindrical projection
independent

(b) longdress

0 0.2 0.4 0.6 0.8 1
bits/occupied voxels/cameras

25

30

35

40

PS
N

R
 [d

B]

sphere crossing point
face crossing point
cylindrical projection
independent

(c) loot

Fig. 6. Rate-distortion curves for the point clouds “boxer”,
“longdress” and “loot”.

From Fig. 6 and 7 we can observe that all three meth-
ods perform similarly, the cylindrical projection method being
slightly worst. This can be more clearly seen in Fig. 8, which
shows the PSNR difference between the methods when fix-



0 0.2 0.4 0.6 0.8 1
bits/occupied voxels/cameras

25

30

35

40
PS

N
R

 [d
B]

sphere crossing point
face crossing point
cylindrical projection
independent

(d) redandblack

0 0.2 0.4 0.6 0.8 1
bits/occupied voxels/cameras

25

30

35

40

PS
N

R
 [d

B]

sphere crossing point
face crossing point
cylindrical projection
independent

(e) soldier

Fig. 7. Rate-distortion curves for the point clouds “redand-
black” and “soldier”.

ing the rate. In Fig. 8-(a) and (b) we observe that both the
face and sphere crossing point methods outperform the cylin-
drical projection and the difference is higher for higher rate
values. Face and sphere crossing point methods, on the other
hand, have very similar curves (see Fig. 8-(c)), presenting a
virtually identical performance.

The methods presented here were able to outperform
RAHT when applied independently to each camera informa-
tion, with the exception of the PC “boxer” at rates higher than
0.2 bits/occupied voxels/cameras.

5. CONCLUSIONS

In this work we proposed three methods to incorporate the
plenoptic information of a voxel: cylindrical projection; face
crossing point and sphere crossing point. Their performance
were very similar, the two latter being slightly better for
higher rate values.

These methods are compliant with any single-color point
cloud compression algorithms. In this work, we employed the
RAHT to encode the color of the PC as it is a low-cost high-
performance algorithm. Nevertheless, it is easy to readapt

0 1 2 3 4 5
bits/occupied voxel/camera

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

PS
N

R
 d

iff
er

en
ce

 [d
B]

boxer
longdress
loot
redandblack
soldier

(a) face crossing point - cylindrical projection

0 1 2 3 4 5
bits/occupied voxel/camera

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

PS
N

R
 d

iff
er

en
ce

 [d
B]

boxer
longdress
loot
redandblack
soldier

(b) sphere crossing point - cylindrical projection

0 1 2 3 4 5
bits/occupied voxel/camera

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

PS
N

R
 d

iff
er

en
ce

 [d
B]

boxer
longdress
loot
redandblack
soldier

(c) face crossing point - sphere crossing point

Fig. 8. Difference of PSNR between methods for the same
rate. We can see that the cylindrical projection performs
slightly worse than the face crossing point and the sphere
crossing point, while the latter two have virtually identical
performance

them to other compression algorithms.
The results were compared to RAHT individually applied

to each camera . We observed that the proposed modifications
largely improved the compression.



6. REFERENCES

[1] R. de Queiroz and P. A. Chou, “Compression of 3D
point clouds using a region-adaptive hierarchical trans-
form,” IEEE Trans. Image Process., vol. 25, no. 8, pp.
3947–3956, 2016.

[2] C. Zhang, D. Florêncio, and C. Loop, “Point cloud
attribute compression with graph transform,” in IEEE
International Conf. Image Process. (ICIP), pp. 2066–
2070, 2014.

[3] R. de Queiroz and P. A. Chou, “Transform coding for
point clouds using a Gaussian Process Model,” IEEE
Trans. Image Process., vol. 26, no. 7, pp. 3507–3517,
2017.

[4] E. Adelson and J. Bergen, “The plenoptic function and
the elements of early vision,” Comput. Models of Visual
Process., pp. 3–20, 1991.

[5] S. Orts-Escolano et al., “Holoportation: Virtual 3d tele-
portation in real-time,” in Proc. of Annual Symp. User
Interf. Soft. and Tech. (UIST), pp. 741–754, 2016.

[6] A. P.-Miro, J. R.-Hidalgo, and J. R. Casas, “Registration
of images to unorganized 3D point clouds using contour
cues,” in European Signal Process. Conf. (EUSIPCO),
pp. 81–85, 2017.

[7] C. Perra, F. Murgia, and D. Giusto, “An analysis of 3D
point cloud reconstruction from light field images,” in
International Conf. Image Process. Theory, Tools and
Applications (IPTA), pp. 1–6, 2016.

[8] D. N. Wood et al., “Surface light fields for 3D photog-
raphy,” in Proc. Annual Conf. Computer Graphics and
Interactive Techniques, pp. 287–296, 2000.

[9] W.-C. Chen, J.-Y. Bouguet, M. H. Chu, and R.
Grzeszczuk, “Light field mapping: Efficient represen-
tation and hardware rendering of surface light fields,”
ACM Trans. on Graphics, vol. 21, no. 3, pp. 447–456,
2002.

[10] R. Schnabel and R. Klein, “Octree-based point-cloud
compression,” in Proc. Eurographics / IEEE VGTC
Conf. Point-Based Graphics, pp. 111–121, 2006.

[11] Y. Huang, J. Peng, C.-C. Jay Kuo, and M. Gopi, “A
generic scheme for progressive point cloud coding,”
IEEE Trans. Visualization and Computer Graphics, vol.
14, no. 2, pp. 440–453, 2008.

[12] T. Ochotta and D. Saupe, “Compression of point-based
3D models by shape-adaptive wavelet coding of multi-
height fields,” in Proc. Eurographics Conf. on Point-
Based Graphics, pp. 103–112, 2004.

[13] D. Thanou, P. A. Chou, and P. Frossard, “Graph-based
motion estimation and compensation for dynamic 3D
point cloud compression,” in IEEE International Conf.
Image Process. (ICIP), pp. 3235–3239, 2015.

[14] J. Kammerl et al., “Real-time compression of point
cloud streams,” in IEEE International Conf. Robotics
and Automation (ICRA), pp. 778–785, 2012.


