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ABSTRACT

Motion estimation is a key component in dynamic point cloud
analysis and compression. We present a method for reducing
motion estimation computation when processing block-thase
partitions of temporally adjacent point clouds. We propose
the use of an occupancy map containing information regard-
ing size or other higher-order local statistics of the piartis.
By consulting the map, the estimator may significantly reduc
its search space, avoiding expensive block-matching avalu
tions. To form the maps we use 3D moment descriptors ef-
ficiently computed with one-pass update formulas and storeEig. 1: Examples from the point cloud sequenieot [8] shown
as scalar-values for multiple, subsequent referencesulRes at different time instants and perspectives. Motion estimation estab-
show that a speedup of 2 produces a maximum distortiofishes correspondences between block-based partitions of the clouds.
dropoff of less than 2% for the adopted PSNR-based metrics,
relative to distortion of predictions attained from fullaseh.
Speedups of 5 and 10 are achievable with small average digynamic point clouds have also been subject of study [5-7].
tortion dropoffs, less than 3% and 5%, respectively, for then these works, motion estimation (ME) is crucial to perfor-
tested data set. mance and may account for significant portions of coding ex-
ecution time. In [5], ME matches successive clouds using
features derived from graph transforms. Other works [6, 7]
use block-based partitions of the point cloud and search for
corresponding blocks in temporally adjacent clouds, as ex-
1. INTRODUCTION emplified in Fig. 1. An iterative closest point (ICP) algbrit
is applied in [6] and [7] proposes the optimization of a block

Point clouds are one of the new and upcoming means for repnatching metric but does not define a search scenario.
resenting volumetr_lc media in Immersive communications. Block-based ME for point clouds presents similarities
They may be considered as a collection of poiatsy, =) in ith block-matching of conventional 2D video. For each
3D space with attributes such as color, normals, transpgren w g . . B
specularity, etc. The point clouds are said to be voxelize§IOCk’ assumed as a cube of dimensidns: L * L, in the

' ' urrent (or source) frame, a search space of SizeS x S'is

when points are constrained to lie in a regular 3D grid an ﬂefined in the previous (or target) frame around the co-tatat

assume integer coordinate values. The points within Su?cube, as depicted in Fig. 2. Among the set of dimengion-

grid are called voxels and may be occupied or not. Dynami ; s
) : : rget cubes available within the search space, a best match
point clouds depict a sequence of such clouds over time and. . :
With respect to the source cube is determined. Lastly, all

like V|de_o -for Images, may display m°"e'.“em- Each pOIntvoxels within the selected target cube are compensated with
cloud within this temporal sequence constitutes a frame.

. the determined motion vector, i.e., the displacement betwe

) . . _ Matched cubes, forming a prediction of the current frame’s
of static point clouds, f°°“3”.‘9 on compression of g_eomeboim cloud. Differently from conventional 2D ME, however,
try [1,2] as well as color attributes [3, 4]. Compression Ofthe search space contains unoccupied voxels and fast match-
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and by CNPq grant 308150/2014-7. operate with prior knowledge of these geometry differences
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Moments provide a measure of the spatial distribution or
shape of a set of points. The zeroth order monidgg, rep-
resents the size of the point cloud. For the sake of notdtiona
convenience it will be referred to ady. Its centroid(z, 7, z)
(b) is defined as the first order moments divided by size. The

varianceub, (in the z-direction) is specified in terms of the

Fig. 2. A point cloud (a) source cube and (b) candidate target cubesentral moment
from an adjacent frame shown within a search space.

fpar = Y (@ =2)P(y = 9)"(z = 2)v(z,9.2)  (2)

The baseline for block-based ME is a full search, for Yz
each source cube, among &llx S x S cubes of its search g,cp thaliy, = 11200/ H000-
space. \We propose the use of a fast, pre-compadeupancy When analyzing multiple, overlapping partitions of a

map which succinctly describe; spatial distribution w?thin point cloud, arbitrary-order statistical moments may He ef
each target cube to speedup this process. By consulting thgantly calculated with one-pass update formulas [11]. <Con
map ’and comparing the occupancy value to that of the sourcgqer,” without loss of generality, a cube (as illustrated in
cube’s, the motion estimator may discard target cubes aqdig_ 2) sliding along thec-direction. Each increment im
avoid evaluation of cube-matching with incompatible candi jntroduces a setl and discards a se® of 2 points such
dates. Note that matching criteria often require estalesit {4t the size, centroid and second order central momeneof th

of voxel-wise geometric and color correspondences and Mayext cubeC” may be updated in terms of the statistics of the
account for a significant part of computation time. We meapreyious cube” as

sure speedup as the number of discarded candidates, with

respect to full search, and observe distortion of the ptedic MOC’ = MOC + MOA - ME, )
frame. As occupancy descriptors we use size (occupied voxel ) )
count) as well as other higher-order statistics. These de- 79 = @M§ + Mgt — 2P ME) /M (4)

scriptors are quickly calculated by taking advantage of th%nd adapted from [12]

overlap among target cubes. Furthermore, in our implemen- " ’

tation, the map is scalar-valued and may thus be efficiently o o N B (¢ — 242 M§ MG
stored. In our experiments we adopt a simplified version of #200 = 200 + K200 ~ H200 T MO L MA T
the cube-matching criterion in [7], briefly described in Skc o 0 B2 0 CArB
Note that alternate matching criteria may be employed in our (z7 — 27)" My My
framework. Mg + Mg’

We present the 3D moments used for local shape descripypdate formulas for moments in directiopsind » are anal-
tion in Sec. 2 and their usage within occupancy maps for Mbgous and separately computable.
in Sec. 3. Experimental results and conclusions are disduss

in Secs. 4 and 5. 3. OCCUPANCY MAPS

®)

Spatial distribution within a point cloud is applied as adgui

to ME, restricting more costly voxel matching procedured an

reducing execution time. For such, the local shape descsipt

of the point cloud are summarized within an occupancy map.

Image moments, moment invariants and their extension to 3Bpe map consists of a voxel space of dimensidis Each

have been used in analysis and object recognition for manyoint within the mapO(z, y, z) contains a shape descriptor

years [10]. In this section we review some basic definitionggy a3 |ocal cube” of dimensionZ, and origin(z, y, ).

and cast these into computationally efficient forms applea The occupancy map may be efficiently computed and

to point cloud analysis. stored prior to ME. The voxel space containing the point
Consider a voxel density function(x,y, z) which as- cloud is scanned incrementally. For each new point, 3D mo-

sumes valuel for occupied and) for unoccupied voxels ments of the local cube are updated as described in Sec. 2.

within a domain of size.3. The 3D moment of order+q+r  For efficient map storage we consider only scalar-valued de-

may be defined as scriptors and propose the usage of (i) size or (ii) the second

2. 3D MOMENTS



central moment along the axis of minimum variance. Note ) Size relation between matched cubes
that point clouds are formed by points on the surface of the
captured objects which, at a local level, may be assumed as
approximately planar patches. As such they present an axis
of minor variance, although not necessarily fully alignathw

x, y or z. The second descriptor selects among these latter
axes the one displaying minimum overall voxel dispersion
with respect to local cube centroid, adopting this scalareva

for local shape description. The considered descriptags ar
respectively registered in the following maps:
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O2(z,y, 2) = min(300, Ho20+ Hoo2)- (7

The motion estimator compares the local shape statistic d—‘fig. 3: Data points with sizes of the source and corresponding tar-
get cube (determined through full search ME) for each of the 3410

the current source culte?"<(x, y, z) to those contained in the . . : L

- v source cubes iMan. The linear regression model is in red.
map and restricts the search space to target cubes presentin
similar statistics, i.e., within a tolerance range defingdab
thresholdl: (1 — T)O;"(x,y,2) < OY' (', y/,2") < (1 +

Speedups are measured as ratios between the full search
T)Os"(x,y, 2),i € {0,2}. P P

space and the reduced search spaces, the latter usingmenly ta
get cubes within tolerance ranges defined in Sec. 3. We ex-
4. EXPERIMENTAL RESULTS clude from the full search space count the trivial case where
the target cube is empty. Tolerance threshdld#n percent-
Speedup for ME was tested on the publicly available poinfiges, are selected frofno, 100, 90, ..., 10,5, 1}.
cloud data setAndrew, David, Phil, Ricardo, Sara, Man [13] In Fig. 3 we illustrate the relation between the size of each
andLoot [8]. The first five sequences are upper body and théource cube and that of its target cube, determined through
others, full body human subjects. All have spatial resohuti full search ME. The approximately one-to-one relationship
of 512 x 512 x 512 voxels and are furnished with RGB color indicates the potential of this descriptor as a means for dis
attributes. tinguishing incompatible candidates. This relationshopok
A cube-matching criterion similar to that of [7] is adopted true for other sequences and for the second moment descrip-
wherein nearest neighbor correspondences are determint of (7).
between cube voxels. The average Euclidean distdpce Predicted frame distortions in terms of PSNR-P and
and average color distan@e, in Y-channel, between cor- PSNR-Y-G are presented in Fig. 4 for various sequences
respondences are combineddin= J, + 0.355.. The final ~and speedups achieved with the size-based occupancy map
matching distance is symmetric and considers the maximurf (6). Distortion of full search ME prediction is indicated
J among source-to-target and target-to-source cubes. Fei speedup 1. A speedup of 2 guarantees a maximum distor-
each sequence we use frame #10 as the source and #9 asting dropoff, relative to full search ME, among all sequenice
target, cube dimensioh = 8 and search space dimension and metrics of less than 2%. A speedup of 5 introduces av-
S =15. erage PSNR-P and PSNR-Y-G dropoffs of 0.2% and 2.5%,
Distortion between predicted and source point cloud igespectively. At speedups of 10, average dropoffs are 1.3%
measured with two peak signal-to-noise ratio metrics [J, 14 and 4.8% are attained. In terms of PSNR-P, the worst per-
both of which contemplate geometric and color differencesformance among sequences, at speedups 2, 5 and 10, is for
The first metric (PSNR-P) orthographically projects thenpoi Loot with dropoffs of 0.0%, 0.5% and 1.9%, respectively. In
cloud voxels onto the planes defined by the faces of a suterms of PSNR-Y-G, the worst performance at speedups 2, 5
rounding cube of dimension 512, forming 2D images. Fromand 10 is foMan with 1.3% andDavid with more significant
each of the 6 projected image pairs, originating from the predropoffs of 4.8% and 7.8%, respectively.
dicted and the source voxel sets, an overall mean square er- The motion vector fields, akin to optical flow, resulting
ror (MSE) in the Y-channel color component is determinedfrom the ME speedup framework are compared to those re-
and PSNR-P= 101log(255%/MSE). The second distortion sulting from full search through the average absolute énror
metric (PSNR-Y-G) determines, for each voxel of the sourcdlow endpoints [15]. Results are shown in Fig. 5. Small dif-
cloud, a nearest neighbor within the predicted cloud. Oncéerences occur on the onset of speedup although these are not
all correspondences are established, a matching distaisce necessarily correlated to prediction quality.
calculated and PSNR-Y-& 101log(255%/6). The potential of the second order central moments along
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Fig. 6: PSNR-P and PSNR-Y-G distortions as a function of speedup

o . . using size and second order central moments as occupancy descrip-
the axes of minimum variance as occupancy descriptors igys for theman sequence.

illustrated in Fig. 6. Performance in terms of PSNR-P and
PSNR-Y-G forMan is similar to those of the size-based de-
scriptor. Comparable results are achieved for the other sef 2 implies a maximum distortion dropoff of less than 2% for
guences as well. the adopted PSNR-based metrics, relative to distortiohef t
prediction attained from full search ME. Speedups of 5 and
10 are achievable with small average distortion dropoéss |
than 3% and 5%, respectively. Future work includes further
improvement of computational efficiency, the usage of local
Ydvariances for planar modeling of greater precision aed th
improvement of storage and compression of occupancy maps
ontaining vectorial descriptors of greater complexity.

5. CONCLUSIONS

We proposed the use of 3D moment-based shape descript
as a means of efficiently characterizing local spatial distr
bution within point clouds in order to speedup block-base
ME. By consulting an occupancy map containing informa-
tion regarding size or other higher-order statistics ofrgda
frame, candidate cubes may be eliminated from the search
space prior to more costly cube-matching evaluations. De-
scriptors forming the occupancy map are efficiently comgute
with one-pass update formulas and stored as scalar-vaiues f
multiple, subsequent references. Results show that a gpeed
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