
INTRA-FRAME CONTEXT-BASED OCTREE CODING FOR POINT-CLOUD GEOMETRY

Diogo C. Garcia and Ricardo L. de Queiroz

Universidade de Brasilia, Brasil

ABSTRACT
3D and free-viewpoint video has been slowly adopting a
solid representation, such as using meshes and point-clouds.
Among other characteristics, meshes provide direct surface
representation, while point-cloud processing requires less
computation. Points in the cloud are minimally represented
by their geometry (3D position) and color. A common
point-cloud geometry compression method is the octree
representation, which acts on individual frames and can be
further compressed by entropy encoding. This paper presents
a lossless intra-frame compression method for point-cloud
geometry, which uses the octree structure to provide better
contexts for entropy coding. Results show that the proposed
solution offers state-of-the-art performance, with an average
rate reduction of 29% compared to the octree representation.

Index Terms— Point-cloud compression, 3D immersive
video, free-viewpoint video, octree, real-time point-cloud
transmission.

I. INTRODUCTION

In the past few years, 3D visual communications have
developed tremendously, allowing for the real-time capture
and transmission of events [1][2][3]. Several space-time
representations are then made possible, each with differ-
ent characteristics. Multiview-plus-depth video is based on
multiple 2D projections of 3D scenes, which can then be
efficiently compressed, for example, with the multiview
extension of the High Efficiency Video Coding standard,
MV-HEVC [4][5]. Polygonal meshes, on the other hand,
represent 3D scenes with connected polygons [6]. Point-
clouds also directly represent 3D scenes (Fig. 1), but by
indicating points’ colors in 3D space (voxels) [3].

Real-world objects can be rendered with volumetrically
sparse point-clouds, which are more efficiently represented
by the points’ 3D position, or geometry, and corresponding
color. The compression of geometry information can be
readily obtained with octree scanning [8][9], which is done
on a frame basis. In video compression terminology, this
is referred as intra-frame coding, or simply intra coding,
as opposed to inter-frame coding, where neighboring frame
correlation is explored to improve compression ratios.

Work partially supported by CNPq under grant 308150/2014-7.

Fig. 1. Random viewpoints for frame 101 of 3D point-cloud
sequence Man [7].

Several methods have been developed for intra- and inter-
frame point-cloud compression [10][11][12][13][14][15].
Kammerl et. al. proposed an inter-coding system [12],
while Mekuria et. al. developed an octree-based intra- and
inter-coding system [13][14]. An open-source library was
developed for the coding of point-clouds and meshes [15].
In this paper, a lossless intra-frame compression method is
presented for point-cloud geometry, where each octant in the
octree is entropy-coded according to its father octant.

II. GEOMETRY CODING FOR POINT-CLOUDS
II-A. Octree scanning and coding

The octree represents the geometry of point-clouds
through recursive division of 3D space into fixed-size cubes,
or octants (Fig. 2(a)). Each division is regarded as a level in
the octree. Compression of sparse point-clouds is achieved
through the indication of filled octants, instead of represent-
ing all possible voxels in 3D space. Furthermore, octrees
allow for progressive point-cloud representation, since stop-
ping at a given level is equivalent to downsampling the point-
cloud to a correspondent factor [8].

The octree can be encoded through bitwise indication of
filled octants at a given level (Fig. 2(b)). The resulting bits
can be grouped into bytes, as each octree level subdivides
3D space into eight octants. The corresponding vector of
bytes can then be compressed with general entropy-coding
methods, such as Huffman codes, arithmetic coding and
LZW [16].

For example, consider frame 149 in point-cloud sequence
Man, which contains 181461 occupied voxels. The positions
of the occupied voxels in the corresponding 512×512×512
space can be represented by 27 bits per occupied voxel



(a)

(b)

Fig. 2. Point-cloud representation using octrees: (a) three
levels of the subdivision of 3D space into octants; (b) binary
tree representation of (a). Dark-grey octants indicate the
presence of points in further levels of the octree.

(bpov). The equivalent 9-level octree representation contains
70994 bytes, yielding an average rate of 70994×8/181461 =
3.13 bpov. LZW-based encoding of this octree reduces
its representation to 58266 bytes, with an average rate of
58266×8/181461 = 2.57 bpov. This average-rate reduction
from 3.13 to 2.57 bpov indicates that there is still some
redundancy in the octree to be removed by entropy coders.

II-B. Context-based octree intra-frame coding

Besides using general entropy-coding methods, higher
compression ratios in point-cloud-geometry coding can be
achieved by exploiting contexts within the octree, for ex-
ample [16]. Except for the first level, every octant in the
octree has a parent octant. Octant values can be separated
according to their parent’s values, yielding different contexts
for different entropy-coding methods, such as arithmetic
coding and LZW.

In order to better illustrate the proposed method, consider
the 2D symbol depicted in Fig. 3(a), as all the concepts can
be easily transposed to three dimensions. 3 levels of the
corresponding quadtree representation are shown, as well
as its binary representation (Fig. 3(b)). Each value in the
quadtree sequence can be classified either according to its
parent value, yielding 15 contexts, or according to its parent
bit position ∈ [1, 4], yielding 4 contexts. (In 3D, the parent
value and bit position yield 255 and 8 contexts, respectively.)
Following Fig. 3(b), the quadtree sequence t, its parent
values v, and the parents’ positions p in the quadtree are
given in hexadecimal representation as

t = [0xF 0x3 0x2 0x4 0x8 0x1 0xC 0x9 0x8 0x8],
v = [0x0 0xF 0xF 0xF 0xF 0x3 0x3 0x2 0x4 0x8],
p = [0x0 0x1 0x2 0x3 0x4 0x3 0x4 0x3 0x2 0x1].

(1)

(a)

(b)

Fig. 3. A 2D symbol and its quadtree representation: (a)
three levels of the subdivision of 2D space in quadrants;
(b) binary tree representation of (a). Dark quadrants indicate
the presence of points in further levels of the quadtree.
The analysis can be extended to the 3D case and its octree
representation.

For the first positions in v and p, the null value was chosen
in order to indicate the first level, which has no parents. All
the other octants have at least one occupied position, so that
the null value does not appear again.
v or p can be used as context, according to the chosen

entropy-coding method. In this work, arithmetic coding and
LZW are considered, but the proposed method for arithmetic
coding can be easily adapted in order to support Huffman
coding. Figures 4(a)-(b) illustrate the proposed methods
based on arithmetic and LZW coding.

(a)

(b)

Fig. 4. Proposed methods for context-based intra coding
of point-cloud geometry data, according to entropy-coding
methods: (a) arithmetic coding; (b) LZW coding.



II-C. Arithmetic coding
For this entropy-coding method, decoding can only be

achieved at the receiver side with knowledge of the table
for the frequency of occurrence of each symbol. Although v
offers a larger number of contexts, it also requires conveying
a higher amount of side information for the frequency tables,
rendering it impractical for rate reduction. p is then used as
the context, so that 4 and 8 separate codes are generated in
2D and 3D space, respectively.

Following the example in Eq. 1, the 4×15 frequency table
F is given as

F =


0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

 ,

(2)
where the position (u, v) in F indicates the frequency of
occurrence for symbol v under context u, 1 ≤ u ≤ 4 and
1 ≤ v ≤ 15. In 3D space, F is an 8×255 matrix, 1 ≤ u ≤ 8
and 1 ≤ v ≤ 255.

The quadtree sequence t is coded according to each parent
position p and the corresponding frequency table F. In
order to simplify the implementation, t can be encoded
according to each position separately, which avoids the need
to switch between frequency tables on a constant basis. For
instance, the sequences su for positions 1 ≤ u ≤ 4 are
s1 = [0x3 0x8], s2 = [0x2 0x8], s3 = [0x4 0x1 0x9] and
s4 = [0x8 0xC], respectively. Each sequence su is then
arithmetically coded using line u in F as its frequency table,
rendering sequences au. Also, the quadtree’s first level λ1

and F must be conveyed to the decoder (for example, by
using a variable bitdepth for each row u).

Reconstruction of t is performed by first decoding each
sequence au, recovering su back. The decoder then recon-
structs each level λL based on level λL−1. Since the first
level λ1 was transmitted separately, the second level can
then be accordingly reconstructed, and so on all the way to
the last level.

In the example, λ1 = [0xF] = [0b1111], which indicates
that positions 1, 2, 3 and 4 are filled. The decoder then
reads the first position in sequences s1, s2, s3 and s4, in
that order, and the second level is reconstructed as λ2 =
[s1(1) s2(1) s3(1) s4(1)] = [0x3 0x2 0x4 0x8]. Now, λ2 can
be interpreted exactly as λ1, allowing for the reconstruction
of λ3, and so on until the last level λLMAX

is reconstructed.

II-D. LZW coding
This entropy-coding method is backward-adaptive, so that

frequency tables are not needed. Since v offers a larger
number of contexts, it is used in order to build the conditional
probabilities, so that 15 or 255 separate codes are generated
in 2D and 3D space, respectively.

The vector v is sorted in ascending lexicographical order,
creating vS . The sorting order found is applied to t, yielding
the tree tS , which is then entropy-coded with the LZW
algorithm, generating ω. The frequency table fv of v is also
conveyed to the decoder (for example, represented in ASCII
and separated by commas). In 2D space, fv is a 1×15 vector,
and in 3D space, it is a 1× 255 vector.

For the example in Eq. (1), vS , tS and fv are

vS = [0x0 0x2 0x3 0x3 0x4 0x8 0xF 0xF 0xF 0xF],
tS = [0xF 0x9 0x1 0xC 0x8 0x8 0x3 0x2 0x4 0x8],

fv = [0 1 2 1 0 0 0 1 0 0 0 0 0 0 4].
(3)

Equation (3) does not accurately illustrate the advantage of
applying the LZW algorithm to tS instead of t, since the
former vector does not present larger sequences of repeated
symbols than the latter. In order to show the potential
advantages of the proposed algorithm, we calculated the
first-order difference D() of vectors t and tS for frames
145 to 149 of sequence Man2, such that the counts of the
occurrence of zeros C0() in D(t) and D(tS) for each frame
are

C0(D(t)) = [5565 5175 4857 4833 4798],
C0(D(ts)) = [6349 5966 5777 5663 5652]. (4)

Higher values in C0(D(ts)) mean that ts contains more
repeated values than t. Even though the first-order difference
within vectors is not the only measure of rate-reduction ef-
fectiveness for the LZW algorithm, Eq. (4) hints at potential
gains.

Reconstruction of t is performed by first decoding ω,
which recovers tS . As in the arithmetic-coded version, the
decoder reconstructs level λL based on level λL−1, starting
with the first level λ1, which was separately transmitted.

In the example, λ1 = tS(1) = [0xF]. fv indicates that
tS(2)’s parent has value 0x2, tS(3) and tS(4)’s parents have
value 0x3, tS(5)’s parent has value 0x4, tS(6)’s parent has
value 0x8, and tS(7), tS(8), tS(9) and tS(10)’s parents have
value 0xF. In this manner, vS is recovered at the decoder
side from fv, and does not need to be transmitted.
λ1 = [0xF] = [0b1111] indicates that the second level

λ2 has 4 entries. With knowledge of fv, tS and vS , the
decoder infers that the entries in λ2 all have parent value
0xF, and that they correspond to the last 4 entries in tS :
λ2 = [0x3 0x2 0x4 0x8]. λ2 is once again interpreted in
the same manner, indicating two entries with parent value
0x3, one entry with parent value 0x2, one entry with parent
value 0x4 and one entry with parent value 0x8. The end
result is that λ3 = [0x1 0xC 0x9 0x8 0x8]. Further levels
for deeper quadtrees/octrees would be reconstructed in the
same manner.

III. EXPERIMENTAL RESULTS
Tests for the proposed methods were carried with six

point-cloud sequences: Andrew9, David9, Man, Phil9, Ri-



(a)

(b)

Fig. 5. Rate on a frame basis, in bpov, for the scenarios
proposed in Table I. Sequences [17]: (a) Andrew9; (b)
David9.

Table I. Proposed testing scenarios.
MPEG MPEG anchor code [13]
Draco Draco open-source library [15]

OR Octree representation
AC Arithmetically-coded octree representation

P(AC) Arithmetic-code-based proposed method
LZW LZW-coded octree representation

P(LZW) LZW-based proposed method

cardo and Sarah9 [7][17]. The average rate was calculated
for seven scenarios, as indicated in Table I. For arithmetic
coding, an implementation for byte-sized symbols was used,
and for LZW compression, GZIP was applied, using ver-
sion 1.0.7 of the Keka application with the maximum-
compression setting (-mx9) [18].

Table II presents the average rate in bpov for the seven
proposed scenarios, and Table III presents the average per-
centage rate gain over the octree representation for the other
six scenarios. It can be seen that: (a) the proposed methods
P(AC) and P(LZW) outperform the MPEG, Draco methods
in all sequences; (b) each proposed method outperforms the
scenario using the same entropy coder, gaining an average
2% over arithmetically coding the octree representation and
an average 5% over applying LZW to the octree repre-

Table II. Average rate in bits per occupied voxel for the
scenarios proposed in Table I.

Sequence MPEG Draco OR AC P(AC) LZW P(LZW)
Andrew9 2.75 4.77 2.58 2.04 1.97 1.94 1.80
David9 2.71 4.35 2.62 2.05 1.97 1.89 1.73

Man 4.49 5.04 3.17 2.66 2.60 2.52 2.32
Phil9 2.89 4.54 2.64 2.10 2.03 2.00 1.84

Ricardo 3.53 4.82 2.92 2.43 2.37 2.37 2.27
Sarah9 3.10 4.86 2.61 2.04 1.97 1.89 1.75
Average 3.25 4.73 2.76 2.22 2.15 2.10 1.95

Table III. Average rate gain over the octree representation
for the scenarios proposed in Table I.

Sequence MPEG Draco AC P(AC) LZW P(LZW)
Andrew9 -7% -85% +21% +24% +25% +30%
David9 -3% -66% +22% +25% +28% +34%

Man -42% -59% +16% +18% +21% +27%
Phil9 -9% -72% +21% +23% +24% +30%

Ricardo -21% -65% +17% +19% +19% +22%
Sarah9 -19% -87% +22% +25% +28% +33%
Average -17% -72% +20% +22% +24% +29%

sentation. The arithmetically-coded-based method obtains a
smaller average gain than the LZW-based method because
it uses a smaller number of contexts, since p and v offer 8
and 255 contexts, respectively.

Figures 5(a) and (b) present the rate on a frame basis,
in bits per occupied voxel, for the proposed scenarios,
considering sequences Andrew9 and David9. The relatively
low variance of rates for all scenarios in sequence Andrew9
(Fig. 5(a)) indicates that it does not contain much move-
ment. The opposite is true for sequence David9 (Fig. 5(b)).
Regardless of the movement characteristics of the sequences,
these Figures show consistent gains offered by the proposed
method, both for arithmetic coding and LZW compression.

IV. CONCLUSION
In this paper, a lossless intra-frame compression method

for point-cloud geometry was presented, where different con-
texts for entropy coding were employed based on the octree
structure. Experiments were carried with six point-cloud
sequences, and results showed that the proposed method
offers an average rate reduction of 29%, when compared to
the octree representation, yielding a 5% gain over entropy
encoding the octree.We believe the proposed method is the
new-state-of-the-art in intra-frame geometry compression for
point-clouds.

V. REFERENCES
[1] S. Orts-Escolano, C. Rhemann, S. Fanello, W. Chang,

A. Kowdle, Y. Degtyarev, D. Kim, P. L. Davidson,
S. Khamis, M. Dou, V. Tankovich, C. Loop, Q. Cai,
P. A. Chou, S. Mennicken, J. Valentin, V. Pradeep,
S. Wang, S. B. Kang, P. Kohli, Y. Lutchyn, C. Keskin,
and S. Izadi, “Holoportation: Virtual 3d teleportation in



real-time,” in Proceedings of the 29th Annual Sympo-
sium on User Interface Software and Technology, New
York, NY, USA, 2016, UIST ’16, pp. 741–754, ACM.

[2] C. Zhang, Q. Cai, P. Chou, Z. Zhang, and R. Martin-
Brualla, “Viewport: A distributed, immersive telecon-
ferencing system with infrared dot pattern,” IEEE
MultiMedia, vol. 20, no. 1, pp. 17–27, Jan. 2013.

[3] C. Loop, C. Zhang, and Z. Zhang, “Real-time
high-resolution sparse voxelization with application to
image-based modeling,” in Proceedings of the 5th
High-Performance Graphics Conference. 2013, pp. 73–
79, ACM.

[4] P. Merkle, A. Smolic, K. Muller, and T. Wiegand,
“Multi-view video plus depth representation and cod-
ing,” in 2007 IEEE International Conference on Image
Processing, Sept 2007, vol. 1, pp. I – 201–I – 204.

[5] G. Tech, Y. Chen, K. Mller, J. R. Ohm, A. Vetro, and
Y. K. Wang, “Overview of the multiview and 3D
extensions of High Efficiency Video Coding,” IEEE
Transactions on Circuits and Systems for Video Tech-
nology, vol. 26, no. 1, pp. 35–49, Jan 2016.

[6] M. Botsch, M. Pauly, L. Kobbelt, P. Alliez, B. Lévy,
S. Bischoff, and C. Rössl, “Geometric modeling based
on polygonal meshes,” in ACM SIGGRAPH 2007
Courses, New York, NY, USA, 2007, SIGGRAPH ’07,
ACM.

[7] R. L. de Queiroz and P. A. Chou, “Compression of
3d point clouds using a region-adaptive hierarchical
transform,” IEEE Transactions on Image Processing,
vol. 25, no. 8, pp. 3947–3956, Aug 2016.

[8] D. Meagher, “Geometric modeling using octree encod-
ing,” Computer Graphics and Image Processing, vol.
19, no. 2, pp. 129–147, June 1982.

[9] Y. Huang, J. Peng, C. C. J. Kuo, and M. Gopi, “A
generic scheme for progressive point cloud coding,”
IEEE Transactions on Visualization and Computer
Graphics, vol. 14, no. 2, pp. 440–453, March 2008.

[10] D. C. Garcia and R. L. de Queiroz, “Context-based
octree coding for point-cloud video,” in 2017 IEEE
International Conference on Image Processing (ICIP),
Sept 2017, pp. 1412–1416.

[11] R. L. de Queiroz and P. A. Chou, “Motion-compensated
compression of point cloud video,” in 2017 IEEE
International Conference on Image Processing (ICIP),
Sept 2017, pp. 1417–1421.

[12] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli,
M. Beetz, and E. Steinbach, “Real-time compression
of point cloud streams,” in 2012 IEEE International
Conference on Robotics and Automation, May 2012,
pp. 778–785.

[13] R. Mekuria, K. Blom, and P. Cesar, “Design, imple-
mentation, and evaluation of a point cloud codec for
tele-immersive video,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 27, no. 4, pp.

828–842, April 2017.
[14] MPEG working group 3DG-PCC on PointCloud Com-

pression, “Draft call for proposals for point cloud
compression,” IEEE Transactions on Circuits and
Systems for Video Technology, October 2016.

[15] “Draco 3D graphics compression,”
https://google.github.io/draco/, Accessed: 2018-01-10.

[16] Khalid Sayood, “Introduction to data compression,”
The Morgan Kaufmann Series in Multimedia Informa-
tion and Systems. Morgan Kaufmann, Burlington, 3rd
edition, 2006.

[17] C. Loop, Q. Cai, S.O. Escolano, and P.A. Chou, “Mi-
crosoft voxelized upper bodies - a voxelized point cloud
dataset,” in ISO/IEC JTC1/SC29 Joint WG11/WG1
(MPEG/JPEG) input document m38673/M72012, May
2016.

[18] “Keka - the macOS file archiver,”
http://www.kekaosx.com, Accessed: 2018-01-10.


