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ABSTRACT

3D immersive communications are trending as real-time point
clouds capture and display of point cloud video become feasible.
This paper presents a novel motion-compensated approach to encod-
ing dynamic voxelized point clouds (VPC) at low bit rates. A simple
coder breaks the VPC into blocks which are intra-frame coded or
replaced by a motion-compensated version of a block in the previous
frame. The decision is optimized in a rate-distortion sense, encoding
with distortion both geometry and the color, at reduced bit-rates. In-
loop filtering is employed to minimize compression artifacts caused
by distortion in the geometry information. Simulations reveal that
this simple motion compensated coder can efficiently extend the
compression range of dynamic voxelized point clouds to rates below
what intra-frame coding alone can accommodate, trading rate for
geometry accuracy.

1. INTRODUCTION

In immersive 3D communication systems [1]-[5], a dynamic 3D
scene capture can be implemented using color plus depth (RGBD)
cameras, while 3D visualization can be implemented using stereo-
scopic monitors or near-eye displays to render the subject within a
virtual or augmented reality. The processing for capture and display
can be done in real time using powerful graphics processing units
(GPUs) [6]. However, representing a complex, dynamic 3D scene
generates a large amount of data. Compression is therefore an es-
sential part of enabling these emerging immersive 3D systems for
communication.

There are many choices for representing 3D data, and the most
appropriate choice depends on the situation, for example, dense
voxel arrays, polygonal meshes, or point clouds . An alternative
to point clouds are sparse voxel arrays, or voxel clouds, which are
arbitrary collections of voxels with a volumetric aspect. Yet an-
other possible representation of 3D data is simply a set of color and
depth maps, sometimes called multiview video plus depth (MVD)
[7]. This is a low-level representation close to the RGBD sensors.
Closely related to color and depth maps are elevation maps [8] and
multi-level surface maps [9].

Here, the 3D representation of choice is sparse voxel arrays, or
voxelized point clouds. Compared to arbitrary point clouds, they
have implementation advantages and are highly efficient for real-
time processing of captured 3D data [6].

Each representation employs its own compression techniques,
such as [10]–[20] for polygonal meshes, and [7], [21] for multiview
video plus depth. Previous approaches to compressing point clouds
include [22]–[28]. The most efficient of these are based on vox-
elization. We believe [25] and [26], until recently, represented the
state-of-the-art in (voxelized) point cloud color compression. We

Fig. 1. Different viewpoints of a 3D point cloud frame.

have recently developed a coder that is able to match or outperform
existing methods at a reduced cost [29]. Such a still-frame coder is
based on a region-adaptive hierarchical transform (RAHT) specially
developed for point clouds and is used as a fundamental building
block in the present framework for our dynamic point cloud coder,
which can be considered a 3D video coder [30].

2. VOXELIZED POINT CLOUDS

We represent 3D data by voxelized point clouds. A point cloud is
a set of points {ν}, each point ν having a spatial position (x, y, z)
and a vector of attributes such as colors, normals, or curvature. In
this paper we assume the attributes are colors, ()e.g. Y,U, V ). A
point cloud may be voxelized by quantizing the point positions to a
regular lattice. A quantization cell, or voxel, is said to be occupied
if it contains a point in the point cloud and is unoccupied otherwise.
An occupied voxel derives its color from the color(s) of the point(s)
within the voxel, possibly by averaging, but this is outside the scope
of this paper. We assume simply that each occupied voxel has a
color. Without loss of generality, we may assume that the voxels
are addressed by positions in the integer lattice Z3

W , where ZW =
{0, . . . ,W − 1}, W = 2D is its width, and D is an integer. We take
Y , U , and V to be 8-bit unsigned integers. Thus, our voxelized point
cloud is a finite set or arbitrarily indexed list of occupied voxels {νi}
in which each voxel

νi = [xi, yi, zi, Yi, Ui, Vi] (1)
comprises a unique integer spatial location (xi, yi, zi) and an integer
color vector (Yi, Ui, Vi).

We are mostly interested in live video and dynamic point clouds.
Thus at every discrete time twe have the frameF(t) = {νit}, which
is represented as a list of voxels

νit = [xit, yit, zit, Yit, Uit, Vit]. (2)
Note that different frames may be represented by different lists of
voxels, so there is no real relation between νi,t and νi,t+1, since the
indexing of the voxels in the lists is arbitrary. Moreover, different
frames may have different numbers of occupied voxels.

The temporal correspondence among voxels of adjacent frames
is not treated here, and left for the fuller version of this paper [30].



A large amount of work exist in the subject being found for example
in [31],[33]-[41] It is, in general, a very complex process that is not
friendly to real-time communications.

3. DISTORTION METRICS AND RESIDUALS

For the purposes of visual reconstruction, the unoccupied and inte-
rior voxels do not need to be encoded, but only the external “shell”
of the person or object. The sparsity of these occupied voxels allows
efficient still frame or intra-frame compression of the geometry us-
ing octtrees [6],[28]. Inter-frame compression of the geometry can
also be performed using octtrees and exclusive-OR between sets of
occupied voxels in successive frames [26],[28]. Here, we attempt to
predict the geometry as well as the color, and to code the prediction
residuals in a rate-distortion optimized way.

The geometry distortion (combined or not with the color distor-
tion) has not been well defined yet. We can devise a correspondence-
and a projection-based distortion computation.

In a correspondence-based distortion metric, we first establish
a correspondence between the original frame F(t) and the recon-
structed frame F̂(t) using for example proximity, i.e., a voxel in
F̂(t) is associated to its spatially closest voxel in F(t). From all
pairing associations we can compute the mean-squared error (MSE)
for both geometry and colors, and, from it, the corresponding peak
signal-to-noise ratio (PSNR). In particular, the MSE we use only
accounts for the Y component and linearly blends both distortion
measures (δc and δg).

δY+G = δc + βδg. (3)
From δY+G we compute PSNR-Y+G.

In a projection-based distortion measure, a projection view of
the point cloud is rendered for a viewer. We assume an orthogo-
nal projection of the point cloud over the six sides of a cube at the
limits of the voxel space. The observer is assumed far away from
the scene so that the rays from it to the voxels are parallel and the
background is assumed at a mid level of gray. The distortion metric
is the MSE (or PSNR) in between the two corresponding compos-
ite images, each with the 6 orthogonal projections of the original or
reconstructed Y frames.

4. THE MOTION-COMPENSATED CODER

Our objective is to build a coder for dynamic point clouds that can
be implemented in real time with existing technology, which would
outperform the use of RAHT and octtrees to compress color and
geometry, respectively.

Unlike previous approaches, we introduce the use of motion es-
timation and motion compensation into the compression of dynamic
point clouds, in order to achieve higher compression ratios at the
expense of lossy coding of the geometry. As far as we know, the
present work is the first to explore such a framework.

4.1. Cube motion compensation

The coder, whose diagram is depicted in Fig. 2, is very similar to
any traditional video coder in its essence, but is quite different in the
details. The frame is broken into blocks of N × N × N voxels.
So, the occupied block at integer position (bx, by, bz) is composed
of occupied voxels νit within the block boundaries, i.e., occupied
voxels νit = [xit, yit, zit, Yit, Uit, Vit] such that

bxN ≤ xit < bxN +N,
byN ≤ yit < byN +N,
bzN ≤ zit < bzN +N.

(4)

Fig. 2. Encoder diagram.

Fig. 3. Motion compensation of an occupied block in the present
frame with voxel data within a translated block in the reference
frame.

An occupied block may have between 1 and N3 occupied voxels.
The motion compensation process is illustrated in Fig. 3.

Each occupied block is associated with a motion vector (MV),
whose components (Mx,My,Mz) indicate a block in a refer-
ence frame that will be used to predict the current block. Let Ω
be the set of occupied voxels in a block at position (bx, by, bz)
in frame F(t). Then, Ω can be predicted from the set of voxels
[xi,t−1, yi,t−1, zi,t−1, Yi,t−1, Ui,t−1, Vi,t−1] originally in frame
F(t− 1) such that

bxN −Mx ≤ xi,t−1 < bxN +N −Mx,
byN −My ≤ yi,t−1 < byN +N −My,
bzN −Mz ≤ zi,t−1 < bzN +N −Mz.

(5)

This set is motion compensated by adding the motion vectors to its
coordinates (xi → xi + Mx, yi → yi + My , and zi → zi + Mz)
to obtain the set Ωp of voxels [xi,t−1 +Mx, yi,t−1 +My, zi,t−1 +
Mz, Yi,t−1, Ui,t−1, Vi,t−1]. The set Ωp is used as a predictor of Ω.

In order to compute a local distortion δ between Ω and Ωp, with
NΩ and NΩp voxels, respectively, we set δ = 0 and compute all
NΩNΩp Euclidean distances across the sets. We associate the voxels
with the shortest distance, remove them, and update δ → δ + δg +
βδc, where δg and δc are the geometry and color distances. We
repeat the process until all voxels in Ω are gone. If NΩp < NΩ, we
may duplicate voxels in Ωp beforehand. If we opt for a projection-
based distortion, the MSE in between the projections of Ω and Ωp is



computed instead.
In this article, we do not examine how best to perform motion es-

timation to establish what the MVs are. Instead we re-use the corre-
spondences that are calculated in the 3D surface reconstruction pro-
cesses immediately prior to compression [41]. In those processes,
each voxel may have a correspondence to a voxel in the previous
frame, but we need to use one MV per occupied block. From the
correspondences, we first produce a voxel-oriented field of MVs. In
order to find one MV for the whole set, we take the existing MV in
Ω that is the closest to the average of all MVs in Ω. That “median”
MV is then assigned to the block containing Ω.

4.2. Coding mode decision

Geometry prediction and residuals are a distinct problem. We, so far,
have been unable to encode the geometry prediction-error at a rate
significantly lower than 2.5-3.0 bpv, which is achieved by encod-
ing the geometry using octtrees without any inter-frame prediction.
Because of that we do not encode geometry residuals. Our coder
operates in two modes: either a block is purely motion compensated
or it is entirely encoded in intra mode.

We designate frames as types I (intra-coded) and P (predicted).
For an I-frame, all blocks are encoded in intra mode, for example
using octtree encoding for the geometry and RAHT encoding for
the color components. For a P-frame, there should be a reference
frame stored in the frame store, typically the previous frame. In a P-
frame, we make a mode decision for each occupied block, whether
it should be inter-coded (motion-compensated) or intra-coded. In
effect, we test whether motion compensation alone produces a good
enough approximation of the block. If so, we replace Ω by Ωp. If
not, we encode Ω independently using octtree and RAHT encoding.

The decision is optimized in a rate-distortion (RD) sense. The
choice is about representing the block by Ω (intra) or by Ωp (in-
ter). Each choice implies rates and distortions for both geometry and
color components: (Rintrag , Rintrac , Dintra

g , Dintra
c ) and (Rinterg ,

Rinterc , Dinter
g , and Dinter

c ). We then compute

Rintra = Rintrag +Rintrac ≈ 2.5||Ω||+Rintrac (6)

Rinter = Rinterg +Rinterc = RMV (7)

Dintra = Dintra
g + βDintra

c = βDintra
c (8)

Dinter = Dinter
g + βDinter

c = δ, (9)

where RMV is the average rate to encode one MV. We build La-
grangian costs for each mode and choose the mode with the smallest
cost, i.e., we decide on intra mode if and only if

Dintra + λRintra < Dinter + λRinter (10)

and decide on inter mode otherwise, for any fixed λ > 0.
The points (Rinter, Dinter) and (Rinter, Dinter) are very dis-

tinct points in the distortion-rate plane, with (typically) Rinter <
Rintra and Dinter > Dintra. Let

λ∗ =
Dinter −Dintra
Rintra −Rinter

> 0 (11)

be the magnitude of the slope of the line connecting the two points.
Then, the intra mode criterion (10) reduces to λ < λ∗. That is, a
block is encoded as intra if and only if its value of λ∗ is greater
than the globally advertised value of λ, which is fixed across the
sequence. One can see that the mode decision for a given block is
not excessively sensitive to λ since the choice is between only two
RD points and many values of λmay lead to the same mode decision
for a given block.

4.3. Rate or distortion control

The rates and distortions of the color and motion vectors are con-
trolled by a quantizer step Q. Like λ, Q is also a means to trade
off rate and distortion. Like similar video coders, the overall coder
essentially maps Q and λ to an overall rate R and distortion D. We
would like the coder to operate on the lower convex hull (LCH) of
all the RD points produced by spanning all Q and λ combinations.
Thus, we want to find the λ and Q points that are mapped into the
LCH. We simplify the process correlating λ and Q as λ = fλ(Q).
Details can be found in [30].

4.4. In-loop processing for geometry distortions

Unlike previous coders for dynamic point clouds, in this work, we
apply lossy coding of the geometry. Even though our distance metric
applied to two sets of point clouds may be useful as an objective
measurement of the coding quality, small distortions to the geometry
can cause blocking artifacts that are quite annoying. We decided to
smooth the surfaces and to fill the gaps (rips) using adaptations to
3D voxels of traditional operators. Our processing is essentially an
in-loop deblocking filter adapted to 3D voxels.

We first filter the geometry elements to smooth the surface dis-
continuities caused by mismatch in the motion compensation pro-
cess. Without loss of generality, for example, using the first dimen-
sion (x), the filter is:

x̂i =

∑
j,dij<η

xjρ
dij∑

j,dij<η
ρdij

(12)

where dij = ||νi−νj || is the distance between voxels i and j, and η
controls the neighborhood size and the intensity of filtering. Such an
operation may cause further holes in the geometry surfaces. Because
of that, assuming the discontinuities will be more prominent at the
cube boundaries, we only replace voxels that are near the boundaries
of a motion-compensated cube. Furthermore, to avoid creating more
holes, we do not allow the voxel position to move away from the
border. In effect, if xi is at the border, xi is not changed but yi and
zi are replaced by ŷi and ẑi, respectively.

After filtering, we try to close gaps using morphological opera-
tions on the voxel geometry. We define simple dilation as replicating
each existing occupied voxel to its 26 volumetric neighbors, if such a
neighbor is not occupied yet. We also define simple erosion by eras-
ing a given voxel if any of its 26 neighbors in 3D is unoccupied. We
repeat the dilation γ times and do the same number of erosion oper-
ations. The process is parallel to a morphological closing operation.
Holes up to 2γ voxels wide may be patched by the process.

The operation is only applied to inter-coded cubes. Processed
cubes not only are made available to the decoder and to the display,
but can also be placed in the frame store so that the coder can use the
frames processed in-loop to perform motion compensation for future
frames.

5. SIMULATION RESULTS

Simulations were carried out to demonstrate the capabilities of the
proposed system, to which we refer as a motion-compensated intra-
frame coder (MCIC). We have two datasets, both with W = 512,
200 frames, and captured at a rate of 30 frames per second. One
sequence (“man”) represents a full body in 3D, while the other se-
quence (“Ricardo”) is intended for video conferencing and thus just
a frontal upper body is represented. We used a GOP length of 8, i.e.
interspersing 7 P-frames between every I-frame. Since P-frames are
degraded versions of I-frames (lower rate and higher distortion) and
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Fig. 4. RD plots for sequence “man” and “upper body” using PSNR-
Y+G. RD points are averages over the entire sequence.

assuming the compression ratio should be similar for every intra-
coded part in every frame, the rate peaks at every I-frame. We used
Qmv = 1 and varied Q to obtain our RD curves. Values of Q in
the range of 5 through 45 were used for the MCIC, while the purely
intra coder used quantizer values ranging from 10 to 50.

As for the in-loop filtering, after many tests, we have chosen to
use γ = 2 and η = 2. Nevertheless the best choice of parameters
and the filtering approach is far from being settled.

For the correspondence-based distortion metric (PSNR-Y+G), a
simple approximation to fλ(Q) yields very good results for both se-
quences we tested. We derived the function from one single frame
and yet it performs adequately for all other frames under this met-
ric. Using λ = fλ(Q) = Q2/60, we obtained the RD plots for
sequences “man” and “Ricardo” shown in Fig 4. The RD points are
averages over all the 200 frames of the sequences. From the fig-
ure, one can easily infer the superior performance of the MCIC over
purely intra coder under this metric.

We do not have room to present and discuss the results using a
projection-based distortion metric (PSNR-P), which were left to the
full version of the present paper [30].

We also include a similar comparison for a frame of sequence
“Ricardo,” which was compressed using MCIC (correspondence-
based distortion for mode selection) and intra coding, at a rate around
2.6 bpv, which is shown in Fig. 6.

Fig. 5. Front projection rendering comparison of frame 58 in se-
quence “man” at 3.7 bpv. Original, MCIC, MCIC designed under a
projection-based distortion metric, RAHT.

Fig. 6. Front projection rendering comparing MCIC (right) and
intra-coder (RAHT, left). Frame 60 at 2.6 bpv.

6. CONCLUSIONS

We have developed a novel motion-compensation scheme for use
with dynamic point clouds. The encoder works on dividing the cloud
into blocks of occupied voxels and deciding for each one if the block
should be intra-coded or simply motion-compensated from the past
frame. The replacement of intra-coded data for a slightly distorted
(or not) set of voxels saves many bits, but introduces errors not only
to the voxel colors, but also also to their positions (geometry). In ef-
fect, a P-frame is a degraded I-frame whose extra distortion is found
to be “worth it” in an RD sense. With that extra degradation we are
able to extend the bit-rate range below where the intra coder can ef-
fectively operate and to exceed the performance of the intra coder
at any rate under a given objective distortion measure. From that
perspective, the coder results are satisfactory. However, much still
needs to be done.
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