CONTEXT-BASED OCTREE CODING FOR POINT-CLOUD VIDEO

Diogo C. Garcia and Ricardo L. de Queiroz

Universidade de Brasilia, Brasil

ABSTRACT

3D and free-viewpoint video has been moving towards solid-
scene representation using meshes and point clouds. Point-
cloud processing requires much less computation and the
points in the cloud are minimally represented by their geome-
try (3D position) and color. A common point-cloud geometry
compression method is the octree representation, which acts
on individual frames. We present a lossless inter-frame com-
pression method for pointcloud geometry, by reordering each
octree based on previous frames prior to entropy coding. Re-
sults show that compared to the octree representation, the
proposed solution offers an average rate reduction of 30%,
while entropy-coding of the octree yields an average rate
reduction of 24%.

Index Terms— Point-cloud compression, 3D immersive
video, free-viewpoint video, octree, real-time point-cloud
transmission.

1. INTRODUCTION

3D immersive communications have recently evolved, allow-
ing for the real-time capture and transmission of moving per-
sons and objects [1][2]. According to the space-time repre-
sentation method chosen for such systems, different features
are made possible. Multiview-plus-depth video is a low-level
representation of 3D scenes, based on their 2D projection, that
can be efficiently compressed, for example, with the multi-
view extension of the High Efficiency Video Coding standard,
MV-HEVC [3][4]. Polygonal meshes represent 3D scenes
with connected polygons, and are the most common repre-
sentation for computer graphics [5]. Point clouds represent
3D scenes by indicating colors of points in a regular grid in
3D space (voxels), and are less computationally intensive than
polygonal meshes [2].

Point clouds of sampled real-world objects are usually
volumetrically sparse, typically represented by the points’ 3D
positions or geometry, along with their corresponding colors.
The geometry information is commonly encoded through oc-
tree scanning [6]—[7], applied to individual frames. In video
compression terminology, this is referred as intra-frame cod-
ing. Frame correlation, or inter-frame coding, can be used to
improve compression ratios. In this paper, a simple lossless
inter-frame compression method is presented for point-cloud

geometry, where each octree is reordered based on previous
frames and entropy coded.

2. GEOMETRY CODING FOR POINT CLOUDS

2.1. Octree scanning and coding

The octree is a tree data structure which represents the geom-
etry of 3D data in a compact manner by recursively dividing
3D space into cubes of equal volume, or octants, as shown in
Fig. 1(a). Each division in 3D space is regarded as a level
in the octree. By indicating which of these octants contain
points, compression is achieved, as this eliminates the need
for representing the status (occupied or not) of every possi-
ble voxel in 3D space. This also allows for the progressive
representation of 3D space, since stopping at a given level is
equivalent to downsampling the point cloud to a correspon-
dent factor [6].

)

(a)
00010100

\

01100011 11111111

(b)

Fig. 1. Point-cloud representation using octrees: (a) three lev-
els of the subdivision of 3D space in octants; (b) binary tree
representation of (a). Dark-grey octants indicate the presence
of points in further levels of the octree.

Octree encoding can be done by indicating the presence of
points in a given level with a binary symbol, as indicated in

Fig. 1(b). Since eight octants divide 3D space in each octree
level, these symbols can be grouped in bytes along each level.

Analysis of this byte grouping reveals that the octree can
be further compressed by general entropy-coding methods,
such as Huffman codes, arithmetic coding and LZW [8]. Con-
sider, for instance, frame 149 in point-cloud sequence Man
[9], which contains 181461 occupied voxels. The equivalent
9-level octree representation contains 70994 bytes, yielding
an average rate of 3.13 bits per occupied voxel. DEFLATE
encoding of this octree using GZIP [8] reduces its representa-
tion to 58266 bytes, yielding an average rate of 2.57 bits per
occupied voxel.

2.2. Context-based octree inter-frame coding

In the same way that video compression achieves better com-
pression ratios than image compression by exploiting inter-
frame correlation, point-cloud video compression can benefit
from similar techniques. However, point-cloud frames and
2D-video frames have a fundamental difference: the amount
of occupied voxels varies along the frames in a point cloud,
while 2D video always offers the same amount of pixels along
its frames. This characteristic makes it difficult to apply mo-
tion estimation and compensation to point-cloud frames with-
out some extra efforts.

Since the amount of occupied voxels varies, the length of
the corresponding octree also varies. Also, nodes that were
not filled in a previous frame could suddenly be occupied in
a new frame, or vice-versa, making it very hard to use one
octree to predict another, for example.

To illustrate these concerns, consider the first two levels
of the octree representations of frames 149 and 150 for point-
cloud sequence Man [9], shown in Fig. 2. Frame 150 has all
eight octants filled in the first level, while frame 149 has one
less octant, so that the second levels in frames 149 and 150
have 7 and 8 bytes, respectively. As for the octants filled in
both frames, they may constitute good predictions from one
frame to another. In the example, five of the seven common
octants are identical in both frames.

Considering these characteristics, a prediction octree O p
for the current octree O¢ is composed using a reference oc-
tree Op in the following manner. We wish to build a good
prediction Op from Op, having as many bytes as O¢. In
order to do so, we copy the levels in Or to Op if Op’s par-
ent levels are also occupied in O¢. Parent levels present in
O¢ but not in Op are filled with zeros (00000000) in Op.
In this manner, O p will contain the exact amount of bytes as
O¢, and Oy will be used as prediction just for the levels in
common with O¢. The null value inserted in other levels was
chosen because this value only occurs in the octree represen-
tation if all 3D space is unoccupied, which is rarely the case.
Since the first level has no parent level, the first level of O p
is equal to the first level of Og.

This method for creating a prediction octree Op was

developed by Kammerl er. al. [10], who then applied
the exclusive disjunction operation between Op and O¢
(XOR(Op, O¢)) before entropy encoding. In this paper, O p
is used in another manner, which proved itself more effective
in the tests performed in Section 3. Instead of entropy-
encoding XOR(Op,O¢), Op is sorted in ascending order,
creating Ogp. The sorting order found (Op = Ogp) is
applied to O, yielding the octree Ogc, which is entropy
coded. The reason for this sorting is that the sorted version of
O p has long sequences of repeated symbols, which may have
higher compression ratios using some compressor, and if O p
constitutes a good prediction of O¢, Ogc will also have
similar long sequences of repeated symbols. If the prediction
is not good, O g becomes a scrambled version of O¢, with
similar statistics, entropy and compression ratio.

If more than one frame is to be used as reference, the ref-
erence Op is composed by all unique 3D positions in these
reference frames. After that, the algorithm continues as ex-
plained in the previous paragraphs. For example, for the fol-
lowing reference frames

10 10 10 10 10 10
10 10 12 10 10 12

Vei=111 19 1o ™ Vr2= 117 17 11| D
12 13 5 12 13 5

where the columns in matrices Vg1 and V g represent X, Y
and Z positions of the points in those frames, the correspond-
ing reference used by the algorithm is

10 10 10
10 10 12

Vi= |11 11 11],)
11 12 10
12 13 5

where V g contains the unique 3D positions of Vg1 and V go.
'V is then used to compose O p.

In order to allow for decoding, the histogram Hgp of
Ogp needs to be known, allowing for the decoder to un-
scramble Ogp (Ogp = Op) and Oge (Osc = O¢p).
First, the histogram Hpy of Oy is calculated, and the dif-
ference Hp = Hr — Hgp is sent in L-bit representation,
L = [log,(arg max(Hp))]. L is also conveyed to the de-
coder.

At the decoder, O p is constructed sequentially from Op,
Ogsc and Hgp, which can be calculated as Hgp = Hp —
Hp. The first level of O p is equal to the first level of O, and
the corresponding first level in O¢ is found based on Hgp
and Ogc. With knowledge of the first level, the second level
of Op can be replicated, and the process can be repeated for
all the other levels.

10111111

00000101

00000100 00001011 01010000 CO100000 01010000 11111100

11111111

urrent

N

00000101 00000010 00000100 00001111 00010000 0O100000 01010000 11111100

10111111

Prediction

NS

00000101 00000000 0O0OOCQ100 00001011 01010000 00100000 01010000 11111100

Fig. 2. First two levels of the octree representation of frames 149 and 150 in point-cloud sequence Man [9], and octree prediction
for frame 150 using frame 149 as reference. Corresponding levels in the frames’ octrees which are different are indicated in

bold typeface.

3. EXPERIMENTAL RESULTS

Tests for the proposed method were carried out with the first
200 frames of six publicly available point-cloud sequences:
Andrew, David, Man, Phil, Ricardo and Sarah [9][11]. The
average rate was calculated for six scenarios:

e FO: using the full octree;
e EOQO: entropy-encoding the full octree;

o KA: entropy-encoding Kammerl et. al.’s method

(XOR(Op,O¢)) [10];

e P1, P2, P3: applying the proposed method using 1, 2
or 3 references, respectively.

In order to make a fair comparison, the same entropy coder
was employed for all methods, except FO, which is deflate
(GZIP in version 1.0.7 of the Keka archiver for OSX, with
the maximum-compression setting -mx9).

Table 3 presents the average rate in bits per occupied voxel
for the six proposed scenarios, and Table 3 presents the av-
erage percentage rate gain over the full octree for the other
five scenarios (EOQ, KA, P1, P2 and P3). It can be seen
that the proposed method using one reference outperforms
all the other scenarios, gaining an average 5% over entropy-
encoding the full octree and an average 8% over Kammerl ez.
al.’s method. Adding extra references in the proposed man-
ner, however, did not improve those gains.

Table 3 shows that, inrelation to entropy-encoding the oc-
tree, the proposed method’s gains fluctuate according to the
sequence. For instance, there is a 9% rate gain for sequence
Andrew, but only a 2% rate gain for sequence David. As the
former sequence presents higher movement than the latter,

Table 1. Average rate in bits per occupied voxel. FO stands
for the full octree, EO stands for the entropy-encoded octree,
KA stands for Kammerl et. al.’s method, and P3, P2 and
P1 stand for the proposed method using three, two and one
references, respectively.

Sequence | FO | EO | KA | P3 P2 P1

Andrew | 258 | 1.94 | 1.83 | 1.70 | 1.69 | 1.69
David 262 | 1.89 | 2.09 | 1.86 | 1.85 | 1.83
Man 3.16 | 2.51 | 248 | 235 | 2.33 | 2.29
Phil 2.64 | 200 | 2.13 | 1.93 | 1.91 | 1.88
Ricardo | 292 | 2.37 | 2.39 | 2.24 | 2.23 | 2.22
Sarah 261 | 1.89 | 1.92 | 1.74 | 1.72 | 1.70

Average | 276 | 2.10 | 2.14 | 1.97 | 1.96 | 1.94

Table 2. Average rate gain over full octree. EO stands for
the entropy-encoded octree, KA stands for Kammerl et. al.’s
method, and P3, P2 and P1 stand for the proposed method
using three, two and one references, respectively.

Sequence | EO | KA | P3 P2 P1

Andrew | 25% | 29% | 34% | 34% | 34%
David 28% | 20% | 29% | 29% | 30%
Man 21% | 22% | 26% | 26% | 28%
Phil 24% | 19% | 27% | 28% | 29%
Ricardo | 19% | 18% | 23% | 24% | 24%
Sarah 28% | 26% | 33% | 34% | 35%
Average | 24% | 22% | 29% | 29% | 30%

. — Entropy-
25 encoded

octree
Kammerl

2.25 et. al.
—— Proposed

o
— Full octree =72

e et APt st Entropy-

—— Full octree

encoded
octree

Kammerl
et. al.

—— Proposed

40 a0 120 160 200

Frame

()

40 a0 120 160 200

Frame
(b)

Fig. 3. Rate on a frame basis, in bits per occupied voxel, for the full octree, for entropy-encoding the full octree, for Kammerl
et. al.’s method and for the proposed method with one reference. Sequences: (a) Andrew; (b) David [11].

these results indicate that the proposed method could bene-
fit from motion estimation and compensation.

Figures 3(a) and (b) present the rate on a frame-by-
frame basis, in bits per occupied voxel, for the full octree,
for entropy-encoding the full octree, for Kammerl ez. al.’s
method and for the proposed method with one reference
for sequences Andrew and David, respectively. Figure 3(a)
shows the relative lack of movement in sequence Andrew, and
Fig. 3(b) shows how the proposed algorithm’s performance
fluctuates with the movement in sequence David9.

4. CONCLUSION

In this paper, a lossless inter-frame compression method for
point-cloud geometry was presented, which reorders each oc-
tree based on previous frames, prior to entropy encoding. Ex-
periments were carried with six point-cloud sequences pub-
licly available, with results showing that the proposed method
offered an average rate reduction of 30% when compared to
the octree representation, while entropy-encoding the octree
and Kammerl et. al.’s method yielded average rate reductions
of 24 and 22%, respectively, when compared to the octree
representation. Frame-by-frame analysis of the results show
that further improvements can be achieved if we incorporate
motion estimation and compensation to the system. Other
entropy-coding methods such as Huffman and arithmetic cod-
ing can also be tested.

5. REFERENCES

[1] C. Zhang, Q. Cai, P. Chou, Z. Zhang, and R. Martin-
Brualla, “Viewport: A distributed, immersive telecon-
ferencing system with infrared dot pattern,” /IEEE Mul-
tiMedia, vol. 20, no. 1, pp. 17-27, Jan. 2013.

[2] C. Loop, C. Zhang, and Z. Zhang, “Real-time
high-resolution sparse voxelization with application to

(3]

(7]

[9]

image-based modeling,” in Proceedings of the 5th High-
Performance Graphics Conference. 2013, pp. 73-79,
ACM.

P. Merkle, A. Smolic, K. Muller, and T. Wiegand,
“Multi-view video plus depth representation and cod-
ing,” in 2007 IEEE International Conference on Image
Processing, Sept 2007, vol. 1, pp. I — 201-1 — 204.

G. Tech, Y. Chen, K. Mller, J. R. Ohm, A. Vetro, and
Y. K. Wang, “Overview of the multiview and 3d exten-
sions of high efficiency video coding,” IEEE Transac-
tions on Circuits and Systems for Video Technology, vol.
26, no. 1, pp. 35-49, Jan 2016.

M. Botsch, M. Pauly, L. Kobbelt, P. Alliez, B. Lévy,
S. Bischoff, and C. Rossl, “Geometric modeling based
on polygonal meshes,” in ACM SIGGRAPH 2007
Courses, New York, NY, USA, 2007, SIGGRAPH ’07,
ACM.

D. Meagher, “Geometric modeling using octree encod-
ing,” Computer Graphics and Image Processing, vol.
19, no. 2, pp. 129-147, June 1982.

Y. Huang, J. Peng, C. C. J. Kuo, and M. Gopi,
“A generic scheme for progressive point cloud cod-
ing,” IEEE Transactions on Visualization and Computer
Graphics, vol. 14, no. 2, pp. 440-453, March 2008.

Khalid Sayood, “Introduction to data compression,”’
The Morgan Kaufmann Series in Multimedia Informa-
tion and Systems. Morgan Kaufmann, Burlington, 3rd
edition, 2006.

A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev,
D. Calabrese, H. Hoppe, A. Kirk, and S. Sullivan,
“High-quality streamable free-viewpoint video,” ACM
Trans. Graph., vol. 34, no. 4, pp. 69:1-69:13, July 2015.

(10]

(11]

J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli,
M. Beetz, and E. Steinbach, “Real-time compression of
point cloud streams,” in IEEE International Conference
on Robotics and Automation (ICRA), Minnesota, USA,
May 2012.

C. Loop, Q. Cai, S.O. Escolano, and P.A. Chou, “Mi-
crosoft voxelized upper bodies - a voxelized point cloud
dataset,” in ISO/IEC JTC1/SC29 Joint WGI1/WGI
(MPEG/JPEG) input document m38673/M72012, May
2016.

