
ATTENTION-WEIGHTED DEPTH MAP RATE-ALLOCATION
IN FREE-VIEWPOINT TELEVISION

Camilo Dorea and Ricardo L. de Queiroz

Department of Computer Science
University of Brasilia, DF, Brazil

Email: camilodorea@unb.br, queiroz@ieee.org

ABSTRACT

We propose optimal rate-allocation, using viewer attention in-
formation among viewpoints, for depth map cameras within
a free-viewpoint television broadcast system. An attention-
weighted rate-allocation framework enables bit-rate, or qual-
ity, to be distributed across the multiple cameras in accor-
dance with viewer interest, minimizing total observed distor-
tions perceived among all viewers. Prior work has considered
attention-weighted rate-allocation for texture cameras only in
such systems. Depth maps, nonetheless, are a common re-
quirement for view rendering in many systems. They may
constitute a significant part of overall transmission bit-rate
and they present their own distortion characteristics, different
from those of texture. We model the effects of depth camera
distortions upon virtual or synthesized views and propose an
optimal attention-weighted rate-allocation among depth cam-
eras. Results show significant gains in average PSNR of syn-
thesized views and bit-rate savings of our proposal relative to
the balanced rate-allocation alternative.

Index Terms— Free-viewpoint TV, rate-allocation, atten-
tion weighting, depth maps.

1. INTRODUCTION

Free-viewpoint Television (FTV) [1] enables a viewer to
freely select the desired viewpoint from which to observe a
scene. The scene is generally captured through a possibly
large but finite number of cameras and broadcast to a poten-
tially very large audience. Viewpoints may either coincide
with an existing camera’s position or must be synthesized
at intermediate positions (virtual cameras) with information
from existing adjacent cameras. One of the most common
virtual view synthesis procedures, also adopted here, is depth-
image-based rendering (DIBR) [2]. We assume depth maps
are captured (or estimated) and transmitted along with texture
images for each of the existing cameras in order to allow
DIBR, either directly by viewers or at some point within a
network cloud. Our system architecture is depicted in Fig. 1.
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Fig. 1. General architecture for FTV broadcast using cloud
services. Viewer attention feedback is used to determine op-
timal rate-allocation among texture and depth cameras.

All cameras are subject to standardized compression with a
given quality and potentially broadcast to everyone within
the viewer network. We consider simulcasting independently
compressed video streams as multiview coding solutions re-
quire a single, centralized coder which may be unfeasible
when dealing with a large number of dispersed cameras.

The viewpoint choices among the multiple viewers lead
to an attention profile which may often reflect unequal de-
mand across cameras. In [3] an attention-based texture rate-
allocation procedure, optimal in the total observed distortion
sense, was initially proposed. In it, cameras receiving greater
attention also receive greater quality (or bit-rate). The pro-
posal was extended in [4] for general camera arrangements,
beyond uniformly-spaced 1D arrangements. Both proposals
report significant bit-rate savings with respect to common,
balanced rate-allocation. Nevertheless, neither [3] nor [4] ad-
dress attention-weighted rate-allocation of depth maps. In [3]
depth maps were uniformly coded (i.e., with constant quan-
tization parameter) across all cameras whereas in [4] depth
maps were assumed to be available in lossless form. Depth
maps are essential in DIBR and can constitute significant por-
tion of overall bit-rate (up to 25% in [5] and higher in our
simulations). Furthermore, the effects of depth distortions, in
particular, asymmetric distortions arising from non-uniform
bit allocations, upon observed view distortion are distinctive
from those derived for texture [3], [4]. In recent work [6],



depth map rate-allocation has been addressed, however, it is
not separately treated but rather cast as a function of attention-
weighted texture optimization, leading to different results.

Several other proposals [7–10] address depth, and texture,
rate allocation in the context of multiview video. These con-
sider video content distortion, not the total observed distortion
of our case. Other works [11–13] present attention-driven ap-
proaches, but in response to demands of a single viewer.

This work proposes attention-weighted depth map rate-
allocation. We develop a distortion model which considers
effects of asymmetric depth map distortions upon view syn-
thesis. The model is used to determine optimal, attention-
weighted, bit allocation across depth cameras. We present
results showing significant gains in terms of total observed
distortion with respect to the uniform rate-allocation case for
several viewer distributions among 1D and 2D camera ar-
rangements.

2. DISTORTION MODEL FOR DEPTH

We label viewpoints, captured by any ofN cameras, as~cj .
Each captured viewpoint is associated to texture and depth
image components, whose pixel values are denotedpj(x, y)
anddj(x, y), respectively. In DIBR, adjacent captured images
are used to synthesize a virtual texture image at viewpoint
~vm through the weighted blending [14] of projected pixels
pm|j(x

′, y′) such that

pm(x′, y′) =
∑

j∈Ψm

βmj pm|j(x
′, y′) (1)

whereΨm is the set of indices of cameras used in synthe-
sis at virtual viewpoint~vm, andβmj are the camera blend-
ing weights which guarantee that, when available, projections
from cameras closer to synthesis position are given greater
relevance.

Without loss of generality, consider distances between
viewpoints to be restricted to horizontal shifts described
by distance measuregx(~vm,~cj). Thus, βmj is defined
as inversely proportional togx(~vm,~cj) and, as a weight,
0 ≤ βmj ≤ 1 while

∑

j βmj = 1, for a given synthesis
position.

Depth informationdj(x, y) is appropriately scaled into
disparity values and used in determining correspondences be-
tween pixels of viewpoints~cj and~vm such that

pm|j(x
′, y) = pj

(

x+ kgx(~vm,~cj)dj(x, y), y
)

. (2)

The k component of the depth scaling factor represents in-
trinsic camera parameters, such as focal length and depth nor-
malization constants [14]. Distances between viewpoints also
take part in depth to disparity scaling.

Differently from texture distortions, the effects of depth
distortions are only indirectly observed upon synthesized
views. An error in depth pixel value of the form̂dj(x, y) =

dj(x, y)+εj(x, y) leads to disparity error, i.e., a displacement
in the position of projected pixels used towards synthesis,de-
noted now aŝpm(x′, y).

In general, larger disparity errors cause larger distortion
in synthesized view as spatial correlation of projections is de-
graded by displacements. Effects of depth distortion on syn-
thesis are also subject to factors such as scene content and
camera parameters. Synthesis distortion has been modeled
in [15] as a linear function of disparity error, subject to a con-
stant scaling factors. Under this model,̂pm(x′, y) may be
expressed as a sum of an error-free projected pixel term and a
scaled disparity error term

p̂m(x′, y) =
∑

j∈Ψm

βmjpm|j(x
′, y) +

∑

j∈Ψm

βmjs[kgx(~vm,~cj)εj(x, y)] .
(3)

Note that the scaled disparity error term is also subject
to weighted blending. Here, the depth errorεj(x, y) is mul-
tiplied by gx(~vm,~cj) and byβmj , which in turn has been
defined as inversely proportional togx(~vm,~cj). We assume
projections from multiple cameras are generally availablefor
synthesis and that these are subject to weighted blending. Un-
der this condition, unlike texture errors, the effects of depth
error upon synthesis are in essence independent of the dis-
tance between viewpoints. This property is considered in the
following optimization procedure.

3. OPTIMAL BIT-RATE ALLOCATION

Depth from each camera video, say then-th camera, is com-
pressed and transmitted using, for example, H.264/AVC [16]
with a given quantization parameter (QP), spending encod-
ing bit-rateRn and achieving distortionDn. Each viewer
observes a virtual image synthesized from cameras operat-
ing near the selected viewpoint~vm. For each viewpoint, we
assign a distortionδm arising from the compression of the
camera videos used in view synthesis.

We argue that{Dn} is not directly relevant but rather the
observed view distortions{δm} as these will be the ones ac-
tually experienced by the viewers. In this context, we would
like to minimize overall bit-rate

R =
N−1
∑

n=0

Rn (4)

subject to total observed distortion

D =

M−1
∑

m=0

δm. (5)

For such, the mechanisms we have at our disposal are
the selection of QP for each depth camera compressor, which



controls rate× distortion trade-off. In order to minimize (4),
we account for viewer attention in (5) while expressing ob-
served view distortionδm in terms of depth camera distor-
tions.

Assuming proportionality between observed view distor-
tion and distortions in the captured depth views, the formeris
approximated as a linear combination of the latter such that

δm =
∑

j∈Ψm

uj Dj (6)

whereuj are weights (0 ≤ uj ≤ 1, such that
∑

uj = 1).
Note that the initial assumption, from [15], is that depth

distortion from cameras at greater distance are indeed more
influential than those from smaller distances. However, the
subsequent weighted blending operation, discussed in Sec.2,
assigns proportionally less weight to cameras at greater dis-
tance, canceling the initial distance dependence. Thus, dif-
ferently from texture images and their distortions [4], we as-
sume each depth camera has a proportional contribution to-
wardsδm, irrespective of distance to virtual viewpoint. With
‖Ψm‖ being the number of cameras inΨm, the depth camera
distortion weights are such thatuj = αij/‖Ψm‖ where

αij =







1 if viewpoint at ~vi uses camera at~cj
for synthesis,

0 else

and the observed view distortion of (6) may be re-written as

δm =

N−1
∑

n=0

αmn

‖Ψm‖
Dn . (7)

Defining viewer-dependent depth camera weights as

γn =

M−1
∑

m=0

αmn

‖Ψm‖
, (8)

the total observed distortion of (5) becomes

D =
M−1
∑

m=0

N−1
∑

n=0

αmn

‖Ψm‖
Dn =

N−1
∑

n=0

γn Dn =
N−1
∑

n=0

D̂n . (9)

It is a function of adjusted distortion measures for each cam-
era{D̂n} which take into account all viewers as well as all
depth cameras. We thus seek to minimize

J = R+ λD =

N−1
∑

n=0

(Rn + λD̂n) . (10)

At each camera compressor, optimal bit-allocation is
found by determining QP for depth in order to minimize

Jn = Rn + λγnDn (11)

for a given Lagrangian multiplierλ [17], responsible for the
rate× distortion trade-off.

4. EXPERIMENTAL RESULTS

The proposed attention-weighted depth map rate-allocation
procedure was tested on publicly available data setsPan-
tomime [18] and Akko & Kayo [19]. Results employ the
H.264/AVC JM Reference Software v18.0 [20] for com-
pression and the MPEG View Synthesis Reference Software
v3.5 [21].

For each data set,N cameras are selected andM view-
points are randomly chosen. Given a viewpoint distribution,
viewer-dependent depth camera weightsγn are computed
through (8). Distortion is measured in terms of the MSE
between viewpoints synthesized from compressed and un-
compressed adjacent camera views. Total observed distortion
is taken as the MSE across allM viewpoints and reported in
terms of PSNR. Overall bit-rate considers the sum of allN
depth camera rates and is reported in terms of bits per pixel
per camera (bpc) using the first frame of each view.

Our comparisons include aUniform rate-allocation in
which all texture and all depth cameras employ a uniform QP
and ourAttention-weightedrate-allocation for depth in which
texture cameras employ a uniform QP. Uniform texture QPs
are selected from the range{17, 22, 27, 32, 37} and uniform
depth QPs from the range{2, 3, 4, 5, 6}. The uniform depth
QP range was chosen to secure proportionality between depth
distortions and observed view distortion for the tested se-
quences. Note that for data sets with low quality depth maps,
large depth QP ranges may include particular quantization
levels which can violate our proportionality assumption, see
Fig. 2. In specific cases, certain larger QP value (such as
suggested in [22]) were observed to improve synthesis distor-
tion with respect to lower QP values by contributing to depth
noise removal.
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Fig. 2. MSE of synthesis of Pantomime (view 40) from coded
depth images (views 39 and 41) with respect to synthesis from
original reference images.

We adopt the viewer distributions of [4], briefly described
next. For thePantomime(1280 × 960) data set, with even
numbered cameras in the range 20-58, two distributions were



tested: a bimodal Gaussian distribution of 200 and 300 view-
ers centered at viewpoints 29 and 49 with standard deviations
5 and 4, respectively (shown in Fig. 3) and a sharper Lapla-
cian distribution of 400 viewpoints with mean 37 and standard
deviation 3. For theAkko & Kayo(640 × 480) data set, we
selected the cameras originally labeled 27-29, 47-49 and 67-
69 with accompanying depth maps. Each group of cameras is
uniformly distributed across one of three rows with 5 cm of
horizontal and 20 cm of vertical spacing among them. A total
of 400 viewpoints are randomly spread according to a Gaus-
sian distribution centered at coordinates (3.75, 15) cm from
the origin, set at camera 27, and standard deviation of (2, 16)
cm in horizontal and vertical directions.
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Fig. 3. Bimodal Gaussian distribution of viewer attention
across cameras forPantomime.

ForPantomime, under the bimodal Gaussian instantiation,
the proposedAttention-weightedallocation for depth achieves
average PSNR gain [23] of 1.56 dB overUniform. R-D per-
formance comparisons can be seen in Fig. 4. The sharper
Laplacian instantiation produces the largest average PSNR
gain, of 1.68 dB. More modest gains, of 0.64 dB, are found
for Akko & Kayo. This may be attributable to the “flatter” 2D
Gaussian viewer distribution.

5. CONCLUSIONS

We proposed an attention-weighted depth map rate-allocation
technique to minimize the total observed distortion withinan
FTV broadcast system. The proposal builds on and completes
work for texture camera rate-allocation in attention-weighted
FTV [3, 4]. We specifically model the effects of depth cam-
era distortion upon observed view distortion. Results show
significant gains in average PSNR of our proposal relative to
uniform rate-allocation for depth cameras. Future work in-
cludes the extension to coding structures beyond simulcast.
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Fig. 4. Overall R-D performance comparison of the
Attention-weightedandUniform rate-allocations for (a)Pan-
tomimewith bimodal Gaussian, (b)Pantomimewith Lapla-
cian and (c)Akko & Kayowith 2D Gaussian viewer distribu-
tion.
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