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ABSTRACT A Texture
We propose optimal rate-allocation, using viewer attemite ~~ -
formation among viewpoints, for depth map cameras within | * / .- Network

a free-viewpoint television broadcast system. An attentio
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ity, to be distributed across the multiple cameras in accor- L Rate
dance with viewer interest, minimizing total observedalist — ! | Allocation
tions perceived among all viewers. Prior work has consitlere ~~ | Cameras

. . . . Viewers
attention-weighted rate-allocation for texture camerayg m

such systems. Depth maps, nonetheless, are a common [gg 1. General architecture for FTV broadcast using cloud
quirement for view rendering in many systems. They mayservices. Viewer attention feedback is used to determine op

and they present their own distortion characteristic$ediht

from those of texture. We model the effects of depth camera

distortions upon virtual or synthesized views and prop@se a|| cameras are subject to standardized compression with a
optimal attention-weighted rate-allocation among depific  given quality and potentially broadcast to everyone within
eras. Results show significant gains in average PSNR of syfe viewer network. We consider simulcasting indepengtentl
thesized views and bit-rate savings of our proposal r&dtv  compressed video streams as multiview coding solutions re-

the balanced rate-allocation alternative. quire a single, centralized coder which may be unfeasible
Index Terms— Free-viewpoint TV, rate-allocation, atten- When dealing with a large number of dispersed cameras.
tion weighting, depth maps. The viewpoint choices among the multiple viewers lead

to an attention profile which may often reflect unequal de-
mand across cameras. In [3] an attention-based texture rate
allocation procedure, optimal in the total observed digiar
Free-viewpoint Television (FTV) [1] enables a viewer to Sftnsf_' wasi |n|t|aIIy.proposetd. In 't'liamer%ireie'v'n%ge
freely select the desired viewpoint from which to observe grention also receive greater quality (or bit-rate). P
scene. The scene is generally captured through a possi sal was _extended in [4] for general camera arrangements,
large but finite number of cameras and broadcast to a pote eyond _unl_f(_)rmly-s_p aced 1D _arrang_ements. Both proposals
tially very large audience. Viewpoints may either coincide ®PO't significant b|t-rate savings with respect to common,
with an existing camera’s position or must be synthesize(lcj;alanced raFe—aIIoga::or:j. Neverltlheless, mfazherk[f] nbﬂ@-l

at intermediate positions (virtual cameras) with inforioit ress attention-weig 'te rate-a ocat_lon ot epth mapg]

from existing adjacent cameras. One of the most commofl€Pth maps were uniformly coded (i.e., with constant quan-
virtual view synthesis procedures, also adopted herepithee tzation parameter) across all cameras whereas in [4] depth
image-based rendering (DIBR) [2]. We assume depth map@1aps were assu_me_d to be available in Iqssles§ fqrm. Depth
are captured (or estimated) and transmitted along witlitext maps are essenyal in DIBR and can constitute §|gn|f|qant por
images for each of the existing cameras in order to allov&'.on of pverall bit-rate (up to 25% in [5] and hlg_her n our
DIBR, either directly by viewers or at some point within a simulations). Furthermore, the effects of depth distodian
network cloud. Our system architecture is depicted in Fig. 1

1. INTRODUCTION

particular, asymmetric distortions arising from non-onif
bit allocations, upon observed view distortion are digtirgc
This work was partially supported by CNPq grant 308150/2014 from those derived for texture [3], [4]. In recent work [6],




depth map rate-allocation has been addressed, howewer, itd; (z, y)+¢;(z, y) leads to disparity error, i.e., a displacement
not separately treated but rather cast as a function oftetten  in the position of projected pixels used towards synthekss,
weighted texture optimization, leading to different résul noted now ag,, (z’, y).
Several other proposals [7—-10] address depth, and texture, In general, larger disparity errors cause larger distortio
rate allocation in the context of multiview video. Thesecon in synthesized view as spatial correlation of projectienda-
sider video content distortion, not the total observedodigin ~ graded by displacements. Effects of depth distortion on syn
of our case. Other works [11-13] present attention-driyen a thesis are also subject to factors such as scene content and
proaches, but in response to demands of a single viewer. camera parameters. Synthesis distortion has been modeled
This work proposes attention-weighted depth map ratein [15] as a linear function of disparity error, subject tocme
allocation. We develop a distortion model which considersstant scaling factos. Under this modelp,,(z’,y) may be
effects of asymmetric depth map distortions upon view synexpressed as a sum of an error-free projected pixel term and a
thesis. The model is used to determine optimal, attentionscaled disparity error term
weighted, bit allocation across depth cameras. We present

results showing significant gains in terms of total observed Pm (2 y) = Z BrmiPmj (@' y) +
distortion with respect to the uniform rate-allocationeésr GET,,
several viewer distributions among 1D and 2D camera ar- Z Bk (o, &) (2, 9)] (3)
rangements. _ m PN SRR I
JEYm
2. DISTORTION MODEL FOR DEPTH Note that the scaled disparity error term is also subject

to weighted blending. Here, the depth eregfz, y) is mul-
We label viewpoints, captured by any 8f cameras, as;.  tiplied by g, (%,,,¢;) and by g,,;, which in turn has been
Each captured viewpoint is associated to texture and depttefined as inversely proportional ¥Q(7,,, ¢;). We assume
image components, whose pixel values are denptéd,y)  projections from multiple cameras are generally availéite
andd;(z,y), respectively. In DIBR, adjacent captured imagessynthesis and that these are subject to weighted blendimg. U
are used to synthesize a virtual texture image at viewpoirder this condition, unlike texture errors, the effects gpttie
U, through the weighted blending [14] of projected pixelserror upon synthesis are in essence independent of the dis-
Pmyj(2',y") such that tance between viewpoints. This property is considereden th
following optimization procedure.
pm(m/a y/) = Z Bm,j Pm|j (:E/?y/) (1)
JEWm 3. OPTIMAL BIT-RATE ALLOCATION

where U, is the set of indices of cameras used in synthe- . )
sis at virtual viewpoints,,, and 3,,; are the camera blend- Depth from each camera v'deo, say thh camera, is com-
ing weights which guarantee that, when available, prajesti pressed and transr_mtte_d using, for example, H.264_1/AVC [16]
from cameras closer to synthesis position are given greatdfith & given quantization parameter (QP), spending encod-
relevance. ing bit-rate R,, and achieving distortiorD,,. Each viewer

Without loss of generality, consider distances betwee@bserves a virtual image synthesized from cameras operat-
viewpoints to be restricted to horizontal shifts described"d near the selected viewpoifif,. For each viewpoint, we
by distance measurg,(7,,,é;). Thus, B, is defined assign a_dlstortlorzsm_ar|§|ng from the compression of the
as inversely proportional t@.(%,,,¢;) and, as a weight, camera videos used In view synthe5|s.
0 < Bm; < 1 while Zj Bm; = 1, for a given synthesis We argue thg{Dn}: is not directly rele\{ant but rather the
position. observed view distortion$s,,, } as these will be the ones ac-

Depth informationd; (z,y) is appropriately scaled into t.ually expgrignced by thg viewers. In this context, we would
disparity values and used in determining correspondenees blike to minimize overall bit-rate
tween pixels of viewpoints; andw,, such that

Ponty (& 9) = D3 (2 + g (T, )i (2,), y) - (2) R=) R “)

The k component of the depth scaling factor represents insubject to total observed distortion

trinsic camera parameters, such as focal length and depth no

malization constants [14]. Distances between viewpoilsts a

take part in depth to disparity scaling. D= Z O ®)
Differently from texture distortions, the effects of depth m=0

distortions are only indirectly observed upon synthesized For such, the mechanisms we have at our disposal are

views. An error in depth pixel value of the fordj(x,y) = the selection of QP for each depth camera compressor, which

M—-1



controls ratex distortion trade-off. In order to minimize (4), 4. EXPERIMENTAL RESULTS

we account for viewer attention in (5) while expressing ob-

served view distortior,, in terms of depth camera distor- The proposed attention-weighted depth map rate-allatatio

tions. procedure was tested on publicly available data &eais-
Assuming proportionality between observed view distortomime[18] and Akko & Kayo[19]. Results employ the

tion and distortions in the captured depth views, the forimer H.264/AVC JM Reference Software v18.0 [20] for com-

approximated as a linear combination of the latter such that pression and the MPEG View Synthesis Reference Software

v3.5 [21].
Spm = Z u; D (6) For each data sefy cameras are selected andl view-
JET points are randomly chosen. Given a viewpoint distribytion

viewer-dependent depth camera weights are computed
through (8). Distortion is measured in terms of the MSE

distortion from cameras at greater distance are indeed molQeetWeen wgwgplnts tsynthesagd fror_p tcolmg)resseg ﬁtd f:.n'
influential than those from smaller distances. However, th&CMPressed adjacent camera views. fotal observe orti

subsequent weighted blending operation, discussed in2$ec.IS taken as the MSE across alf V|ewp(_)|nts and reported in
assigns proportionally less weight to cameras at greaser diterms of PSNR. Overall b|t-rate con_mders the sum ol .
tance, canceling the initial distance dependence. This, dideF)th camera rates _and IS rgported In terms Of. bits per pixel
ferently from texture images and their distortions [4], vee a per camera (bpc) using the first frame of each view.

sume each depth camera has a proportional contribution t(\)l\;hiohurllctor;p?”s?lgs |I|ng|u?ﬁ al:;forrm r?;e-lalloca';:ﬁnr:: p
wardsd,,, irrespective of distance to virtual viewpoint. With ch all texture and all depth cameras employ a uniform Q

0, | béing the number of camerasin,, the depth camera and ourAttention-weightedate-allocation for depth in which
m '“ texture cameras employ a uniform QP. Uniform texture QPs

whereu,; are weights@ < u; < 1, such thad  u; = 1).
Note that the initial assumption, from [15], is that depth

distortion weights are such tha = a; /[|¥n || where are selected from the rande7, 22,27, 32,37} and uniform
1 if viewpoint atv; uses camera at depth QPs from the rangg, 3,4,5,6}. The uniform depth
j = for synthesis, QP range was chosen to secure proportionality between depth
0 else distortions and observed view distortion for the tested se-

quences. Note that for data sets with low quality depth maps,
and the observed view distortion of (6) may be re-written as large depth QP ranges may include particular quantization
N_1 levels which can violate our proportionality assumptioee s
p Z Ymn N @) Fig. 2. In specific cases, certain larger QP value (such as
[V suggested in [22]) were observed to improve synthesisrdisto
tion with respect to lower QP values by contributing to depth
noise removal.

n=0
Defining viewer-dependent depth camera weights as

M-—-1
amn Pantomime - view 40 (QP texture: 17)
TYn = E — (8) 12 T T : :

the total observed distortion of (5) becomes

M—-1N-1

a N—-1 N—-1 R
“mmn
D= Z Z ||\Ime D'n - Z%'Yn Dn = Z_;JDn- (9)

m=0 n=0

Itis a function of adjusted distortion measures for each-cam
era{D, } which take into account all viewers as well as all
depth cameras. We thus seek to minimize

N—1 0 1‘0 2‘0 ?:0 4‘0 50
~ QP depth
J=R+AD = (R,+ADy). (10)
n=0
At each camera compressor, optimal bit-allocation i
found by determining QP for depth in order to minimize

Fig. 2. MSE of synthesis of Pantomime (view 40) from coded
Sdepth images (views 39 and 41) with respect to synthesis from
original reference images.
Jn = Ry, + Ay Dy, (11)
We adopt the viewer distributions of [4], briefly described
for a given Lagrangian multipliek [17], responsible for the next. For thePantomime(1280 x 960) data set, with even
rate x distortion trade-off. numbered cameras in the range 20-58, two distributions were



tested: a bimodal Gaussian distribution of 200 and 300 view-
ers centered at viewpoints 29 and 49 with standard devition

5 and 4, respectively (shown in Fig. 3) and a sharper Lapla- s0r- Fimodal Gaussian - Panomime
cian distribution of 400 viewpoints with mean 37 and staddar

deviation 3. For theAkko & Kayo(640 x 480) data set, we a8

selected the cameras originally labeled 27-29, 47-49 and 67

69 with accompanying depth maps. Each group of cameras is “or

uniformly distributed across one of three rows with 5 cm of
horizontal and 20 cm of vertical spacing among them. A total
of 400 viewpoints are randomly spread according to a Gaus-
sian distribution centered at coordinates (3.75, 15) crmfro
the origin, set at camera 27, and standard deviation of (2, 16 a0l
cm in horizontal and vertical directions.
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ForPantomimeunder the bimodal Gaussian instantiation, )

the proposedttention-weightedllocation for depth achieves
average PSNR gain [23] of 1.56 dB ovgniform. R-D per- . 2D Gaussian - Akko & Kayo
formance comparisons can be seen in Fig. 4. The sharper
Laplacian instantiation produces the largest average PSNR a6f
gain, of 1.68 dB. More modest gains, of 0.64 dB, are found
for Akko & Kaya This may be attributable to the “flatter” 2D
Gaussian viewer distribution.

Fig. 3. Bimodal Gaussian distribution of viewer attention i

across cameras félantomime
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5. CONCLUSIONS

We proposed an attention-weighted depth map rate-altmtati
technique to minimize the total observed distortion withim —©— Uniform

FTV broadcast system. The proposal builds on and completes S T Ty Ty T R Y TRy

work for texture camera rate-allocation in attention-vixeégl depth bit-rate [bpc]

FTV [3,4]. We specifically model the effects of depth cam- ©

era distortion upon observed view distortion. Results show

significant gains in average PSNR of our proposal relative to

uniform rate-allocation for depth cameras. Future work inFig. 4. Overall R-D performance comparison of the

cludes the extension to coding structures beyond simulcast Attention-weightednd Uniform rate-allocations for (afpan-
tomimewith bimodal Gaussian, (bpantomimewith Lapla-

cian and (c)Akko & Kayowith 2D Gaussian viewer distribu-
tion.
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