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ABSTRACT
To process previously JPEG coded images the knowledge
of the quantization table used in compression is sometimes
required. This happens for example in JPEG artifact
removal and in JPEG re-compression. However, the
quantization table might not be known due to various
reasons. In this paper, a method is presented for the
maximum likelihood estimation (MLE) of the JPEG
quantization tables. An efficient method is also provided to
identify if an image has been previously JPEG compressed.

1. INTRODUCTION

To process previously JPEG [1] coded images the
knowledge of the quantization table used in the compression
step is sometimes required. This may happen for example in
JPEG artifact removal. In eliminating blocking and/or
ringing artifacts [2,3], the information about quantization
steps may help to determine the filter parameters and to set
the DCT constraints. Another example is to re-compress the
JPEG images. Using the same quantization table will
typically minimize additional quantization error. The
information of quantization table may not always available
for a number of reasons. Mostly, this is because the image is
obtained only in its reconstructed bitmap representation. No
record is kept for its compression history. A typical
example is a display or printing driver, which is handed a
bitmap of given dimensions as it is told to render the image
at a given size with given properties. No information about
the bitmap’s history is commonly provided.
        In this paper, a method for the maximum likelihood
estimation (MLE) [4] of JPEG quantization tables is
presented, where the only information available is a bitmap
of the decoded image. The method is used in conjunction
with another approach used to identify if an image has been
previously JPEG compressed.

2. DETECTION OF JPEG COMPRESSION

The algorithm may be started by first identifying whether
the bitmap has been previously JPEG compressed. Our
detection algorithm works well even for very high quality,

low-ratio, compression. It can detect images compressed
with IJG JPEG [5] quality factors as high as  95. In interest
of the allotted space, the details of the detection algorithm
will be given in this paper's extended version [6], as we will
only briefly describe its main features.
        The detection algorithm computes the difference
between neighbor pixels either across block boundaries or
within a block. The differences are compiled in a form of a
histogram and the differences can be one or two-
dimensional [6]. The concept is that once you compress the
images the differences across block boundaries should be
larger than those within the block. Thus, by comparing the
histograms of the differences one can make a decision
whether the image has been compressed before.
       We compare the sum of the absolute difference
between normalized histograms of the absolute differences
between pixels across or not across the block boundaries.
The resulting number is then compared to a threshold or
given as a confidence parameter. As a matter of fact, the
method works as a "blocking" estimator and can also be
used to some extent to estimate how much compression
distortion was applied to the image. A similar method can
also be used to align the block grid in case the image has
been cropped. See [6] for further details.

3. THE LIKELIHOOD FUNCTION

We assume that the image has been detected as being
previously compressed using JPEG. We would like to
estimate the quantizer table using the MLE method. In this
section, we analyze the probability distribution functions of
the DCT coefficients and formulate the likelihood function.
        JPEG compression is typically performed in three
steps: discrete cosine transform (DCT), quantization, and
entropy coding. At the decoding side, the processes are
reversed. The data are entropy decoded, dequantized, and
inverse transformed (IDCT).
        It was reported that the DCT coefficients typically
have a Gaussian distribution for DC component and
Laplacian distributions for AC components [1,7]. In the
quantization step, the DCT coefficients are discretized.
They are recovered in the dequantization step as the
multiples of quantization intervals. Specifically, if Y(m,n)



denotes the (m,n)-th component of a dequantized JPEG
block in the DCT domain, it can be expressed as k q(m,n),
where q(m,n) is the (m,n)-th entry of the quantization table,
and k is an integer. Figure 1 shows a typical histogram of
Y(m,n) for all the blocks in an image. The histogram
appears to be discrete. The non-zero entries occur only at
the multiples of q(m,n). The envelop of the histogram, as
given  in Fig. 1, is roughly Gaussian for the DC component
and Laplacian for the AC components.

Fig. 1. Histogram of | Y(0,1) | for image Lena (q(m,n) =6)

        Once the histogram of Y(m,n) is established, the
estimation of q(m,n) is fairly straightforward. However,
Y(m,n) only exists as an intermediate result. It is typically
discarded after decompression. Theoretically, Y(m,n) can be
re-calculated from the decoded image block, since IDCT is
reversible. Nevertheless in reality, the DCT of the image
block usually generates Y*(m,n), which is not exactly
Y(m,n), but an approximated version of it.
        There are mainly two sources of errors. Both of them
were introduced during the IDCT calculation. First, the
pixel values, typically integers, are rounded from real
numbers. Second, any number greater than 255 or smaller
than 0 for a pixel value, which is normally limited to 8 bits,
is truncated to 255 or 0, respectively. The truncation errors
can be very significant particularly at low bit-rate.
Furthermore, they are difficult to model. Fortunately, they
occur only in a small percentage of blocks and these blocks
can be detected. We will discuss the treatment of these
blocks in Section 4. In this section, we assume all the blocks
are not truncated, and we will focus on rounding errors. If
we assume the rounding error for each pixel is
independently identically distributed with a uniform
distribution in the range of [-0.5, 0.5), a Gaussian
distribution will be a natural candidate for modeling Y*(m,n)
according to the Central Limit Theorem. The mean and the
variance of the distribution can be calculated as Y(m,n) and
1/12, respectively. With the exception of uniform blocks,
which will be discussed later, our simulation showed that
the Gaussian model is fairly reasonable. Although the data
have shorter tails than the Gaussian distribution, they fit the

model very well when the deviation is small. At the tail part,
we can show that |Y*(m,n) - Y(m,n)| is limited by:

|Y* (m,n) - Y(m,n)| ≤ D(m) D(n), (1)

where
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        Consequently, we assume Y*(m,n)|Y(m,n) has a
modified Gaussian distribution. It has a Gaussian shape in
the range of ± D(m) D(n), and is zero outside the range.
Specifically,
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where Z is a normalizing constant.
        For a block with uniform intensity, where Y(m,n) is
non-zero only for the DC term, the rounding errors for all
the pixels in the block have the same value, and are highly
correlated. As a result, the Central Limit Theorem and the
Gaussian model are no longer valid. In fact, in these blocks,
Y*(m,n) has a zero value for all AC coefficients and a
uniform distribution for the DC. As it will be explained in
Section 4, the uniform bocks are not considered in the
estimation process, we assume that in the following
discussion all the blocks are non-uniform.

Fig. 2. Histogram of |Y*(0,1)| for image Lena (q(m,n) =6)

        Excluding the uniform blocks and the blocks with
truncation, a typical histogram for Y*(m,n) is shown in Fig.
2. It is a blurred version of Fig. 1. The discrete lines in
Figure 1 become bumps of Gaussian shapes in Figure 2.
These bumps remain separated if the quantization interval is
large, i.e., q(m,n) >2D(m)D(n). They may touch each other
if q(m,n) ≤ 2D(m) D(n). If the bumps are well separated,
Y(m,n) can be uniquely determined from Y*(m,n) as
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Y(m, n) = q (m,n) r (m,n),  (4)

where

r(m,n) = round [Y*(m, n) / q(m, n)]. (5)

For example, if q(m,n) is 16, D(m)D(n) is 4, and Y*(m,n) is
34. Y(m,n) must be 32. The probability function of Y*(m,n)
for given q(m, n) can be determined as:

p[Y*(m,n);q(m,n)]=p[Y*(m,n) |Y(m,n)] pY [Y(m,n)], (6)

where p[Y*(m,n) | Y(m,n)] is given in (3). Since the DCT
coefficients can be modeled by a Gaussian (for DC) or a
Laplacian distribution (for AC), we assume pY [Y(m,n)] in
equation (6) roughly follows the same distribution.
        When q(m,n) < 2D(m)D(n), Y(m,n) can not be
determined from Y*(m,n) with certainty. For example, if
q(m,n) is 3 and Y*(m,n) is 34, Y(m,n) could be either 33 or
36. The probability given in (6) has to be revised as
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where the summation is over all integers k such that

|Y*(m,n) – k q(m,n) | ≤ D(m)D(n). (8)

As pY[k q(m,n)] usually changes much slower than
p[Y*(m,n) | k q(m,n)] does, (8) can be approximated as
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where r(m,n) is defined in (5). Then, (6) can be considered
as a special case of (9), in which only one term exists in the
summation.
        Based on the above analysis, if we assume the statistics
of Y*(m,n) are independent for each image block, the
likelihood function can be established as
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where the index s refers to s-th block and the distribution of
Ys

* (m,n) is given in (9). The MLE of q(m,n) can then be
formulated as
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        There are two terms in the optimization. The first term
fits the data Ys

*(m,n) to the multiples of q. The second one,
which matches the overall DCT distribution can be further
calculated as

[ ] [ ]∑ −=
s

sY nmNqnmrp ),(log),(log *σ (12)

where N is the total number of blocks used in estimation,
σ*(m,n) is the estimated parameter for Gaussian (for DC) or
Laplacian (for AC) distribution. Specifically,
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        From another point of view, the second term in
equation (11) provides a penalty for a smaller q. Suppose q2

= mq1, where m is an integer. It is always true that the first
term in (11) is no smaller for q = q1 than for q = q2.  In other
words, it is biased towards a smaller q. This bias is
compensated by the second term, as σ*(m,n) will become
smaller when q increases, as indicated in (13).

4. THE MLE ALGORITHM

In the estimation of the quantization matrix, we first detect
two kinds of image blocks: uniform blocks and those with
truncation. For each image block, we find the maximum and
the minimum values of the block. If the maximum value is
255 or the minimum value is 0, the block may contain
truncated pixels. If the maximum value is equal to the
minimum value, the block is uniform. Both kinds of blocks
are excluded from further processing.
        The data in the remaining blocks are used to evaluate
equation (11). The maximization defined in equation (11)
does not have an analytical solution. Numerical complexity
can be significantly reduced by the following modifications.
        First, Y*(m,n) is rounded to an integer, which we
denote as Y’(m,n). Actually, the outputs of many DCT
routines are integers.  Hence,  (11) can be revised as

[ ] ,),(log),()(maxarg),( *

22

*





















−= ∑
≤<−

nmNqiwiNnmq
q

i
qq

σ (14)

where N(i) is the number of blocks that satisfy

Y’ s (m,n) – q  rs (m,n) = i. (15)

The coefficient w(i,q) can be pre-calculated as
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where the function g(x) is defined as
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It is apparent that w(i,q) = w(-i,q).
To further minimize the computation, not all the

possible values are tested in maximization of (15). If a
histogram is built for Y’(m,n), peaks can be found at the
multiples of q(m,n). Normally, the highest peak outside the
main lobe (0 and its vicinity) corresponds to q(m,n) or one
of its multiples. Based on this observation, we restrict the
search to be Q, Q+1, Q-1 and their integer fractions, where
Q is the highest peak outside the main lobe (Y’(m,n) >
D(m)D(n)). For example, if Q is found to be 10.
Optimization in (15) will be calculated for q = 1, 2, 3, 5, 9,
10, and 11.

It is possible that no peak is detected outside the main
lobe. This occurs when |Ys’(m,n)| is small for all the blocks
in the image. Typically, the histogram decays rapidly to
zero without showing any periodic structure. The data
contain little or no information about q(m,n). The estimation
fails in that case and q(m,n) is declared to be
“undetermined”.

This estimation algorithm can also serve as another
method to determine if the image has been previously JPEG
compressed.  If all the quantization levels are estimated to
be 1, it is a good indication that the image has not been
JPEG compressed.

5. EXPERIMENT RESULTS

The estimation algorithm was tested on images
compressed with different quantization matrices.  Fig. 3
gives the experiment results for 7 pictures compressed with
various IJG [5] quality factors. When quality factor is low
(low bit rate), many cases were declared “undetermined”.
This is because the more aggressively an image is
compressed, the more likely that the Ys(m,n)  is quantized
to zero and Ys’(m,n) falls into the main lobe. Estimation
errors may also be found occasionally at low bit rate. In
our experiment it occurred typically when there was only
one Ys’(m,n) that was located beyond the main lobe and its
value deviated from Ys(m,n) by 1 or 2. The “undetermined”
cases in general decrease as the quality factor improves.
Nevertheless, the estimation performance deteriorates at
very high bit rate (quality factor > 95). The “bumps” in the
histogram start to be squeezed together and the periodic

structure becomes less prominent when q(m,n) becomes
very small. If at the same time the coefficients are small
and many of the samples fall into the main lobe, an
estimation error or the “undetermined” case occurs. In
summary, the estimation may fail at low bit rate due to an
insufficient number of effective data samples. At very high
bit rate, its performance is hindered by less information
carried by each sample.
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Fig. 3. Experiment Results
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