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ABSTRACT

In this paper, uniform, critically decimated �lter banks are
used to approximate nonuniform �lter banks wherein di�er-
ent �lters have approximately the same magnitude response,
but di�erent phase, thus forming a linear periodically time-
varying �lter whose characteristics are similar to those of a
nonuniform bank. This is done by post-processing a number
of selected subbands of a uniform bank using a special synthe-
sis �lter bank, which combines the selected bands into one.
Design methods for the post-processing stage are discussed
and design examples are presented.

1. INTRODUCTION

Uniform �lter banks are the most common form of subband
decomposition systems [1]{[4]. In those, each �lter output
is critically decimated by the same factor M and the �l-
ters have about the same passband width. In a nonuniform
�lter bank, each �lter output is decimated by a particular
factor and, yet, it is possible to obtain perfect reconstruc-
tion [1]. Also, nonuniform �lter banks can be obtained by
cascading uniform �lter banks as in the case of the discrete
wavelet transform and wavelet packets [1]{[4]. Theory and
design of nonuniform �lter banks can be found in [1],[5]{[7].
Also, nonuniform cosine modulated �lter banks were consid-
ered in [8]{[10]. The ability to construct nonuniform �lter
banks facilitates the trade-o� of resolution between the two
domains (spatial and frequency). We propose a new way
to approach the problem, where the �lter bank is inherently
uniform. However, the �lters' passbands can have di�erent
width, and di�erent �lters can have similar passbands.

We assume a reference uniform paraunitary �lter bank
having M real FIR �lters with length L = NM . We also
describe a �lter bank through its polyphase transfer matrix
(PTM), i.e. a multi-input multi-output (MIMO) system re-
latingM polyphase components of the signal toM subbands
[1]. The signal is blocked and passed through the analysis
PTM F(z). It is reconstructed from the subbands using the
PTM GT (z) followed by an unblocking device. See [1]{[4] for
details on �lter banks, PTM, and paraunitary systems.

This paper contains some theorems whose proofs were
omitted due to space limitations. Nevertheless, said proofs
appear in a longer version of this paper.

2. MERGING BANDS

We propose to start from a uniform paraunitary �lter bank,
whose analysis PTM is F(z), and, by applying a post-proces-
sing stage �(z) to a selected number of �lters, to mix sub-
bands together so that a �lter passband will actually occupy
the passband of a plurality of �lters in the uniform design.
Let the rows of the analysis PTM F(z) corresponding to K
selected uniform �lters be represented in the K �M PTM
U(z). We want to �nd a PTM S(z) of same dimensions such
that

S(z) = �(z)U(z): (1)

Without loss of generality, we can rearrange the order of
the �lters in F(z) so that the K selected �lters are displaced
on the bottom of the matrix. If this is the case, we can devise
a PTM �0(z) such that

�
0

(z) =

�
IM�K 0

0 �(z)

�
: (2)

Hence,

F
0

(z) = �
0

(z)F(z): (3)

F0(z) becomes the actual analysis PTM. We assume F(z)
to be paraunitary, while F0(z) and �(z) are not required to
be so. In case �(z) (hence F0(z)) is bi-orthogonal, we would
like it to approximate a paraunitary system. We explore 4
methods to design �(z).

3. APPROXIMATING THE MFR FILTER SET

In a critically decimated system, lower frequency resolution
(localization) implies higher spatial resolution [1],[4]. We de-
�ne the frequency resolution of a �lter H as
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(4)

which is basically the second moment (\variance") of the
\distribution" jH(ej!)j2. Let K equal-length real-coe�cient
�lters Hi(z) be constrained by
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for some real-coe�cient H(z) and by
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for some real constant c. The above constraints are char-
acteristics of �lters composing a paraunitary �lter bank. A
set of �lters fHi(z)g is de�ned as having minimum frequency
resolution (MFR) if the maximum  F (Hi) is minimized, i.e.

fHi(z) j min
Hi

max
i
 F (Hi) ; (5); (6)g: (7)

Theorem 1 An MFR set of �lters obeys

jHi(e
j!
)j2 = 1

K
jH(e

j!
)j2; (8)

being composed by spectral factors of H 0(z) = 1

K
H(z)H(z�1).

The MFR set has the desirable property of having �lters
with same frequency response. Hence, one might want to use
the MFR set corresponding to the �lters contained in U(z)
as S(z). However, there are inconveniences in this approach.
The MFR set may not be internally orthogonal neither or-
thogonal to the unselected �lters. Also, in rare cases, there
may not be enough distinct spectral factors. In this case,
one might redesign jH(ej!)j so that the zeros of H(z) are
disturbed. In any case, we have to �nd suitable approxima-
tions to the MFR set.

LetA be a K�L matrix transforming the signal vector x
(which is obtained by windowing the signal x(n) with a rect-
angular window of L taps) as y = Ax. At the next instant
the window is shifted by M samples and the process is re-
peated. Let B be a given matrix of the same size asA and let
C be a unitary matrix, while the signal has autocorrelation
matrix Rxx. De�ne an error vector as

� = y�CBx = (A�CB)x: (9)

Theorem 2 The unitary matrix C which makes the prod-

uct CB to be the closest to A in the sense of minimizing

the distance J = E
�
1

K
�H�

�
(average error variance or er-

ror energy) is given by C = Q1Q2, where Q1 and Q2 are

unitary matrices derived from the SVD of D = ARxxB
H as

D = Q1�Q2.

We can directly apply Theorem 2 for a simpli�ed approx-
imation to MFR sets. Let U be a matrix whose rows contain
the selected �lters. (In this case U has real entries and is an
equivalent representation as that of U(z) [2].) Let us assume
we want �(z) to have order zero, i.e., it is an orthogonal
matrix �. The resulting lapped transform matrix S, is given
by

S = �U: (10)

From S, S(z) can be immediately obtained [1],[2]. If the K
MFR �lters corresponding to U are described in the K � L
lapped transform matrix H, and if the SVD of HRxxU is
given as HRxxU = Q1�Q2, we can select � = Q1Q2 so
that

S = Q1Q2U: (11)

This is a simple method to derive a post-processing stage
composed only by an orthogonal transform. This method, as

expected, yields limited results because of the low order of
�(z). However, it works well in a few cases and provides a
powerful method to generate time-varying �lter banks, since
the post-processing stage can be turned on and o� without

transitory states. Therefore, one might easily implement a
�lter bank where the �lters have time-varying bandwidth (to
some extent) without any concern for boundary (transitory)
instantaneous �lter banks.

Let the signal x(n) be periodic with very large period
Np. Let its Fourier transform be computed over one period

as X(ej!) =
PNp�1

n=0
x(n)ejn!. For two signals x0(n) and

x00(n) with the same period,
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where �xy(e
j!) is the Fourier transform of the cross corre-

lation between signals x(n) and y(n). Let the polyphase
sequences of an input signal x(n) be xi(m) = x(mM + i),
and let x(ej!) = [X0(e

j!); : : : ; XM�1(e
j!)]T . Let A(z) and

B(z) be given K �M PTMs and let C(z) be a K �K PTM
of a paraunitary �lter bank. De�ne the error measure as
�(ej!) = y(ej!)�C(ej!)B(ej!)x(ej!).

Theorem 3 The paraunitary PTM C(z) which makes the

product C(z)B(z) closest to A(z) in the sense of minimizing

the distance J = E
�
1

K
�H(ej!)�(ej!)

�
is given by

C(z) = Q1(z)Q2(z) (13)

where Q1(z) and Q2(z) are such that Q1(e
j!) and Q2(e

j!)
are unitary matrices derived from the SVD of

D(ej!) = A(ej!)�(ej!)BH(ej!) = Q1(e
j!)�(ej!)Q2(e

j!):
(14)

�(ej!) is an M �M matrix with entries �xixj (e
j!).

Theorem 3 can be readily applied to the approximation of
an MFR set of �lters. If the K MFR �lters corresponding to
U are described in the K�M PTM H(z), and if the SVD of
H(ej!)�(ej!)UH(ej!) is given as H(ej!)�(ej!)UH(ej!) =
Q1(e

j!)�(ej!)Q2(e
j!), we can select �(z) = Q1(z)Q2(z) so

that

S(z) = Q1(z)Q2(z)U(z) = �(z)U(z): (15)

Analytical continuation is only applicable if we know the
frequency response for all ! and the transfer function is ra-
tional. As the relations to �nd Q1 and Q2 only exist for an
individual point in the unit circle, we have an in�nite length
non-recursive �lter solution for �(z). If the entries of �(z)
are �ij(z), and we only know �ij(z) for every z = ej! we
are left with a classical FIR �lter design problem, where we
try to �t a �nite-length �lter to a known continuous Fourier
transform function. However, there is no guarantee that the
resulting FIR PTM is paraunitary. The larger N (longer
�lters) the better chances for a good approximation.

An alternative to those methods is to compute an approx-
imation to the MFR through optimization routines. How-
ever, we feel that if we resort to this technique, it will be
more productive to optimize �(z) directly, which we will
discuss next.



4. DESIGN THROUGH OPTIMIZATION

An alternative is to directly optimize the post-processing pa-
raunitary �lter bank �(z). In this case we can use any pa-
raunitary �lter bank design technique and set a suitable cost
function. The cost function may not involve the computation
of the MFR set. We know that all MFR �lters are spectral
factors so that they have the same spectral magnitude. So,
we can setup a cost function to minimize the di�erence in
absolute frequency response, while the paraunitariness con-
straint imposed in the optimization algorithm will do the
rest. Let Si(z) be the i-th �lter of S(z) (0 � i � K� 1). For
example, we can use

J =

Z
!

X
i

��jSi(ej!)j � �S(e
j!
)
�� (16)

where �S(ej!) = 1

K

P
i
jSi(ej!)j.

The optimization alternative avoids the �lter design and
spectral factorization problems found in MFR set approxima-
tion. However, optimization techniques are frequently unsta-
ble in a sense that no guarantees exist that a global minimum
will be found. One method, for example, is to parameterize
the �lter bank into orthogonal factors and delay stages and to
optimize the angles of the orthogonal factors using an uncon-
strained simplex search algorithm such as the one provided
by MatlabTM 4.2. The non-linear relation among angles and
cost functions may complicate the process. As in any appli-
cation involving complex numerical evaluation, the methods
discussed here may be e�ective in some cases but fail in other
cases.

5. ALTERNATIVE FILTER MODEL

Let F(z), the analysis PTM, be decomposed into two PTMs
as F(z) = F1(z) + F2(z), where F1(z) has zero row entries
replacing the selected �lters, while F2(z) retains the selected
�lters and has zeros elsewhere. Adopt the same notation for
the synthesis PTM G(z). Thus, the overall transfer is

T(z) = G
T
(z)F(z) = G

T
1 (z)F1(z) +G

T
2 (z)F2(z)

= H1(z) +H2(z) (17)

which is basically the sum of complementary LPTV �lters,
of which we just have interest in H2(z). If �G(z) is G2(z)
with the zero rows removed, and since U(z) is F2(z) with
the zero rows removed, H2(z) = GT

2 (z)F2(z) = �GT (z)U(z).
Note that H2(z) is an M �M PTM with rank K. Each of
its row is a �lter whose frequency response is hopefully close
to be passband on the selected �lters' passband and to have
large attenuation otherwise. (In e�ect, this is closer to be
true as the �lters in the uniform �lter bank have higher and
higher stopband attenuation.) Therefore, the rows of H2(z)
may yield a �lter close to the desired nonuniform band �lter.

Let D be a K �M matrix designed to downsample the
output of the LPTV �lter so that S(z) = DH2(z). Thus,

S(z) = D �G
T
(z)U(z) = �(z)U(z); (18)

i.e.

�(z) = R �GT (z); (19)

By precalculating �(z), we are actually resampling the se-
lected synthesis �lters at a lower rate and using the resulting
subsampled �lters as the post-processing stage to obtain the
nonuniform bands.

The resulting �lter bank is not necessarily paraunitary,
although for the �lter banks we have tested it is not far from
being so. The �lters in S(z) have linear phase and if the
uniform �lter bank F(z) also has linear phase �lters, then
F0(z) is very close to being a paraunitary system.

6. COSINE-BASED FILTER BANKS

Some �lter banks present a very well organized structure,
wherein the �lters are samples of sinusoidal functions of dif-
ferent frequencies weighted by a \window". This \window"
is a prototype low-pass �lter which is modulated to obtain
�lters uniformly covering the spectrum from 0 to � [1]{[4].
These are called cosine modulated �lter banks (CMFB). The
discrete cosine transform (DCT) is also a variation on this
theme, where the modulating window in an M -tap rectan-
gular box, and so are the other variations of the DCT. The
DCT has �lters given by

fi(j) =

r
2

M
�i cos

�
(2j + 1)i�

2M

�
(20)

where �0 = 1=
p
2 and �i>0 = 1, for 0 � i; j � M � 1.

One instance of the CMFB is the extended lapped transform
(ELT) [2] whose �lters (gk(n) = fk(L� 1� n)) are given by:

gk(n) = w(n)

r
2

M
cos

h�
k +

1

2

�
�

M

�
n+

M + 1

2

�i
(21)

for k = 0; 1 : : : ;M � 1 and n = 0; 1; : : : ; L � 1, and where
w(n) is a window modulating the cosine terms. This CMFB
is used as example and, for the present discussion, any other
CMFB is applicable. Let the PTM for an M -channel CMFB
or DCT be denoted by CM(z). If U(z) is a set of selected
�lters from CM (z)

U(z) = CK(z)H(z) (22)

for some LPTV �lterH(z). Because of the modulating struc-
ture of CMFB one can check that, for speci�c selections of
�lters, H(z) approximates an MFR set, in the sense that the
�lters may have similar frequency response and passband co-
inciding with the passband of the selected �lters. The mod-
ulating windows for theM - and K-channel CMFB must also
be similar for better results [11]. For the most popular selec-
tions (i.e. M=K is an integer, the �lters passbands occupy
contiguous frequency slots, etc.) the approximation is very
good. In those cases we can use:

S(z) = z
�N+1

C
T
K(1=z)U(z) ! �(z) = z

�N+1
C
T
K(1=z)

(23)
and�(z) is the synthesis CMFB of K-channels. Given that a
CMFB is easy to design and can possess fast implementation
algorithms, it becomes very easy to design and implement a
nonuniform �lter bank.

A design example is shown in Fig. 1. Note that the band
distribution in the second design cannot be approximated by
hierarchical transforms.



7. CONCLUSIONS

One application for creating nonuniform bands through post-
processing can be found in the �eld of time-varying �lter
banks, mainly with approaches that use cascade of post-
processing stages [12],[13]. It can also be used for compres-
sion of audio and images, where high-pass �lters are virtually
shortened by post-processing to decrease ringing or pre-echo
artifacts. These applications will be studied in more detail.

Post-processing stages are not a requirement for the de-
sign of the nonuniform band �lter banks. The �lters can be
designed directly. We use the post-processing method be-
cause of its analytical simplicity allied with its good results.
The increase in computation can be o�set by using fast al-
gorithms for each uniform stage, or by discarding marginal
coe�cients of the resulting �lter.

We successfully tested the methods presented here on sev-
eral �lter bank classes. We hope the results presented in
this paper may help to bridge the gap between uniform and
nonuniform �lter banks and to enable the use of uniform �l-
ter banks in applications where nonuniform �lter banks are
required.
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Figure 1: Nonuniform �lter banks based on a 16-channel,
L=64, CMFB using the inverse CMFB stage. The top
graphic corresponds to the uniform bank and the bottom
graphic corresponds to the design using the alternative �lter
model.


