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ABSTRACT

In this paper, uniform, critically decimated filter banks are
used to approximate nonuniform filter banks wherein differ-
ent filters have approximately the same magnitude response,
but different phase, thus forming a linear periodically time-
varying filter whose characteristics are similar to those of a
nonuniform bank. This is done by post-processing a number
of selected subbands of a uniform bank using a special synthe-
sis filter bank, which combines the selected bands into one.
Design methods for the post-processing stage are discussed
and design examples are presented.

1. INTRODUCTION

Uniform filter banks are the most common form of subband
decomposition systems [1]-[4]. In those, each filter output
is critically decimated by the same factor M and the fil-
ters have about the same passband width. In a nonuniform
filter bank, each filter output is decimated by a particular
factor and, yet, it is possible to obtain perfect reconstruc-
tion [1]. Also, nonuniform filter banks can be obtained by
cascading uniform filter banks as in the case of the discrete
wavelet transform and wavelet packets [1]-[4]. Theory and
design of nonuniform filter banks can be found in [1],[5]-]7].
Also, nonuniform cosine modulated filter banks were consid-
ered in [8]-[10]. The ability to construct nonuniform filter
banks facilitates the trade-off of resolution between the two
domains (spatial and frequency). We propose a new way
to approach the problem, where the filter bank is inherently
uniform. However, the filters’ passbands can have different
width, and different filters can have similar passbands.

We assume a reference uniform paraunitary filter bank
having M real FIR filters with length L = NM. We also
describe a filter bank through its polyphase transfer matrix
(PTM), i.e. a multi-input multi-output (MIMO) system re-
lating M polyphase components of the signal to M subbands
[1]. The signal is blocked and passed through the analysis
PTM F(z). It is reconstructed from the subbands using the
PTM G7(z) followed by an unblocking device. See [1]-[4] for
details on filter banks, PTM, and paraunitary systems.

This paper contains some theorems whose proofs were
omitted due to space limitations. Nevertheless, said proofs
appear in a longer version of this paper.

2. MERGING BANDS

We propose to start from a uniform paraunitary filter bank,
whose analysis PTM is F(z), and, by applying a post-proces-
sing stage ®(z) to a selected number of filters, to mix sub-
bands together so that a filter passband will actually occupy
the passband of a plurality of filters in the uniform design.
Let the rows of the analysis PTM F(z) corresponding to K
selected uniform filters be represented in the K x M PTM
U(z). We want to find a PTM S(z) of same dimensions such
that

S(z) = ®(2)U(2). (1)

Without loss of generality, we can rearrange the order of
the filters in F(z) so that the K selected filters are displaced
on the bottom of the matrix. If this is the case, we can devise

a PTM ®'(z) such that

#(:) = { BOF s ] . @)
Hence,

F'(z) = ®'(2)F(2). 3)

F'(z) becomes the actual analysis PTM. We assume F(z)

to be paraunitary, while F'(z) and ®(z) are not required to
be so. In case ®(z) (hence F'(2)) is bi-orthogonal, we would

like it to approximate a paraunitary system. We explore 4
methods to design ®(z).

3. APPROXIMATING THE MFR FILTER SET

In a critically decimated system, lower frequency resolution
(localization) implies higher spatial resolution [1],[4]. We de-
fine the frequency resolution of a filter H as
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which is basically the second moment (“variance”) of the
“distribution” |H (e’“)|®. Let K equal-length real-coefficient
filters H;(z) be constrained by

= [H(), (5)



for some real-coefficient H(z) and by
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for some real constant c. The above constraints are char-
acteristics of filters composing a paraunitary filter bank. A
set of filters { H;(z)} is defined as having minimum frequency
resolution (MFR) if the maximum vz (H;) is minimized, i.e.

{Hi(2) | minmax e () : (5); (6)}. ()

Theorem 1 An MFR set of filters obeys

1

[Hi(e")[* = | H ()P, (8)

being composed by spectral factors of H'(2) = = H(2)H (271).

The MFR set has the desirable property of having filters
with same frequency response. Hence, one might want to use
the MFR set corresponding to the filters contained in U(z)
as S(z). However, there are inconveniences in this approach.
The MFR set may not be internally orthogonal neither or-
thogonal to the unselected filters. Also, in rare cases, there
may not be enough distinct spectral factors. In this case,
one might redesign |H(e?“)| so that the zeros of H(z) are
disturbed. In any case, we have to find suitable approxima-
tions to the MFR set.

Let A be a K X L matrix transforming the signal vector x
(which is obtained by windowing the signal z(n) with a rect-
angular window of L taps) as y = Ax. At the next instant
the window is shifted by M samples and the process is re-
peated. Let B be a given matrix of the same size as A and let
C be a unitary matrix, while the signal has autocorrelation
matrix Rz,. Define an error vector as

e=y—CBx=(A - CB)x. 9)

Theorem 2 The unitary matriz C which makes the prod-
uct CB to be the closest to A in the sense of minimizing
the distance J = E [%6116] (average error variance or er-
ror energy) is given by C = Q1Q2, where Q1 and Q2 are
unitary matrices derived from the SVD of D = AR.B¥ as
D =Q:AQ:.

We can directly apply Theorem 2 for a simplified approx-
imation to MFR sets. Let U be a matrix whose rows contain
the selected filters. (In this case U has real entries and is an
equivalent representation as that of U(z) [2].) Let us assume
we want ®(z) to have order zero, i.e., it is an orthogonal
matrix ®. The resulting lapped transform matrix S, is given
by

S=U. (10)
From S, S(z) can be immediately obtained [1],[2]. If the K
MFR filters corresponding to U are described in the K x L
lapped transform matrix H, and if the SVD of HR.,U is
given as HR,;.,U = Q1AQ2, we can select ® = Q1Q2 so
that

S =QiQ.U. (11)
This is a simple method to derive a post-processing stage
composed only by an orthogonal transform. This method, as

expected, yields limited results because of the low order of
®(z). However, it works well in a few cases and provides a
powerful method to generate time-varying filter banks, since
the post-processing stage can be turned on and off without
transitory states. Therefore, one might easily implement a
filter bank where the filters have time-varying bandwidth (to
some extent) without any concern for boundary (transitory)
instantaneous filter banks.

Let the signal z(n) be periodic with very large period
Np. Let its Fourier transform be computed over one period

as X(e7*) = ENp_lx(n)ej"‘”.

n=0
z''(n) with the same period,

For two signals z'(n) and

ELX' (&) X" (€7)] = Ny, aron (/) (12)

where |, ,,(e?*) is the Fourier transform of the cross corre-
lation between signals z(n) and y(n). Let the polyphase
sequences of an input signal z(n) be z;(m) = z(mM + i),
and let x(e/*) = [Xo(e/*),..., Xar—1(e?*)]T. Let A(z) and
B(z) be given K x M PTMs and let C(z) be a K x K PTM
of a paraunitary filter bank. Define the error measure as
() = y(e*) = C(e)B(e)x(c?*).

Theorem 3 The paraunitary PTM C(z) which makes the
product C(z)B(z) closest to A(z) in the sense of minimizing
the distance J = E [%eH (ej“’)e(ej“')] s given by

C(z) = Qi(2)Q2(2) (13)

where Q1(z) and Qa(z) are such that Q1(e’*) and Qa(e’®)

are unitary matrices deriwed from the SVD of

D(e’*) = A(*)D(e/“)BY (/) = Qu(e/*)A(*)Qa (™).
(14)

L(e?*) is an M x M matriz with entries | i (e7%).

Theorem 3 can be readily applied to the approximation of
an MFR set of filters. If the K’ MFR filters corresponding to
U are described in the K x M PTM H(z), and if the SVD of
H(e’)T(e?*)UH (e7%) is given as H(e?“)D(e?*)UH (/) =
Q1 (e7)A(e?¥)Q2(e?*), we can select ®(z) = Q1(2)Qz(z) so
that

8(z) = Q1(2)Q2(2)U(2) = 2(2)U(2). (15)

Analytical continuation is only applicable if we know the
frequency response for all w and the transfer function is ra-
tional. As the relations to find Q; and Q2 only exist for an
individual point in the unit circle, we have an infinite length
non-recursive filter solution for ®(z). If the entries of ®(z)
are ®;;(z), and we only know ®;;(z) for every z = ¢/* we
are left with a classical FIR filter design problem, where we
try to fit a finite-length filter to a known continuous Fourier
transform function. However, there is no guarantee that the
resulting FIR PTM is paraunitary. The larger N (longer
filters) the better chances for a good approximation.

An alternative to those methods is to compute an approx-
imation to the MFR through optimization routines. How-
ever, we feel that if we resort to this technique, it will be
more productive to optimize ®(z) directly, which we will
discuss next.



4. DESIGN THROUGH OPTIMIZATION

An alternative is to directly optimize the post-processing pa-
raunitary filter bank ®(z). In this case we can use any pa-
raunitary filter bank design technique and set a suitable cost
function. The cost function may not involve the computation
of the MFR set. We know that all MFR filters are spectral
factors so that they have the same spectral magnitude. So,
we can setup a cost function to minimize the difference in
absolute frequency response, while the paraunitariness con-
straint imposed in the optimization algorithm will do the
rest. Let Si(z) be the i-th filter of S(z) (0 <: < K —1). For

example, we can use

s= [ S sl = s (16)

where S(e/¥) = £ > |S;(e)|.

The optimization alternative avoids the filter design and
spectral factorization problems found in MFR set approxima-
tion. However, optimization techniques are frequently unsta-
ble in a sense that no guarantees exist that a global minimum
will be found. One method, for example, is to parameterize
the filter bank into orthogonal factors and delay stages and to
optimize the angles of the orthogonal factors using an uncon-
strained simplex search algorithm such as the one provided
by Matlab”™ 4.2, The non-linear relation among angles and
cost functions may complicate the process. As in any appli-
cation involving complex numerical evaluation, the methods
discussed here may be effective in some cases but fail in other
cases.

5. ALTERNATIVE FILTER MODEL

Let F(z), the analysis PTM, be decomposed into two PTMs
as F(z) = F1(z) + F2(z), where Fi(z) has zero row entries
replacing the selected filters, while F»(z) retains the selected
filters and has zeros elsewhere. Adopt the same notation for
the synthesis PTM G(z). Thus, the overall transfer is

T(2) G'(2)F(z) = G (2)F1(2) + G3 (2)Fa(2)

= Hi(2)+Ha(2) (17)

which is basically the sum of complementary LPTV filters,
of which we just have interest in Ha(z). If G(z) is G2(2)
with the zero rows removed, and since U(z) is Fa(z) with
the zero rows removed, Ha(z2) = G3 (2)F2(z) = GT(2)U(2).
Note that H2(z) is an M x M PTM with rank K. Each of
its row is a filter whose frequency response is hopefully close
to be passband on the selected filters’ passband and to have
large attenuation otherwise. (In effect, this is closer to be
true as the filters in the uniform filter bank have higher and
higher stopband attenuation.) Therefore, the rows of Ha(z)
may yield a filter close to the desired nonuniform band filter.
Let D be a K x M matrix designed to downsample the
output of the LPTV filter so that S(z) = DH>(z). Thus,

S(z) = DG (2)U(z) = ®(2)U(2), (18)

&(z) = RG7(2), (19)

By precalculating ®(z), we are actually resampling the se-
lected synthesis filters at a lower rate and using the resulting
subsampled filters as the post-processing stage to obtain the
nonuniform bands.

The resulting filter bank is not necessarily paraunitary,
although for the filter banks we have tested it is not far from
being so. The filters in S(z) have linear phase and if the
uniform filter bank F(z) also has linear phase filters, then
F'(z) is very close to being a paraunitary system.

6. COSINE-BASED FILTER BANKS

Some filter banks present a very well organized structure,
wherein the filters are samples of sinusoidal functions of dif-
ferent frequencies weighted by a “window”. This “window”
is a prototype low-pass filter which is modulated to obtain
filters uniformly covering the spectrum from 0 to = [1]-[4].
These are called cosine modulated filter banks (CMFB). The
discrete cosine transform (DCT) is also a variation on this
theme, where the modulating window in an M-tap rectan-
gular box, and so are the other variations of the DCT. The
DCT has filters given by

70) = B con () (20)

where ag = 1/\/5 and ;>0 = 1, for 0 < 7,5 < M — 1.
One instance of the CMFB is the extended lapped transform
(ELT) [2] whose filters (gr(n) = fx(L —1—n)) are given by:

gu(n) = w<n>\/%cos [(k+3) = (n+ 25)] @

for k=0,1....M —1and n = 0,1,...,L — 1, and where
w(n) is a window modulating the cosine terms. This CMFB
is used as example and, for the present discussion, any other
CMFB is applicable. Let the PTM for an M-channel CMFB
or DCT be denoted by Cas(z). If U(z) is a set of selected
filters from Cys(z)

U(z) = Cx(2)H(z) (22)

for some LPTV filter H(z). Because of the modulating struc-
ture of CMFB one can check that, for specific selections of
filters, H(z) approximates an MFR set, in the sense that the
filters may have similar frequency response and passband co-
inciding with the passband of the selected filters. The mod-
ulating windows for the M- and K-channel CMFB must also
be similar for better results [11]. For the most popular selec-
tions (i.e. M/K is an integer, the filters passbands occupy
contiguous frequency slots, etc.) the approximation is very
good. In those cases we can use:

S(z) =z P CL(1/2)U(z) = ®(z) =z VT'CL(1/2)

(23)

and ®(z) is the synthesis CMFB of K-channels. Given that a

CMFB is easy to design and can possess fast implementation

algorithms, it becomes very easy to design and implement a
nonuniform filter bank.

A design example is shown in Fig. 1. Note that the band

distribution in the second design cannot be approximated by
hierarchical transforms.



7. CONCLUSIONS

One application for creating nonuniform bands through post-
processing can be found in the field of time-varying filter
banks, mainly with approaches that use cascade of post-
processing stages [12],[13]. It can also be used for compres-
sion of audio and images, where high-pass filters are virtually
shortened by post-processing to decrease ringing or pre-echo
artifacts. These applications will be studied in more detail.

Post-processing stages are not a requirement for the de-
sign of the nonuniform band filter banks. The filters can be
designed directly. We use the post-processing method be-
cause of its analytical simplicity allied with its good results.
The increase in computation can be offset by using fast al-
gorithms for each uniform stage, or by discarding marginal
coefficients of the resulting filter.

We successfully tested the methods presented here on sev-
eral filter bank classes. We hope the results presented in
this paper may help to bridge the gap between uniform and
nonuniform filter banks and to enable the use of uniform fil-
ter banks in applications where nonuniform filter banks are
required.
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Figure 1: Nonuniform filter banks based on a 16-channel,
L=64, CMFB using the inverse CMFB stage. The top
graphic corresponds to the uniform bank and the bottom
graphic corresponds to the design using the alternative filter
model.



