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A B S T R A C T  

A lattice structure based on the singular value decompo- 
sition (SVD) is introduced. The lattice can also be proven 
to use a minimal number of delay elements and to com- 
pletely span a large class of M-channel linear phase per- 
fect reconstruction filter bank (LPPRFB): all analysis and 
synthesis filters have the same FIR length of L = K M ,  
sharing the same center of symmetry. The lattice also 
structurally enforces both linear phase and perfect recon- 
struction properties, is capable of providing fast and effi- 
cient implementation, and avoids the costly matrix inver- 
sion problem in the optimization process. From a block 
transform perspective, the new lattice represents a family 
of generalized lapped biorthogonal transform (GLBT) with 
arbitrary integer overlapping factor K .  The relaxation of 
the orthogonal constraint allows the GLBT to have signifi- 
cantly different analysis and synthesis basis functions which 
can then be tailored appropriately to fit a particular appli- 
cation. Several design examples are presented along with a 
high-performance GLBT-based progressive image coder to 
demonstrate the superiority of the new lapped transforms. 

1. I N T R O D U C T I O N  

Linear phase perfect reconstruction filter banks have been 
used extensively in numerous applications, especially image 
processing [l]. In the two-channel case, all solutions have 
been found whereas there are still many open problems in 
M-channel cases. An attractive approach to the design and 
implementation of LPPRFB is the parameterization by lat- 
tice structures based on the factorization of the polyphase 
matrices E(z) and R(z)  shown in Figure 1. The lattice 
structure offers fast and efficient implementation, retains 
both LP and PR properties regardless of coefficient quanti- 
zation, and (if it is general enough) guarantees that no op- 
timal solution will be excluded in the optimization process. 
Complete and minimal two-channel P R  lattice structure has 
been reported in [2]. M-channel lattices have been pre- 
sented for the more restricted paraunitary case [3], resulting 
in the generalized lapped orthogonal transform (GenLOT) 
[4]. No general lattice has been reported for the biorthogo- 
nal case (defined as R(z)E(z)  = z-IiI). Only several par- 
ticular solutions were proposed so far: Chan replaced some 
orthogonal matrices in [4] by cascades of invertible block 
diagonal matrices [5]; Malvar suggested a simple scaling of 
the first antisymmetric basis function of the initial block 
(which was chosen to be the DCT) [6]. 
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Figure 1. Polyphase representation of LPPRFB. 

In this paper, we first introduce a general structure that 
propagates the linear phase property. Further imposition 
of the biorthogonal property on this structure results in a 
complete and minimal LPPRFB lattice whose invertible co- 
efficient matrices are then parameterized by the SVD. In the 
lapped transform language, the structure is interpreted as a 
robust characterization of the GLBT. Several lapped trans- 
forms obtained from the nonlinear optimization of the lat- 
tice coefficients are presented. Finally, the superiority and 
the potential of the new LT family are illustrated through an 
image coding example. The GLBT-based embedded coder 
consistently outperforms the wavelet-based version SPIHT 
[7] by a large margin. The improvement in PSNR can be 
up to an astouding 2.65 dB. 

Notation-wise, vectors and matrices are denoted by bold- 
faced characters. Special matrices have reserved symbols: 
I, J ,  0 ,  D represents, respectively, the identity matrix, the 
reversal matrix, the null matrix, and the diagonal matrix 
whose entry is +1 when the corresponding filter is symmet- 
ric and -1 when the corresponding filter is antisymmetric. 
Capital letters M ,  L ,  Iir denote respectively the number of 
channels, the filter length, and the overlapping factor. 

2. LATTICE S T R U C T U R E  
2.1. Genera l  LP-propagat ing  S t r u c t u r e  
Consider an M-channel FIR LPPRFB with all analysis and 
synthesis filters of length L = ICM, having the same center 
of symmetry ( M  x L GLBT). The associated polyphase 
matrix E(z) has to satisfy the LP property [3] 

E(%) = D E(%-*) J. (1) 

A Define the order-(IC - 1 + N) polyphase matrix F(z) = 
G(z)E(z) where the all-zero order-N G(z)  is the propagat- 
ing structure. We are adding on or peeling off a block in the 
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lattice depending on causal or anticausal G(z). The order N 
is purposely chosen to be arbitrary so that G(t) can cover 
all classes of FB that may be unfactorizable with order-€ 
structures (odd-channel, for instance). The following the- 
orem introduces a general structure for G(z) to propagate 
the LP property. 

Theorem I: F(z) has LP and PR if and only if G ( z )  is FIR 
invertible and takes the form G(z) = zbN D G ( z - ' )  D. 

Proof: Using the LP property of E(z) and F(z), we have - 
F(z) = Z-(ff-l+N)DF(Z-l )J 

- - z-("-ltN)DG(z-')E(z-') J 

= z - N ~ ~ ( z - l ) z - ( K - l ) ~ ( z - l ) ~  

= z - N ~ ~ ( t - l ) ~ z - ( " - l ) ~ ~ ( z - ' ) ~  
= z - N ~ ~ ( ~ - l ) ~ ~ ( ~ ) .  

For E(z) and F(z) to have FIR inverses, it is necessary and 
sufficient that G ( z )  is FIR invertible and 

G(z) = z W N  D G(z-')  D. 0 

N Let G ( z )  = ~ c = O A t z - ' .  The above form of G(a) im- 
poses interesting symmetric constraints on the matrices A,. 

G(z) = Z - N  D G ( ~ - I )  D = t - N ~ ( ~ f V _ o ~ , z i ) ~  

= D ( C ~ V _ ~ A J - ~ ) D  = D ( C ~ V _ , A ~ - , Z - * ) D  

= xfJ_o(~~N-,~)~-a 
s A, = D A N - ,  D. (2) 

2.2. 
Assume that M is even. In this case, there are $ symmetric 
and 9 antisymmetric filters [3]. Furthermore, we know that 
LPPRFB exists for every integer I< 2 1 [3, 41, i.e., these 
FB can be factorized by order-1 G ( z ) .  If N = 1 in Eq.(2), 
AI = DAoD. G ( z )  then takes the general form of G(z) = 
Ao+z-'DAoD. It can be proven that every aforementioned 
non-trivial LPPRFB can be factorized using the following 

form for A0 [8] :  A0 = f [ v ] , where U and V are 

arbitrary $ x $ matrices. So, G(z) can be factorized as 
follows 

GLBT Latt ice  S t r u c t u r e  Based on t h e  SVD 

1 U + 2-'U U - 2-'U 
v - z-1v v 4- 2-1v 

G(z) = f 

&? @ W A(z) W. (3) 
Since W and A(z) have trivial inverses, G(z) is invertible 

if and only if * is invertible, i.e. U and V are invertible. 
The polyphase matrix of any even-channel LPPRFB with 
filter length L = ICM can be realized by a cascade of (Itr-1) 
G ,  blocks and a zero-delay initial matrix EO: 

E(z) = GK--I (z )  G ~ c - z ( z )  . . .  Gi(z) Eo (4) 

The starting block Eo has no delay element, representing 
LPPRFB of length M ,  and was often chosen to be DCT 
[4, 5, 61. General Eo satisfying Eq.(1) can be factorized as 

For Eo to have PR, U0 and VO again have to be invertible. 
This result should not come as a surprise. The factorization 
is very similar to the GenLOT's [4]; the only difference here 
is that U, and V, do not have to be orthogonal. Now, the 
difficulty arises: how do we completely characterize these 
$ x nonsingular matrices? 

Recall that every invertible matrix has an SVD: U, = 
UtOrrU,lr where U,O and U,1 are orthogonal matrices, and 
I?, is a diagonal matrix with positive elements [l]. Thus, a, 
can be further factorized as 

The orthogonal matrices U,O, U,I , V,O, and V,1 are param- 
eterized by rotations each. The diagonal matri- 
ces I?, and A, are characterized by $ positive parameters 
each. The complete lattice structure is shown in Figure 
2 (drawn for M = 8). The most general M x L GLBT 
can be parameterized by parameters as expected from 
LP systems. However, the SVD parameterization in Eq.(5) 
has three advantages: (i) exact reconstruction is guaranteed 
structurally under a mild condition - as long as none of the 
diagonal coefficients is quantized to zero; (ii) SVD repre- 
sentation avoids the costly matrix inversion problem in the 
optimization process; (iii) it is much simpler to prevent the 
matrices from being singular or near-singular. 

I t  is also very easy to verify that all previously reported 
LPPRFB's lattice structures are special cases of the new 
GLBT lattice. For examples, the GLT design example in 
[5] has M = 8, I< = 2, U00 and VOO from the DCT, U01 = 
V O ~  = I'o = A0 = I, and V1 parameterized as a cascade of 
block diagonal matrices. The LBT in [6] has M = 8, I< = 
2, UOO and VOO from the DCT, U01 = VOI = I'o = I, 
A0 = dsag[& 1 1 11, and U1, V1 to be orthogonal. 
When orthogonality is imposed, we get back GenLOT [4]. 
When A4 = 2, the lattice turns into a simplified form of 
Type-A system lattice in [2]. Formal proofs of the lattice's 
completeness and minimality will be presented in [8]. 

3. DESIGN EXAMPLES AND GLBT 
APPLICATION IN IMAGE CODING 

Figure 3 presents several GLBT design examples obtained 
from nonlinear optimization of the new lattice coefficients 
with various cost functions. The analysis banks are on top. 
Designs in Figure 3(a), (b), and (d) are DCT-based. While 
increasing the GLBT length does not improve the coding 
gain much, it helps in the case of stopband attenuation 
(where longer filters are desired) as testified in Figure 3(c). 

One of the most popular applications of the GLBT is im- 
age compression. Overlapping analysis filters reduce inter- 
block redundancy, providing higher coding efficiency of the 
transform coefficients, while overlapping synthesis filters 
whose ends decay asymptotically to zero eliminate blocking 
artifacts. Each bank can now be designed appropriately. 
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Figure 2. Lattice structure for t he  GLBT. 

(a) (b) (C) (4 
Figure 3. GLBT design examples (a) M = 8 L = 16 optimized for coding gain, DC attenuation and mirror frequency 
attenuation (b) M = 8 L = 32 optimized for coding gain and DC attenuation (c) M = 8 L = 32 optimized for analysis 
stopband attenuation (d) M = 16 L = 32 optimized for coding gain, DC and mirror frequency attenuation. 

For the case of M = 8 L = 16, GLBT optimized for pure 4. CONCLUSIONS 
coding gain can attain 9.63 dB. However, we trade off 0.01 
dB of coding gain in Figure 3(a) for high attenuation at 
DC, near-DC, and mirror frequencies to ensure high visual 
quality in the reconstructed images as well. The 16 x 32 
GLBT in Figure 3(d) achieves an impressive coding gain of 
9.96 dB. When the new transforms are incorporated into the 
block-transform progressive coding framework described in 
[9], the resulting GLBT-based embedded coders provide un- 
rivaled objective and subjective performance as indicated in 
Table 1 and Figure 4(b)-(d). For a smooth image like Lena 
which the wavelet transform can sufficiently decorrelates, 
the best wavelet-based embedded coder SPIHT [7] provides 
a comparable performance. However, for a highly-textured 
image like Barbara, 16 x 32 GLBT coder can provide a 
PSNR gain of around 2.5 dB over a wide range of bit rates. 
The visual reconstructed image quality is also superior: tex- 
ture is beautifully preserved, blocking is completely elimi- 
nated, and ringing is barely noticeable. Comparing to the 
optimal 8 x 40 GenLOT in [9], the 8 x 16 GLBT in Figure 
3(a) already offers comparable performance at much lower 
computational complexity. More objective and subjective 
evaluation of GLBT-based progressive coders can be found 
at  http://saigon. ece. wisc. edu/ -waveweb/Coder/index.html 
along with more details on the coding scheme. 

We have presented in this paper a general, albeit minimal, 
lattice structure for M-channel KM-length LPPRFB. The 
novel lattice based on the SVD provides a robust imple- 
mentation and a friendly design procedure for all lapped 
transforms with arbitrary integer overlapping factor IC. 
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Comp. 
Ratio 

1.8 

I 1:16 11 37.21 I 37.32 I 37.28 I 37.33 11 33.13 I 33.36 I 33.31 I 33.42 11 31.40 I 33.47 I 33.02 I 33.94 I 

Lena Goldhill Barbara 

8x40 8x16 16x32 8x40 8x16 16x32 8x40 8x16 16x32 
"IHT GenLOT GLBT GLBT "IHT GenLOT GLBT GLBT "IHT GenLOT GLBT GLBT 

40.41 40.43 40.35 40.43 36.55 36.80 36.69 36.78 36.41 38.08 37.84 38.43 

1:32 

1:64 

1:lOO 

1:128 

Table 1. Objective coding result comparison 

34.11 34.23 34.14 34.27 30.56 30.79 30.70 30.84 27.58 29.53 29.04 30.18 

31.10 31.16 31.04 31.18 28.48 28.60 28.58 28.74 24.86 26.37 26.00 27.13 

29.35 29.31 29.14 29.38 27.38 27.40 27.33 27.62 23.76 24.95 24.55 25.39 

28.38 28.35 28.19 28.39 26.73 26.79 26.71 26.96 23.35 24.01 23.49 24.56 

Figure 4. Embedded coding results of Barbara at 1:32 compression ratio (a) original image (b) SPIHT, 27.58 dB 
(c) embedded 8 x 16 GLBT, 29.04 d B  (d) embedded 16 x 32 GLBT, 30.18 dB . 
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