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ABSTRACT

A lattice structure based on the singular value decompo-
sition (SVD) is introduced. The lattice can also be proven
to use a minimal number of delay elements and to com-
pletely span a large class of M-channel linear phase per-
fect reconstruction filter bank (LPPRFB): all analysis and
synthesis filters have the same FIR length of L = KM,
sharing the same center of symmetry. The lattice also
structurally enforces both linear phase and perfect recon-
struction properties, is capable of providing fast and effi-
cient implementation, and avoids the costly matrix inver-
sion problem in the optimization process. From a block
transform perspective, the new lattice represents a family
of generalized lapped biorthogonal transform (GLBT) with
arbitrary integer overlapping factor K. The relaxation of
the orthogonal constraint allows the GLBT to have signifi-
cantly different analysis and synthesis basis functions which
can then be tailored appropriately to fit a particular appli-
cation. Several design examples are presented along with a
high-performance GLBT-based progressive image coder to
demonstrate the superiority of the new lapped transforms.

1. INTRODUCTION

Linear phase perfect reconstruction filter banks have been
used extensively in numerous applications, especially image
processing [1]. In the two-channel case, all solutions have
been found whereas there are still many open problems in
M-channel cases. An attractive approach to the design and
implementation of LPPRFB is the parameterization by lat-
tice structures based on the factorization of the polyphase
matrices E(z) and R(z) shown in Figure 1. The lattice
structure offers fast and efficient implementation, retains
both LP and PR properties regardless of coefficient quanti-
zation, and (if it is general enough) guarantees that no op-
timal solution will be excluded in the optimization process.
Complete and minimal two-channel PR lattice structure has
been reported in [2]. M-channel lattices have been pre-
sented for the more restricted paraunitary case [3], resulting
in the generalized lapped orthogonal transform (GenLOT)
[4]. No general lattice has been reported for the biorthogo-
nal case (defined as R(z)E(z) = z7¥I). Only several par-
ticular solutions were proposed so far: Chan replaced some
orthogonal matrices in [4] by cascades of invertible block
diagonal matrices [5]; Malvar suggested a simple scaling of
the first antisymmetric basis function of the initial block
(which was chosen to be the DCT) [6].
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Figure 1. Polyphase representation of LPPRFB.

In this paper, we first introduce a general structure that
propagates the linear phase property. Further imposition
of the biorthogonal property on this structure results in a
complete and minimal LPPRFB lattice whose invertible co-
efficient matrices are then parameterized by the SVD. In the
lapped transform language, the structure is interpreted as a
robust characterization of the GLBT. Several lapped trans-
forms obtained from the nonlinear optimization of the lat-
tice coefficients are presented. Finally, the superiority and
the potential of the new LT family are illustrated through an
image coding example. The GLBT-based embedded coder
consistently outperforms the wavelet-based version SPTHT
[7] by a large margin. The improvement in PSNR can be
up to an astouding 2.65 dB.

Notation-wise, vectors and matrices are denoted by bold-
faced characters. Special matrices have reserved symbols:
I, J, 0, D represents, respectively, the identity matrix, the
reversal matrix, the null matrix, and the diagonal matrix
whose entry is 41 when the corresponding filter is symmet-
ric and —1 when the corresponding filter is antisymmetric.
Capital letters M, L, K denote respectively the number of
channels, the filter length, and the overlapping factor.

2. LATTICE STRUCTURE

2.1. General LP-propagating Structure
Consider an M-channel FIR LPPRFB with all analysis and
synthesis filters of length L = K M, having the same center
of symmetry (M x L GLBT). The associated polyphase
matrix E(z) has to satisfy the LP property [3]

E(z) = : ¥V DE("")J. (1)
Define the order-(K — 1+ N) polyphase matrix F(z) £

G(z)E(z) where the all-zero order-N G(z) is the propagat-
ing structure. We are adding on or peeling off a block in the
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lattice depending on causal or anticausal G(z). The order N
is purposely chosen to be arbitrary so that G(z) can cover
all classes of FB that may be unfactorizable with order-1
structures (odd-channel, for instance). The following the-
orem introduces a general structure for G(z) to propagate
the LP property.

Theorem I: F(z) has LP and PR if and only if G(2) is FIR
invertible and takes the form G(z) = 2"~ D G(z7*) D.

Proof Using the LP property of E(z) and F(z), we have

il

F(z) PRARELE) ») T CItN

= K- NpGRHYE(T!)I

2 VDG(z7 )" -DE(z"NI
2" ¥DG(z Dz~ ¥ -VDE("")J
z2"VDG(z"")DE(2).

i

For E(z) and F(z) to have FIR inverses, it is necessary and
sufficient that G(z) is FIR invertible and

G(z) = 27" DG(z"") D. o

Let G(z) = Y. Aiz™". The above form of G(z) im-

poses interesting symmetric constraints on the matrices A;.

G(iz) = 2z "DG(EHD = Z_ND(Z?;OA;‘Z")D
= D(LilA="")D = D(TL,An-iz7)D
= YV (DAyN-D):™

= A;=DAy_;D. (2)

2.2. GLBT Lattice Structure Based on the SVD

Assume that M is even. In this case, there are _12\1 symmetric
and % antisymmetric filters [3]. Furthermore, we know that
LPPRFB exists for every integer K > 1 [3, 4], i.e., these
FB can be factorized by order-1 G(z). If N = 1 in Eq.(2),
A, = DA¢D. G(z) then takes the general form of G(z) =
Ag+2z"'DA,D. It can be proven that every aforementioned
non-trivial LPPRFB can be factorized using the following

form for Ao [8): A¢ = § g 3 ] , where U and V are
M

arbitrary %’1— X % matrices. So, G(z) can be factorized as
follows
U+2z7'U U-27'U
G(z)=3 { V-V Visly

:%[}{ 3]“ _IIH(]; ngH} —II]

SLOWA()W. (3)

Since W and A(z) have trivial inverses, G(z) is invertible

if and only if ¥ is invertible, i.e. U and V are invertible.

The polyphase matrix of any even-channel LPPRFB with

filter length L = K M can be realized by a cascade of (K —1)
G; blocks and a zero-delay initial matrix Eo:

E(z) = Gr-1(2) Gx-2(2) -+ Gi(2) Eo (4)

The starting block Eq has no delay element, representing
LPPRFB of length M, and was often chosen to be DCT
[4, 5, 6]. General Eq satisfying Eq.(1) can be factorized as

Eo = L Us U |_ ,1Uo O I3J

CTVE[ VoI ~Vo | TVE[ 0 Vo ||J -1
For Eq to have PR, Up and Vy again have to be invertible.
This result should not come as a surprise. The factorization
is very similar to the GenLOT’s [4]; the only difference here
is that U; and V; do not have to be orthogonal. Now, the
difficulty arises: how do we completely characterize these
% X % nonsingular matrices?

Recall that every invertible matrix has an SVD: U; =
U;oT: U1, where Ujq and U;; are orthogonal matrices, and
T'; is a diagonal matrix with positive elements [1]. Thus, ®;
can be further factorized as

U o0 r. o Ua O
‘I’"[ 0 vio][u A;} [ 0 V,~1]' (5)

The orthogonal matrices Ujo, U1, Vo, and V,; are param-
eterized by M 1;1—2 rotations each. The diagonal matri-
ces I'; and A; are characterized by % positive parameters
each. The complete lattice structure is shown in Figure
2 (drawn for M = 8). The most general M x L GLBT
can be parameterized by %M parameters as expected from
LP systems. However, the SVD parameterization in Eq.(5)
has three advantages: (i) exact reconstruction is guaranteed
structurally under a mild condition - as long as none of the
diagonal coefficients is quantized to zero; (ii) SVD repre-
sentation avoids the costly matrix inversion problem in the
optimization process; (iii) it is much simpler to prevent the
matrices from being singular or near-singular.

It is also very easy to verify that all previously reported
LPPRFB’s lattice structures are special cases of the new
GLBT lattice. For examples, the GLT design example in
[5] has M = 8, I( = 2, Uoo a.nd Voo from the DCT, U(n =
Vo1 =TI'o = Ag =1, and V; parameterized as a cascade of
block diagonal matrices. The LBT in [6] has M = 8, K =
2, Ugo and Vyg from the DCT, Uor = Vg1 =Ty = I,
Ay = diag[ﬂ 1 1 1], and Uy, V; to be orthogonal.
When orthogonality is imposed, we get back GenLOT [4].
When M = 2, the lattice turns into a simplified form of
Type-A system lattice in [2]. Formal proofs of the lattice’s
completeness and minimality will be presented in [8].

3. DESIGN EXAMPLES AND GLBT
APPLICATION IN IMAGE CODING

Figure 3 presents several GLBT design examples obtained
from nonlinear optimization of the new lattice coefficients
with various cost functions. The analysis banks are on top.
Designs in Figure 3(a), (b), and (d) are DCT-based. While
increasing the GLBT length does not improve the coding
gain much, it helps in the case of stopband attenuation
(where longer filters are desired) as testified in Figure 3(c).

One of the most popular applications of the GLBT is im-
age compression. Overlapping analysis filters reduce inter-
block redundancy, providing higher coding efficiency of the
transform coefficients, while overlapping synthesis filters
whose ends decay asymptotically to zero eliminate blocking
artifacts. Each bank can now be designed appropriately.
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Figure 2. Lattice structure for the GLBT.
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16 optimized for coding gain, DC attenuation and mirror frequency

attenuation (b) M = 8 L = 32 optimized for coding gain and DC attenuation (c) M = 8 L = 32 optimized for analysis
stopband attenuation (d) M =16 L = 32 optimized for coding gain, DC and mirror frequency attenuation.

For the case of M = 8 L = 16, GLBT optimized for pure
coding gain can attain 9.63 dB. However, we trade off 0.01
dB of coding gain in Figure 3(a) for high attenuation at
DC, near-DC, and mirror frequencies to ensure high visual
quality in the reconstructed images as well. The 16 x 32
GLBT in Figure 3(d) achieves an impressive coding gain of
9.96 dB. When the new transforms are incorporated into the
block-transform progressive coding framework described in
[9], the resulting GLBT-based embedded coders provide un-
rivaled objective and subjective performance as indicated in
Table 1 and Figure 4(b)-(d). For a smooth image like Lena
which the wavelet transform can sufficiently decorrelates,
the best wavelet-based embedded coder SPIHT [7] provides
a comparable performance. However, for a highly-textured
image like Barbara, 16 x 32 GLBT coder can provide a
PSNR gain of around 2.5 dB over a wide range of bit rates.
The visual reconstructed image quality is also superior: tex-
ture is beautifully preserved, blocking is completely elimi-
nated, and ringing is barely noticeable. Comparing to the
optimal 8 X 40 GenLOT in [9], the 8 x 16 GLBT in Figure
3(a) already offers comparable performance at much lower
computational complexity. More objective and subjective
evaluation of GLBT-based progressive coders can be found
at http://saigon.ece.wisc.edu/ “waveweb/Coder/index.html
along with more details on the coding scheme.

4. CONCLUSIONS

We have presented in this paper a general, albeit minimal,
lattice structure for M-channel K M-length LPPRFB. The
novel lattice based on the SVD provides a robust imple-
mentation and a friendly design procedure for all lapped
transforms with arbitrary integer overlapping factor K.
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Lena Goldhill Barbara
Rato || ST | Gentor | Gret | arst | SPHT | Geator| otet | Gist | SPMT | Gentor | ot | orat
1:8 40.41 4043 40.35 40.43 36.55 36.80 36.69 36.78 36.41 38.08 37.84 38.43
1:16 37.21 37.32 37.28 37.33 33.13 33.36 3331 3342 31.40 3347 33.02 | 33.94
1:32 34.11 34.23 34.14 34.27 30.56 30.79 3070 | 30.84 27.58 29.53 29.04 30.18
1:64 31.10 31.16 31.04 31.18 2848 28.60 28.58 28.74 24.86 26.37 26.00 27.13
1:100 29.35 | 2931 29.14 29.38 27.38 2740 2733 | 27.62 23.76 24.95 24.55 25.39
1:128 28.38 | 2835 28.19 28.39 26.73 26.79 26.71 26.96 23.35 24.01 2349 24.56

Table 1. Objective coding result comparison

Figure 4. Embedded coding results of Barbara at 1:32 compression ratio (a) original image (b) SPIHT, 27.58 dB
{c) embedded 8 x 16 GLBT, 29.04 dB (d) embedded 16 x 32 GLBT, 30.18 dB .
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