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ABSTRACT

Compressed images may be decompressed for devices us-
ing different resolutions. Full decompression and rescaling
in space domain is a very expensive method. We studied
downscaled inverses where the image is decompressed par-
tially and a reduced inverse transform is used to recover
the image. We studied the design of fast inverses, for a
given forward transform. General solutions are presented
for M-channel FIR filter banks of which block and lapped
transforms are a subset.

1. INTRODUCTION

Suppose an image is scanned and compressed using an M-
channel block or lapped transforms. It is then stored and
printed or displayed on one of several devices, each sup-
porting a distinct resolution. Thus, one must be able to
decompress the image and resize it to fit the desired reso-
lution. It is reasonable to assume that the image will be
stored at a higher resolution and downsized to fit the lower
resolution devices. It is also desirable to avoid buffering the
full resolution image or to process more pixels than neces-
sary. The alternative is to decompress the image directly
into its lower resolution.

Transform coding is very popular for image compres-
sion. Downsampling by factors which are powers of 2 is triv-
ial if we use the discrete wavelet transform (DWT) or other
similar subband approaches {1]. However, we focus our
attention on other attractive transforms which are called
“parallel” or “M-channel” [2]. In these, the input image is
directly decomposed into several subbands at once. Exam-
ples of these transforms are block transforms such as the
discrete cosine and sine transforms (DCT,DST) [3], along
with lapped transforms such as the lapped orthogonal trans-
form (LOT) [4, 5], the generalized LOT (GenLOT) [6] and
extended lapped transforms (ELT) [4, 7], as well as other
M-channel filter banks [2].

2. BACKGROUND

2.1. Filter banks and polyphase matrices

We use FIR uniform filter banks, of which block and lapped
transforms are special cases. There are M analysis filters
fi(n) and M synthesis filters gr(n) (0 < k < M —1). The
signal z(n) is decomposed into M subband signals yi(m)
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(0 £ k £ M —1). After processing or quantization, the
subband signals §jx (m) are used to construct the signal z(n).
For simplicity, let fi(n) and gi(n) have L = NM taps each,
padding zeros if necessary.

It is more convenient to work with the polyphase trans-
fer matrix (PTM) of the system which is a linear multi-
input multi-output (MIMO) system of FIR filters relat-
ing M polyphase components of the input signal (z:(n) =
z(nM +1)) to the M subbands [2]. Conversion to and from
polyphase components are called blocking and unblocking
operations. A PTM is an LTI system iff it is pseudo circu-
lant [2], otherwise (which is often the case) it represents a
linear periodically time-varying (LPTV) filter.

The signal is blocked and passed through the analysis
PTM F(z). It is reconstructed from the subbands using the
PTM G7(z) followed by an unblocking device. (The rows
of G(z) correspond to the filters gx(n).) As L = NM, the
PTMs have polynomial entries of order N — 1. In practice,
neither PTM represents an LTI system. However, for per-
fect reconstruction (PR) analysis-synthesis systems [2, 4]
we have

T(z) = GT(2)F(z) = 2 V1. (1)

and the overall system is an LTI filter (a pure delay).

2.2. Resampling as post-processing

The straightforward method to rescale the compressed im-
age is to perform an inverse transform and, then, scale the
image, as in Fig. 1.

A simplification can be achieved if we allow non-uniform
resampling and assume K < M. For this, we employ the
symbol 1 K/M | in Fig. 1, which means: retain K out of
M samples. More generically, one can retain nK out of nM
samples. In Fig. 1 the filter H(z) is a low-pass with cutoff
on Kn/M. The filtered signal v(n) is resampled to the final
sampling rate yielding u(n). H(z) can be moved past the
unblocking device as a MIMO system as shown in Fig. 1.
Let x(z) have entries X;(z) = Z{xi(n)}. Hence,

v(z) = H(z)G" (2)F(2)x(2) = H(z)T(2)x(z)  (2)

and, for PR filter banks, V(z) = 2~ X+ H(2)X(2) and the
overall system is LTI followed by a resampler. If M/K is an
integer, the system becomes a trivial uniform downsampler,
where P = 1 and @ = M/K, and the filter has cutoff at
7/Q. The synthesis system and filters are effectively
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Figure 1: The analysis and synthesis systems with resam-
pling as post-processing. If non-uniform downsampling is
used, the filter can be moved past the unblocking device.

S(z) = H(z)GT (2). (3)
sk(n) = h(n) * gi(n). (4)

However, any fast algorithm for G(z) may be lost.

2.3. Discarding subbands

A computationally efficient way to implement the filter may
borrow the filtering properties (stopband attenuation, etc.)
of the filters fr(n) and gi(n). If the filters have good stop-
band attenuation, we can simply discard the highest fre-
quency M — K subbands and keep the lower K subbands.
Then, we can either set yi(n) =0 for K <{ < M —1, or
set gi(n) =0for K <i<M~-1and0<n<L-1. Let

Ix ar = diag{1,1,...,1,0,0,...,0} (5)
N, e’ e, g’
K 1s M-K 0's

The equivalent synthesis system is given by

S(z) = GT(2)Ik - (6)
T(2) = GT(2)Ik pF(2) (7

Unless severe restrictions are imposed to the filter bank
design, T(z) will not represent an LTI system. However, if
the aliasing terms are sufficiently small the overall transfer
filter is approximately LTI and given by

K-1
T(z) ™ 57 3 Gu(2) Fa(2) ()

So, “good” filters may approximate a reasonably selective
filter after discarding subbands. We cannot compare LPTV
and LTI filters but the above approximation is useful to give
a reference point. Fig. 2 shows a comparison of approxi-

mated LPTYV filters and LTI ones.

7-tap
,~ Hamming

Figure 2: Frequency response plots for some useful filters
for downsampling a signal at a 4:1 ratio.

3. BLOCK RESAMPLING

The goal in this paper is to directly design a synthesis sys-
tem which would output K samples of u(n) for every block
of M subband samples (y;{(m) for 0 < i < M —1). In this
case, we can design a synthesis PTM such that

Soo(z) So,m-1(z)
S(z) = (9
SK—l,o(Z) SK—I,M—I(Z)

and T(z) becomes a K x M matrix given by

T(z) = S(2)F(2). (10)

S(z) implies filtering and resampling. We can design S(z)
by block resampling of the output signal of a regular analysis-
synthesis system and implement filtering by processing the
subbands, i.e.

S(z) = ®(2)G” (2)C(2), (11)

where $(z) is a K x M resampling matrix and C(z) is the
filtering operator. For example, if C(z) is a diagonal matrix

with zero order entries, it will perform filtering by weighting
the subbands. Let

v(z) = GT(2)C(2)F(2)x(2) = A(2)x(2), (12)
so that

u(z) = B(2)v(2). - (13)

The signal v(n) has M samples per block, while the final
signal u(n) has only K samples per block. Thus u(z) has
the K polyphases U;(z) and v(z) has M polyphases V;(z).
We have chosen to construct a continuous curve from which
u(n) and v(n) can be found by uniform sampling. This ap-
proach only works if the samples of v(n) generate smooth
curves, i.e. if the LPTV filter A(z) does a good job of re-
moving high-frequency components. Linear interpolation
(fitting a straight line in between every two samples of u(n)
) is generally visually pleasing. Splines and higher order
polynomials may be used as well. The sampling grid we
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Figure 3: The interval of a block originally with 8 samples,
is resampled at 2 and 3 samples per block.

have chosen is illustrated in Fig. 3, where sampling occurs
at the center of K uniform cells that fill the block interval.
It is straightforward to design ®(z) to allow the proposed
resampling. For example, with a piecewise linear interpola-
tion between samples, M = 8 and K = 2, we have

60 05 05 0 0 0O O O

2==10 0 0 00 05 05 0

For the filtering operator, we can further simplify the
problem by using the approach in Sec. 2.3 (C(z) = Ik p).
Then, filtering is accomplished by retaining only the K
lower frequency subbands. Let §(z) be the vector with
the K lowest frequency subbands. We want to design a
PTM, which we denote by R(z), directly relating these K
subbands to the K output polyphase components as:

u(z) = R7(2)y(=). (14)
Let A = [Ix,0xxm—k] so that G(z) = AG{(z). Hence,

u(z) = R"(2)A¥(2) = R (2)AF(2)x(z)  (15)

S(z) =R (2)A (16)
As C(2) = I py = ATA, we have that

S(z) = #(2)GT(2)ATA (17)

RT(z) = #(z)GT(2)AT = #(2)G7 (2). (18)

This result implies that the K synthesis filters should be
resampled versions of the "K filters corresponding to the
K lowest-frequency subbands of the original synthesis filter
bank G(z). Thus, the actual synthesis filters r(n) have
length NK and are found as

ri(z) = ®(2)8k(2). (19)

We can define a continuous function for the filters u.(t), for
0 < k £ K — 1, which are uniformly sampled. Thus,

2n+1,\)

Te(n) = pi ( 57 (20)

for A representing the normalized support of M samples
of the impulse response of gi{(n). See [8] for more in the
subject including upsampling and more general factors.

4. FAST TRANSFORMS

For fast transforms, we design R(z) possessing a fast algo-
rithm to approximate given G(z) and #(z). Table 1 shows
the filters response for DCT and DST of types II (the com-
mon one) and IV {3]. It also gives a desirable continuous
function that will interpolate the original filter samples,
from which the new filters r¢(n) are found. In this case,
if the listed block transforms have their k x k transform
matrix denoted as Dy, the forward transform employs D s
while the synthesis filters are found as

R7(z) = \/g D%. (21)

Resizing in the DCT domain has been studied before
[9]. Similar resampling methods for the DCT have also
been recently reported [10, 11].The table also includes re-
sults for a cosine modulated filter bank known as the ELT
[4). If Ei(2) is the analysis PTM for the k-channels ELT,
the downscaled synthesis is found as:

RT(z) = 1{4—( E%(2). (22)
Note that for the ELT, one may have to find an appropri-
ate continuous modulation prototype (window) w(t). We
recommend interpolating w™)(n) (M-channels case) into
w(t) with a smooth function such that w'*’(n) (K-channels
case) can be found by w,(cK)(z) = Q(z)w,(cM)(z).

The same concepts also apply to other filter banks and
lapped transforms. The LOT and GenLQTs are filter banks
(lapped transforms) whose filters have linear-phase (sym-
metric bases) [4, 5, 6]. The LOT can be viewed as a spe-
cial case of a GenLOT [6]. In this case, if L(z) is the K-
channel synthesis GenLOT (with proper reoptimization of
its parameters for given M-channel analysis GenLOT [8])

we have
[k
R7(z) = i L7 (z). (23)

We also carried tests, by compressing an image at 1
bit/pel using JPEG (DCT) and decompressing it at a quar-
ter resolution (M = 8, K == 2). The proposed method takes
12 operations (multiplies plus adds) to construct a block of
2 x 2 pixels from the block with the 8 x 8 DCT coefficients.
We compared it to space-domain subsampling techniques
including: no postfilter (672 ops); 4 x 4 averaging filter
(736 ops); 21 x 21 Hamming filter (4196 ops). Portions of
the decompressed images are shown in Fig. 4. We also show
in Fig. 5 the reconstructed image using the ELT in place
of the DCT in JPEG, with and without mismatch in the
window design, in order to highlight its importance.

5. CONCLUSIONS

We studied methods to decompress a compressed image to a
lower resolution. A general framework was presented allow-
ing the use of an arbitrary FIR uniform paraunitary filter
bank along with specific algorithms aimed at popular block
and lapped transforms. As results have shown, the solu-
tions we propose yield higher quality of the decompressed
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Table 1: Continuons functions for popular block and lapped transforins
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Figure 4: Reconstructed JPEG images at a guarter reso-
lution. From top to bottom: proposed method: no filter:
4 x 4 averaging: and 21 x 21 Hamming filter.

image compared to other simple reconstruction methods.
Furthermore. it also leads to much faster implementation.
The basic idea is to resample the synthesis filters instead of
resampling the image.

6. REFERENCES

[1] AL Vetterli and J. Kovacevie. Wavelets and Subband

2468
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