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Table 1: Performance (in bpp) of some lossless compressors.

Coders Lenna Camer. Graphics Baby

NLP-JPEG 4.50 5.23 1.56 4.94
Lossless-JPEG 4.70 5.37 1.94 5.07
S+P Hu�man 4.38 5.29 2.51 4.86
GZIP 6.80 6.33 1.19 6.91

3. JPEG-BASED CODING

For evaluation and comparisons in a complete image coding
system, we embedded the transform into JPEG. The idea
is to replace the DCT coe�cients by our pyramid samples.
This has been done before by substituting the DCT by the
DWT and using the same coder except by replacing the
transform [18]. Here, we follow the same principle: using
three stages (S = 3) and grouping the pyramid samples
into blocks as shown in Fig. 2. We, therefore, refer to our
coder as NLP-JPEG and refer to regular JPEG coder as
DCT-JPEG.

S is selected as 3 and 2S + 1 = 7 step sizes are selected
for uniform quantizers. The image is transformed using the
nonlinear pyramid with quantizer feedback. The low-pass
samples are encoded using a 2D DPCM as:

~xS;00(n) =
1

2
(x̂S;00(n� [

1
0]) + x̂S;00(n� [

0
1])) (5)

yS;00(n) = xS;00(n)� ~xS;00(n) (6)

ŷS;00(n) = Q
�1

1 fQ1fyS;00(n)gg (7)

x̂S;00(n) = ŷS;00(n) + ~xS;00(n) (8)

where we encode the value of Q1fyS;00(n)g. The trans-
formed samples are grouped into blocks of 2S � 2S = 8� 8
samples as in Fig. 2. For each block, the quantized sam-
ples are reorganized into a vector. The samples are scanned
from those labeled \1" to those labeled \7" in Fig. 2. The
quantized samples are encoded using standard JPEG en-
tropy coding based on Hu�man codes.

The DCT-JPEG has 64 quantizer steps (one for each
DCT coe�cient), while the proposed one has only 7 for 3
stages. A complete description of an algorithm to optimize
the quantizer steps can be found in [10]. The quantizer
steps were constrained to be non-decreasing because of the
recursive nature of the proposed transform.

Note that �n = 1 leads to lossless coding. We com-
pared the performance of the NLP-JPEG for lossless com-
pression against three dedicated lossless coders: (1) the
non-DCT lossless JPEG coder; (2) Hu�man based Said-
Pearlman lossless coder [19]; (3) GnuZIP, which is a regular
LZW compressor. Results are shown in Table 1.

Tests were carried to compare the performances of NLP-
and DCT-JPEG. Fig. 4 shows peak signal-to-noise ratio
(PSNR) values for typical images. Resolution is 256� 256-
pels for \Cameraman" and 512 � 512-pels for the others.
In these plots, we used optimized Hu�man codes in JPEG
for both the DCT and NLP based schemes. Although, in
most cases, both approaches yield relatively close PSNR
results, they generate images that look radically di�erent
in terms of the artifacts they produce. The DCT-JPEG
approach at low bit rates produces the familiar ringing and
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Figure 4: Plot of PSNR versus bit-rate for several images.

blocking artifacts. The NLP-JPEG approach has no ringing
or blocking and generally encodes edges well, but it is not
accurate to encode texture regions. Images are presented
for subjective comparison in Fig. 5.

4. CONCLUSIONS

We presented a PR critically decimated nonlinear pyrami-
dal structure for image compression based on the cascade
of a two-step �lter bank. Image coding tests were carried
using JPEG and replacing the DCT by the proposed pyra-
midal scheme. The proposed scheme shows superior perfor-
mance over DCT-JPEG both objectively and subjectively.
It also outperforms the alternative non-DCT based JPEG
algorithm for lossless coding. The most appealing feature of
the pyramid is its complexity, which is far less complex than
most popular linear transforms and is suitable for hardware
implementation.
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Figure 1: Generation of a multiresolution pyramid.

cess synthesis. We further extend the notation to de�ne

xs;i0i1(n0; n1) = x(2
s
n0 + 2

s�1
i0; 2

s
n1 + 2

s�1
i1): (4)

As in the wavelet and pyramid transforms [1, 2], one can
connect the input of a stage right to the low-pass output of
another one as shown in Fig. 1.

In image coding applications the subbands are quan-
tized. Given the sequential nature of the decomposition
process, we can avoid excessive accumulation of quantiza-
tion error across subbands by using a feedback loop (local
reconstruction) similar to that used in DPCM systems. Fur-
thermore, for maximum compression, Fi should be a good
interpolator in order to minimize the information sent along
the subbands.

If we let process(yk;ij(n); z(n); Ql) be

~xk;ij(n) = interpolate(z(n))

yk;ij(n) = xk;ij(n)� ~xk;ij(n)

encode Qlfyk;ij(n)g
ŷk;ij(n) = Q�1

l
fQlfyk;ij(n)gg

x̂k;ij(n) = ~xk;ij(n) + ŷk;ij(n)

the description of the analysis process1 is given by:

l = 1
process(yS;00(n); ; Q1)
for k = S : �1 : 1

process(yk;11(n); x̂k;00(n);Ql+1)
process(yk;01(n); fx̂k;00(n); x̂k;11(n)g;Ql+2)
process(yk;10(n); fx̂k;00(n); x̂k;11(n)g;Ql+2)
l = l + 2

end

Note that at each iteration

x̂k�1;00(n) = (x̂k;00(n); x̂k;01(n); x̂k;10(n); x̂k;11(n));

and Qn represents the quantization process at the n-th step
and Q�1n is the inverse operation. For example, for uniform
quantizers with step size �n, Qnftg = round(t=�n) and
Q�1n ftg = t�n. For S = 3 (a depth-3 decomposition), an
example of the sequence of pixels used is given in Fig. 2.
In this �gure, samples labeled \1" through \n" are used to
interpolate samples labeled \n+1". Note also that we can
group the samples into 2S � 2S blocks (as the 8� 8 block
in the �gure) to replace traditional block transforms.

We can characterize the analysis-synthesis process as a
pyramidal scheme with critical sampling of the interpola-
tion error, as an association of �lter banks, or as a hierar-
chical DPCM system, where samples are predicted by in-
terpolation rather than conventional extrapolation [12, 13].

1more details can be found in [10].
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Figure 2: Illustration of a 3-stage decomposition. Samples
labeled \n+1" are transformed by computing the interpola-
tion error using the 4 nearest samples labeled \1" through
\n". We can also group the samples into blocks, as indi-
cated.
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Figure 3: Typical support region of the interpolation �lters.

2.3. Interpolation

The choice of the �lters boils down to the choice of an in-
terpolation method. In Fig. 3, samples in the grid marked
by � are available to interpolate the sample marked with

. Typical support regions use 4 or 16 neighbors. Opti-
mum linear interpolators can be easily computed (assuming
the signal characteristics are known). Nevertheless, simple
nonlinear interpolation has shown to produce better results
than much more complex linear �lters [14]. Even with the
recent theoretical advances in nonlinear systems [15, 16, 17],
nonlinear �lters still lack adequate design techniques. In-
stead of exploring a complex ad-hoc design for the �lter, we
decided to settle on one of the simplest �lters we can think
of: a 2� 2 median �lter. The objective is to show the high
potential of nonlinear systems. Although simple, we will
show that such system can outperform much more complex
linear systems. For four input samples aij , we de�ne the
median �lter by the following rule:

� Given set fa11; a12; a21; a22g

� Discard minfa11; a12; a21; a22g

� Discard maxfa11; a12; a21; a22g

� Output the average of the remaining two elements.

See [10] for a discussion on properties of this �ltering oper-
ation, as well as on its fast implementation algorithm. Such
algorithm can be carried using B-bit integer arithmetic for
B-bit images and is multiplication free.
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ABSTRACT

We propose a novel pyramidal coder, which resembles the
general structure of a JPEG coder, but which uses a nonlin-
ear transform to replace the DCT. The nonlinear transform
is obtained by the hierarchical application of a median �l-
ter predictor at subsampled versions of the original signal.
The transformed samples are grouped into square blocks
and used to replace the DCT in the JPEG baseline coder.
The proposed coder shows several advantages: computation
is greatly reduced compared to the DCT, image edges are
better encoded, blocking is eliminated, and it allows lossless
coding. Objective comparisons show the superiority of the
proposed coder against both baseline and lossless JPEG.

1. INTRODUCTION

Multiresolution techniques provide a convenient way of ex-
ploring the several levels of spatial redundancy existing on
most images. The Laplacian pyramid coder [1] explores this
idea, and became quite popular for image processing and
coding despite the fact that it expands the number of sam-
ples. Expansiveness can be eliminated by directly applying
an association of �lter banks [2], which has been shown to
be equivalent to the discrete wavelet transform [2]. The
JPEG baseline system (referred here as DCT-JPEG) [3] is
a de facto standard for lossy image compression. However,
it is based on the discrete cosine transform (DCT), which
is somewhat expensive to compute and can also cause ring-
ing and blocking artifacts [3]. In this paper, we present a
JPEG-based coder which uses a nonlinear transform instead
of the DCT. The transform is based on a multiresolution �l-
ter bank, and does not require multiplications, nor 
oating
point numbers, and allows lossless coding. Comparison to
the DCT-JPEG at several bit-rates shows the superiority
of the proposed coder, both objectively and subjectively.
The JPEG standard also includes a dedicated mode (non-
DCT-based) for lossless coding [3]. We show that it is also
outperformed by the proposed nonlinear coder. Besides,
since no dedicated lossless mode is required, the coder is
also convenient to nearly lossless coding.

Perfect reconstruction (PR) in critically decimated sys-
tems is generally guaranteed by imposing conditions on the
�lter coe�cients. When dealing with nonlinear �lters, no
such general conditions exist [4]. For this reason, nonlin-
ear �lter banks were restricted to non-critically decimated
cases [5, 6, 7]. Recently, a new approach for critically dec-

imated nonlinear �lter banks has been introduced [4, 8, 9],
where PR is obtained by imposing restrictions on the �lter
structure instead of on the �lter coe�cients. We use here a
particularization of a more general framework [10].

2. THE TRANSFORM

2.1. One stage

Let the picture elements (pixels or pels) in the input image
be denoted by x(n1; n2). With the usual notation for multi-
dimensional signals [11], we de�ne the vector n = [n1; n2]

T

and denote the signal by x(n). We de�ne the polyphase
components of the signal as xi(m) = x(Mm+ i), for M =�

M1 0
0 M2

�
and for i = [i0; i1]

T , 0 � ik < Mk. We are

concerned with 2D signals and with the caseM1 =M2 = 2,
so that i can assume the values representing one out of four
polyphase components: (0,0), (0,1), (1,0), and (1,1). The
samples in the original signal map to the polyphase compo-
nents according to the following grid pattern:
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Applying the same notation to the transformed signal y(n),
the decomposition for one pyramid level can be described
as:

y00(n) = x00(n) (1)

y11(n) = x11(n)� F0(x00(n)) (2)

y01;10(n) = x01;10(n)� F1(x00(n); x11(n)) (3)

where Fi is any linear or nonlinear function and x01;10(n)
is the quincunx grid formed by x01(n) and x10(n). It is
clear that x(n) can be perfectly reconstructed since we can
always �nd xij(n) as a function of yij(n) and of previously
reconstructed polyphase components. The relative spatial
arrangement between the two rectangular grids x00 and x11
is the same as that between the two quincunx grids x00;11
and x01;10. The di�erence is a rotation of 45 degrees. There-
fore, F1 can be essentially the same as F0 [10].

2.2. The pyramid

As usual in the �lter banks literature, we call the subband
decomposition process analysis and the reconstruction pro-
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