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Abstract

The perfect reconstruction conditions for a time-
varying lapped transform are presented. The emphasis
is on a class of cosine modulated filter banks known
as the extended lapped transforms. A mechanism for
achieving this error-free variation thru the factorization
of the transform matrix into sparse factors is presented
along with a discussion of transition states. Some
possible applications are indicated, including a struc-
ture for perfect reconstruction orthogonal time-varying
wavelet packets.

1 Introduction

Multirate filter banks [1] are well-known powerful tools
in modern digital signal processing allowing easy data
processing in transform domain, and flexible time-
frequency analysis. The common denomination of “pa-
raunitary filter bank” will be replaced here by the term
“lapped transform”. Although studied independently
in the past, both represent the same concept [3]. Fil-
ter banks are generally thought of as stationary forms.
Recently, Nayebi et al. presented a study on the struc-
ture of time-varying filter banks [4]. In their work, per-
fect reconstruction (PR) conditions were stated and it
was mainly focused on the transition process between
two known PR systems. In this paper, we present a
structure that is inherently orthogonal and is based on
lapped transforms with fast algorithms. We consider
the extended lapped transform (ELT) as defined by
Malvar in [3, 5], among the most efficient factorization
methods for a paraunitary filter bank. Although im-
posing restrictions (that lead to fast algorithms) the
resulting filter bank presents very good frequency re-
sponses [3]. For this reason, we will present in detail
the structure for an adaptive form of the ELT.
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2 The ELT

We are assuming the use of an uniform analysis bank
of M FIR filters, each one of length L . L is related to
MasL=NM=2KM. K will be also refered here as
the overlapping factor. There is a property of lapped
transforms that relates the M analysis and synthesis
filter banks, which states that the analysis filters are
time-reversed versions of the synthesis filters [3]. If the
analysis and synthesis filters are represented by fn(n)
and g,,(n), respectively, for m = 0,1,...,M — 1 and
n = 0,1,...,L — 1, we can define a matrix P with
elements pmn 38 Pmn = gm(n) = fm(L — 1 — n) Note
that P is a M x L matrix, which will throughout this
paper be called the transform matrix. For an ELT,
the filters’ length is an even multiple of the blocksize
(L = 2K M) and P can be factorized into K + 1 stages
as:

P=ZDyBoD;B; - Dx_; Bx_; (1)

Z is an M x M DCT type IV matrix [6], with inverted
inputs as

z=DcTlV ( Oa472
I/

v BC

Onry2

The D,, matrices have dimensions: M x 2M, forn = 0,
and 2nM x (2n + 2)M, for 1 < n < K — 1. These
matrices are more easily described as block matrices
generated by a Kronecker product.

D, = Fn ® IM/2 (3)

where ® denotes the Kronecker product. The F,, ma-
trices (with elements f;; ) are
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and F, = {fij n}, where

1 i=j=2
fiim = 1 i=4n—-1-2k and j=4n+3-2k
YmT ) 0 otherwise

for 0<k<2n—-1,n>0
®)
B, is an orthonormal block diagonal matrix with 2(n+
1) rows of 2(n + 1) blocks, each of size M x M.

andiag{env en, e veﬂ} (6)
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C, = diag {cos(fo,n) cos(61,n) - cos(Oarj2-1,n)}
Sp = diag {sin(f,n) sin(f1,n) - -sin(frr/2-1,n)}

6 are the rotation angles and free parameters in the de-
sign of an ELT [3], while J is the counterdiagonal ma-
trix [3] (ones only in the counter diagonal). For an infi-
nite (at least long enough) input-output sequence (vec-
tors X and Y respectively), and using lapped trans-
forms, we have the relation [2]

Y =PX and X =PTY (8)

where P is a banded block circulant matrix. For ELTs,
by (1), (6) and (7), we can express P as

P=ZDyBoD B, --- Dxk_1 Bxor  (9)

Fig. 1 shows the flow-graph for a fast ELT with
K = 2. 1t follows the non-causal representation typical
from the transform matrix viewpoint. In this figure,
the order of the input-output M-sample blocks is in-
dicated. Each branch in this flow-graph carries M/2
samples and input is led to output by straight lines
and orthogonal building blocks. Therefore, the inverse
can be accomplished by reverting the flow-graph, i.e.
following the paths from right to left in Fig. 1. From
Fig. 1, one can find P by isolating the paths connect-
ing eight M /2-sample time blocks centered on block k,
to the output frequency block k. With this procedure,
it could be possible to reverse the steps in our pre-
sentation and given the flow-graph (or the overlapped
matrix 13) find the corresponding transform matrix P
(or equivalently the filters of the bank). The reader can
also check the flow-graph against the definitions for the
P matrix, in the case of an ELT for K = 2.
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Figure 1. Flow graph for the ELT with K = 2. Time and
ELT domain samples are grouped into blocks of M samples.

3 PR Time Varying ELT

The basic idea for combining variation and PR relies on
the following: why can we use the same flow-graph (as
example in Fig. 1) for both analysis and synthesis with
PR? The answer is because the elements are orthonor-
mal and the reordering paths form a big orthogonal
permutation matrix. Since any orthogonal transform is
a sucession of plane rotations and have the rotation an-
gles as the only free parameters, what happens if these
parameters are changed along time axis as depicted in
Fig. 2 for our previous exmaple 7 In this case each
block would be still orthonormal. Clearly, nothing is
changed regarding the relation analysis-synthesis, i.e.,
the same analysis flow-graph can be used for synthe-
sis yielding PR. Therefore, one can change the angles
and switch between two different designs of ELT and
keep changing it whenever necessary or desirable. At
each instant k we can compute the instantaneous trans-
form matrix P(k) and the same transform matrix will
be used to reconstruct the signal at instant k at the
synthesis side (while the fast algorithm is inherently
maintained) from:

P(k) = Z(k) Do Bo(k) Dy By(k) --- Dg_1 Bg_1(k)
(10)

Based on this principle and using the fact that any
lapped transform (paraunitary filter bank) can be fac-
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Figure 2. Flow graph for the time-varying ELT with K = 2.
Time and ELT domain samples are grouped into blocks of
M samples.

tored into a cascade of N orthogonal factors composed
by plane rotations (7], in [8] it is shown that it is possi-
ble to find a structure to implement any lapped trans-
form and commute between them. Since P(k) is no
longer constant with &k, the PR conditions must en-
sure the orthogonality among P(k) and its neighbours
P(k £+ 1),P(k £ 2),P(k £ 3).... Then, it is easy to
show that the PR conditions for time-varying lapped
transforms (paraunitary filter banks) are

N-1-¢
Y Pa(k)PT (k-8
m=0
N-1-¢
Y Pry(k)PR(k+ )
m=0

§(OIn (11)
for £ = 0,1,...,N — 1, yielding 2N — 1 independent
matrix equations.

As a remark, the term lapped transform was main-
tained because P remains orthogonal and for each in-
stant k, the synthesis filters are time-reversed versions
of the analysis ones. Using the same reasoning, a filter
bank can be said instantaneously paraunitary if (11)
holds for all k.

The parameters of an ELT are the rotation angles in
the ©; matrices. They also define the low-pass linear-
phase prototype that is modulated in order to create
the filter bank. As an example for K = 1 we have the

relations between the window (prototype) and variable
angles as

h(£,k) = — cos(8y,0(k))

h(M = 1— £,k) = — sin(6¢,0(k))

h(M +£,k) = — sin(Bg o(k + 1))
h(2M —1—£,k) = — cos(fr0(k + 1))
£=0,1,...M/2~1

(12)

HP(k—1) # P(k) # P(k+1), P(k) is a transitory filter
bank. Maybe it would be a good idea if we just switch
between two filter banks at a time in order to simplify
the design and understanding of the variation process.
Whenever there is a switch between two filter banks,
there will be a transition region between the steady
states as also pointed in [4]. For a general commutation
this transitory state would last for K +1 blocks, before
the steady frequency response of the second filter bank
is achieved. The transitory frequency response can be
undesirable, but we can try to improve it by finding a
new matrix Z(k) to replace the DCT in (2). For this,
from (10), we can write P(k) = Z(k)W(k) and let
the input process z(n), for instant k, be represented
by the vector x with autocorrelation matrix Rg;. If
w = W(k)x and y = P(k)x = Z(k)w, then

Ryw(k) = W(k) Ry WT (k)

Ryy (k) = Z(k) Ruw Z7 (k) (14)

where Ry, and Ry, are the autocorrelation matri-
ces of the processes associated with w and y, respec-
tively. Ry is known a priori (given the estimates of
the autocorrelation functions). It is well known that
an optimal orthogonal matrix Z(k) for decorrelating
y would have its rows as the M eigenvectors of Ry, .
In compression-coding applications, decorrelation is al-
ways desired. However, the better the filters, the lower
the correlation among subbands. We, therefore, should
expect good frequency response using make-up matri-
ces that lead to decorrelation of input signal. This
concept was also used in the development of the LOT

(3)-

(13)

4 Possible Applications

Variable Overlapping- The function that modulates
the cosine waveform, in order to generate the filters,
can also be viewed as a window weighting all the basis
functions, which, otherwise would be sinusoids of differ-
ent frequencies. Therefore, if we set marginal elements
of the window to zero it is possible to actively change
the amount of overlap of the transform. For the case
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K =1 this is easily achievable by setting some angles
to be m/2. However, a carefull investigation over the
overall frequency response of the filter bank, has to be
carried, since the window will actually correspond to
a filter that will be modulated to create the band-pass
filters in the bank and the counterpart of setting ele-
ments in the extremes to be zero implies a flat window
in the middle. Actually, the window can be made very
small in the extremes, and not necessarily zero. In im-
age coding, one can, for example, chose 3 or 4 distinct
designs and switch between them for different regions
of an image such as: edges, different texture patterns,
slow variations, etc... The intention is to minimize ar-
tifacts such as blocking and ringing.

PR Adaptive Wavelet Packets- A general formu-
lation for orthogonal wavelet packets can come from
the hierarchical association of paraunitary filter banks
following the paths of an M-ary tree. To implement a
time-varying wavelet packet we can use a transparent
state of an ELT. In this state the angles are all chosen
as /2 and

Iny2
Z=
( Onr/2

| SYOP

K+1
0M/2>

Or/2 )K ( Ony2
Imy2 Inpyo

15)
This state of an ELT will force the M-samples input
block to be copied to output unchanged, bypassing the
transform. The reason for using this method instead
of just copying the input samples to output lies on the
fact that it is possible to adaptively activate or bypass
a filter bank, while PR is inherently maintained in the
transitions. If we apply this concept for the wavelet
packets case, it would be possible to prune and expand
the tree-branches of the hierarchical connection in an
adaptive and continuous way. Therefore, it would be
possible to construct a PR time-varying wavelet pack-
ets structure that will adaptively shape the tree ac-
cording to measurements in the input signal. More on
this subject can be found in [9], where an adaptation
algorithm is also discussed. The time-varying parti-
tion of the time-frequency plane using a variable shape
tree was also studied in [10], where good results were
obtained for speech coding. This can be a promising
application for this approach.

5 Conclusion

We have presented a structure for time-varying filter
banks which guarantees distortionless processing. At
this step, we just intend to outline basic principles
of this method applied to ELTs (general case can be

found in [8]). More intensive efforts on design and ap-
plications are reserved for further research. The reader
shall notice that using this method it is not possible
to change the number of channels (M) and for K > 1
it is very difficult to change the filters’ length. How-
ever, the change to a bypass state can lead to an adap-
tive wavelet packets, and, therefore, to an uncountable
number of uniform and non-uniform filter banks.
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