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Abstract 
The perfect reconstruction conditions for a time- 
varying lapped transform are presented. The emphasis 
is on a class of cosine modulated filter banks known 
as the extended lapped transforms. A mechanism for 
achieving this error-free variation thru the factorization 
of the transform matrix into sparse factors is presented 
along with a discussion of transition states. Some 
possible applications are indicated, including a struc- 
ture for perfect reconstruction orthogonal time-varying 
wavelet packets. 

1 Introduction 
Multirate filter banks [l] are well-known powerful tools 
in modern digital signal processing allowing easy data 
processing in transform domain, and flexible time- 
frequency analysis. The common denomination of "pa- 
raunitary filter bank" will be replaced here by the term 
"lapped transform". Although studied independently 
in the past, both represent the same concept [3]. Fil- 
ter banks are generally thought of as stationary forms. 
Recently, Nayebi et al. presented a study on the struc- 
ture of time-varying filter banks [4]. In their work, per- 
fect reconstruction (PR) conditions were stated and it 
was mainly focused on the transition process between 
two known PR systems. In this paper, we present a 
structure that is inherently orthogonal and is based on 
lapped transforms with fast algorithms. We consider 
the extended lapped transform (ELT) as defined by 
Malvar in [3, 51, among the most efficient factorization 
methods for a paraunitary filter bank. Although im- 
posing restrictions (that lead to fast algorithms) the 
resulting filter bank presents very good frequency re- 
sponses [3]. For this reason, we will present in detail 
the structure for an adaptive form of the ELT. 

'This work was supported in part by CNPq, Brazil, under 
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2 The ELT 

We are assuming the use of an uniform analysis bank 
of M FIR filters, each one of length L . L is related to 
M as L = N M  = 2 K M .  K will be also refered here as 
the overlapping factor. There is a property of lapped 
transforms that relates the M analysis and synthesis 
filter banks, which states that the analysis filters are 
time-reversed versions of the synthesis filters [3]. If the 
analysis and synthesis filters are represented by fm (n) 
and gm(n),  respectively, for m = O , l , .  . . , M  - 1 and 
n = 0,1, .  . . , L - 1, we can define a matrix P with 
elements p,, as pmn = gm(n) = fm(L - 1 - n) Note 
that P is a M x L matrix, which will throughout this 
paper be called the transform matrix. For an ELT, 
the filters' length is an even multiple of the blocksize 
( L  = 2 K M )  and P can be factorized into K + 1 stages 
as: 

P = Z Do Bo D1 B1 D K - ~  B K - ~  (1) 

Z is an M x M DCT type IV matrix [6], with inverted 
inputs as 

Z = DCTIV ( ' M / 2  
I M / 2  ' M I 2  

The D, matrices have dimensions: M x 2 M ,  for n = 0, 
and 2nM x (2n + 2 ) M ,  for 1 5 n 5 K - 1. These 
matrices are more easily described as block matrices 
generated by a Kronecker product. 

where @I denotes the Kronecker product. The F, ma- 
trices (with elements fij,,) are 

Fo = {fij,o} = ( O 0 0 ) (4) 0 0 0 1  
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1 i = j = 2 k  
1 i = 4 n - 1 - 2 k  and j = 4 n + 3 - 2 k  
0 otherwise 
for 0 5 k 5 2n - l , n  > 0 

(5) 
B, is an orthonormal block diagonal matrix with 2(n+ 
1) rows of 2(n + 1) blocks, each of size M x M. 

0 are the rotation angles and free parameters in the de- 
sign of an ELT [3], while J is the counterdiagonal ma- 
trix [3] (ones only in the counter diagonal). For an infi- 
nite (at least long enough) input-output sequence (vec- 
tors X and Y respectively), and using lapped trans- 
forms, we have the relation [2] 

Y = P X  and X = P T Y  (8) 

where P is a banded block circulant _matrix. For ELTs, 
by ( l ) ,  (6) and (7), we can express P as 

Fig. 1 shows the flow-graph for a fast ELT with 
K = 2. It follows the non-causal representation typical 
from the transform matrix viewpoint. In this figure, 
the order of the input-output M-sample blocks is in- 
dicated. Each branch in this flow-graph carries M / 2  
samples and input is led to output by straight lines 
and orthogonal building blocks. Therefore, the inverse 
can be accomplished by reverting the flow-graph, i.e. 
following the paths from right to left in Fig. 1. From 
Fig. 1, one can find P b i  isolating the paths connect- 
ing eight MI2-sample time blocks centered on block I C ,  
to the output frequency block k. With this procedure, 
it could be possible to reverse the steps in our pre- 
sentation and given the flow-graph (or the overlapped 
matrix P) find the corresponding transform matrix P 
(or equivalently the filters of the bank). The reader can 
also check the flow-graph against the definitions for the 
P matrix, in the case of an ELT for K = 2. 

Time blocks ELT blocks 

k - 2  k - 2  

k - 1  k - 1  

k k 

k + l  k + l  

k + 2  k + 2  

- \ U -  

Figure 1. Flow graph for the ELT with K = 2. Time and 
ELT domain samples are grouped into blocks of M samples. 

3 PR Time Varying ELT 

The basic idea for combining variation and PR relies on 
the following: why can we use the same flow-graph (as 
example in Fig. 1) for both analysis and synthesis with 
PR? The answer is because the elements are orthonor- 
mal and the reordering paths form a big orthogonal 
permutation matrix. Since any orthogonal transform is 
a sucession of plane rotations and have the rotation an- 
gles as the only free parameters, what happens if these 
parameters are changed along time axis as depicted in 
Fig. 2 for our previous exmaple ? In this case each 
block would be still orthonormal. Clearly, nothing is 
changed regarding the relation analysis-synthesis, i.e., 
the same analysis flow-graph can be used for synthe- 
sis yielding PR. Therefore, one can change the angles 
and switch between two different designs of ELT and 
keep changing it whenever necessary or desirable. At 
each instant k we can compute the instantaneous trans- 
form matrix P(k) and the same transform matrix will 
be used to reconstruct the signal a t  instant k at the 
synthesis side (while the fast algorithm is inherently 
maintained) from: 

Based on this principle and using the fact that any 
lapped transform (paraunitary filter bank) can be fac- 
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Figure 2. Flow graph for the time-varying ELT with K = 2. 
Time and ELT domain samples are grouped into blocks of 
M samples. 

tored into a cascade of N orthogonal factors composed 
by plane rotations [7], in [8] it is shown that it is possi- 
ble to find a structure to implement any lapped trans- 
form and commute between them. Since P ( k )  is no 
longer constant with k, the PR conditions must en- 
sure the orthogonality among P(k) and its neighbours 
P ( k  f l ) , P ( k  f 2 ) , P ( k  f 3 ) .  . .. Then, it is easy to 
show that the PR conditions for time-varying lapped 
transforms (paraunitary filter banks) are 

N - 1 - 1  

P m ( k ) E + , ( k - e )  = 

Pm+L(k)PT,(k+e)  = q%4 (11) 

m=O 
N - 1 - 1  

m=O 

for e = 0, 1, . . . , N - 1,  yielding 2N - 1 independent 
matrix equations. 

As a remark, _the term lapped transform was main- 
tained because P remains orthogonal and for each in- 
stant k, the synthesis filters are time-reversed versions 
of the analysis ones. Using the same reasoning, a filter 
bank can be said instantaneously paraunitary if (11) 
holds for all k. 

The parameters of an ELT are the rotation angles in 
the Oj matrices. They also define the low-pass linear- 
phase prototype that is modulated in order to create 
the filter bank. As an example for K = 1 we have the 

relations between the window (prototype) and variable 
angles as 

h ( t ,  k) = - cos(&,o(k)) 

h ( M  + P, k) = - sin(Ot,o(k + 1)) 
h ( M  - 1 - P, k) = - sin(Ot,o(k)) 

h ( 2 M  - 1 - P, k) = - cos(O1,o(k + 1)) 
(12) 

P =  0 , 1 , .  . . M / 2  - 1 

If P ( k - 1 )  # P(k) # P ( k + l ) ,  P ( k )  is a transitory filter 
bank. Maybe it would be a good idea if we just switch 
between two filter banks at  a time in order to  simplify 
the design and understanding of the variation process. 
Whenever there is a switch between two filter banks, 
there will be a transition region between the steady 
states as also pointed in [4]. For a general commutation 
this transitory state would last for K + 1 blocks, before 
the steady frequency response of the second filter bank 
is achieved. The transitory frequency response can be 
undesirable, but we can try to improve it by finding a 
new matrix Z ( k )  to replace the DCT in (2). For this, 
from ( l o ) ,  we can write P(k) = Z(k)W(k)  and let 
the input process ~ ( n ) ,  for instant k, be represented 
by the vector x with autocorrelation matrix Rzz. If 
w = W ( k ) x  and y = P ( k ) x  = Z(k)w, then 

ELuIw(k) = W ( k )  Rzz W T ( k )  

R.yy(k)  = Z ( k )  R w w  ZT(k) 

(13) 

(14) 
where hW and %y are the autocorrelation matri- 
ces of the processes associated with w and y, respec- 
tively. ELuIW is known a priori (given the estimates of 
the autocorrelation functions). It is well known that 
an optimal orthogonal matrix Z ( k )  for decorrelating 
y would have its rows as the M eigenvectors of 
In compression-coding applications, decorrelation is al- 
ways desired. However, the better the filters, the lower 
the correlation among subbands. We, therefore, should 
expect good frequency response using make-up matri- 
ces that lead to decorrelation of input signal. This 
concept was also used in the development of the LOT 
[31. 

4 Possible Applications 

Variable Overlapping- The function that modulates 
the cosine waveform, in order to generate the filters, 
can also be viewed as a window weighting all the basis 
functions, which, otherwise would be sinusoids of differ- 
ent frequencies. Therefore, if we set marginal elements 
of the window to zero it is possible to actively change 
the amount of overlap of the transform. For the case 
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K = 1 this is easily achievable by setting some angles 
to be 7r/2. However, 2. careful1 investigation over the 
overall frequency response of the filter bank, has to be 
carried, since the window will actually correspond to 
a filter that will be modulated to create the band-pass 
filters in the bank and the counterpart of setting ele- 
ments in the extremes to be zero implies a flat window 
in the middle. Actually, the window can be made very 
small in the extremes, and not necessarily zero. In im- 
age coding, one can, for example, chose 3 or 4 distinct 
designs and switch between them for different regions 
of an image such as: edges, different texture patterns, 
slow variations, etc ... The intention is to minimize ar- 
tifacts such as blocking and ringing. 

PR Adaptive Wavelet Packets- A general formu- 
lation for orthogonal wavelet packets can come from 
the hierarchical association of paraunitary filter banks 
following the paths of an M-ary tree. To implement a 
time-varying wavelet packet we can use a transparent 
state of an ELT. In this state the angles are all chosen 
as 7r/2 and 

This state of an ELT will force the M-samples input 
block to be copied to output unchanged, bypassing the 
transform. The reason for using this method instead 
of just copying the input samples to output lies on the 
fact that it is possible to adaptively activate or bypass 
a filter bank, while P R  is inherently maintained in the 
transitions. If we apply this concept for the wavelet 
packets case, it would be possible to prune and expand 
the tree-branches of the hierarchical connection in an 
adaptive and continuous way. Therefore, it would be 
possible to construct a PR time-varying wavelet pack- 
ets structure that will adaptively shape the tree ac- 
cording to measurements in the input signal. More on 
this subject can be found in [9], where an adaptation 
algorithm is also discussed. The time-varying parti- 
tion of the time-frequency plane using a variable shape 
tree was also studied in [lo], where good results were 
obtained for speech coding. This can be a promising 
application for this approach. 

5 Conclusion 

We have presented a structure for time-varying filter 
banks which guarantees distortionless processing. At 
this step, we just intend to outline basic principles 
of this method applied to ELTs (general case can be 

found in [SI). More intensive efforts on design and ap- 
plications are reserved for further research. The reader 
shall notice that using this method it is not possible 
to change the number of channels (M) and for K > 1 
it is very difficult to change the filters’ length. How- 
ever, the change to  a bypass state can lead to an adap- 
tive wavelet packets, and, therefore, to an uncountable 
number of uniform and non-uniform filter banks. 
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