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Abstract

New equations are derived for the perfect recons-
truction of the boundary regions of a subband pro-
cessed image. These equations are valid for filter banks
with an arbitrary number of filters, having arbitrary
non-linear phase, and allowing any border extension
method in analysis section. The filter bank is maxi-
mally decimated in a wide sense, i.e., the sum of sam-
ples among the subbands is equal to the sum of the
image samples, without having to store extended sub-
band signals.

1. Introduction

Once one is concerned with the implementation of a
maximally decimated FIR filter bank for subband co-
ding of images, the processing of the boundary region
of the image can lead us to some interesting problems.
Suppose it is desired to use a bank of M FIR filters
for processing a finite one-dimensional signal of NM
samples. Let z(n) and Z(n) be the original and recove-
red signals (after analysis, processing, and synthesis),
respectively. Assume also that the filters have length
L = 2K M and impulse responses hi(n) (k=0,1,...,M-
1). Since the bank is maximally decimated, each sub-
band must have N samples. Some samples outside the
image must be computed in the filtering process and
the signal resulting from the convolution of z(n) and
hi(n) would have NM + L — 1 samples. Including
the decimation process, for each border, we have that
(2K — 1)M /2 samples outside the signal region of sup-
port must be computed, and K samples, for each sub-
band, would be deleted. Therefore, (2K — 1)M/2 sam-

ples for each border of the reconstructed signal Z(n)
would be affected by the distortion caused by those
missing sub-band samples. Fig. 1 illustrates this pro-
cess, indicating distortion regions.

In [1] this problem was solved for a DFT implemen-
tation, with the transmission of few samples of z(n) as
overhead. When a DFT is used the signal is assumed
to be periodical, and the discontinuities in the border
will produce some high frequency components. In {2,
it was studied how z(n) could be extended in order
to minimize the distortion in #(n). Typical extensions
are obtained by symmetrical reflection and repetition
of the border sample. However, it is quite easy to see
that if the reflection is symmetric and also the filters,
the deleted subband samples could be recovered by a
simple symmetric reflection of this signal, and #(n) will
suffer no distortion. This fact was recognized in [3]. All
these approaches used M = 2 and linear phase filters.
We will present results for M-band non-linear phase
systems.

2. Notation and Definitions

For simplicity, we will discuss the one-dimensional case
only, assuming that an image would be processed in
a row-column implementation. Assuming that a row
is to be processed, we will focus our attention on the
left border. Let hg(L —1—n), n = 0,1...,L -1,
k=0,1...,M —1, be the rows of the M x L transform
matrix H. Divide H into M x M /2 matrices

H= [H() Hl Hg . ~H4K_1] (1)
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Figure 1: Illustration of border distortions caused by
truncation of subband signals. In this figure filters are
assumed to have length L = 2KM and A = (L— M)/2.

Divide the input and recovered signals z(n) and #(n)
into M/2-sample blocks and suppose them to have in-
finite length,

XT = XTy XTI, XT, [ XEXTXE XD (2

XT = XTI, KT, X7 |XTRTXIRT ... (3)

In these equations the traces indicate the borders and
superscript T denotes matrix transposition. The blocks
Xi, i < 0, should be found from X;, i > 0, by an
extension method. The transformed infinite vector Y
containing the subband samples can be also partitioned
into M-sample blocks, containing one sample from each
subband,

Y= YO, YT, Y2 YI YT YT ¥l ()

YT = YT YT, YT, | YINTRTRT .. ()

Hence,

4K-1
Yo=Y HiXi_(2k-1)42n (6)

=0

If we desire a somewhat smooth transition across the
borders, we could find the blocks out of the row as a
linear function of the blocks inside it. Remember that
2K — 1 blocks of X outside the row are necessary for
computing Y;, i > 0. Let X} = [XT,,, ... X7,]
and X% = [XT ... X7, _,]. We will assume that

Xr=RXp )

Denoting J; as the counter-identity matrix of order k,

000---01
000---10
T = F
010---00
100---00

We have that, for a symmetric reflection around the
borders, we must chose

R =Jek-1ym/2 = Jw-my2 (8)

This kind of reflection would guarantee polyphase
normality (i.e., a flat input signal generates only one
non-zero frequency component) and avoid discontinui-
ties across the borders. All results presented here may
be extended to the right border, replacing X,Y and H
by X,Y and H, respectively, with

Xon-1-iJpmy2

.

Yn_1-iTpmy2
H4K—1——iJM/2 i: 0, 1 ,4K - 1

:l 5| >

-,

3. Linear Phase Filters

If the filters in the filter bank are symmetric or
anti-symmetric, then hx(L—1 —n) = vihg(n), where
vy = *1 depending on the symmetry. Let V =
diag{vo,v1,...,up—1} and note that V-1 = V. It
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is easy to verify that in (1), for i = 0,...,4K — 1, we
have
Hix-1-i = VH;Ipm/2 9

For instance, assume that z(n) is infinite and that
samples are folded around the border. Since JJ =1,
and using the reflection in (8), it follows that X_n_; =
Jy2X,, for any integer n. Thus, for any n, from (6),

4K -1
= z H:X; (2k-1)-2n-2
1=0
4K -1
= Z HIX_;12k+42n

i=0

Y—n-l

If we revert the order of summation and apply (9), we
get

4K -1

Y_naa = Z VH;X;_(2k-1)+2n = YV ¥n
=0

(10)

This means that, for any integer n, Y_n_1 = VY, if
X_n-1 = Jpy2Xn. Therefore, for positive i and k, the
algorithm for perfect reconstruction of the borders is
straightforward: (i) Find X_;_; from X;; (ii) Calculate
Y; (iii) Process positive indices of Y; (lV) From Y,
find Y_g_; using (10); (v) Calculate X from Y. Ac-
tually, i=0,...,2K~1and k=0,...,K — 1. For the
special case of two-band QMF banks, v=1v=-1
and J=[1]. This solution is insensitive to quantization
errors, in a sense that distortions in the borders caused
by coarse quantization of Y have the same magnitude
and nature as the distortions in other regions of the
signal.

4. Non-Linear Phase Filters

Divide the signal X into three vectors. The reflected
blocks, X g, the blocks that would suffer distortion in
the synthesis procedure, X p, and the blocks that would
be perfectly reconstructed, X5 = [XTx_ XTx- ]
The first two were previously defined and obey (7).
Equation (6) is still valid, and forn=0,1,...,2K — 2
one can divide the sum into three components, one for

each vector,

2K—-2-2n
z H;X;_2K+142n
1=0
4K-3-2n
+ Z H; X;_2K+1+42n
i=2K-1-2n
4K -1
+ Z H; X 2K+1+2n
i=4K-2-2n

Y, = (11)

The above equation can be put in matrix notation as

Y, = FURXp + FPXp + FPXp (12)
where

FS.I) =[00---0Ho - Hyx_2-2n)

FP =[00-0Hyg 120 Hax_3-20]

Fs,s) = [H4k-2-2n---Hag-100--- 0]

The zero matrices are padded into the vectors to

align them in the above equation, as in the exam-
— Q) £

ple in Fig. 2 for K = 2. Grouping F» and Y, for

n=0,1,...,2K — 2, we define the matrices ®; (see
Fig. 2 for K = 2) and the vector T as

Yo Fy)

Y, Fi
T = . @.' =

Yox-2 F§2_2

Hence, (12) can be rewritten as

Y = (@R + ®2)Xp + ®:Xp (13)
Let A = ®;R + ®, and B = T — &;Xp. Thus (13)
reduces to
AXp =B (14)
The matrix A has dimensions (4K — 2)M/2 x (2K —
1)M/2. If A has maximum rank (2K — 1)M/2, we
can left-multiply it by a matrix S in order to make
SA a non-singular invertible square matrix of order
(2K — 1)M/2. In this case the solution is given by

Xp = (SA)"!SB (15)
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Figure 2: Example of ®; matrix grouping procedure for K = 2.

If one choose S as the pseudo-inverse of A S =
P
AP = (ATA)'AT and if AP®; = 0, then

Xp = APY (16)

Regrettably, we were not able to determine the rank
of A in a explicit way. However, we have made tests
with several perfect reconstruction cosine modulated
filter banks [4], for several values of M and K. All of
them lead to A with maximum rank (L — M)/2, and
to qu)a =0.

The correct choice of S is essential to coding sys-
tems. It can be any matrix leading to a non-singular
matrix SA, but different choices of S would lead to so-
lutions with distinct sensitivity to quantization errors.
For a sufficiently large bit-rate, all valid S will result
in no visible distortion. In applications requiring no
compression, the method is inherently distortion-free.
A good choice for S is S = AP, which generally re-
sults in lower sensitivity to quantization errors than S
matrices that select sets of (2K — 1)M/2 independent
rows of A.

Taking a simple example, the case of K=1 and
M=2 (a 4-tap perfect reconstruction two-channel filter
bank), we have H = [h(n) h(3—n)(~1)"] [5]. The X
blocks reduce to scalars and YJ = [y yu]. Assuming
X1 = Xo = 2(0), and h(n) = [0.14 0.35 0.85 0.35]
(approximately), we find that (13) and (16) reduce to

{

These equations are solutions for S as [1 0], [01] and
AP respectively. It can be seen that the first equation
is less robust, since the random quantization errors on
¥ and £ would be amplified. In an image coding test,
the last solution led to less visible artifacts.

4.83y; — 4.122(1) — 1.712(2)
~2.00y + 0.71z(1) + 0.29z(2)
0.707yy, — 1.707yx

z(0)

LTI

5. Conclusion

We have derived equations for the perfect reconstruc-
tion of the boundary regions of a finite sample vector,
processed by a maximally decimated filter bank. These
equations are general and independent of the signal.
Further studies are necessary in order to determine the
matrices S and R that minimize the quantization er-
ror effects over Xp. The reflection matrix can also be
chosen arbitrarily, but it is preferable to not introduce
high frequencies components in the analysis process,
allowing discontinuities in the extended signal.
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