
SIGNAL PROCESSING USING LUT FILTERS BASED ON HIERARCHICAL VQ

Ricardo L. de Queiroz1 and Patrick Fleckenstein2

1 Xerox Corporation, 800 Phillips Rd., 128-27E, Webster, NY, 14580 queiroz@wrc.xerox.com
2 Rochester Institute of Technology, Center for Imaging Science, Rochester, NY 14623 pat@csh.rit.edu

ABSTRACT

Vector quantization (VQ) is a powerful tool in signal pro-
cessing. Hierarchical VQ (HVQ) is a method to implement
VQ completely based on look-up tables (LUT). In HVQ, both
encoders and decoders are inherently simple and fast, since
there are no searches over codebooks. We introduce an over-
lapped HVQ (OHVQ) method, in which the number of sam-
ples is preserved after each HVQ stage. After the last stage,
each OHVQ code in a particular location in the signal will
map to a block (vector) which approximates that neighbour-
hood in the original sequence. For this reason, OHVQ is used
as a basis to create a LUT-based filter, i.e. a spatial signal
processor with very fast implementation. Preliminary analy-
sis and image processing examples are shown demonstrating
the efficiency of the proposed method.

1. INTRODUCTION

Vector quantization (VQ) has been widely used within the
signal processing community [1]. With VQ a finite sequence
of samples (typically small) can be represented through one
index which can be mapped to a reconstruction sequence.
VQ is fundamental to information theory since it allows us
to approximate rate-distortion theorectical bounds, at the
expense of extra complexity [1]. Let us assume we segment
a real sequence {x(n)} into vectors x(k) of N samples each.
There is a codebook XC with M real N-tuple codewords w0

through wN−1. Each vector is then quantized into x̂(k) by
mapping x(k) to one of the wi. VQ can be used as a com-
pression method by conveying to a receiver the index i for
the current temporal index k so that the receiver can recon-
struct x̂(k) = wi as an approximation of x(k). The average
rate to represent the VQ indices (quantized data) is a func-
tion of the data and of the coder. Without entropy coding,
one needs dlog2(M)e bits/vector for representing the index.
Using non-contextual but efficient entropy coders this num-
ber approaches the vectors’ entropy H(x). For contextual
coders, the rate will depend on conditional entropies, but we
will not get into details here. In practice, it is common to see
that the original signal itself is scalar quantized to b bits per
sample. Hence, the rate achieved by VQ is H(x)/Nb for per-
fect non-contextual entropic coders. See [1] for an excellent
overview and reference on VQ.

The major drawback of VQ is the encoder complexity. The
task of matching x(n) to one of the wi can be dauntingly pro-
hibitive in certain applications. In the straightforward case,
in order to find the codeword index to quantize the n-th
vector, one computes the distance di = d(x(n),wi) for ev-
ery codeword. In this case d(,) is some distance measure,
e.g. d(a,b) = ||a − b||2. The index corresponding to the

smallest distance is then selected. In fact, the codebook is
designed by partitioning the N-dimensional space into M re-
gions (commonly, but not necessarily, convex) and assigning
a reconstruction vector wi to each region, where wi is meant
to be a representative element for all vectors falling within
the i-th region (e.g. the centroid of the sample space density
function).

Simple, in theory, but the larger your codebook (larger M)
the better the approximation quality given a proper code-
book design method. Hence, one might want to increase M .
However, as M increases, compression ratio decreases and
computation cycles increase as more distances have to be
evaluated. In an image compression example, using vectors
of 16 samples (4 × 4 pixels), 8-bit images, 18-bit codes (i.e.
M = 218 = 256K), the compression ratio is about 7:1, with-
out any entropy coding. However, this means that for every
block of 16 image pixels, 256K distance measures between
18-tuples have to be computed, along with an equal number
of comparisons, etc.. This is a very slow process for most
applications. Most system designers opt to spend these CPU
cycles somewhere else by using other efficient compression
techniques.

2. HIERARCHICAL VECTOR QUANTIZATION

In hierarchical VQ (HVQ) [2]–[7], the codebook search is
eliminated by applying a greedy divide-and-conquer ap-
proach. We first divide the input N-tuple into N0 small
sub blocks. Each of the N0 sub blocks undergoes VQ, being
mapped to a codeword. In a next stage, the N0 codewords
are broken into N1 subblocks. Each subblock undergoes VQ
again yielding N1 codewords. The process is repeated until
the K-th stage where one codeword is selected to represent
the input vector. In order to be practical, we will limit our-
selves to groups of 2 samples per sub-block so that N is made
a power of two. The advantage of HVQ is its simplicity of
implementation. Each entry (an input sample or a codeword)
is represented in a reasonable number of bits Bn (e.g. 8 or
10), which are mapped to one of the 2Bn+1 codewords which
are coded into Bn+1 bits. It is clear that the process can be
implemented using a LUT of 22BnBn+1 bits. For example if
Bn = Bn+1 = 8, a 64KB LUT is sufficient. A comparison be-
tween the VQ and HVQ processes is depicted in Fig. 1, which
shows a typical VQ system and its HVQ counterpart each en-
coding an 8-tuple of B0-bit samples. The HVQ system uses
3 stages of LUTs to decompose the 8-tuple hierarchically.

Decoding is performed equally in both cases (VQ or HVQ).
The key difference between HVQ and any other VQ method
is the symmetry between encoders and decoders. While VQ

B
0

B
0

B
0

B
0

B
0

B
0

B
0

B
0

VQ

Match input to one of the =2 codewords
Output the -bit code (coded index)

M

B

B

B

B
0

B
1

B
1

B
1

B
1

B
2

B
2

B
0

B
0

B
0

B
0

B
0

B
0

B
0

2 LUT
2B0

2 LUT
2B0

2 LUT
2B0

2 LUT
2B0

2 LUT
2B1

2 LUT
2B2

2 LUT
2B1

B=B
3

Figure 1. Top: example diagram of a VQ encoding
system: 8 B0-bit samples are encoded into one B-bit
codeword. Bottom: the same encoding performed
through 3 stages of HVQ. The number of bits at every
HVQ stage is noted.

Level 0
(image pixels)

Level 1 Level 2 Level 3

Figure 2. Illustration of 3 stages of HVQ applied to
an image block of 2 × 4 pixels.

encoders are generally slower than transform coders, HVQ
encoders are much faster. For image processing, HVQ is
adapted to 2D by alternating horizontal and vertical group-
ings of code pairs as illustrated in Fig. 2.

We are not interested in HVQ as a compression means but
as a means to approximate the input N-tuple. For that, the
design of HVQ codebooks is important. The design is done
in a similar way as in the VQ case, e.g. using LBG, with a
few adaptations. In order to design the first stage of Fig. 1
we have to partition the 2D sample space into 2B1 Voronoi
regions for a given distribution of the training data. In the
second stage, the 4D space is partitioned into 2B2 regions.
The peculiarity in this approach is that there are only 2B1

points in the 4D space and not a continuous of data. In the
design of the last stage, the N-dimensional (N = 8) space
contains at most 2B2 valid 8-tuples.

HVQ is a greedy approach to VQ. It trades quality for
speed. HVQ is used here because the loss in quality is small
compared to the huge gains in encoding speed. In terms
of signal approximation quality, the main difference between
VQ and HVQ design is that for every stage the codebook de-
sign algorithm cannot simply partition a k-dimensional space

x
n

x
n+1

x
n

x
n+1

Figure 3. Illustration of quantization of a 2D space
into 6 regions (left). Right: similar quantization of
the 2D space, wherein the input samples have already
been quantized.

0.4

0.5

0.6

0.7

0.8

0.9

1

ω

|E
(e

xp
(jω

))
|

Figure 4. Error spectrum of an HVQ approximation
of an image.

into 2Bn regions because the input space has already been
quantized. Although it is difficult to visualize the multimen-
sional process we can trace a parallel to quantization of a
simple 2D space, which is illustrated in Fig. 3. Figure 3
shows the partition of the 2D space into 6 regions. It also
shows the case where the input variables have already been
quantized so that the partition of the 2D space has to con-
form to the contours of the quantizing regions of the input
data (compare the quantization regions between the two di-
agrams in Fig. 3). This is the main difference between HVQ
and VQ: the input to one stage is already quantized into mul-
tidimensional cells or “pods”. An HVQ stage can only divide
the pods among the various quantization regions. The error
spectrum associated to HVQ is commonly a coloured noise.
A typical spectrum of the approximation error of HVQ ap-
plied to an image is shown in Fig. 4.

3. OVERLAPPED HVQ

As Fig. 1 shows, HVQ, like VQ, can make one single codeword
index (code) to represent N samples. At the k-th vector, after
the code ck is found, the input is cycled by N samples and a
new block of N samples is used to find a new code ck+1, i.e.

x0x1x2x3︸ ︷︷ ︸
c1

x4x5x6x7︸ ︷︷ ︸
c2

x8x9x10x11︸ ︷︷ ︸
c3

x12x13x14x15︸ ︷︷ ︸
c4

Hence, there are N times more samples than codes. We,
however, introduce overlapped HVQ (OHVQ), in which the
input is cycled by only one sample at a time. Hence, the
vectors that are quantized actually overlap and the number
of codes is the same as the number of samples.

B
1

B
2

B
0

2 LUT
2B0

2 LUT
2B0

2 LUT
2B0

2 LUT
2B0

2 LUT
2B0

2 LUT
2B1

2 LUT
2B1

2 LUT
2B2

2 LUT
2B2

2 LUT
2B2

2 LUT
2B2

2 LUT
2B2

2 LUT
2B1

2 LUT
2B1

2 LUT
2B1

B=B
3

....

....

....

Figure 5. Implementation diagram of overlapped
HVQ.

x0x1x2x3︸ ︷︷ ︸
c1

x4x5x6x7︸ ︷︷ ︸
c5

x8x9x10x11︸ ︷︷ ︸
c9

x12x13x14x15︸ ︷︷ ︸
c13

x0 x1x2x3x4︸ ︷︷ ︸
c2

x5x6x7x8︸ ︷︷ ︸
c6

x9x10x11x12︸ ︷︷ ︸
c10

x13x14x15

x0x1 x2x3x4x5︸ ︷︷ ︸
c3

x6x7x8x9︸ ︷︷ ︸
c7

x10x11x12x13︸ ︷︷ ︸
c11

x14x15

x0x1x2 x3x4x5x6︸ ︷︷ ︸
c4

x7x8x9x10︸ ︷︷ ︸
c8

x11x12x13x14︸ ︷︷ ︸
c12

x15

While overlapped VQ has been applied successfully to var-
ious problems, we are unaware of the use of OHVQ. One key
feature of OHVQ is its simplicity of implementation. A di-
agram for the implementation of OHVQ is shown in Fig. 5
which should be compared to the corresponding HVQ dia-
gram in Fig. 1. For k stages, OHVQ requires k look-ups per
input sample.

4. THE LUT FILTER

In HVQ each output index represents a code vector that re-
sembles the input N-tuple. In OHVQ each output index
represents a code vector that resembles an N sample neigh-
bourhood of a particular sample. In fact, each output OHVQ
sample represents the neighbourhood of the respective input
sample, furthermore one can see it as a one-to-one input-to-
output system mapping each sample to its neighbourhood
index. We propose to map the neighbourhood to an output
sample, i.e. a spatial filter is applied to the neighbourhood.
Actually, not to the real neighbourhood but to its approx-
imation, which is accomplished by filtering the codevectors
directly. Filtering is done off line and another LUT F can
be used to map each code vector to the processed output.
Hence, the proposed signal processing system’s diagram is
shown in Fig. 6. It is shown as an OHVQ-based sequence of
LUTs Tn, wherein the coded index is mapped to the output
through LUT F . Despite its usefulness in explaining the con-
cept, it is obvious that F can be folded into TK−1, so that
the number of LUTs in the HVQ filter remains K.

The analysis of a non-linear system such as the one in
Fig. 6 is a complicated task. The elements are LUTs which
can be literally filled with anything. There are, however, a
couple of simplifications that serve to illustrate the behaviour
of the LUT filter. If the Fn were linear operators, one may
hope that the system in Fig. 6(b) can implement general
convolutions. However, it cannot. If Fn(.) is a linear operator
as xout = a1xin1 + a2xin2, then the filter’s transfer function
is of the type:

z
-2

z
-1

z
-4

z
- /2N

T0 T1 T2 T
K-1 F

Filtering
Pattern

(a)

z
-2

z
-1

z
-4

z
- /2N

F0 F1 F2 F
K-1

(b)

Figure 6. Implementation diagram of the proposed
filter. (a) Tn are OHVQ stages and stage F is a LUT
for the actual filter implementation which should be
folded into TK−1, so that the filter can be imple-
mented in K LUT stages as in (b).

H(z) = A

K−1∏
i=0

(
1 + βiz

−2i
)

,

which is obviously not general. For example for an order-3
filter, if we use 2 stages (K = 2) the resulting filter will be

H(z) = A
(
1 + β0z

−1 + β1z
−2 + β0β1z

−3
)

which imposes a constraint on the third power. This is a
restriction imposed by the delay chain and overal lattice for-
mat. In order to implement a broad number of systems, the
use of HVQ tables in the LUT filter stages allows us to give
up accuracy for generality. In effect, when HVQ is used, what
is processed is a new sequence z[n] = x[n] + e[n] in place of
x[n]. In other words what is processed is a quantized input.
If, for the sake of simplifying the analysis, we linearize the
processing by assuming a linear filter F (z), then the output
signal is:

Y (z) = F (z)X(z) + F (z)E(z) = Yd(z) + D(z),

wherein Yd(z) is the desired output and D(z) is the disparity
of a LUT filter as compared to a regular filter. One interest-
ing fact to note is that e[n] is made of features which were
not captured in the codebook. For example, in images, e[n]
is expected to be a high-pass signal due to HVQ’s inability
to represent small details. For example, Fig. 4 shows a typ-
ical approximation error spectrum |E(ejω)| computed for a
test image. Thus, for this “blue-ish” noise error spectrum,
if F (z) represents a low-pass filter, D(z) can become small,
while if it represents a high-pass filter the processed image
can present artifacts caused by the high frequencies of D(z).

As a signal processing example, we processed images using
the LUT filter. Figure 7 shows several image processing ex-
amples obtained using the approach in Fig. 6. In these tests
we used standard HVQ tables (LBG design on completely
independent test set) as the OHVQ stages. Four stages of
10-bit codes (1024 codewords) were used, so that each re-
sulting code vector represents a 4 × 4 input neighbourhood.
The original image is shown along with examples of blurring,

Figure 7. A four-stage HVQ-LUT filter applied to the (a) original image for implementing (b) mean, (c)
median, and (d) sharpening filters. Within the same approach one can also compute local (e) dynamic range
and (f) variance. (a)–(f) in top-down left-right order.

sharpening and median filtering the image, as well as com-
puting the local dynamic range and the local variance. In
line with our discussion on the spectrum of D(z), one can
see that the sharpening LUT filter performs worse than the
the blurring one, as compared to the expected output of their
traditional convolution-based counterparts.

5. CONCLUSION

The proposed HVQ-LUT filter is very fast and flexible. It is a
generic process which can be applied to most spatial process-
ing operations. Quality is limited to the approximation power
of OHVQ. Complexity, however, is K look-ups per pixel re-
gardless of the operation. This is faster than any comparable
linear spatial filter and much faster than more complex op-
erations such as computing local statistics. Other possible
operations could be image classification and segmentation,
resolved on a pixel by pixel basis.

This is an ongoing work. Because of the difficulty in the
analysis of such a non-linear process, future work will con-
centrate on better analysis tools, on improving the codebook
design and on redesigning the operator F . In the more im-
mediate future, a better examimation of HVQ-LUT filtering
of images will be published soon.

REFERENCES

[1] A. Gersho and R. Gray, Vector Quantization and Signal
Compression, Kluwer Academic, Norwell, MA, 1992.

[2] P. C. Chang, J. May and R. Gray, “Hierarchical vec-
tor quantization with table look-up encoders,” Proc.
Intl. Conf. Communications, Chicago, IL, pp. 1452–1455,
1985.

[3] M. Vishwanath and P. Chou, “An efficient algorithm for
hierarchical compression of video,” Proc. Intl. Conf. Im-
age Processing, Austin, TX, Vol. 3, pp. 275–279, 1994.

[4] N. Chadha, M. Vishwanath, and P. Chou, “Hierarchical
vector quantization of perceptually weighted block trans-
forms,” Proc. Data Compression Conference, Snowbird,
UT, March 1995.

[5] N. Chadha, M. Vishwanath, and P. Chou, “Constrained
and recursive hierarchical table look-up vector quanti-
zation,” Proc. Data Compression Conference, Snowbird,
UT, March 1996.

[6] A.Aiyer and R. M. Gray, “A fast table look-up algorithm
for classifying document images,” Proc. Intl. Conf. Image
Processing, Kobe, Japan, 1999.

[7] R. de Queiroz and P. Fleckenstein, “ Very fast JPEG com-
pression using hierarchical vector quantization ,” IEEE
Signal Processing Letters, Vol. 7, pp. 97-99, May 2000.

