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image transmission using the lapped orthogonal
transform

Ricardo L. de Queiroz
K. R. Rao
University of Texas at Arlington
Electrical Engineering Department
P.0O. Box 19016
Arlington, Texas 76019

Abstract. Progressive fransmission of images based on the lapped
orthogonal transform (LOT), adaptive classiication, and human wis-
ual sensitivity (HVE) weighting is proposed. HVE weighting for LOT
basis functions s developed, Thiz rachnique is guite general and
can be appliad to any orthogonal transform. Tha methad is COm-
pared with discrete cosine transform (DCT)-based progressive im-
age transmission (PIT). I is shown that LOT-based BIT wields sub-
fectively improved images compared io those hased an DCT, This
is consistent with the reduction in block structure characteristio of
LOT image coding.

1 Introduction

While progressive image transmission' (PIT) can be clas-
sified into two major categories, i.e., (1) spatial or pel do-
main and (2) transform or spectral domain, the latter has
gained wide acceptance.?~'" This is not only due to various
adaptive features such as classification,’’~'® spectral selec-
tion,* ™ ¥ and human wvisual system (HVS) weight-
ing, > #1721 e1c. | which can be easily incorporated into
the transform coding scheme, but is also due to the VLSI
development of coding operations such as transform, quan-
tization. and variable length coding. In addition, PIT based
on the discrete cosine transform (DCT) has been extensively
investigated. For example, the JPEG (Joint Photographic
Experts Group) algorithm’® for the baseline system is DCT
based and various hardware/software systems have already
been developed for this algorithm. Also, the nonhierarchical
extended system of JPEG (both spectral selection and suc-
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cessive approximation) is DCT based. At low bit rates,
however, DCT introduces block structure in the recon-
structed images. One technique used to reduce or eliminate
this artifact is to replace DCT by the lapped orthogonal
transform (LOT),**~2* whose basis vectors overlap across
traditional block boundaries. Also because LOT has good
filtering properties, it has been applied to compatible cod-
ing,**% i.e., coding of the original image/sequence at dif-
ferent spatial resolutions. It has also been combined with
vector quantization (VQ) to achieve additional compres-
sion.”! It is intuitively felt that LOT-based PIT should yield
subjectively more pleasing pictures compared to the DCT—
even during the initial stages. This is the objective of this
paper: to develop a LOT-PIT incorporating various adaptive
features and to compare it with the DCT-dependent PIT.

In Sec. 2, we will address the Chen-Smith coder, giving
a brief summary of the algorithm steps and explaining the
incorporation of PIT techniques in this algorithm. Section
3 is reserved Tor a discossion about the HVS model in the
transtorm domain. Simulations and coder details are pre-
sented in Sec. 4, with conclusions given in Sec. 5.

2 PIT with the Chen-Smith Coder

The Chen-Smith coder'® is based on the zonal sampling
strategy. First, the image undergoes an orthogonal trans-
form. The transform coefficients are stored in a buffer and
some statistics are computed prior to the decision-making
process of (1) which coefficients are transmitted, (2) how
these coefficients are quantized, and (3) the order of trans-
mission. We will assume the image has N x N picture ele-
ments (pixels or pels).

The encoding steps can be briefly described as follows:
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¢ Transform the image using blocks of M x M pels. Let
Nz ={N/M)* be the total number of blocks in the 1m-
age. To simplify the presentation, we will use a lex-
icographic ordering that can obey row or column ar-
rangement. The blocks are then labeled from 1 to Ny,
Each one contains M? coefficients given as x,(a,v) [or
i=1, ..., Nyand (&,v)E{(0.0), ¥}, where W is defined
as the set of M? - 1 block-index pairs, excluding the
pair (0,0), as ¥'={(0,1}, (0,2, ..., (0, M—1), (1O},
(L), ... M=1, M1}

e Quantize and code separately the coefficients x,(0,0)
(the de coefficients) using uniform guantizers.

s Compute the ac energy of each block £ as

E:= mn) . . (n
[ERTI=R G

Sort the energies, and classify the blocks (in sorted
order) into &, equally populated classes.'* Thus, there
would be N,/N. blocks in each class. Construct the
cfass map C(i) with the classification of each block,
where C{i) indicates the class to which the i"th block
belongs and is ordered in the original nonsorted se-
quence. If the i'th block belongs to the class k (k=1,
on Ne), then CliY=E.

s For all blocks belonging to the same class, compute
the variances of the transform coefficients and then
their standard deviations. Construct N, standard de-
viation maps with the standard deviations of the coef-
ficients, which are obtained from

Ng
aitm,n)= 3, 8[C(H) ~klxi(m,n) (mn)EY , ()
ju ]

where & is the Kronecker delta function.

e Merge all N standard deviation maps and decide the
bit allocation. Based on the rate-distortion theory, we
shall iteratively find a distortion value D and a set of
integers B im,n) [for (ma)EW and 1=k=N;]. 50
that

Bi(m.n) =Y loga[ai(m,n}] = loga( D) (1)

is satisfied given the constraints
M —1

5 N
S Bulmn)=(RN*—Bo)— | (4)

k=1 (mnr)lEW Ng
ﬂﬁﬁk{nr.ﬂ}:{ﬂum.t v ES]

where B_,, is the maximum number of bits allowed,
B, is the number of bits required for the transmission
of the overhead information. and R is the bit rate in
bitsfpel for the whole image. Create N hit-allocation
maps with a one-lo-one correspondence with the ele-
ments of the standard deviation maps.

e Reestimate the standard deviations using the bit-
allocation maps:

c‘r;:{m.n}= fzﬂﬂm.n]— 1 [ = k= ."'n"(' (momeEy ['5]

where ¢ is a normalization factor. Reference 12 Sug-

gested that ¢ be chosen as the maximum o, (m.n} for
which B,(m.n)=1 to avoid excessive clipping.

e Send class map ¢ and the bit-allocation maps as side
information.

e Quantize, encede, and send all the coefficients, using
the reestimated variances, A coefficient x,(m, n) (block
i), which belongs to class k[C(iy=£&], is scaled [di-
vided by &,(m,n}], applied to a quantizer with 2
levels, and encoded with B {m.n) bits. [f B,(m . n)=0,
the particular coefficient is not transmitted,

The receiver may first decode the side information and
the dc coefficients. Given the class map, the bit-allocation
maps, and the normalization factor ¢, the decoder can re-
construct the stundard deviations used to scale the quantizers
as in Eq. (6). With the maps reconstructed, and with the
knowledge of the transmission order, the decoder can ex-
actly determine the position of the incoming coefficient, the
class of its block, how many bits were assigned to i, and
the variance used for quantization, Therefore, the receiver
can decode the coefficients, apply an inverse transform, and
obtain the image.

The overhead is made by the class map, the bit-allocation

maps, and by ¢. Quantizing ¢ with 16 bits, the total amount

of overhead is given by
Boy=Ng loga(Ne) +Ne(M* = 1)
= ].Dg?,l:Bum.; + ]) - !6 8 {?}

If M=8, N=256, Nc =8, Brax =7, then Bo, = 4552, which
is equivalent to an approximate rate of 0.07 bit/pel. requiring
about 2 5 of transmission on a 2400 bits/s communication
rate,

To use PIT, we transmit data in the following order:
(1) dc coefficients in any predefined order, (2) class map ¢
and bit-allocation maps, (3) ac coefficients. The transmis-
sion of the ac coefficients” is made by spanning the blocks
and sending first the elements xi(m.n), which would yield
a higher contribution to the reconstructed image. To min-
imize the reconstruction errer, we send the coefficients with
higher variances. Alternatively, we can incorporate some
information about the spatial response of the visual system,
by using weighted standard deviations. If one assumes that
the estimated standard deviation 15 a good measure of the
real standard deviation of a particular coefficient (at least,
is the best information we have at hand), the priority can
be decided based on the weighting of the standard deviation
maps by a matrix H(m,n) containing spatial information
about the HVS, Let

nelma)=&pimuHimn) ; 1=k=Ne: (mmeEWY . (8)

The order for transmission of the coefficients is then defined
by sending first the coefficients [x;(m.n); C({}=k], which
correspond to: (1) greater value of me(m.n}); (2} il twa or
more 1k{m,n) have the same value, take the one with smaller
value of m+n; or (3) if there is still any ambiguity, take
the smaller value of k.

The first item is the only one that follows any theoretical
explanation; the last two are included merely for eliminating
ambiguities, such as two equal values, and can be changed
without affecting the performance. Note that using Eq. (6,
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Fig. 1 Coder diagram for PIT using LOT,

we can take the log and sum log(2/c) on both sides of Eq.
(&) so that meim,n) can be redefined as

el n)=Brlm,n)+logz[Him,n)) . (9)

Although having a different value, this representation still
maintains the transmission order, addressing directly the bit-
allocation maps. As long as both encoder and decoder have
the same maps and use the same weighting matrix, there
will be no overhead for indicating the transmission order.

The coder has some limitations, First, the maximum
number of different variances used for scaling the quantizers
18 Bmax. For high rates (>4 bits/pel), the performance de-
creases, since there will no longer be coefficients with only
a few bits allocated. Second, it is not possible to apply HVS
weighting to quantization without causing excessive mis-
match or amplification of distortion because of the reesti-
mation procedure in Eq. (6). It can be overcome by the
transmission of standard deviations in place of the bit-
allocation maps. We are interested in **small” pictures, such
as 236 %256 pel images. For these types of images, using
8 or 16 classes, the overhead for fully transmitting the var-
iance maps would be prohibitive. The performance of this
coder can be improved in several ways, For example, by
choosing the proper parameters (block size, number of classes,
and bit rate), the coder can achieve very good performance.
The great advantage of the Chen-Smith approach is that it
is quite nsensitive to the transform used. One can inter-
changeably use DCT, LOT, extended lapped transforms,”’
or any transform resulting in blocks of M M coefficients
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without any alteration in the algorithm (except for the
welghting matrix and, possibly, coding details). This is the
main reason for cheosing the Chen-Smith coder.

The coder and decoder block diagrams emploving the
LOT are presented in Figs. 1 and 2, respectively.

3 The HVS Weighting Matrix

A complete study of the psychophysical properties of the
visual system is well beyond the scope of this paper. Our
intention is restricted to the determination of a spatial re-
sponse weighting matrix for use with the LOT coefficients.
We now present a procedure that allows us to find 2 HVS
weighting function for any transform,

Reference 2 discussed the application of a linear function
describing the HVS to spatial variations. Although the HVS
model response is not linear, this principle was used with
good results and further discussion on the subject is left to
Ref. 2. Given a linear transfer function representing the
unidimensional spatial HVS as H(f) (where f is given in
cycles per degree of the visual angle subtended), we will
assume this medel to be reliable and it will serve as the
basis for the rest of this section, However, we will present
our results as a function of the model in order to allow one
to change H(f) if desired. Further, the usual assumptions
followw:

¢ The screen has a |:1 ratio and has uniform brightness
when displaying a uniform image.

® The viewer is situated at a distance v from the screen,
right in front of its geometric center.
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DEMUX

B

e The screen has width w and each row (column) has ¥
pels.

& The viewer can observe approximately the same den-
sity of pels-per-degree (spatial) in any region of the
screen.

Let « be the ratio of viewer distance (v} by screen width
(w), i.e., c=viw. This factor is the relative distance of the
observer, The maximum visible frequency in cycles per
degree 1s obtained when the discrete signal displayed has
its maximum frequency component, which is half of the
sampling frequency. In other words, in N samples it is
possible to observe N/2 cycles. The maximum visible fre-
quency can be found as:

M2 N

S = E = cycles/degree |

(10}

1
& arctan (i
where @ in degrees is the viewing angle, from the center to
the extreme of the screen, and tan(f) = we2v = 120, We,
therefore, can represent a discrete sensitivity function as
Hp(e™)=Hp(e”™™ )= H(flifnad) + |f| <finax - (11)
An orthogonal block transform is a special case of a
lapped transform in which there are as many basis functions
as elements in ecach basis function.”® Furthermore, lapped
transforms are equivalent to paraunitary filter banks.”®
Therefore, we can always regard any discrete, real, and
Grﬂmgﬂﬂﬂj {lapped or block) trunsform as a filter bank 263232
The analysis filters’ coefficients are the time-reversed basis
functions elements.*®** Suppose the M basis functions have
c]emﬁl‘ltspk("”k'_‘ G. I, ....M=1and a=0,1, i L — f:]
The equivalent analysis filter bank is shown in Fig. 3, where
each filter [with coefficient fitn)] is equal to a basis function
of the LOT, ie.. fitny=pull.=1—=n) for n=0, 1, ..,
1~ 1, For the particular case of the LOT of M bands, I =20,
but for the DCT we have . .'—"rHr fas any block transformy,
In Fig. 3. with x(nr) as the input signal to the filter bank,

Classification Map [ |
Bit Allocation Map ™ Reestimation of i
Standard | HVS-MTF
- Deviations Weighting
Mormalization Factor |
T vV l | BN |
Rearrange )
Coefficients = Q »| Bx8 |1 Display
ILOT
Fig. 2 Deccder diagram for PIT using LOT.
———— fo(n) yo(m)
— foln) LM
Bn)  —— nm)
_p{_f L}
) ga—a(n) yp—1(m)
— Ju-a(n) IM—

Fig. 3 Analysis section of a critically decimated M-band filter bank
where x(n) is the input signal and Fx(mM) are the subband signals
after filtering (0=lk=M—1}). The subband signals are decimated
resulting in ye(m) = feimid). The filters’ impulse responses feln) are
the time-reversed basis functions of the transform,

Fyin) corresponds to each subband (filtered signals), and
vi(n) is the subband signal after decimation. Let Fi(e’™) be
the frequency response of fi(n). Figure 4 shows the fre-
quency response of the first three filters (basis functions)
for a one-dimensional LOT with & bands (i.e., a 16 =8 LOT
matrix). Similar results for the DCT are found in Fig. 3.
The same procedure can also be applied to nonuniform filter
banks such as those resulting from the use of hierarchical
structures. If, in Fig. 3, the input x(n) has a power spectral
density (psd) given by $.{w), and denoting the PSD of $u.(n}
and ve(n) as Sylw) and Syilw), we have:

Silw) = S(w)| Fale™)? . (12)
After the decimator, yy(n)= fp(nM), and
M=l foni
Syelww) = Z Sj,*( o ) i (13)
=0

As

b Qo —a
[ sutwr do=[ s do
a 2m—k
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Fig. 4 Frequency response in decibels of the filtars f.(n) corre-
sponding to the first three basis functions of the LOT . i.e., | Fp(e™)],
m=0,1,2
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Fig. 5 Frequency response in decibels of the fillers fn(n) cormre-
sponding to the first three basis functions of the DCT, i.e., | Fole™)],
m=0, 1, 2.

the variance of yy is given by

T

1 L
};E:;Ju Syplw) dw:;L Siplw] dw . (14}

Alternatively, this result could be shown using the fact that
if u(n) is a stationary process, then var[u{n)] = var[u{ Mn)).
Therefore, var[Fpin)] = var[yi(n)] and the preceding equa-
tion is also true, _

Roughly, if a signal is filtered by Hple™), the signal
and its filtered version would be indistinguishable for the
observer to whom Hp(e™) is a perfect sensitivity model.
If this signal has a flat PSD (white noise), the filtered signal
has the PSD shaped by the filter, letting one know the
relative importance of each frequency component for the
observer. If this colored signal is split into subbands, as
when using the LOT, how can we measure the importance
of each subband component? A sampling in the frequency
domain would be imprecise and very dependent on the phase
of the sampling train, since there would be only M bands
of width w/M. This bandwidth can be large enough to allow
significant variations of the input PSD. Since we are mea-
suring up to the second-order statistics in the image, and
on those we may apply the weighting matrix, one possible
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Flg. 6 HVS model function used in this paper.2

solution would be the measure of the variance of cach band.
These variances can provide the relative significance of each
subband, Mote that as M increases, [ increases, and the
filters are becoming close to ideal filters and the bandwidth
is becoming narrower. In the limit, the approximations by
sampling and by variance computation would yield the same
results.

If a white noise with unit variance is input to the linear
system Hp(e™), and its output is transformed using the
LOT, then Eq. (14) is given by:

e i :
§%=;L [Ho (™) | Fa(e™))? deo (15)

The continuous HVS mode] function as used in Ref. 2
is plotted in Fig. 6. As previously stated, the frequency f
1s given in cycles per degree of visual angle subtended. The
madel is given by:

H(f)=2.46(0.1+0.25f)e ~** (16)

The corresponding weights {; can be found using Eqs. (11)
and (15).

The two-dimensional case is just an extension of these
results, since the transform is separable. We are interested
in weights iy, (4, f )=, which can be derived from

Y e ; :
r;ﬁ-=—qj f [Hp(e™t, /2
w0 A0

X|Fi(e™1, ™2)? duy dwz (17)
where
Hp(ef1 e’ = Hp(e2N {,;2*'?&:, = H{ fo! fonax) (18)
and
VAR Al <foux o 1] < o
and
Fr;.-{fj”', ei*--zj = Jr:].[fiml} F}[e-‘i”z} . {(19)

In our application, we are weighting standard deviation val-
ues and we use {;; instead of the squared value. Figure 7



Humarn visual sensitivity-weighted prograssive image transmission

DUGB54 0BGDE  0LHRAE L.ODOC 09546 08703 07706 0.6TH
0.AG05 0.9371 09930 0.9521 0.9294 0.8457 07475 0.6598
08885 00930 00953 0.9606 08987 05154 0.7194 06362
L0000 09521 09606 0.9114 08458 0.7659 0.6752 0.5084
00546 0.0204 08087 05458 0.TREIG 07073 06241 0.5543
08703 0.8457 08154 0.763% 07073 0.6409 05667 0.5047
07706 0.74756 07194 0.6752 0.6241 05667 05028 0.4493
06793 06395 06362 05084 0.5543 0.5047 04493 0.4024

(a) & = 4; frnee = 9 cycles/degree

07460 00223 10000 08542 08566 0.7341 0.6071 0.5101
09223 09686 0.9833 09214 08222 0.7051 0.5823 04911
LOoo0 09836 0.9515 08742 07749 0.6653 0.5503 (4655
009542 09214 08742 07955 07032 0.6031 05021 0.4265
0.8566 0.8222 07749 0.7032 06232 0.5375 0.4483 0.3824
07341 0.7051 06653 06051 05375 04065 059106 0.3356
06071 0.5829 05503 05021 0.4483 03916 03312 0.2854
05101 04911 04655 04265 03824 03356 0.2854 0.2448

{b) = 5 fings = 11,2 cycles/degree

0.8000 09702 L0000 08988 07576 06112 04710 0.38504
00702 00020 08627 05533 07171 05303 04476 (L3630
L0000 00627 08066 0.7546 06583 0.5334 04145 0.3379
08088 0.8533 07846 0.6845 0.5759 0.4714 0.3676 0.3012
(L7576 0.TLTL 06583 0.5750 04877 0.4024 0.3169 0.2610
06112 0.5803 05351 04714 0.4024 0.3348 02664 0.2206
04710 0.4476 04145 03676 03169 0.2664 0.2146 01789
03804 03630 03370 03012 02610 02206 0.1789 0.1498

(c) & = B; faae = 13.4 cycles/degree

QAGZY 10000 0.5750 08228 06487 04928 05513 0.276%
LODDo 09933 09177 07674 06051 0.4622 0.3303 026146
DATRD 08177 05206 (LGR24 05402 04162 0.2098 0.2384
04228 07674 06524 05605 0.454% 0.35641 0.2582 0.2060
0.G487 06051 05402 04549 03678 02807 0.2144 0.1TIT
04028 04622 04162 035341 02897 0.2307 01733 0.1394
0.3515 02305 0.2908 0.2582 02144 01733 0.1326 0.1073
02760 02616 0.2384 02060 01717 0.1394 01073 0.0872

[d) o = T; fonee = 15.7 cyvcles/degree

Fig. 7 Two-dimensional HVS weighting matrices for the LOT, as-
suming 256 pels in a ling and blocks of 8x8 pels. The relative
distance o« and maximum frequency fmax are indicated,

shows weighting matrices containing normalized L, ; for fmax
as 9.0, 11.2, 13,4, and 15.7 cycles/degree. They represent
a=4, 5, 6, 7, respectively, for ¥ =256, Values for o of 6
or 7 are more representative for broadcast TV viewing.
Values of 4 or 5 fit modemn PIT needs very well and ap-
proximate the situation in which a 256 % 256 pel image is
displayed on the 6} = 480 resolution mode on a regular
home PC monitor, with the observer in front of it, working
on the computer. The same procedure is repeated for the
matrices in Fig. 8. assuming ¥ =312, For this value of N
and the same values of e, the maximum frequencies are
18.0, 22.4, 26.8, and 31.4 cycles per degree.

4 Implementation and Results

A 256 % 256 pel monochrome image is divided into 8% 8
nonoverlapping blocks (M =8) and the LOT is applied to
each block. Based on the a¢ energics. the 8 % 8 blocks are

08045 L0000 0.9208 07295 05375 0.9865 0,253 0.2005
L.OD00 0.0644 0.8474 0.6634 04942 03581 0.2362 0.1872
00209 0.8474 0.7270 05746 04280 0.3143 0.2008 0.1663
0.7295 0.6G84 05746 0.458% 03477 02581 0.1754 01337
0.5375 0.4942 04238 0.3477 0.2683 0.2022 02404 0.1108
03865 03581 05143 02581 0.2022 01543 0.1092 0.0862
02530 02362 0.2098 0.1754 0.1404 0.1082 0.0792 0.0627
020056 001872 0UIGG3 01387 0.1108 0.0862 0.0627  0.0448

(a) o = 4; foar = 18 cycles/degree

0.5608 L0000 08236 05731 045730 02485 0.1360 0.1222
L0000 09107 0.7255 05121 03343 0.2242 0.1239 01104
0.5236 (.7265 05746 04122 02747 01863 0.1057 0.0915
0.5781 0.5121 04122 0.3025 0.2071 0.1433 00835 0.0693
04730 03343 02747 0.2071 0.1460 01021 0.0622 0.05604
0.2485 0.2242 0.1863 0.142% 0.1021 0.0723 0.045F 0.0361
01360 0.1239 0.1057 0.0835 0.0622 00452 0.0205 0.0231
01222 01104 00015 00698 0.0504 00361 0.0231 00185

(b) =5 fmar = 22.4 cycles/degree

Looo0 00676 0.7T115 04434 02512 0.1646 00707 0.0878
00676 0.8317 06000 03796 0.2184 01433 00631 0.0754
07115 06001 0.4384 02857 0.1699 01111 0.0516 0.0568
04454 03706 02557 019285 01191 00779 0.0385 00387
0.2512 02184 01699 001190 00767 0.0507 0.0266 0.0245
001646 0.1433 01111 00770 0.0507 0.0338 0.0182 0.0164
040707 0.0631 00516 00385 0.02568 00182 0.0106 0.0087
0.0878 0.0754 0.0368 00387 0.0245 0.0164 0.0087 0.0082

() & = B; frnar = 26.8 cycles/degree

L0000 08965 05850 03231 0.1501 0.1141 0.0347 0.0692
08965 0.7254 04715 0.2669 0.1343 00943 0.0303 0.0561
0.5850 04715 03165 01870 0.0985 00663 0.0236 0.0379
03231 0.2660 00870 0.1157 0.0541 00418 0.0165 00227
01501 01343 00885 00641 00375 0.0241 00106 0.0123
00141 00943 00663 0.0418 00241 00159 0.006% 0.0053
00347 0.0303 0.0236 00165 00106 00060 0.0035 0.0033
0.0692 0.0561 0.0379 0.0227 0.0123 0.0083 0.0033 0.0046

(d) & =7 finar = 31.4 eycles/degree

Fig. 8 Two-dimensional HVS weighting maltrices for the LOT, as-
suming 512 pels in a line and blocks of 88 pels. The relative
distance o and maximum frequency fma, are indicated.

grouped into eight different equally populated classes (Ne = 8).
Thus, there are 32 %32 blocks in the image (Np = 1024).
The de coefficients are quantized with a uniform 7-bit quan-
tizer, and By 18 set to 7. Therefore, the overhead in Eq.
{7) is, as previously computed, 4552 bits and the amocunt
of bits needed to code the de coefficients is 7168, This
yields a total of 11,720 bits sent prior to the transmission
of the ac coefficients (approximately (118 bits/pel). The
block classification map for the 256 x 256 monochrome
“‘Lena’” image is shown in Fig. 9. Classes 1 through 8
represent increasing energies of 2-D LOT blocks. Figure 10
shows maps with standard deviations. Classes 1, 3, 6, and
% are chosen as examples, and the de coefficient 15 not
computed. The resulting bit-allocation map for the eight
classes is presented in Fig. 11. Using these maps and the
weighting matrix of Fig. 7 (for = 6), by means of Eq. (%)
we get the order for the transmission of the ac coefficients
as shown in Fig. 12,
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Fig. 9 Equally populated 32 » 32 ciassification map for the "Lena”
image. Classes 1 through 8 represent increasing energies of §x 8
LOT blocks.

The ac coefficients are well modeled by a Laplacian
probability density function (pdf), but the blocks are clas-
sified according to their ac activities. If u is the amplitude
of an ac coefficient, the actual important function is no
longer its density function pulu), but one conditional to the
estimated standard deviation py(uld). If there is just ane
class (Nc=1), the Laplacian model fits well. At the other
extreme, suppose there are as many blocks as classes (the
overhead would be enormous). The variances would be
computed from one element and would determine its am-
plitude completely. Therefore, the density would be an im-
pulse. In this extreme case, all quantizers should only have
two levels to indicate the sign of the coefficient. As long
as we have few classes, these extreme cases do not apply.
However, the lowest frequency ac coefficients (which have
great influence in the classification process because they are
larger) are well apart from having a Laplacian conditional
density. As an example for a particular coefficient. SUppose
its standard deviation is estimated to be very large, This
indicates that the coefficients on that coordinate {man)sW¥
belonging to the same class are expected to have high am-
plitudes, not amplitudes close to zero as in the Laplacian
model. Generally, these large coefficients have low fre-
quencies and have large numbers of bits allocated. Coef-
ficients with one or two bits allocated generally do not have
a great influence on the ac energy and are very close to the
Laplacian model. In our constant distortion rule for bit al-
location, we assumed that all the quantizers were optimized
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Class 1
00 81 3.9 40 2.5 29 2.2 2.3
.7 45 33 3.0 21 23 21 2.0
39 24 246 24 21 18 17 1.8
27 21 23 20 21 1.7 1.8 138
21020 LT LT U OUE BT 18
21 20 13 L7 L9 LT 15 1.6
18 1.8 LY 15 16 16 1.4 1.6
I8 1.8 1Y 16 16 1.7 1.5 1.7

Class 3

0.0 330 136 146 56 7.6 47 3.8
233 163 113 B3 49 35 35 2.8
103 105 989 56 39 40 32 34
BY 87 76 51 35 33 32 28
40 53 56 52 35 32 32 30
48 45 41 45 43 33 3.0 2.4
28 29 34 35 35 36 35 3.1
28 25 29 34 57 41 37 249

Class §
00 1211 548 391 929 24 13.8 128
67.3 518 421 274 204 17.8 4.0 123
20.7 311 205 258 214 157 150 12.1
225 207 221 197 168 113 1040 7.8
129 139 123 140 114 124 98 8.2
21 114 116 82 94 086 65 .6
5.6 HS o 62 58 62 561 50
6.2 5.7 5 b3 64 51 44 49

Class 8

00 3165 LG 530 416 34.0 201 2005
160.7T 1492 516 463 39.1 325 188 19.2
47.9 622 549 457 W65 907 159 16.8
LT 313 343 273 970 226 134 13.1
18.1 18.5 217 2013 18.1 158 14.2 11.6
135 168 149 114 155 114 09 9.4
J 10.2 8.4 8.1 34 89 T.1 T8
1.2 9.0 TAh B} T2 62 68

tn bo

— &n

B
9.

Fig. 10 Map with standard deviations of LOT coefficiants in each
class. Classes 1, 3, 6, and 8 are chosen as examples. The standard
deviation for the do coefficient is not shown,

using the same pdf. Therefore, we have chosen the Gaussian
density as the density model for our Lloyd-Max quantizers
due to its greater robustness against pdf mismatches. Tests
carried out (for 8 and 16 classes) using two sets of quantizers
(for Laplacian and Gaussian pdfs), showed better perfor-
mance for the Gaussian set of quantizers.

The reestimated standard deviations assume an integer
number of bits allocated to each coef! ficient; hence, if we
assume that all quantizer levels may be used, the quantizer
should be a midrise one. For one- and two-bit quantizers
optimized for a Gaussian input pdf, the inner reconstruction
levels (positive or negative) are 0.798¢, and 0.45302, re-
spectively, where oy =c¢ and o2 = 2¢ represent the estimated
standard deviations for those coefficients that have been
allocated | and 2 bits, respectively, It is possible that some
null or insignificant coefficients would have 1o be quantized
using relatively high standard deviation values, and must
be reconstructed as a nonzero component with a magnitude
comparable to the standard deviation. In these cases, non-
existent frequency components emerge, resulting in annoy-
ing effects. For this reason, we decided to apply midtread
quantizers with three levels and variable length coding, in-
stead of quantizing with two or four levels. The standard
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Fig. 11 Bit-allocation maps for each class for the "Lena” image. The rate is 1 bit/pel including
overhead. This is also the final stage of the PIT.

Class 1 Class 2
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13 = - - - - — - 139 124 = - - - - -
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Fig. 12 Tra_nsmisslo_n order of the LOT coelficients among all classes for the “Lena” image. This order
is found using the bl‘l-gllqcasmq maps in Fig. 11, weighted by the HVS matrix in Fig. 7{c), according
to Eq. {9). The transmission priority rules were defined in Sec. 2 based on these weighted matrices.
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(a)

(b

Fig. 13 Partially reconstructed images: (a) DCT 0.2 bivioel, (b) LOT 0.2 bitpel, (c) DCT 0.3 bitpel,
and (d) LOT 0.3 bit'pel.

deviations for quantization and reconstruction of these coef-
ficients would remain the same, but the distortion rule and
the average bit rate would be affected. However, the dis-
tortion increase, a result of going from four to three levels
in the 2-bit quantizer, is partially compensated by the dis-
tortion decrease in going from two to three levels for the
1-bit quantizer. The same occurs with the bit-rate changes,
In our simulations, both schemes vielded roughly the same
bit rates, with the three-level scheme leading to images with
higher signal-to-noise ratios (SNREs),

The HVS-weighted PIT described previously is extended
to the 2-D DCT. The weighting matrix was found using the
method described in Ref. 2 for frae = 13.4 (e =6). Recon-
structed images based on both LOT and DCT for several
stages are shown in Fig. 13. Critical observation of these

336 £ Journal of Electronic imaging & Juwiy 1992 7 Vol 1(3)

images indicates the improved fidelity and absence of hlock
structure during the initial stages when LOT is used. In
Table 1, a comparison of both methods is carried out, eval-
uating the SNR of reconstructed images at several stages
for the **Lena’’ and **Girl"" images. Since the HVS weight-
ing is used only for prioritizing the transmission of coeffi-
cients, the SNE measure did not incorporate subjective
weighting factors. If u(m,n) and fi(m,n) represent the orig-
inal and reconstructed image, then the SNR is given by

N=1N=-1

Z, E uzl[m.n]

m=0 n=10

SNR =10 logio N=1MN-1
2 Z [l m,n)— i m,n))?

m=0 rn=0




Human visual sensitivity-weighted progressive image transmission

(=]

g

ih)

Fig. 13 (continued) Partially reconstructed images: (g) DCT 0.4 bit'pel, {f) LOT 0.4 bitipel, (g) DCT

1.0 bitipel, and (h) LOT 1.0 bit'pei.

5 Conclusions

A PIT scheme that incorporates adaptive classification in
the transform domain and bit allocation based on the rate-
distortion theory is presented. A general technique for de-
veloping HVS weighting of the transform coefficients is
developed. Based on this, HVS weighting matrices appli-
cable to LOT are obtained. The order in which the transform
coefficients are transmitted is based on the estimated vari-
ances of these coefficients weighted by the human visual
system sensitivity, measured in the 2-D LOT domain. Be-
cause these variances can be estimated ar the receiver, over-
head is limited to bit-allocation maps of the classes to which
the blocks are grouped and m_thc classification of the blocks,
The transform coefficients for all the classes during each
stage are transmitted ngl‘fﬁﬂ.!\'ﬂ'l::'l such that a specified bit
rate is reached for each stage. Visual comparison of the

Table 1 SNR (in decibels) resulting from intermediary reconstructed
images al several bil rates for the “Lena” and "Gid"” images.

Hatelpp) SNR

LOT [ DCT [ LOT [ DCT
LENA GIRL

0z (1601518 [ 17.22 [ 16.21
0.3 1043 | 18.41 | 20.27 | 19.41
| 0.4 21.00 | 20.55 | 22.68 | 21.93
{05 22.74 | 22.39 | 24.30 | 23.79
| 06 23.68 | 23.20 | 25.21 | 24.98
0.8 25.35 | 25.15 | 26.98 | 26.76
L 10 [2631)26.67 | 28.50 | 28.27

reconstructed images based on the LOT and DCT shows
that the former yields subjectively superior images com-
pared to the DCT in all stages.
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