5= Wﬁ[(kmod m)2/24q(k modm)]W;\c,?/%qk

(®)
k=0,1,...,N—1
We then introduce the foliowing change of variables:
k=xzm+i{ i=kmodm
) ™
z=01,...,sm-1 i=0,1,...,m—-1
From eqns. 6 and 7 we obtain
Samts = WE WD ®

From eqn. 8 it is obvious that if m is divisible by 2, the clements
of sequence {s,} are some powers of W, so the alphabet size is 4
= sm. However, if m is not divisible by 2, the alphabet size is 4 =
2sm.

For N odd, we obtain
Semts = (Wi DW {0 ©®)

where ¢ = 27! mod sm. As ¢ is relatively prime with sm, it follows
that W*_, is a primitive smth complex root of unity. Consequently,
the sequence {s,.;} given by eqn. 9 has alphabet size equal to 4 =
m.

For N = m?, these GCL sequences will have the alphabet size 4
= m, the same as Frank sequences. For any length N = sm?, it is
possible to form (smy" totally different strings {5}, and hence
(sm)» different sm-phase GCL sequences.

Milewski sequences as special case of GCL sequences: Let {u,}, n =
0, 1, ..., g-1, be a Zadoff-Chu sequence of length g. The Milewski
sequence of length N = g?*! is obtaining by concatenation of the
rows of matrix {z,,}, defined as [3]

— i — — 4
Zzi = uImOdSW:V:L s=g m=g

(10)
£=0,1,2,...,g"1~1

i=0,1,2,...,g"—-1
where W, is a primitive g**'th complex root of unity.

For g even, Milewski sequence {s;} can be represented as
Somai = W:2/2+QM¢W:'L 1n

Comparing eqn. 8 and eqn. 11, we see that, for g even, Milewski
sequences are equal to the GCL sequences obtained by using the
modulating string of eqn. 5, where W,/ = 1, m = g* and q =
mqy.

For g odd, Milewski sequence {s;} can be represented as

Srm4i = W;",:(z+l)/2+qu’W;i (12)

On the other hand, the same expression can be obtained from
the definition of GCL sequences and eqn. 5, if we take ¢ = mq,, +
m-1)2.
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Generalised lapped orthogonal transforms
R.L. de Queiroz, T.Q. Nguyen and K.R. Rao

Indexing terms: Transforms, Signal processing

A class of linear-phase paraunitary filter banks is developed,
Ppe ing fast impl ion algorithms based on the discrete
cosine transform. In this formulation, the lapped orthogonal
transform is a particular case which was extended to
accommodate the overlap of any number of blocks. Optimised
design examples are presented.

Introduction: The discrete cosine transform (DCT) [1] is used in
most of the international standards for image compression and
recently the lapped orthogonal transform (LOT) [2] was developed
as a competitive alternative because of its extended basis functions
which overlap across traditional block boundaries, thus eliminat-
ing the blocking effect. It is well known that these two forms are
particular choices of FIR linear-phase paraunitary filter banks
(LPPUFBs) [3,4]. Linear-phase filter banks have been studied
intensively and several design approaches can be found in the liter-
ature. However, fast implementation algorithms were usually
ignored. Very recently, a minimal structure to implement ali
LPPUFBs (where the filter lengths are the same) was developed
[5]. Based on this work [5], we introduce a particular simplification
leading to a class of LPPUFB which we call generalised linear-
phase lapped orthogonal transforms (GENLOTs). The GENLOTs
have a fast implementation algorithm based on the DCT, and
both the DCT and LOT can be regarded as special cases. One of
the reasons for the growing popularity of the LOT is the fact that
it possesses a fast implementation algorithm and good perform-
ance. Also, its algorithm is based on the DCT which is highly pop-
ular in image coding and for which an uncountable number of
algorithms, chips, and computer programs have been developed
for its implementation. We follow here the same principle, i.e. to
include the DCT as a basic transform and add stages to it.

Simplified factorisation of LPPUFB: Let L be an upper limit for
the length of the filters and M be the number of channels. From
the lapped transform viewpoint (time domain), L is the length of
the basis functions of the transform and M is the block size.
Recall that L = M and L = 2M for the DCT and LOT, respec-
tively. The overlap amount N is expressed as L = NM and is
related to the degree n of the polyphase transfer matrix E(z) [3] by
n = N -1 [3,4]. The structure for implementing all LPPUFBs of
M channels (M even) depends on N. From the work by Soman et
al. [5], we know that a complete parameterisation of any parauni-
tary E(z) of degree N — 1 characterising a linear-phase filter bank
is given by

E(z) = SPTN_1A(z)Tn_2A(z) - A(R)ToP (1)

where
S TR N I
55 2E3
and
et A% el e

The matrices 0, I, S, S;, U, and W, are square orthogonal matri-
ces, each of size M/2 x M/2. 0 and I are the null and identity
matrices, respectively, and J is a counter-diagonal identity matrix.
So, Sy, U, and W, are general orthogonal matrices. However, it is
easy to see that SPT, , can be simplified to

1 [0y, 0 11
wrvs= 5 (%0 g2 1] o
where Uy = SyUy, and Wy, = S;W,_,. Thus, revisiting eqn. 1, we
can state that we obtain a polyphase matrix of LPPUFB E,,,(2),
with degree k+1, from one with degree k, denoted as E,(z), by

Eiy1(2) = Kiy1(2)Ex(2) (6)
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where
wo-3(% B0 Sl o

GENLOTs: Note that to obtain the LOT from the DCT, a stage
identical to K (z) was added to the output of the DCT [2]. Then,
the overlapping can be viewed as a postprocessing operation over
the output of the DCT. If L = NM, the basis functions will extend
over N signal blocks. Accordingly, to construct a three-block over-
lap beginning with the traditional LOT (N = 2), it would be a
mere process of repeating the postprocessing to the output of the
LOT. The GENLOTS use this principle and use the starting stage
in this recursion as the DCT, i.e. the polyphase transfer matrix of
degree zero is always the DCT matrix, as

E(z) = Kn-1(2)Kn-2{2) ... Ki(2)(DCT)  (8)

Of course, the parameters involved in each stage are different and
each orthogonal matrix U, and W, can be parameterised into a set
of M(M — 2)/8 plane rotations, each with one degree of freedom.

T~

LN\ —
__.\/\/\,.___
L N\A~—

- AMp—
A

Fig. 1 Basis functions (filter impulse responses) of a GENLOT with L =
40, M = 8, N = 5, designed for maximum transform coding gain,
assuming an AR(1) signal with intersample correlation 0.95

0 wi2 ™
®

Fig. 2 Filter frequency responses (in dB) of a GENLOT whose basis
Sfunctions are shown in Fig. 1

This results in a total of M(N — 1)}(M — 2)/4 degrees of freedom.
As an cxample. Fig. 1 shows the basis functions of an N = §
LPPUFB for M = 8, and Fig. 2 shows the frequency response of
the respective filters. As in the LOT [2], the transform coding gain
was optimised. However, the parameters were found by nonlinear
optimisation routines, searching the space of all M(N — 1)(M ~ 2)/

4 degrees of freedom.

Remarks: The increase in computation when the length of the
basis function goes from NM to (N + 1)M is given by two sets of
trivial butterflies and one stage involving the orthogonal matrices.
This is constant for any overlap N. However, the implementa-
tional cost can be further decreased by simplifying the inatrices U;
and W, as was done for the LOT, i.e. choosing a small set of plane
rotations which will approximate the orthogonal matrix. Further-
more, improvements to the optimisation methods are currently
being studied.
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Improved estimator for a discretised
learning routing algorithm

T.C. Wan and C. Douligeris

Indexing terms: Learning systems, Computer networks

The use of learning automata in dynamic routing algorithms has
shown promise. An improved estimator for the new scheme flow
control with discretised learning (NSDL) routing algorithm is
presented which provides a better profile of the network
environment, to improve the performance of the NSDL scheme.

Introduction: Existing distributed routing schemes, which operate
under the assumption that network traffic is quasistatic and varies
slowly with time, are inadequate for handling the rapidly fluctuat-
ing conditions in current gigabit packet networks. The need for a
robust dynamic algorithm which is computationally efficient and
which is able to adapt effectively to rapidly changing traffic pro-
files to maximise overall throughput is therefore essential.
Narendra et al [1,2] have investigated the use of learning
automata for making routing decisions. Extensions to the above
scheme have been proposed by Vasilakos et al. [3,4] which used a
different training algorithm for updating the action probabilities.
Under current schemes, the inputs are taken as being direct
feedbacks of the environment. As such, they are susceptible to
changes in a dynamic nonstationary environment. In addition, it is
not possible to derive quantitative measurements from the learning
automaton regarding a particular action under current schemes.
Owing to the nonstationary nature of the environment, the model
must track changes in the real environment and reflect it in the
model as the environment changes. Adaptive algorithms are well
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