
sk = w;[(k mod n ~ ) ~ / 2 + r ( k  modm)l~k2/2+~.k 
N 

(6)  
k = O , l , . .  . ,N-1 

We then introduce the following change of variables: 
k = z m + i  i = k m o d m  

z = 0,1, ..., sm-1  i =0,1,  ..., m - l  
(7) 

From eqns. 6 and 7 we obtain 

s,,+, = wgw2(2+q) 8m (8)  

From eqn. 8 it is obvious that if m is divisible by 2, the elements 
of sequence {sk} are some powers of W,, so the alphabet size is A 
= sm. However, if m is not divisible by 2, the alphabet size is A = 
h. 

For N odd, we obtain 

s,,+, = (W;m)z(zm+1)W4s+a) sm (9) 

where t = 2.' mod sm. As t is relatively prime with sm, it follows 
that W m  is a primitive smth complex root of unity. Consequently, 
the sequence {s-+~} given by eqn. 9 has alphabet size equal to A = 

For N = d, these GCL sequences will have the alphabet size A 
= m, the same as Frank sequences. For any length N = sm2, it is 
possible to form (sm)" totally different strings {b,@')), and hence 
(sm)" different sm-phase GCL sequences. 

sm. 

Milewski sequences as special case of GCL sequences: Let {U,,], n = 
0, 1, .. ., g-1, be a Zadoff-Chu sequence of length g. The Milewski 
sequence of length N = g"" is obtaining by concatenation of the 
rows of matrix {z~,,}, defined as [3] 

zz,, = u Z r n o , j s ~ ~ ~  s = g m = gh 
(10) 

z = 0,1 ,2 , .  . . , gh+' -1 i = 0,1,2, .  , . ,gh- 1 

where W, is a primitive pith complex root of unity. 
For g even, Milewski sequence Isk} can be represented as 

s=,+, = W:2/2+qM2W*c o m  (11) 

Comparing eqn. 8 and eqn. 11, we see that, for g even, Milewski 
sequences are equal to the GCL sequences obtained by using the 
modulating string of eqn. 5,  where W,.tfi = 1, m = g" and q = 
W M .  

For g odd, Milewski sequence {sk )  can be represented as 

&,+, = W ~ ( z + l ) / 2 + m q M = W z I  sm (12) 

On the other hand, the same expression can be obtained from 
the d e f ~ t i o n  of GCL sequences and eqn. 5, if we take q = mq, + 
(m1)/2. 

0 IEE 1994 

Electronics Letters Online No: 19940080 

B. M. Popovid (IMTEL-Institute of Microwave Techniques and 
Electronics, B. Lenjina 16Sb, 11071 Novi Beogrd, Yugoslaviu) 

27 October 1993 

References 

1 BOHER.L., and ANTWEILER,M.: 'Perfect N-phase sequences and 
arrays', IEEE 1. Sel. Areas Commun., 1992, 10, (4), pp. 782-789 

2 mP0VId.B.M.: 'Generalised chimlike aolvDhase seauences with 
optimum correlation properties',-IEEE i'r&., 1992, fi-38, (4), pp. 
140&1409 

3 MILEWSKI,A.: 'Periodic sequences with optimal properties for 
channel estimation and fast start-up equalisation', IBM J. Res. 
Develop., 1983, 27, (3, pp. 42&431 

4 SUEHIRO, N., and HAMIRI. M.: 'Modulatable orthogonal sequences 
and their applications to SSMA systems', ZEEE Truns., 1988, IT- 
34, (I), pp. 9S-100 

S powrd, B.M.: 'Efficient matched fdter for the generalized chirp-like 
polyphase sequences', to be published in IEEE T r m . .  Aerospace 
and Electronics Systems, 1994 

Generalised lapped orthogonal transforms 

R.L. de Quekoz, T.Q. Nguyen and K.R. Rao 

Indexing terms: Transforms, S i p 1  processing 

A class of linear-phase paraunitary filter banks is developed, 
possessing fast implementation algorithms based on the discrete 
cosine transform. In this formulation, the lapped orthogonal 
transform is a particular case which was extended to 
acwmmcdate the overlap of any number of blocks. Optimised 
design examples are presented. 

Introduction: The discrete cosine transform (DCT) [I] is used in 
most of the international standards for image compression and 
recently the lapped orthogonal transform (LOT) [2] was developed 
as a competitive alternative because of its extended basis fimctions 
which overlap across traditional block boundaries, thus eliminat- 
ing the blocking effect. It is well known that these two forms are 
particular choices of FIR linear-phase paraunitary filter banks 
(LPPUFBs) [3,4]. Linear-phase filter banks have been studied 
intensively and several design approaches can be found in the liter- 
ature. However, fast implementation algorithms were usually 
ignored. Very recently, a minimal structure to implement all 
LPPUFBs (where the fdter lengths are the same) was developed 
[SI. Based on this work [SI, we introduce a particular simplification 
leading to a class of LPPUFB which we call generalised linear- 
phase lapped orthogonal transforms (GENLOTs). The GENLOTs 
have a fast implementation algorithm based on the DCT, and 
both the DCT and LOT can he regarded as special cases. One of 
the reasons for the growing popularity of the LOT is the fact that 
it possesses a fast implementation algorithm and good perform- 
ance. Also, its algorithm is based on the DCT which is highly pop- 
ular in image coding and for which an uncountable number of 
algorithms, chips, and computer programs have been developed 
for its implementation. We follow here the same principle, i.e. to 
include the DCI as a basic transform and add stages to it. 

Simplifed factorisation of LPPUFB: Let L be an upper l i t  for 
the length of the filters and M be the number of channels. From 
the lapped transform vieivpoint (time domain), L is the length of 
the basis functions of the transform and M is the block size. 
Recall that L = M and L = 2M for the DCT and LOT, respec- 
tively. The overlap amount N is expressed as L = N M  and is 
related to the degree n of the polyphase transfer matrix vz) [3] by 
n = N - 1 [3,4]. The structure for implementing all LPPUFBs of 
M channels (A4 even) depends on N .  From the work by Soman et 
al. [SI, we know that a complete parameterisation of any parauni- 
tary E(z) of degree N - 1 characterising a linear-phase filter bank 
is given by 

E(z) = SPT,v-iA(z)T,v-zA(z) ... A(z)ToP (1) 
where 

(3) 

and 

The matrices 0, I, &, SI, U,  and Wi are square orthogonal matri- 
ces, each of size M/2 x M / 2 .  0 and I are the null and identity 
matrices, respectively, and J is a counter-diagonal identity matrix. 
6, SI, U ,  and W, are general orthogonal matrices. However, it is 
easy to see that SPTN-, can be simplied to 

where UN-, = &UN., and WN.I = SIWN.,. Thus, revisiting eqn. I ,  we 
can state that we obtain a polyphase matrix of LPPUFB Ek+l(z), 
with degree k+l, from one with degree k, denoted as E&), by 

E k + i ( ~ )  = Kk+i(z)Ek(z) (6)  
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where 4 de- of freedom. 

Remarks: The increase in computation when the length of the 
basis function goes from NM to (N + l)M is given by two sets of 
trivial butterflies and one stage involving the orthogonal matrices. 
This is constant for any overlap N. However, the implementa- 
tional cost can be further decreased by simplifying the inatriffis U i  
and Wj as was done for the LOT, i.e. choosing a small set of plane 
rotations which will approximate the orthogonal matrix. Further- 
more, improvements to the optimisation methods are currently 
king studied. 
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GENLOTs: Note that to obtain the LOT from the D a ,  a stage 
identical to K,(z) was added to the output of the DCT [2]. Then, 
the overlapping can be viewed as a postprocessing operation over 
the output of the DCT. If L = NM, the basis functions will extend 
over N signal blocks. Accordingly, to construct a three-block over- 
lap beginning with the traditional LOT (N = 2). it would be a 
mere process of repeating the postprocessing to the output of the 
LOT. The GENLOTs use this principle and use the starting stage 
in this recursion as the IXT, i.e. the polyphase transfer matrix of 
degree zero is always the DCT matrix, as 

Of course, the parameters involved in each stage are different and 
each orthogonal matrix U, and W, can be parameterid into a set 
of M(M - 2)/S plane rotations, each with one degree of freedom. 

E(z) = KN-~(z)KN--z(z). . .Kl(z)(DCT) (8) 

I 
1616111 

Fig. 1 Basis fmctwns @Iter impulse responses) of a GENLOT with L = 
40, M = 8, N = 5, designed for maximum transform coding gain, 
assuming M AR(1) signal with intersample correlation 0.95 
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W 

Fig. 2 Filter frequency responses (in dB) of a GENLOT whose basis 
funawns are shown in Fig. 1 

This results in a total of M(N - 1)(M - 2)/4 degrees of freedom. 
As an example. Fig. 1 shows the basis functions of an N = 5 
LPPUFB for M = 8, and Fig. 2 shows the frequency response of 
the respective fdters. As in the LOT [2], the transform coding gain 
was optimised. However, the parameters were found by nonlinear 
optimisation routines, searching the space of all M(N - l)(M - 2)/ 
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Improved estimator for a discretised 
learning routing algorithm 

T.C. Wan and C. Dodigeris 

Indexine terms: Leamine svstems. Cornouter networks 

The use of learning automata in dynamic routing algorithms has 
shown promise. An improved estimator for the new scheme flow 
control with discretised learning (NSDL) routing algorithm is 
presented which provides a better proffle of the network 
environment, to improve the performance of the NSDL scheme. 

Introduction: Existing distributed routing schemes, which operate 
under the assumption that network MIC is quasistatic and vanes 
slowly with t h e ,  are inadequate for handling the rapidly fluctuat- 
ing conditions in current gigabit packet networks. The need for a 
robust dynamic algorithm which is computationally efficient and 
which is able to adapt effectively to rapidly changing trafik pro- 
fdes to maximise overall throughput is therefore essential. 

Narendra et al. [1,2] have investigated the use of learning 
automata for making routing decisions. Extensions to the above 
scheme have been proposed by Vasilakos et al. [3,4] which used a 
different training algorithm for updating the action probabilities. 

Under current schemes, the inputs are taken as being direct 
feedbacks of the environment. As such, they are susceptible to 
changes in a dynamic nonstationary environment. In addition, it is 
not posible to derive quantitative measurements from the learning 
automaton regarding a particular action under current schemes. 
Owing to the nonstationary nature of the environment, the model 
must track changes in the real environment and reflect it in the 
model as the environment changes. Adaptive algorithms are well 
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