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ABSTRACT

In this paper, a novel wavelet-based approach to recover continuous tone images from halftone images is presented.

Wavelet decomposition of the halftone image facilitates a series of spatial and frequency selective processing to

preserve most of the original image contents while eliminating the halftone noise. Furthermore, optional non-linear

�ltering can be applied as a post-processing stage to create the �nal aesthetic contone image. This approach lends

itself to practical applications since it is independent of parameter estimation and hence universal to all types of

halftoned images, including those obtained by scanning printed halftones.
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1 INTRODUCTION

Halftoning is a quantization process which reduces bit-depth of a digital image while trying to maintain the gray

scale appearance.1{3 The main applications of halftoning are printing and displaying, where continuous-tone pictures

are reproduced on binary output devices.

Descreening, or retrieving a continuous-tone image from a halftone, is a problem not only of great theoretical

interest as an ill-posed inverse problem, but also of signi�cant practical usage. A halftone image usually has very

di�erent characteristics than a continuous-tone image, which make it hostile to many common image processing

procedures. For example, compression would be ine�cient due to the rich high frequency noise in halftones. Scaling,

rotation and rescreening would be unacceptable due to the introduction of strong Moir�e e�ects. Tone correction

and enhancement would also be impossible due to the limited bit depth of the halftones. As a result, descreening is

usually the �rst step for any halftone image processing.

Most digital halftoning methods can be classi�ed into three categories: ordered dithering, error di�usion and

optimization-based. In ordered dithering, the continuous-tone image is quantized with a periodical threshold ma-

trix.1{3 The organization of the threshold matrix determines the appearances of the halftone images. They may be

composed of dots of di�erent sizes (clustered dot screening), or scattered pixels (dispersed dot screening).3,4 The

stochastic screening methods reported in5 can also be viewed as special cases of dispersed dots. They typically use

large threshold matrices, which are designed to produce halftones with \blue noise" characteristics. Error di�usion is

an adaptive process.6 The quantization of a pixel is performed on the modi�ed input, which is the combination of the

input signal and the quantization errors di�used from neighboring processed pixels. The errors are propagated in a

weighted manner. The weighting coe�cients control the appearance of the resulting halftone. Optimization methods

are iterative search algorithms which try to minimize some cost function associated with the pixel arrangement.7,8

The spectrum of the halftoning noise is largely high-pass in nature. Nevertheless, it di�ers signi�cantly for various

processes. The noise energy of amplitude modulated (AM) methods such as clustered dot screening, are concentrated



in a few spikes at screen frequencies and their harmonics.9 The spectrum structure is relatively insensitive to the

changes of input values. On the other hand, the noise spectrum of most frequency modulation (FM) techniques, such

as error di�usion, stochastic screening and optimization methods are usually smooth and continuous. Furthermore,

they are typically \blue", i.e., contain less low-frequency energy. The cut-o� frequencies of these methods, however,

depend highly on the input gray level. They are higher for mid-tone values and lower for high-lights and shadow

values. Bayes dispersed dot screening4 exhibits a mixed behavior. It belongs to FM methods and its frequency

response is highly input-dependent. However, its spectrum contains strong peaks, similar to clustered dots.

The statistics of images di�er signi�cantly between orthographical halftones and scanned ones. The former refer

to the halftones created digitally and acquired in a digital form, while the latter refer to the halftones printed and

then obtained through a scanner. The descreening of scanned halftone is particularly useful for many practical

applications. As a �rst order approximation, the scanned halftone can be considered as a low-pass �ltered version of

the original halftone. The halftone e�ects are usually reduced. The degree of the weakening depends on the relative

resolutions of the scanning versus the printing. The lower the scanning resolution, the less the halftoning e�ects, and

vice versa. In the orthographic halftones, the halftone value (black or white) of each pixel reveals a possible range

of the input value (or modi�ed input value for the error di�usion ) of the pixel. This provides important clues for

descreening. However, this bene�t usually does not exist for scanned halftones, as they lack the perfect registration

typical of orthographic halftones.

Since halftoning noise is mainly concentrated in high frequency, the screens can be e�ectively removed by low-pass

�ltering. However, the smoothing tends to blur edges and destroy �ne details in the original image. Many di�erent

methods were reported to improve descreening.10{22 They can be roughly divided into two groups. The �rst kind of

approach is to treat descreening as a constrained optimization problem.10{16

Perfect registration and availability of halftoning parameters are assumed. The possible range of input (or modi�ed

input for error di�usion) is then utilized as constraints. The optimization can be performed using projection onto

convex sets (POCS),10 logical �ltering,11 iterative �ltering,12 quadratic programming,13 or other techniques.14{16

The second class of methods is based on edge-preserving smoothing. It includes binary permutation �ltering,17

sigma �ltering,18 orientation sensitive �ltering,19 adaptive �ltering,20 statistical smoothing,12 and smoothing using

vector quantization lookup tables.21 There are also algorithms combining smoothing approaches and constrained

optimization approaches.22

Most of the descreening methods are designed for a particular halftoning process. Some of them are tuned or

trained for a particular set of halftone parameters. They fail or perform poorly when the condition changes. They

also often assume a priori knowledge of halftoning parameters, such as screening frequencies, threshold matrices, or

error di�usion weights. However, in real applications, the original halftoning methods and its associated parameters

are generally unknown. A robust estimation is usually di�cult to achieve. Moreover, often the image is obtained by

scanning halftone material.

Our novel wavelet-based universal approach is independent of the halftoning method and is also applicable to

scanned halftones. It is facilitated by the wavelet transform or by overcomplete subband representations in such a

way that the image is analyzed at multiple resolutions and possible halftone patterns are attenuated, without making

any assumption about the halftoning method used to create the halftone image.

2 WAVELETS AND HIERARCHICAL FILTERING

Subband transforms and �lter banks are useful tools to separate an input signal into several subband signals.23

These subband signals contain fractions of the input spectrum. In a hierarchical association of M -channel �lter

banks the original image O is split into M subbands S(0; i) as in Fig. 1(a). The low-pass subband S(0; 0) is further

decomposed into M subbands S(1; i) and the process is repeated a number of times, always decomposing the low-

pass subband S(j; 0). Every time the process is repeated, subbands with lower frequency contents are generated.

One attractive property of subband decompositions is the fact that di�erent subbands convey information regarding

di�erent frequency bands. Inside a subband, di�erent coe�cients represent di�erent spatial locations.



The concept of a tree relating the subband coe�cients emerges from the hierarchical relations among the subbands.

The parent of a coe�cient is a coe�cient in a subband with the same orientation as its own, at lower frequency,

occupying the same relative spatial position. Fig. 1(b) illustrates the relation. The use for a tree notation will be

made clear later on.

For image processing, a common approach is to associate 2-channel �lter banks, composed of low- and high-pass

�lters, and yielding a 4-channel system. This 2D separable implementation is shown in Fig. 2. The low- and high-pass

�lters (LPF and HPF, respectively) may have their output decimated by a factor of two.23 However, in overcomplete

and pyramidal expansions this may not be the case as we will discuss later on. The hierarchical connection of the

2D 4-channel stages generates the discrete wavelet transform (DWT).

In the preferred way to implement the DWT, the �lters' output is decimated and the resulting decomposition

along with parent-descendant relationships are illustrated in Fig. 3. The horizontal subband is obtained by low-pass

�ltering in the vertical direction and by high-pass �ltering in the horizontal direction. The opposite con�guration

yields the vertical subband, while the diagonal subband is a product of high-pass �ltering in both directions. The

low-pass �ltered signal (in both directions) is fed to another �lter bank stage, therefore generating new subband

levels. The subbands at level n are labeled V n, Hn, or Dn, for the vertical, horizontal, and diagonal orientations,

respectively. At the end of the recursion, we obtain a low-pass signal denoted as \LP", which is also called the base

band.

3 DESCREENING METHODOLOGY

We propose a descreening scheme composed of sequential stages: (i) subband decomposition; (ii) noise attenuation

in non-edge areas (iii) oriented �ltering; (iv) inverse subband recomposition; and (v) an optional non-linear edge-

preserving post-�ltering stage. In the following, each of these stages will be discussed in detail.

3.1 Wavelet Decomposition and Its Inverse

The halftone image is �rst decomposed into di�erent frequency subbands using the DWT with separable �lter

banks23 as in Figs. 2 and 3. While the energy of the halftoning process resides primarily in the high frequency

subbands, the low frequency subbands contain most of the signal energy. The high frequency subbands, where the

signal energy and halftoning energy are heavily mixed together, contain signal energy corresponding to important

edge information. It has been recognized that the key to the success of the descreening is how to di�erentiate high

frequency image contents from the halftone noises. In the past, frequency domain oriented descreening approaches,

i.e., lowpass �ltering based approaches, haven't been very successful due to the heavy mixture of halftone noises

with high frequency image contents such as edges and texture. While an increasing amount of halftone noise can be

removed by applying lowpass �ltering with lower cuto� frequency, the increasing amount of loss of high frequency

image contents inevitably cause more severe degradation of the reconstructed contone image.

Wavelet decomposition facilitates selective processing in both frequency and space domains. After the wavelet

decomposition, a space frequency representation is obtained. At each given level, except the base band, there are

three high frequency subband images corresponding to horizontal, vertical, and diagonal orientations. There are

several properties that are signi�cant and will be exploited by the proposed descreening approach:

� Each high frequency subband image has a distinctive orientation.

� Each high frequency subband image is composed of coe�cients corresponding to similar frequency components

at di�erent locations.

� Each high frequency subband coe�cient is part of a hierarchical tree

composed of coe�cients corresponding to di�erent frequency components in the same spatial neighborhood.



The inverse DWT reconstructs the signal from the subbands. Processing in the DWT domain is depicted in

Fig. 4. In this �gure, it is shown the subbands of the wavelet decomposition before and after they are processed by

noise attenuation techniques that will be discussed next.

3.2 Noise Attenuation (Frequency Correlation)

There exists a hierarchical relationship among the amplitude of the subbands samples at di�erent resolution

levels, but same spatial location. For a given coe�cient (parent), there are four coe�cients (children) at the same

spatial location in the subband of the same orientation at the next �ner resolution. This relationship is illustrated

in Fig. 3. It is found that in general the magnitudes of the descendants are non-increasing with respect to their

ancestors. Note that this observation is particularly true if a gain factor of 2 is applied each time a subband is further

decomposed (in order to ensure the energy conservation in the wavelet transform). Subbands at lower resolutions

have gone through more stages o f �ltering, therefore they generally have larger dynamic ranges. In other words,

the power spectrum of the image signal commonly decays as the frequency increases. This assumption has been

successfully applied for image coding.24 The violation of this constraint is often an indication of the presence of

halftoning energy. Therefore, we clip the coe�cients in the high frequency subbands so that their magnitudes are

not larger than the magnitude or weighted magnitude of their parents. Weights may vary from level to level and the

clipping process can be made adaptive (more conservative over edges and more aggressive otherwise).

3.3 Intraband Filtering (Spatial Correlation)

An important part of descreening is to preserve the edges to the maximum extent. In the �rst step of noise

attenuation, we did not consider edges in a spatial context. Moreover, there are still signi�cant halftone noises in

the vicinity of edges in comparison with the subband images of the original contone image.

In order to further reduce the halftone noise near edges, one must �rst locate the edges. Fortunately, within

the framework of wavelet decomposition, edge contents have been decomposed into well separated subband images

with respect to frequency, location, and orientation. Each subband image contains edge components primarily along

its orientation. Vertical subbands have vertical high frequency components which are commonly caused by objects

whose edges are displaced horizontally. Similarly, vertically oriented edges may appear in the horizontal subbands.

Diagonal subbands contain residual components. Therefore, it is intuitive that if we low-pass �lter the subband

images along speci�c orientations we might remove noisy components and not degrade sharp edges extensively. In

particular, a one-dimensional lowpass �ltering L-point �lter can be applied to both horizontal and vertical subbands,

i.e., a horizontal low-pass �lter is applied to the vertical subband and vice-versa, while an X-shaped lowpass �lter is

applied to the diagonal subbands.

Oriented �ltering can be performed adaptively with respect to the resolution scale of each subband, e.g., the

length parameter L should be reduced monotonically going into lower frequency subbands. Furthermore, estimates

of the screen parameters can be used in selecting the appropriate �lters in terms of the length parameter L. Filtering

can be implemented as convolution using the following types of square kernels for vertical, horizontal, and diagonal

subbands:

horizontal vertical diagonal

0 b1 0 0 0 0 b2 0 b2
0 a1 0 b1 a1 b1 0 a2 0

0 b1 0 0 0 0 b2 0 b2

where a1 = �, b1 = (1��)=2, a2 = 3�=5, b2 = (5�3�)=20, and � is a bandwidth control parameter for the �lters. As

an alternative approach to oriented �ltering, explicit edge estimation can also be implemented to guide the �ltering.



3.4 Nonlinear Post�ltering

The reconstructed contone image from inverse wavelet recomposition may still su�er from some artifacts, such as

ringing and blotchiness, due to the loss of (high-frequency) signal information. The most observable is the ringing

artifact around prominent edges. Ringing e�ect is frequently encountered in wavelet-based image processing due

to the loss of high frequency components. In this case, it is caused by partial loss of high frequency components

although we are able to capture most signi�cant portion of the edge contents through the previous selective noise

attenuation processes within the subbands.

The reconstructed contone image is preferably enhanced in the original space domain using a nonlinear �ltering

with the spatial smoothness constraints modeled by a discontinuous image prior model.25 In this study, we choose to

perform a post�ltering to enhance the contone image in the original space domain to take advantage of the prior arts in

this regard. The post�ltering is accomplished with the incorporation of a Markov random �eld (MRF), in particular

the Huber Markov random �eld (HMRF),27 which has been used to various image smoothing applications.28,29

Markov random �eld, in particular Gibbs random �eld (GRF) has been widely used to model the neighborhood

constraints in images in various image processing and computer vision tasks.30 The main advantage of using a GRF

instead of an MRF is that it is convenient to parameterize a GRF using a Gibbs potential function and a proper

neighborhood system.30,29 In general, a GRF image prior model, i.e., the constraints among neighboring pixels, is

enforced by

p(x) / expf�
X
c2C

Vc(x)g (1)

where p(x) denotes the a priori probability of the random �eld, i.e., image x, and Vc(x) is the potential function

de�ned upon the neighborhood system C (c 2 C denotes a local neighborhood).

There are a number of convex potential functions which have been used to enforce image smoothness constraint

within the framework of Gibbs random �eld.25,29 Convex functions are often desired because the convergence of a

convex constrained problem is always guaranteed if solutions do exist, and it can also be optimized e�ciently due

to fast convergence. More importantly, convex potential functions with smooth transition, i.e., with good continuity

properties, result in desired continuity in the image. However, there may be signi�cant discontinuities such as edges

in the image. In other words, image is a non-stationary random �eld. As shown in Fig. 5, the quadratic Gaussian

prior model (GMRF), which corresponds to MSE (mean square error) criterion, is unable to di�erentiate these

discontinuities or the outliers of the model and its linear lowpass �ltering nature tends to blur image edges and other

details excessively and indiscriminately.29 In other words, such a stationary model is inadequate to characterize the

statistics of images due to their non-stationary nature. Therefore, discontinuous (in terms of �rst or higher order

derivatives) functions are more desirable because they are capable of being adaptive to discontinuities, e.g., the Huber

minimax function given by:

�T (x) =

�
x2; jxj � T

T 2 + 2T (jxj � T ); jxj > T
(2)

where T is a threshold and x denotes the di�erence between neighboring pixels. A major advantage of the HMRF

model over other types of GRF models for image restoration is its ability to switch the penalty on discontinuities

according to the di�erence of gray level between the current pixel and its neighbors. The quadratic segment of the

function imposes least mean square smoothing of the artifacts when the local variation is below T . On the other

hand, the linear segment of the function enables the preservation of image details by allowing large discontinuities

in the image with a much lighter penalty. In terms of implementation, the HMRF model is advantageous over other

discontinuous MRF models25 in making the computation more e�cient because only linear operations are involved

in the optimization where gradient, in this case a piecewise linear function, is commonly used.

Other edge-preserving �ltering methods (such as �-�lter31 based �ltering), though not within the framework of

GRF-based estimation, are also applicable at this stage. A �-�lter behaves mostly like a linear convolution �lter,

except for just including samples whose levels are within �� levels from the center pixel. Thus,

~x = meanfxij jij 2 W; jx� x0j � �g (3)

where x0 is the value of the center pixel andW is a region neighboring x0. In a �-�lter, the estimate of the smoothed



value ~x is the local running average of the neighboring pixels, within a speci�ed local window, which have similar

values. Thus, sharp edges are not blurred by the process.

In practice, the best enhancement results are obtained by sequentially processing the reconstructed contone image

with HMRF-based �ltering and �-�lter based �ltering. It can be understood that the HMRF-based �ltering provides

smooth transition while preserving edges, and a subsequent �-�lter based �ltering has the e�ect to further clean and

sharpen the prominent edges. Note that the order of applying these two types of nonlinear �ltering matters. After

the nonlinear post�ltering, both the ringing and the blotchiness caused by remaining halftone noises are e�ectively

removed.

4 EXPERIMENTAL RESULTS

We generated examples using a 4-level DWT based on Johnston's 16-tap �lters,32 although other �lters may be

used as well.23 The 400�400 pel image shown in Fig. 6(a) is a 3�3 clustered dot halftone. The contone image was

reconstructed by applying uniform-weight clipping and oriented �ltering (� = 1=3) to the subbands at 3 topmost

levels. Also, a combination of HMRF-based �lter and �-�lter is used as post processing. The result is shown in

Fig. 6(b). For illustration purposes, the 4-level wavelet transform of the halftone image is shown in Fig. 6(c). After

clipping and oriented �ltering, the subbands are shown in Fig. 6(d).

To demonstrate the robustness of the algorithm we repeat the experiment for other types of halftones using same

parameters. An error di�used image is shown in Fig. 7(a) and its reconstructed contone version is shown in Fig. 7(b).

Furthermore, the method can also be used for scanned material. We printed an image using 4� 8 cluster dots in a

300 dpi laser printer and scanned the printed material at 200 ppi. The scanned image is shown in Fig. 7(c), while its

descreened version is shown in Fig. 7(d). In the case of error di�usion, using the standard "lena" image, the quality

of the recovered contone image, both subjectively and objectively, is among the best published.

Non-linear �lters such as the HMRF- or �-based approaches can be applied at this stage to further clean the

image and sharpen edges. The e�ect of the detail-preserving nonlinear post-�ltering can be appreciated by comparing

the �nal contone images with the contone images obtained right after the inverse DWT, without any post-processing

stage. The images referring to Fig. 6(a)(b) and to Fig. 7(a)(b) are shown in Fig. 8.

5 CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a novel wavelet-based approach to recover continuous tone images from halftone images. A

series of spatial and frequency selective processing is applied to the subbands resulting from a wavelet decomposition of

the halftone image. Such a processing is designed to preserve most of the original image features while eliminating the

halftone noise. In addition, non-linear �ltering can be applied as a post-processing stage to further clean the halftone

noise patterns that might have survived the DWT-domain processing. The proposed wavelet-based descreening

technique may not be the best for a given type of halftone pattern, but it has been successfully applied to virtually

all types of halftoning methods. Knowledge of the halftone process is not required. This approach lends itself to

practical applications since it is independent of parameter estimation and hence is virtually universal to most types

of halftoning techniques, including those obtained by scanning halftoned material. A forthcoming paper will explain

in more details the proposed algorithm as well as its extension to encompass overcomplete wavelet decomposition.
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Figure 4: Basic diagram for descreening facilitated by the DWT.

-T     T
xx

ρρ

GMRF (p=2)                                        HMRF (T=1)                         

Figure 5: Quadratic potential function and the Huber minimax potential function.
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Figure 6: Halftone image (a) and its reconstructed contone version (b). Image size is 400�400 and halftoning method

employs 3� 3 clustered dots. The wavelet transform of the halftone image is shown in (c) which is processed (cleaned)

generating the image in (d).
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Figure 7: Reconstructed contone versions from halftone images. (a) Error di�usion halftone and (b) its reconstructed

version. (c) Scanned halftone and (d) its reconstructed version.
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Figure 8: Reconstructed raw contones from cleaned subband images without post-�ltering. (a) from error di�usion

halftone and (b) from clustered dots halftone.


