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Abstract. A method for approximate rate control in JPEG is presented. We derive a quantizer table that
would attain a given compression ratio for a given image. For that, we devise a method to quickly
estimate the compression ratio that a given “quality” factor (a control knob for generating quantizer tables)
would yield. This “quality” factor controls the design of the quantizer tables, so that we developed a new
quantizer design strategy, which is a key enabler for the compression estimation procedure. It is based on
the human visual system transfer function and provides more flexibility and better compression than
typical scaling-based design methods. Overall, we calculate a simple parameter derived from the image
data. This parameter in combination with the quality factor is used to estimate the compression ratio. If
the ratio does not meet the target, the quality factor is iterated until yielding the desired compression.
Extensions to color images are presented and results are shown to evaluate the method’s accuracy.

1) BACKGROUND

The Joint Photographic Experts Group (JPEG) standard [1] for image compression is commonplace in
most imaging applications. In JPEG, the image is broken into 8x8-pixel blocks, which are transformed
using the discrete cosine transform (DCT) [2]. A quantizer table in JPEG is a set of 64 integers by which
the 8x8 DCT coefficients are divided in order to decrease data  entropy and enable compression. The
entries in a quantizer table are also called quantizer steps. JPEG recommends using different quantizer
tables for luminance and chrominance channels of color images. The choice of quantizer tables
determines the bit-rate (R) achieved by compression and the distortion (D) obtained after decompressing
the image. Hence, each choice of quantizer table set defines a point in the RD plane for compressing a
given image. To accommodate different quantizer tables, the most popular programs utilize a single
quantizer table (often the example quantizer table provided in the JPEG specifications) as a reference
point, and multiply the table entries by a fixed scaling number [3]. The single scaling number can control
(parameterize) the compression, hence yielding a curve in the RD plane. In general, the multiplying
number is mapped from a scale of quality factors Q ranging from 1 to 100 to a scaling number typically
ranging from 0.1 to 10. Some companies utilize their own base quantizer table and scale the numbers in a
linear fashion from “more” to “less” compression. There are also solutions based on optimizing the
quantizer table for a given image in a sense of minimizing bit-rate for a given distortion measure
(typically MSE) [4]. Some quantizer tables are designed based on the human visual system (HVS) by
means of a modulation transfer function (MTF). For these, table offset and multiplying factor are often
chosen ad-hoc in order to conform the table entries to their valid range and to control the compression
amount.

A common problem in JPEG compression is the lack of bit rate control, i.e. the final file size is
unknown until the image is actually compressed. This may cause problems in several applications, for
example if a fixed buffer size is to be used to store the compressed image. Basically, the problem is to
know how much compression a given setting yields or, conversely, which settings would yield a given
compression ratio. In [4], the direct design of the quantizer table via RD-based search will not determine



the table but also attain a specific rate. Even though the method in [4] may yield the best results, it is very
complex for most real time applications. A more practical method to attempt rate control in JPEG was
proposed in [5] in which the is only one control parameter Q and a few blocks are sampled from the
image. Q is then iterated until getting the desired rate (or distortion) on the desired set.

Figure 1 depicts a typical correspondence between quality factors and actual compression ratios
for a given image. The different compression ratios were obtained by scaling the example JPEG quantizer
table. Throughout this paper, we will compare our results with the results for the example quantizer table,
acknowledging that better quantizer tables with respect to image quality have been derived elsewhere.
The emphasis of this paper is not on image quality, but on predicting compression ratios from simple
metrics. Any quantizer table that has properties similar to the properties we derive for the quantizer table
can be substituted. Note how non-linear the curve in Fig. 1 is. For different images, different curves
would be produced. Hence, it is impractical to attempt to predict the compression ratio as a function of the
quality factor. In order to predict compression, we first devise an efficient method to design JPEG
quantizer tables based on a single Q factor, where the main attribute of the quantizer table is a more linear
relationship between compression ratio and quality factor used in scaling. Using that quantizer table, we
develop a method to quickly predict the compression ratio for a given image and Q factor using only
simple computations. With these tools in hand we are able to quickly generate image-dependent JPEG
quantizer tables, i.e.: the base table and quality factor combination, aimed at automatically yielding the
desired compression ratio.

2) A PARAMETRIC QUANTIZER TABLE DESIGN

Fig. 1 shows a very non-linear correspondence between the quality factor and the resulting compression
ratio for the JPEG example quantization table. In order to facilitate the prediction of the output
compression it would be helpful to design a quantizer table and scaling factor combination that yields a
near-linear relationship. In that case, the relation between quality and compression could characterized by
perhaps one single parameter, e.g.: the curve slope. In this case, given the curve slope and quality factor,
one could easily predict compression, or, conversely, determine the scaling factor needed for a desired
compression ratio. The design method described here is just one of the possible design methods that can
be used and was used for simplicity of implementation.

The design method is based on the assumption that a near-linear relationship between the
quantizer table and the compression ratio can be obtained if the quantizer table simulates the observation
of an image from different viewing distances. This design can be enhanced to take into account other
properties such as the HVS. Quantizer design based on visual properties has been explored before by
several researchers, e.g. [6]-[12]. In most cases the quantizer  table is “shaped” according to the HVS
MTF or it incorporates visibility thresholds. We utilize a method to design quantizer tables which
basically combines the scaling method with the HVS-based fixed approach. This is so because the MTF
may determine the “shape” of the quantizer, i.e. the ratio among quantizer steps, but it does not control
the “gain”, i.e. the absolute scaling to multiply the quantizer steps and to control the compression amount.

We assume resolution and image width are fixed. What is varied is the scaling factor and a
parameter given by:

α = =d

w

viewer distance 
image width

A single control number is mapped simultaneously to a multiplying factor and to the desired α,  so that
the user just needs to adjust one “knob”. The concept is that if one wants more compression we emulate
someone looking at an image from further away and use a more aggressive scaling. The emulation of very



close range viewing conditions along with small scaling are used to design a table for low compression
ratios.

A simple HVS MTF was assumed. For luminance, the formula we used is given by [2]
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while, for chrominance, the formula we used is
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which are plotted in Fig. 2. We also need to specify the maximum visible frequency (fmax) in order to
facilitate sampling. The viewer is at a distance d from the image (see Fig. 3) which has width w. The
image has resolution of r pixels per length unit. Hence, the maximum viewing frequency is
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where N is the number of pixels across the image and K = π/720.
The MTF functions in eqs. (1) and (2) can now be used to calculate the relative weight of the

individual DCT frequency bands. This relative weight will then be used to determine the quantizer step
size, quantizing less important bands more coarsely than more important ones.

Let gk(n) be the entries of the basis functions of the DCT (k=0,...,7; n=0,...,7), whose Fourier

transform is given by ( )G ek
jω . We can compute the variance of a white noise filtered by the HVS MTF

in the DCT domain as a measure of the importance (variance) of each DCT subband for the HVS. Hence,
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Tests have shown that the above integration can be performed using 64-point FFT’s (32 point positive
frequencies) with sufficiently accurate results. We then force the step values to be inversely proportional
to the standard deviation of this so-called shaped noise in the DCT domain. The more visually important
the smaller the step sizes, hence, the lower the distortion. The HVS weights are chosen as:
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where A is a constant to scale to normalize µmn in the range of 1 to 255.
The user is requested to input a number Q from a minimum to a maximum value, which, without

loss of generality, can be chosen to be in the range of 0 to 100. We fix N and derive monotonic functions
α(Q) for the MTF shape and A(Q) for the quantizer steps, such that the necessary parameters (A,α) to
design the table are directly derived from one input quality factor Q. The scaling is done as
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Note that the smallest entry in the table is µmn=A(Q) , i.e. A(Q) determines the minimum step value.
The parameters were fine tuned with two goals in mind. First, as we mentioned in the

introduction, we would like to have the relation between compression and Q to be as linear as possible.
Second, to facilitate comparisons, we would like to closely align our quality factor with the existing one
in the JPEG implementation of the Independent JPEG Group (IJG) [3] (which uses the scaled default
tables). This alignment has no impact on performance. If the user requests quality factor Q, we would like
to achieve comparable compression ratios for some end-points using both methods.

The curve α(Q) was selected as a straight line connecting extreme points αmax=α(0) and
αmin=α(100). The curve A(Q) was selected as a 3-piece combination of straight lines connecting the
following points in the (A,Q) corresponding to the values of Q={0,b1,b2,100}, where two breakpoints
were inserted in order to better approximate the RD curves in IJG’s implementation. Examples of
parameters are b1 = 10 and b2 = 90 and:

Comparisons between the proposed method and IJG’s method are shown in Figure 4. RD
performance is compared in the bottom-right plot. Note that the proposed method of jointly modifying
quantizer table shape and gain easily outperforms the scaling method. Figure 5 shows enlarged portions
monochrome image Lena compressed at about 25:1 by adjusting the quality factor using both the scaling
method and the proposed one. It should be kept in mind, however, that the non-linear relationship
between compression ratio and quality factor was the main reason for the design of the new quantizer
scheme.

Figure 6 shows the relationship between compression ratio and the standard quality factor as well
as the new ”visual” quality factor for 34 monochrome images. From Fig. 6 it is easy to note that the new
design method factor enjoys a nearly linear relation between the quality parameter Q and the resulting
compression ratio. This linearity is a key enabler for predicting the compression performance. The only
obvious deviation in the 34 images tested was obtained for a uniform gray wedge smoothly varying from
0 to 255 gray value, which is clearly a pathological case. The curve for the gray wedge can be easily
identified as being almost horizontal with a sharp drop at a Q factor of roughly 90.

3) PREDICTING COMPRESSION

Since JPEG has no rate control, the output buffer size is undetermined, which might cause problems in
some applications. It is important to know what is the compression ratio for a given quality factor, i.e.
how big the compressed file will actually be. Conversely, we also want to know what quality factor
should we use to yield a given compression ratio.

If we answer the first question we can answer the second. If the only information we possess is
the quality factor, inspection of Fig. 6 reveals that the spread of compression ratios for a given quality
factor is very large. So, uncertainty is high, but the estimate comes at no cost. On the other hand, if we are
allowed to actually compress the image and count the output bits, the uncertainty is null, but there is a
sizeable computational cost involved [4],[5].  We propose a compromise approach in which we allow
very simple measurements of image characteristics. Based on these simple metrics and the quality factor

Luminance
αmax = 2.2

αmin = 0.125
A(0) = 50

A(10) = 24
A(90) = 6

A(100) = 0.7

Chrominance
αmax = 3.4
αmin = 0.25
A(0) = 65

A(10) = 30
A(90) = 7.5

A(100) = 0.4



we are trying to predict the compression ratio. It is obvious that a "perfect" prediction can be made if the
metric is actually achieved by compressing the image, however, we will intentionally limit the image
metrics to be simple with respect to the complexity of DCT transformations. Since our quantizer design
(Sec. 2) produces near-linear quality vs. compression relations, we need to only estimate the slope of the
curve for prediction. The slope of the curve reflects the compressibility of the image and it is not
unreasonable to assume that this is correlated to the image activity. However, image activity is not a well
defined concept and several image attributes might be useful in determining the activity. In order to get
the best advantages we would rather keep the computation as small as possible. This leads to the desire to
use a very simple metric, one of which might be local dynamic range.

3.1) Estimator model

Since JPG uses an underlying 8x8 block structure in compression, we will consider the dynamic range rn

of the n-th 8x8 block in the image as local dynamic range, i.e. if Xn is the set of pixels values in a given
block, then   rn = max(Xn) – min(Xn).  Let h(k)  (0 ≤ k ≤ 255) be the histogram of the rn, and let the
cumulative distribution of the rn  be d(m) = ∑k=0,…,m h(k). The top row of Fig. 7 shows the plots of the
cumulative distribution d(m) for the 34 images, along with the highlighted cumulative distribution for
three representative images.The bottom row of Fig. 7 shows  the compression ratio (CR) vs. quality (Q)
factor curves (repeated from Fig. 6 with the three images highlighted). The highlighted images in Fig. 7
are illustrative of one prevailing feature of the d(m) sequences: the CR curves  correlate with the d(m)
ones in the following way: whenever d(m) rises up quickly, higher compression ratios are achieved for the
identical quantizer tables. Since the CR plots are approximately linear for the visual quality factor it
should be sufficient to derive one measure from the d(m) plots to describe “how fast” its plot rises.
Several attributes of the cumulative distribution can be used to determine the quickness or steepness of
the rise. In order to be less sensitive to noise, we chose the integral (summation) of the d(m) of the image
as metric. Hence, the measurement we retrieve from an image is described as: compute dynamic ranges rn

and their histogram h(k); then compute
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In a next step, the mapping between the output compression ratio and the input quality factor Q
and metric S is derived. First, for each quality factor, the function CR = W(Q, S) was modeled.  The
model chosen based on heuristics was the average of the best least-squares fit of quadratic and linear
polynomials. The average is also a quadratic curve, even though not the best least-squares fit. A total of
34 images of  different characteristics were used for the fit. Figure 8 shows an example of data fitting for
Q=30, where the linear, quadratic and average models are shown along with the real data.

The final mapping can be accomplish via a 2D table W(Q, S). Note that S typically ranges from
140 to 240 and we are mainly interested in quality factors between 10 and 90, so that we can build a
90x100 LUT to implement W(Q, S). If we plot said LUT as a surface it will look like in Fig. 9.

Using the simple 2D lookup-table approach, we verified the predicted compression ratio with the
actual compression ratio. The average prediction error was less than 12% for the original 34 input images
which is a marked improvement over the blind (a priori) form of prediction which yielded an average
error greater than 37%. We will discuss the blind estimator and the experimental data in Sec. 3.3.

3.2) From monochrome to color

The parameter S and the mapping W(f,S) are reasonably good estimators for the compression of
monochrome images. The data works as well for estimating the compression of the luminance component



of color images. New data needs to be collected for chrominance components, but, apart from the actual
W(Q,S) mapping, the same assumptions should hold and the base model should be identical. However,
since we are looking for a simple method to predict the final compression ratio, we might be able to use
the correlation between chrominance components and luminance component for common images. It is
clear that this restricts the application to images that viewers might consider "natural" and that it excludes
less "natural" images such as color sweeps.

If we are allowed the extra error margin of using the chrominance/luminance correlation we
might be able to further simplify the method for a small decrease in precision.. In order to estimate the
compression correlation for chrominance and luminance, we computed the typical file size proportion
between monochrome and color versions of the same image, i.e. if the monochrome version (luminance
channel) of an image compresses n:1, what is the typical compression achieved by compressing the color
image? The question obviously has no precise answer, but it is interesting to see what the error margins
are. Figure 10 shows the plots of the relative compression ratios among color and monochrome versions
of the same image. From those plots, we have two main observations: (i) the relative ratio of compression
ratios has some limited variance; (ii) the relative ratio increases with quality factor. From these plots we
devised a preliminary estimator for the color compression based on the compression of the luminance
channel only. By computing the average and the standard deviation of the plots in Fig. 10, the preliminary
estimator is given by:

CR (color) = 2.5 CR(mono) ± 6% (with chrominance subsampling)
CR(color) = 2 CR(mono) ± 12%      (without chrominance subsampling)

We computed the  percentage variation (6% and 12%) for the range of Q between 10 to 90. But note that
the adjustment also varies with Q. Hence, a better a priori estimator for  CR(color) can be made as a
correction to the monochrome case, i.e.

CR(color) = C  CR(mono)     ,

where C is a correction factor. C is a function of the quality factor Q. Fine tuning C using the average
values and standard deviations of the curves for various values of Q in Fig. 10, we devise the correction
factor as:

C = 0.00375 Q + 2.3125           (if there is chrominance subsampling) ,

C = 0.00625 Q + 1.6875              (without chrominance subsampling) .

We are only using the luminance to predict the compression of color images. Hence, the method is
naturally prone to errors and it is only meant for the average case.

3.3) Experiments: estimation errors

As a reference we can use an unbiased “a posteriori” estimator to see how well the proposed one
performs.  For a set of images, for a given Q, the unbiased estimator would average all compression ratios
in the set. For a set of size 1, there is no estimation error, and there is less error the more uniform the set
is. Note that this estimation in impractical since it uses the real CR to make its own estimate. Nevertheless
it is a useful reference. In this paper, the CR estimation error is computed as:

CRActual

CRActualCREstimated

_

__
  100

−×



In Fig. 11 it is shown the histogram of the proposed (left) and unbiased (right) estimation
methods for a number of images and quality factors. We used 38 images and 5 different Q factors in Fig.
11. The average estimation error exceeds 37% for the unbiased estimator, while the proposed one brings
this number below 12%,  which is a marked improvement.

The results in Fig. 11 are for monochrome images. In Fig. 12, we show results for color images,
extracted from an exclusively pictorial set. It consists of 3 Corel CDs yielding a total of 302 images. Since
5 quality factors were tested for each image, the total sample count for the pictorial set is 1510. Average
errors for the unbiased estimators are in the order of 27% and 24% (with and without subsampling,
respectively), while the proposed estimator brings the error down to 17%. This is also a marked
improvement, mainly if we take into consideration that the extension to color is done completely blindly.

It is evident from the data in Fig. 11 the large improvement in accuracy. The estimation of the
compression of monochrome images is much more precise. Much of the imprecision in Fig. 12 comes
from the image-independent linear formula given in Sec. 3.2 to estimate the compression of color images
using only the luminance channel.

3.4) Controlling the compression: setting the right quality factor

While the preceding Sections discussed how to estimate the CR for a given Q, the inverse question, i.e.:
which Q will yield a specific compression ratio, is more interesting in most application. For example,
knowing the required Q for a given compression ratio would allow rate control for buffer size or
transmission.  The problem is to derive the setting that would make JPEG compress the image to a given
file size. In other words, users would set the CR and leave up to the program to figure out what the
settings should be.  With the proposed method we can have a quick approximative solution for the
problem . Since W is a smooth and well-behaved function of Q and S, there is another method to directly
estimate Q. For that we just need to invert the plot in Fig. 9 and actually use Q=V(CR,S) , where V is  a
surface derived from W. V can be computed once and implemented as a 2D LUT. For color, the factor C
has to be already built into V. We first derive W, then include C into W, and last we derive V from W.

As an alternative we can simply iterate the CR estimator. Note that the computational cost in this
method is the computation of S. Once that is found, every CR estimate takes only one table look-up (and
perhaps 4 extra operations for color). This is negligible compared to the efforts of deriving f or of
compressing the image. Thus, one can easily iterate Q until finding the right CR. One possible method is
bisection or the brute force to find the factor Q that yields CR closest to the desired target. .

4) Conclusions

We proposed a method to map quality factors to predicted compression ratios. The method includes the
on-line design of efficient quantizer tables and the estimation of how much compression would the tables
yield. The compression estimator depends only on a simple feature derived from the image, which is
related to the histogram of the dynamic range of the image blocks. Once this number is generated, it can
be used with any quality factor to estimate the compression. Hence, one or multiple estimations make
very little difference in computation. It was shown how to iterate the quality factor to achieve the desired
compression so that the method can be used for rate control in JPEG.

It is evident from the plots in Figs 11 and 11 the improvement in estimation precision. However,
it needs to be emphasized that deriving S alone is more than 10 times faster than compressing the image.
Furthermore, using only the luminance, the method is even faster. There is no need to buffer the image
(although requires one full pass to determine S). Once f is computed the CR estimation method is easily
extended and repeated to calculate the best Q factor for a given compression ratio using negligible
computation overhead.
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Figure 1 – “Quality” factor controls compression ration in JPEG. Typically, they are mapped to
scaling numbers which are used to multiply the entries in the quantizer tables in JPEG, thus
modifying monotonically the compression ratio.

Figure 2 – HVS linear transfer function sensitivity model for luminance and chrominance
images.



Figure 3 –  Geometry of the viewing setting. Viewer is at a distance d watching a screen whose
width is w comprising N pixels. Since There are N pixels, there are at most N/2 cycles to be
observed.
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Figure 4 – Comparison of design methods. “Regular” refers to the scaling method.



  

Figure 5 – Zoom of reconstructed image after compression using the regular quantizer design
method at 25:1(left). Same result for using the proposed design method is shown on the right.
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"Visual" Q factor

CR x "visual" quality factor

Figure 6 – Relation between quality factors and compression ratios. Visual Q factor refers to the
proposed method (right). The plots on the left were computed for several images using the
traditional scaling method. The plots on the right used the proposed method. Note the linearity
of relation CR vs. Q for most images.



 

Figure 7 – Correlation between cumulative histograms vs. dynamic range and the relation CR
vs. Q. Typically when the curves above rise too quickly the CR vs. Q line has the highest steep.
Hence one can try to estimate the CR/Q relation from the cumulative distribution plots.

Figure 8 –  LS-fitting the relation between the derived parameter f and compression ratios.
Fitting can be done linearly or quadratically. We used the average of both approaches as a

fitting curve.



Figure 9 –  Overall appearance of the W(Q,S) look-up table.

Figure 10  – Relation between the compression achieved by color and monochrome versions of
the image. Results shown for different quality factors and different subsampling strategies.



Figure 11- Estimation error comparing the unbiased estimator (right) and the proposed one
(left). Measurements were computed from 34 monochrome images. Average estimation error for
the proposed method is 12%. If we use the unbiased estimator the average error would be 37%.



 w/o subsampling (proposed) avg error: 17%             w/o subsampling (unbiased estimator) avg. error: 24%

w/ subsampling (proposed) avg error: 17%             w/ subsampling (unbiased estimator) avg. error: 27%

Figure 12 –  Histogram of estimation error measurements for color images using the proposed
approach with “blind” estimation of the compression of the chrominance channels. It was used a
pictorial set – Corel CD with 302 images. Using 5 Q factors per image brings the total number of
sampels to 1510. The method’s average error is about 17%, against 27% (without subsampling)
and 24% (with subsampling). Top: with chrominance subsampling, bottom: without. Left:
proposed method, right: unbiased estimator.


