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On the Completeness of the Lattice Factorization for
Linear-Phase Perfect Reconstruction Filter Banks
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Abstract—in this letter, we re-examine the completeness of trix [1], respectively. Moreovems,, is a2m x 2m matrix as
the lattice factorization for M -channel linear-phase perfect follows:
reconstruction filter bank (LPPRFB) with filters of the same
length L = KM in [1]. We point out that the assertion of 1. 0,,
completeness in [1] is incorrect. Examples are presented to show Dy, = 0 I - 1)
that the proposed lattice structure in [1] is not complete when m m
K > 2. In addition, we verify that the lattice structure in [1] is
complete only whenK < 2.

) L ) Il. LATTICE FACTORIZATION FORLPPRFB
Index Terms—Completeness, lattice factorization, linear-phase

perfect reconstruction filter bank. Consider anV/-channel {4/ even,M = 2m) LPPRFB with

all the analysis and synthesis filters of the same lethigth K M
each. Let(>) andR.(z) denote the corresponding analysis and
synthesis polyphase matrix, respectivilyz) andR(z) satisfy
ATTICE factorization is one of the most attractivethe LPPR condition as follows [1]:

methods for the design and implementation of filter

. INTRODUCTION

banks. An important concept associated with the lattice R(z)E(z) =2 Ty, 120, (2)
structure |sc_:ompIetenessCompIete_ness of a lattice |mpI|_es E(z) :Z—(K—I)DME(Z—I)JM 3)
that the lattice can cover all possible solutions for any filter ’

bank possessing certain desired properties, such as perfect R(z) :z_(l‘_l)JMR(z_l)DM. (4)

reconstruction (PR), paraunitary (PU), and/or linear-phase _
perfect reconstruction (LPPR). In [1], a lattice structure fdrauation (2) is referred to as the PR property, and (3) and (4)

an M-channel linear-phase perfect reconstruction filter barft€ referred toas the LP property. Collectively, (2)—(4) are called
(LPPRFB) with all the filters of the same length= K M was the LPPR condition. For this subclass of LPPRFBs, the lattice

introduced. When{ is even, the proposed lattice structure iﬁactonzaﬂon derived in [1]is as follows:
[1] was asserted to be complete [1, Theorem Il], i.e., the lattice

E(2) =Gg_1(2)Gg_2(2)---G2(2)G1(2)E 5
was supposed to cover all even-channel LPPRFB’s with the (=) K-1(#)Gre—2(7) 2(2)G1(2)Eo ©)
same filter length. However, in this letter, we point out that ¢y _1 |:Ui Orn:| |:Irn Irn:| |:Irn 0., }

the assertion of completeness in [1] is incorrect. Examples are O, Vi||Ln —In]|[0n 2z7'L,
presented to show that the proposed lattice structure in [1] is L, L,
notcomplete wherk” > 2. In addition, we prove that the lattice ’ [Im —Im}
structure in [1] is complete only wheld < 2. A

Hereafter, we use the following notations to denote certain = 3 BWA(Z)W (6)
special matrices. For a positive integer L,,,, J,, and0,,, de- and
note them x m identity matrix, reversal matrix and null ma- B, — i [ Uy UOJm}

T V2 [Vodm Vo
o L |:U0 Orn:| |:Irn Jrn :| (7)
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replaced by the identity matrik,, without loss of generality. whereE,, andE, are the upper and lower submatricesky

That is, allG;(z) in (6) can be substituted by with size of M /2 x M each. Substituting (11) into (10) yields
G(7) 1 |:UZ 0m:| |:Im Im:| |:Irn 0. :| By = Ux-1Ea, (12)
T 20, Ln | L —Ln| |0 27U, which indicates thalE, can be represented through a linear

I T if the row vectors oE,, andE, span the same spadbke condi-
m m tion rank ( Null(Eg)) > M /2 alone cannot guarantee the exis-

The simplified expression in (8) provides a much more effence OfU—1 In (10). Hence, the original proof of complete-

cient way for both design and implementation of LPPRFBIESS N [1is mt_:orr_ect and consequently, .the completene;s of
. . -the lattice factorization needs to be re-studied. In the following,
Later, we will use it to analyze the completeness of the latti

tactorization ?ﬁrough counter examples, we will show that the factorization
' isnotcomplete wher{ > 2. Then, we prove that the factoriza-
tion is complete wher < 2.

[I I } transform ofE,. In other words, (10) is satisfied and only
m m (8)

I1l. ON THE COMPLETENESS OF THELATTICE FACTORIZATION
B. K >2

Actually, (12) is a very strong restriction. Whéfi > 2, an

In [1, Th. 1], it was stated that the lattice factorization in (5}-PPRFB can exist even if (12) does not hold. To see this more
is complete, i.e., it covers all possible solutions of even-chanrfégarly, we first provide a counter example f&r = 3. Based
LPPRFBs with filter length of. = KM each. However, in the ON it, other counter examples can be generatedkfor 3.
following, we shall show that this assertion is incorrect. To this 1) & = 3: A counter example foK' = 3 is as follows. For
end, let us briefly review the original incorrect proofin [1].  instance, whed/ = 4, let E(z) andR(~) be chosen as

The proof of completeness relies on the existence of a 1 1 1 1 2 0 0 2
building block G _1(z) that can reduce the order ®&(z) -1 -1 -1 -1 0 2 2 0] 4
by 1 at a time while retaining the LPPR property of the (=)= 1 -1 1 -1 + 2 00 -2~
reduced-ordeF(z) = Gj' ,(2)E(z). A critical step in the -1 1 -1 1 0 -2 2 0
proof is thecausality of the factorization, i.e., there always 1 1 1 1
exist invertible matricedJx_; and V_; that can produce 1 -1 -1 -1
a causalF(z). Let F(z) = 3/0% Fiz™" (Fi_, # 0) and + 1 17 (13)
E(z) = Y  Eiz ' (Ex_; # 0), the proof of causality 1
is equivalent to showing that there always exist two invertiblgng
matricesU i _; andV g _; such that [1, (A.4)] —

A. Review of the Original Proof
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In [1], it is presumed that (9) is satisfiedstink(Eq) < M/2,
since, in that case, the dimension of the null spac&gfis
larger than or equal td4/2, i.e., rank(Null(Eq)) > M/2,in
which Null(E) denotes the null space ®&,. It is assumed
in [1] that under this condition, it is possible to chooé/2
linearly independent vectors frod,’s null space to serve as . )
U, Vi One can verify thaE(z) andR(z) satisfy

As previously mentionedG;(z) in (6) can be replaced by R(2)E(z) =2 2L, (15)
G, (z) in (8) without loss of generality. Thus, we can rephrase
the above assumption in the simplified factorization as follows. E(z) =2 "D4E(z 1)J4 (16)

=22 J,R(z"HD,. 17)

If rank(Null(Eg)) > M/2, there always exist an invertible R(z
That is,E(z) andR(z) satisfy the LPPR condition with= 2,

ol Col— Colk Col

ol ol Golk Golk
|
[+

(14)
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matrix U _; such that

Uz,l_l -1, E. 0 10 K =3andM = 4in (2)-(4). Moreover, from (13), it is easy

[_Uz}_l Im} THO0 = M (10) {0 see thatank(Eq) = 4/2 = 2. However, in this example,

the basis vector oE,, is [1 1 1 1], while the basis vector of

However, such assumptionn®t true. E;is[1 —1 1 —1]. They do not span the same space. Thus,
Now, expresE, as does not exist. As a resulE(z) can not be expressed in terms of

(5). This example means that the factorization cannot cover all
E, — | Eu (11) the solutions whed( = 3. Based on it, we can also find other
0= counter examples fokK > 3 as follows.
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2) K > 3: WhenK isodd K = 2K, + 1, Ko > 1), let 2(Ko + 1) andM = 4. However, from (22), one can compute
the corresponding analysis bafik(z) = S°% " E¢2~% and that

synthesis banR°(z) = > ! R¢2~" be chosen as I, 0, L 0,
. ! ESIES[OQ 02}: 0{02 02}
E°(z) = E(z"°) and R°(z) = R(z")  (18)
1 1 00
in which E(z) andR(>) are the same as in (13) and (14), re- -1 -1 0 0 97
spectively. From (15)—(18), one can derive that - 1 -1 0 0 (27)
-1 1 00

R ,KO E ,KO — ,_QKOI
(7)B(E) == * Let E;, andE; denote the first two rows and the last two rows

= R(E°(z) =2 2L (19)  of E¢, respectively, i.e.,
E(z%0) =z 20D E(r50)J, geo| 1 100] ype [ 1-100] g
=  E%(2) =2 DE°(»"1Jy  (20) “T1-1-100 d7l-1 100/
R(z) =~ 203, R(» K0)D, Clearly, the row vectors oE¢, and E do not span the same
. RY(z) = IR DL (21) Z[iatﬁg?. TherefordE®(z) cannot be represented in terms of (5),

In other wordsE°(z) andR°(z) satisfy the LPPR condition ~From the above counter examples, we can conclude that the
in (2)=(4) withl = 2K,, K = 2K, + 1 and M = 4. But lattice factorization in (5) imot complete fork™ > 2.
sinceEj = Eg, for the same reason as explained in the previots K <9
example E°(>) can not be represented through (5), either. =

On the other hand, whelf is even K = 2(K, + 1), Ko > Now, let us study the case whéﬁ < 2. 1tis easy to see thgt
1), let the analysis barlk¢(z) = Zili_ol E¢z—¢ and synthesis when K = 1, the factorization is complete [1]. Next, we will

bankR¢(z) = Efi_ol RS~ be chosen as prove Fhat the faptorization is also complete wﬁéﬁ: 2.
’ Similarly, as in [1], we have to show the existence of a
E¢(z) =E%(2)diag(Iy, » 1) G '(») such thatF(») = G['(»)E(z) corresponds to an

LPPRFB withK = 1. Since the preservation of LPPR property
. ) . . and order reduction property have been verified in [1], we need
Re(2) = diag(z™ I, I)R%(z) (22) only to prove causality. The proof of completenessfbr= 2
whereE(=) andR () are defined in (18) ity taking the 1> 2°°0PIShed ifwe can verfy e existence of an ivertile
same value. SincE’(z) andR°(z) satisfy the PR property in ' g ' d Y. ' '

o ) . . . for simplicity of exposition, denot&(») = Eq + E;~~! and
(2), itis easy to verify thaE*(z) andR°(z) also satisfy the PR R(z) = Ro + Ry . The LP condition implies that [1]
property as follows:

E; =DyEgJy and Ry = JyReDyy. (29)

and

Ré(2)Ef(2) = diag(z 1y, I,)R°(2)E*(2)diag(I,, 271 ) .
(2)E(2) (’ 2 L)RY(2)B7(2) (T 2) Equivalently,E; andR; (for¢ = 0, 1) should take the following
= GKoFby, (23) forms:
Moreover, noticing the fact that E, = [E“} , E = [ E”'JM} (30)
—EqJn
diag(Iy, 27 1) = 271 Jydiag(Ia, 21)J4 (24) and

Ro=[R; R.], Ri=[IJvR: —-JIuR. 31
and using (20), we can derive tHBf(~) satisfies the LP prop- 0 =R ] 1=k vR] 3D

erty as follows: in which E,, andE, are, respectively, the upper and lower sub-
matrices ofE, with size of M /2 x M each, whileR; andR...
E(2) = E°(2)diag(Ia, 27 1) are, respectively, the left and right submatriceRefwith size
— 2 2D, B (2 NI diag(Ls, 210)Js of M x M /2 each. Besides, the PR propeRyz)E(z) = I,
_ z*<2K0+1)D4E€'(z*1)J4 leads to
=2 E-VUDLE (27 1)I,. (25) E(z)R(z) =1y (32)
In a similar way, one can verify th&<(z) satisfies the LP prop- from which one can derive that
erty also EoRo+ E1R; =1y (33)
R(z) =2~ Mt R (27D, and
=2~ F= DI, R(z71)Dy. (26) EoR; =0n- (34)

Equations (23), (25), and (26) mean ti&ft(z) andR°(z) sat- With (29), one can obtain

iSfy the LPPR condition in (2)—(4) with = 2Ky + 1, K = EoR; = EqJyRoDjys =03 = EoJyRo =0y (35)
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Substituting (30) and (31) into (33) yields

2EuRl - 2EdRr = I]\{/Q. (36)

As for anz x y matrix A and ay x z matrix B, min(rank(A),
rank(B)) > rank(AB), thus,

rank(E,) > M/2,
and
rank(R,.) > M/2.

rank(Eq) > M/2, rank(Ry) > M/2

(37)
Besides, for am: x y matrix A, rank(A) < min(z, ¥), hence,

rank(E,) < M/2,
and
rank(R,.) < M/2.

rank(Eq) < M/2, rank(Ry) < M/2

(38)
Based on (37) and (38), we can deduce that

rank(E,) = rank(Eq) = rank(Ry) = rank(Ry) = M/2
(39)
which means that all th&/ /2 rows ofE,, andE,; must be inde-
pendent, and all thd//2 columns ofR; andR.,. are indepen-
dent, too. Hence,

rank(Eq) > M/2 and rank(Ro) > M/2.  (40)

Furthermore, applying Sylvester’s rank inequality [3] to (35)

results in

rank(Eg) + rank(Ro) — M < rank(EqJyRo) =0

= rank(Eg) + rank(Ro) < M. (41)
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From (40) and (41), we have

rank(Eq) = rank(Ro) = M/2. (42)

Together, (39) and (42) mean that the row vector&gfand
E,; must span the same space. Herlgg,can be represented
through a linear transform d@,. That is, there always exists an
invertible matrixU; such that (12), or equivalently, (10) exists,
which further means that causality is met.

From the above discussions, Theorem Il in [1] should be
amended as follows.

Theorem 1: For anyM -channel {4 even) LPPRFB with all
the analysis and synthesis filters of lendth= 244 each, the
corresponding analysis polyphase mafiikz) can always be
factored as in (5).

IV. CONCLUSION

We have re-examined the completeness of the lattice factor-
ization for A -channel {4/ even) LPPRFB with all the filters of
the same lengtl, = KM in [1]. We point out that the orig-
inal proof of completeness contains an incorrect assumption.
Through counter examples, we show that the factorization is not
complete forK” > 2. Additionally, we prove that the factoriza-
tion is complete whelk” < 2. The complete factorization of the
generall, = KM (K > 2) case is still an open problem.
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