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Abstract—In this letter, we re-examine the completeness of
the lattice factorization for -channel linear-phase perfect
reconstruction filter bank (LPPRFB) with filters of the same
length = in [1]. We point out that the assertion of
completeness in [1] is incorrect. Examples are presented to show
that the proposed lattice structure in [1] is not complete when

2. In addition, we verify that the lattice structure in [1] is
complete only when 2.

Index Terms—Completeness, lattice factorization, linear-phase
perfect reconstruction filter bank.

I. INTRODUCTION

L ATTICE factorization is one of the most attractive
methods for the design and implementation of filter

banks. An important concept associated with the lattice
structure iscompleteness. Completeness of a lattice implies
that the lattice can cover all possible solutions for any filter
bank possessing certain desired properties, such as perfect
reconstruction (PR), paraunitary (PU), and/or linear-phase
perfect reconstruction (LPPR). In [1], a lattice structure for
an -channel linear-phase perfect reconstruction filter bank
(LPPRFB) with all the filters of the same length was
introduced. When is even, the proposed lattice structure in
[1] was asserted to be complete [1, Theorem II], i.e., the lattice
was supposed to cover all even-channel LPPRFB’s with the
same filter length. However, in this letter, we point out that
the assertion of completeness in [1] is incorrect. Examples are
presented to show that the proposed lattice structure in [1] is
notcomplete when . In addition, we prove that the lattice
structure in [1] is complete only when .

Hereafter, we use the following notations to denote certain
special matrices. For a positive integer, , and de-
note the identity matrix, reversal matrix and null ma-
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trix [1], respectively. Moreover, is a matrix as
follows:

(1)

II. L ATTICE FACTORIZATION FOR LPPRFBS

Consider an -channel ( even, ) LPPRFB with
all the analysis and synthesis filters of the same length
each. Let and denote the corresponding analysis and
synthesis polyphase matrix, respectively. and satisfy
the LPPR condition as follows [1]:

(2)

(3)

(4)

Equation (2) is referred to as the PR property, and (3) and (4)
are referred to as the LP property. Collectively, (2)–(4) are called
the LPPR condition. For this subclass of LPPRFBs, the lattice
factorization derived in [1] is as follows:

(5)

(6)

and

(7)

where , (for ) are arbitrary
invertible matrices. The synthesis polyphase matrix can
be obtained by inverting each analysis component one by one in

[1].
Although the above factorization can structurally enforce

both LP and PR properties, it contains redundant free param-
eters. In [2], a simplified lattice factorization was presented,
where all the matrices (for ) can be
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replaced by the identity matrix without loss of generality.
That is, all in (6) can be substituted by

(8)

The simplified expression in (8) provides a much more effi-
cient way for both design and implementation of LPPRFB.
Later, we will use it to analyze the completeness of the lattice
factorization.

III. ON THE COMPLETENESS OF THELATTICE FACTORIZATION

A. Review of the Original Proof

In [1, Th. II], it was stated that the lattice factorization in (5)
is complete, i.e., it covers all possible solutions of even-channel
LPPRFBs with filter length of each. However, in the
following, we shall show that this assertion is incorrect. To this
end, let us briefly review the original incorrect proof in [1].

The proof of completeness relies on the existence of a
building block that can reduce the order of
by 1 at a time while retaining the LPPR property of the
reduced-order . A critical step in the
proof is thecausality of the factorization, i.e., there always
exist invertible matrices and that can produce
a causal . Let and

, the proof of causality
is equivalent to showing that there always exist two invertible
matrices and such that [1, (A.4)]

(9)

In [1], it is presumed that (9) is satisfied ifrank ,
since, in that case, the dimension of the null space ofis
larger than or equal to , i.e.,rank Null , in
which Null denotes the null space of . It is assumed
in [1] that under this condition, it is possible to choose
linearly independent vectors from ’s null space to serve as

.
As previously mentioned, in (6) can be replaced by

in (8) without loss of generality. Thus, we can rephrase
the above assumption in the simplified factorization as follows.
If rank Null , there always exist an invertible
matrix such that

(10)

However, such assumption isnot true.
Now, express as

(11)

where and are the upper and lower submatrices of
with size of each. Substituting (11) into (10) yields

(12)

which indicates that can be represented through a linear
transform of . In other words, (10) is satisfiedif and only
if the row vectors of and span the same space,the condi-
tion rank Null alone cannot guarantee the exis-
tence of in (10). Hence, the original proof of complete-
ness in [1] is incorrect and consequently, the completeness of
the lattice factorization needs to be re-studied. In the following,
through counter examples, we will show that the factorization
is notcomplete when . Then, we prove that the factoriza-
tion is complete when .

B.

Actually, (12) is a very strong restriction. When , an
LPPRFB can exist even if (12) does not hold. To see this more
clearly, we first provide a counter example for . Based
on it, other counter examples can be generated for .

1) : A counter example for is as follows. For
instance, when , let and be chosen as

(13)

and

(14)

One can verify that and satisfy

(15)

(16)

(17)

That is, and satisfy the LPPR condition with ,
and in (2)–(4). Moreover, from (13), it is easy

to see thatrank . However, in this example,
the basis vector of is , while the basis vector of

is . They do not span the same space. Thus,
does not exist. As a result, can not be expressed in terms of
(5). This example means that the factorization cannot cover all
the solutions when . Based on it, we can also find other
counter examples for as follows.
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2) : When is odd ( , ), let
the corresponding analysis bank and
synthesis bank be chosen as

and (18)

in which and are the same as in (13) and (14), re-
spectively. From (15)–(18), one can derive that

(19)

(20)

(21)

In other words, and satisfy the LPPR condition
in (2)–(4) with , and . But
since , for the same reason as explained in the previous
example, can not be represented through (5), either.

On the other hand, when is even ( ,
), let the analysis bank and synthesis

bank be chosen as

diag

and

diag (22)

where and are defined in (18) with taking the
same value. Since and satisfy the PR property in
(2), it is easy to verify that and also satisfy the PR
property as follows:

diag diag

(23)

Moreover, noticing the fact that

diag diag (24)

and using (20), we can derive that satisfies the LP prop-
erty as follows:

diag

diag

(25)

In a similar way, one can verify that satisfies the LP prop-
erty also

(26)

Equations (23), (25), and (26) mean that and sat-
isfy the LPPR condition in (2)–(4) with ,

and . However, from (22), one can compute
that

(27)

Let and denote the first two rows and the last two rows
of , respectively, i.e.,

and (28)

Clearly, the row vectors of and do not span the same
space. Therefore, cannot be represented in terms of (5),
either.

From the above counter examples, we can conclude that the
lattice factorization in (5) isnot complete for .

C.

Now, let us study the case when . It is easy to see that
when , the factorization is complete [1]. Next, we will
prove that the factorization is also complete when .

Similarly, as in [1], we have to show the existence of a
such that corresponds to an

LPPRFB with . Since the preservation of LPPR property
and order reduction property have been verified in [1], we need
only to prove causality. The proof of completeness for
is accomplished if we can verify the existence of an invertible
matrix satisfying (10), or equivalently, (12). Just as in [1],
for simplicity of exposition, denote and

. The LP condition implies that [1]

and (29)

Equivalently, and (for , 1) should take the following
forms:

(30)

and

(31)

in which and are, respectively, the upper and lower sub-
matrices of with size of each, while and
are, respectively, the left and right submatrices ofwith size
of each. Besides, the PR property
leads to

(32)

from which one can derive that

(33)

and

(34)

With (29), one can obtain

(35)
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Substituting (30) and (31) into (33) yields

(36)

As for an matrix and a matrix , rank ,
rank rank , thus,

rank rank rank

and

rank (37)

Besides, for an matrix , rank , hence,

rank rank rank

and

rank (38)

Based on (37) and (38), we can deduce that

rank rank rank rank

(39)
which means that all the rows of and must be inde-
pendent, and all the columns of and are indepen-
dent, too. Hence,

rank and rank (40)

Furthermore, applying Sylvester’s rank inequality [3] to (35)
results in

rank rank rank

rank rank (41)

From (40) and (41), we have

rank rank (42)

Together, (39) and (42) mean that the row vectors ofand
must span the same space. Hence,can be represented

through a linear transform of . That is, there always exists an
invertible matrix such that (12), or equivalently, (10) exists,
which further means that causality is met.

From the above discussions, Theorem II in [1] should be
amended as follows.

Theorem 1: For any -channel ( even) LPPRFB with all
the analysis and synthesis filters of length each, the
corresponding analysis polyphase matrix can always be
factored as in (5).

IV. CONCLUSION

We have re-examined the completeness of the lattice factor-
ization for -channel ( even) LPPRFB with all the filters of
the same length in [1]. We point out that the orig-
inal proof of completeness contains an incorrect assumption.
Through counter examples, we show that the factorization is not
complete for . Additionally, we prove that the factoriza-
tion is complete when . The complete factorization of the
general ( ) case is still an open problem.
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