
1446 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 10, OCTOBER 1999

VI. CONCLUSIONS

In this work, a multiscale textual image compression (TIC) method
is introduced. The document image is first decomposed into subim-
ages using a binary subband decomposition structure. Next, the
locations of the character images in the subband domain are encoded.
In this way, higher compression ratios than regular TIC methods can
be obtained without introducing any visual degradation.

Performance of various subband decomposition structures are
experimentally tested, and it is observed that the binary wavelet
transform and the binary nonlinear subband decomposition structures
produce comparable coding results.

A feature of the coding method is that the keyword search
or the creation of the symbol library can be carried out in the
coded bitstream in subbands. Other advantages of the subband
scheme include multiresolution image viewing and computational
efficiency. As a direct consequence of the subband decomposition,
a low-resolution imagexll is obtained and it can be used for fast
preview purposes to decrease the bandwidth usage. The compression
of the textual image is a computationally costly operation. The
multiresolution approach reduces the encoding time as the pattern
matching is carried out in low-resolution images.
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On Independent Color Space Transformations
for the Compression of CMYK Images

Ricardo L. de Queiroz

Abstract—Device- and image-independent color space transformations
for the compression of CMYK images were studied. A new transforma-
tion (to a YYCC color space) was developed and compared to known
ones. Several tests were conducted leading to interesting conclusions.
Among them, color transformations are not always advantageous over
independent compression of CMYK color planes. Another interesting
conclusion is that chrominance subsampling is rarely advantageous in
this context. Also, it is shown that transformation to YYCC consistently
outperforms the transformation to YCbCrK, while being competitive with
the image-dependent KLT-based approach.

I. INTRODUCTION

Images for monitor display are commonly stored or transmitted in
popular color spaces such as RGB, CIELAB, YUV, YCbCr, etc. [1],
[2]. Images to be printed are commonly rendered in a subtractive
color space such as CMYK [1], [2]. Sometimes documents contain
pictures in other color spaces that are then converted to CMYK for
printing. Good color management practice demands color correction
for the printing device [3], [4]. We refer to the printing color space
as device-dependent-CMYK or simply device-CMYK.

The color correction process not only maps the input gamut to the
device’s gamut but it also incorporates other factors such as under-
color removal (UCR) and tone-reproduction curves (TRC). Those
steps are commonly based on a printer model [3], [4] which is
empirically derived. CMYK here refers to device-CMYK where the
device is known (the dependence on a device is also true for all color
spaces derived from CMYK unless a printer-model-based mapping
is performed). It is clear that the conversion between color spaces
such as CIELAB and device-CMYK is an ill-posed problem, not
only because it converts between three and four color bases, but also
because it is not a linear process. Thus, invertibility is not guaranteed.

It is often necessary to compress CMYK images for a number
of reasons, such as bandwidth or memory reduction. Fig. 1 shows a
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Fig. 1. Image path for generating and printing an image in a high-end
printing device (PDL stands for page description languages, e.g., postcript).

printing system path in which a CMYK image bitmap is generated and
possibly compressed. JPEG [5] is a standard for image compression
and is widely used. Other compressors such as SPIHT [6] are
becoming very popular, and work is under way to define a new
standard for still-image compression [7]. In this work, we use only
JPEG for three basic reasons. First, JPEG is a well-known standard
so we assume the readers are well aware of its performance. Second,
our tests involve comparisons whose results are not likely to change
by replacing the coding mechanism. Last, as a standard, it is the coder
in which most readers would actually use the results of this work. We
here study color transformation for compression of CMYK. Similar to
the way in which RGB images are commonly converted to luminance-
chrominance color spaces such as YCbCr before compression, we
would like to understand which transformations would be the best
to apply to CMYK images for the same purpose. Along with color
transformations, we also discuss the applicability of subsampling for
chrominanceplanes.

II. DEVICE SPACE AND DISTORTION MEASURE

A compression mechanism must be evaluated through its rate-
distortion (RD) tradeoff so we need to define a distortion measure. In
color management, CIE’s�E�ab [8], [9] is a common error measure
for color patches. (We use the notation�E as a shorthand to�E�ab:)
For natural images the spatial-CIELAB difference metric has been
proposed [10], in which linear filtering is applied to luminance-
chrominance color planes and then CIE�E�ab is computed on a
pixel-by-pixel basis forming anerror image. We propose a practical
simplified variation of [10] and refer to it asS�E:

CMYK is generally a device color space. One might be able to
invert the UCR strategy and obtain RGB values, but they still would
be device-space RGB values. Those values have little meaning until
they are translated into a standard (reference) space. CIELAB is one
possible space. Inversion is possible if the image’s ICC profile [11]
or the printer model (for the device for which the CMYK values
were derived) is available. Several devices, including xerographic
and nonxerographic printers, are considered. Hence, different CMYK
images in this work were created from the same image by submitting
the input image (in for example CIELAB) through the device’s
own color correction LUT. Thus, each device is associated to one
printer model LUT (CMYK to CIELAB or to RGB) and to one color
correction LUT (CIELAB to CMYK), which are hopefully the inverse
of each other and can be inferred from the device’s ICC profile.
For the printer model and color correction tables used in this paper,
the conversion between CIELAB and CMYK, back and forth, yields
average�E below 2.7 for all images and devices.

The distortion measure(S�E) between two CMYK images used
in this paper is performed in a standard color space and is obtained
as in Fig. 2. Each image is mapped to Xerox RGB (D50) from
CMYK through its corresponding printer model LUT. RGB values
are converted to YCbCr through the popular linear transformation
from [5]. Next, each luminance channel is filtered with an 11� 11
filter hL(m;n); while each chrominance channel is filtered with an
11� 11 filter hC(m;n): The resulting filtered images are converted

(a)

(b)

Fig. 2. Computation ofS�E: (a) Computation of filtered CIELAB images.
(b) Error measure from comparing two CIELAB images. T1 and T2 are color
transformations, whilehL andhC are HVS-derived linear filters.

to CIELAB from which�E(m;n) (CIE 76) is measured for every
pixel (m;n): S�E is taken simply as the average of the�E(m;n):

The proposed measure is simply the average error in a perceptually
uniform color space, with the only difference being that the images
are prefiltered to remove “invisible” noise, which is the idea of
spatial-CIELAB [10]. We however want to keep the filtering process
as simple as possible because of the large number of measurements.
In order to better remove invisible error patterns, one may try to
approximate the human visual system (HVS), whose transfer function
is complex and nonlinear. Linear transfer function approximations of
the HVS have been attempted by several researchers by analyzing the
sensitivity of observers to sinusoidal gratings [12]–[16]. Studies to
better comprehend the human sensitivity to chrominance signals are
still under way. In reality the one-dimensional (1-D) transfer function
of the HVS is a multidimensional function, depending on 1) location
in the gamut, 2) change direction in the gamut, and 3) frequency and
amplitude of the change. In our simplification efforts we employ some
ad-hoc restrictions: a separable model, filter size (support) of 11� 11,
and linear-phase (symmetric) filters. The filters used for luminance
and chrominance were derived from known HVS transfer curves
which were mapped to simpler functions. The luminance model was
chosen as [13]

H(f) = 2:46(0:1 + 0:25f)e�0:25f (1)

wheref is given in number of cycles per degree (cpd) of visual angle
subtended and where the peak occurs at 3.75 cpd. The chrominance
curve is simply

H(f) = e
�0:205f

: (2)

It is necessary to determine the maximum visible frequency which
is a function of resolution and viewer distance from the image. As
a reference we have chosen a resolution of 300 pixels per inch
(ppi) and a distance of 12 in from the image. By least squares
finite impulse response (FIR) design of separable filters we found
approximation filters for luminance(hL(m;n)) and chrominance
(hC(m;n)) which are given in Table I. Not only are shorter filters
faster to compute, but they also avoid the artificial periodic extension
implied when filtering is performed in the discrete Fourier transform
(DFT) domain. Long periodic filters with very poor spatial resolution,
often produce localized artifacts. In other words we trade poorer
frequency selectivity for better space localization.

In any case, the goal of filtering is merely to remove low-visibility
noise which interfere with MSE-type error measures. Furthermore, the
reader must have in mind that nowhere in this paper isS�E taken
as an absolute value, but is used to compare different compression
methods. Several of the results in the next sections were also
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TABLE I
LUMINANCE (LEFT) AND CHROMINANCE (RIGHT) FILTERS

recomputed with variations in filter design andS�E computation.
The relative performance of different algorithms was unchanged.

As a comparison, the PSNR between the CMYK images in
the native device-CMYK spaces were also computed and will be
presented as an alternative error measure.

III. D ATA-INDEPENDENT COLOR TRANSFORMATION

Because of the difficulties in converting to and from device-
dependent four-dimensional (4-D) color spaces, the CMYK separa-
tions are usually compressed independently. In a JPEG framework
this translates into compressing four color channels at full resolution.
In a recent standard [17], JPEG defined a file format and several color
spaces for compression. The options for 4-D color spaces are CMYK,
CMY and YCbCrK. CMY is a three-dimensional (3-D) color space
where the ink coverage is fixed. YCbCrK derives from CMYK, in
which CMY is converted to RGB and from there to YCbCr. In this
case, the black channel K remains untouched.

We introduce yet another 4-D device-independent color space.
Fig. 3 shows CMYK planes for one of the test images color corrected
for the xerographic printer. For most device calibrations, luminance
components are heavily built into the K channel. By inverting
CMY into RGB and converting to YCbCr, the resulting luminance
component Y also contains much of the luminance of the original
image. The color channels for YCbCr derived from CMY are also
shown in Fig. 3. We propose to also invert K, obtaining a “white”
channel (W= 1 � K). The W channel is then combined with the
luminance of YCbCr. Note that the sharp edges of the luminance
channels are also represented in the W channel [Fig. 3(d)]. We
propose to try to remove the extra redundancy between the Y and W
channels mainly in regard to sharp edges. In our proposal, we produce
two output channels from Y and W: one (Y+) contains the average of
Y and W and the other (Y

�

) contains the difference between them.
We refer to the resulting color space as YYCC, short for Y+Y

�

CbCr.
The overall transformation diagram is shown in Fig. 4. Fig. 3(h) and
(i) shows the Y+ and Y

�

images, which can be compared to the
images W and Y in Fig. 3(d) and (g). Y+ resembles Y, but the sharp
edges in W seem to have been incorporated into Y+ instead of Y

�

:

Note in Fig. 3 that Y
�

has characteristics of both luminance and
chrominance channels and softer edges. This facilitates compression
as sharp edges are more concentrated in one channel. In other words,
compression in YYCC space demands compression of images in
Fig. 3(e), (f), (h), and (i), while compression in YCbCrK space
demands compression of images in Fig. 3(d)–(g), and compression of
the CMYK channels demands compression of images in Fig. 3(a)–(d).

Another issue in the compression of color images is the subsam-
pling factor for each color plane. It is a common practice to subsample
chrominance signals in a YCbCr color space by a factor of two

in each direction. Similar benefits are expected by subsampling Cb
and Cr in both YCbCrK and YYCC color spaces. In reality, even
monochrome images can benefit from subsampling. It is known that
for higher compression ratios it is preferred to subsample the image
first and then apply higher quality JPEG compression [18], than to
simply compress the image with lower quality factor. The same is
true for every color channel. What we need to understand is where
the breakpoint lies. We will show that in a 4-D color space there is
no need to subsample the chrominance channels, except for very high
compression ratios where the overall quality is compromised.

The color transformations to YCbCrK and YYCC are said to
be data-independent because they are not dependent on the image
contents. Other methods such as those based on the KLT devise the
transformation after computing the input image statistics [19] with
the goal of decorrelating the input color planes.

IV. COMPARATIVE EVALUATION

For comparison, each method is evaluated through an RD curve
plot, employing baseline JPEG. In all tests, to maintain a common
reference, only the example (default) quantizer and Huffman tables
were used and the curves were obtained by scaling the quantizer tables
by a common multiplicative (“quality”) factor. The CMYK channels
as well as the luminance in YCbCrK and the transformed luminance
channels in YYCC were subject to JPEG’s default luminance table,
while channels Cb and Cr were subject to the default chrominance
tables.

Tests were performed for several printers and images. As discussed,
each printer is associated to its own color correction and printer model
tables, so that for each printer a different set of CMYK values is
generated. A number of transform/compression configurations were
tested: CMYK, YYCC with and without chrominance subsampling,
YCbCrK with and without chrominance subsampling, KLT-based
using luminance table for all channels, and KLT-based using both
luminance and chrominance tables. Distortion was computed as both
S�E and peak signal-to-noise ratio (PSNR) between the CMYK
data. For conciseness, only few representative results are presented
in condensed form.

In Fig. 5, we show the RD plots comparing CMYK, YYCC, and
YCbCrK averaged for all images, with and without subsampling
chrominance planes. Note that subsampling the chrominance is only
advantageous for very low bit-rates. The breakpoint for subsampling
occurs at rates generally below 0.2 b/pel (compression ratio larger
than 160 : 1). Also, YYCC consistently outperforms the others in
terms of S�E and PSNR.

The reason for the great advantage of YYCC is the softening of
edges in W, which has large contrast. Therefore, in situations where
this scenario does not occur one may expect less or no advantage
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Color planes of the reference image. (a) Inverse cyan. (b) Inverse magenta. (c) Inverse yellow. (d) Inverse black or “white” (W). Images (e)–(g)
correspond to YCbCr channels obtained from transforming images (a)–(c). (e) Cb. (f) Cr. (g) Y. (h) Y+ =

1

2
(Y+W). (i) Y

�

=
1

2
(Y-W).

Fig. 4. Computation of YYCC. “I” means inversion and T is an RGB-YCbCr
transformation.

in using YYCC. The lower the correlation between Y and W, the
smaller the advantage. Another experiment was made by devising
CMY data for monitors and dye-sublimation printers while using a
fixed UCR strategy (80%) to find K. This would result in having
K (and W) with less contrast and much more noise. The averaged
results for several images and for the two devices are shown in
Fig. 6(a). Note the unimpressive performance of the YYCC space
because of the decorrelation between Y and W (K). The plots in Fig. 5

were averaged over several images, which masks some individual
but interesting results. For example, for one of the test images
whose results are shown in Fig. 6(b), the performance of CMYK
independent compression is substantially better than the others for
low compression ratios. This particular test image is scanned printed
material and still has strong halftone artifacts. The more noise the
lower the correlation among color planes. Tests were repeated for
two other images of similar nature and the results are consistent with
that of Fig. 6, i.e., there is a breakpoint in compression ratio after
which it is advantageous not to transform the image.

Fig. 7 shows a comparison of compression in YYCC and CMYK
color spaces against image-dependent KLT-based transformations.
The KLT-based method is presumed to be optimal in the sense
of decorrelating the color planes. However, it does not affect the
spatial correlations and there is still the factor of matching the color
transformation to the compression scheme. Fig. 7 shows average



1450 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 10, OCTOBER 1999

Fig. 5. RD plots comparing CMYK, YCbCrK and YYCC averaged over several images for a xerographic printer. Tests were made with and without
chrominance subsampling.

(a) (b)

Fig. 6. RD plots for situations where there is little or no advantage in converting the image to YYCC. (a) Fixed UCR strategy for several device spaces
and images. (b) Noisy scanned image for the xerographic device.

RD plots for all images, for the xerographic printer, and using
both S�E and PSNR as distortion measures. The two KLT plots
represent two different compression schemes. In the first, all KLT-
resulting planes were subject to luminance quantizer tables in JPEG.
In the second case, the two color planes with the higher energy were
subject to luminance quantizer tables while the other two were subject
to chrominance quantizer tables. The results in Fig. 7 indicate that
the performance of YYCC comes very close to the image-adapted
expensive KLT-method which is presumed to be statistically optimal.

The reader is encouraged to reproduce the experiments in this
correspondence. All steps in the transformation to YYCC and in the
computation of S�E are straighforward, mostly linear and invertible.
Just the color correction to obtain the CMYK values and the printer
model are printer dependent. Such tables can be derived, for example,
from the printer’s ICC profile.

V. CONCLUSIONS

The data supports the following preliminary conclusions for the
devices tested.

1) YYCC consistently outperforms YCbCrK.
2) The higher the noise in the color planes the lower the corre-

lation among planes and the smaller the advantage of color
transformation.

3) For low compression of noisy halftoned images it is better to
compress CMYK independently.

4) Chrominance subsampling is not desired for most bit-rates of
interest.

5) The best of YYCC and CMYK is only slightly inferior to KLT
transformations.

Based on the preliminary conclusions, the main conclusion of this
work is that CMYK images can be efficiently compressed using
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Fig. 7. RD plots comparing CMYK, YYCC, and the KLT for a xerographic printer. Results are averaged for all images. The two KLT types correspond to
use only the luminance table for all transformed planes, or both luminance and chrominance tables (two planes for each).

a YYCC color space (without chrominance subsampling), with the
notable exception of low-ratio compression of very active (or noisy)
images, which may be compressed in their native CMYK color space.
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Semi-Fixed-Length Motion Vector Coding for
H.263-Based Low Bit Rate Video Compression

Guy Côté, Michael Gallant, and Faouzi Kossentini

Abstract—We present a semi-fixed-length motion vector coding method
for H.263-based low bit rate video compression. The method exploits
structural constraints within the motion field. The motion vectors are
encoded using semi-fixed-length codes, yielding essentially the same levels
of rate-distortion performance and subjective quality achieved by H.263’s
Huffman-based variable length codes in a noiseless environment. How-
ever, such codes provide substantially higher error resilience in a noisy
environment.

Index Terms—Error resilience, H.263, video coding, video compression.

I. INTRODUCTION

Low bit rate video compression is becoming increasingly important
due to present and forthcoming video applications, such as video
telephony over analog telephone lines or over wireless channels. This

Manuscript received April 2, 1998; revised August 18, 1998. This work
was supported by the Natural Sciences and Engineering Research Council of
Canada. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Antonio Ortega.

The authors are with the Department of Electrical and Computer Engi-
neering, University of British Columbia, Vancouver, B.C. V6T 1Z4, Canada
(e-mail: faouzi@ee.ubc.ca).

Publisher Item Identifier S 1057-7149(99)07561-2.

1057–7149/99$10.00 1999 IEEE


