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The concept of reversible conversion of color images to gray ones has been recently introduced. Colors are
mapped to textures and from the textures the receiver can recover the colors. This was done using the
wavelet transform and replacing high-frequency subbands by the down-sampled chrominance planes.
The idea is to print a color image with a black and white printer and, then, at a later time, to scan the
document and recover colors. In this paper, we propose to use a more robust method, i.e. more resistant
to the print-scan noise. We propose to use a largely redundant representation of the chrominance,
embedding them into multiple subbands of a general subband transform. In other words, we spread
the chrominance onto many subbands. We show theoretically that for minimizing the variance of the
error caused by white noise, the chrominance should be replicated into many subbands and not linearly
combined. We also demonstrate the method to find the best linear transform to embed the chrominance
into the subbands in the more general case of colored noise. We carry a noise analysis to determine
bounds to guide us on how many subbands into which to embed the chrominance. Experimental results

were carried involving real printing and scanning, as well as using a simulated print-scan path.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Recently, an innovative method to convert color images into
gray ones was introduced (de Queiroz and Braun, 2006). Its key
feature was to be reversible. The color image is converted to gray
scales and one can retrieve the colors from the gray image at a later
time. The application is for a user who created a color document
and just has a black and white device to produce or transmit the
document. For example, the user may only have easy access to
monochrome office laser printers, or the user might just have to
fax the color document. Thus, the color document is first converted
to gray scales, then to black and white, before printing (or faxing).
Later on, the user might scan (receive) the black and white docu-
ment, recover the monochrome (gray) image, process it, and re-
trieve the colors. The process is illustrated in Fig. 1 and has been
explored elsewhere (Ko et al., 2007).

Even though the proposition sounds unrealistic the method is
actually fairly simple. The idea is to smoothly map colors to high
frequency textures. By analysing the textures, the user retrieves
the colors for each region. In the originally proposed method (de
Queiroz and Braun, 2006), one has to:

1. Convert the color image to some luminance-chrominance color
space such as YCbCr or CIELab (Hunt, 2000).
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2. Apply the discrete wavelet transform (DWT) to the luminance
channel (Vetterli and Kovacevic, 1995; Strang and Nguyen,
1996).

3. Spatially reduce (subsample) the 2 chrominance planes by a
factor of 2 in each direction.

4. Replace the high-frequency wavelet subbands (Strang and
Nguyen, 1996) (HL and LH) by the 2 chrominance planes.

5. Apply the inverse DWT yielding a texturized gray image
(because of the embedded chrominance planes acting as sub-
band coefficients).

6. Scale, halftone (Roetling and Loce, 1994) and print (or transmit)
the texturized gray image.

The above method is illustrated in Fig. 2.
In order to recover the color from the gray texturized image, as
illustrated in Fig. 3, one has to:

1. Scan (receive) the image and convert it to gray scale.

2. Apply the DWT to the gray image.

3. Retrieve the high frequency subbands and assign them as chro-
minance planes.

4. Set to zero the subbands which were used to embed
chrominance.

5. Apply an inverse DWT to the resulting subbands, yielding the
luminance plane.

6. Spatially increase (up-sample) the 2 chrominance planes by a
factor of 2 in each direction.

7. Convert the luminance-chrominance planes back into RGB.
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Fig. 1. Illustration of the color to gray conversion application. The color image is
printed in a black and white printer. Later on, the user may scan the printed
document and recover the original colors, if so desired.

In essence, colors are converted to strong high-frequency pat-
terns (textures). For the user they look like halftones or similar tex-
tures that the human visual system tends to ignore and blend with
the object. Examples are shown in Fig. 4. The method works so well
because the embedding is natural, since the colors match the ob-
jects. If we coded the chrominance and embedded the binary infor-
mation into the image using any typical image watermarking
technique (Cox et al., 2002), it would probably not work. The en-
coded information does not correlate with the image contents. In
order to avoid artifacts one would have to make it subtle or invis-
ible. Then, it is likely that the information would be removed by
the halftoning, printing and scanning processes. If we make the
embedded information strong enough to survive halftoning it
would likely cause artifacts. At the moment, despite the work in
this direction (Baharav and Shaked, 1999; Chiang et al., 2006; de
Queiroz et al., 2005; Fu and Au, 2000; Knox and Wang, 1997; Liu
et al, 2004; Sharma et al.,, 2003; Venkata et al.,, 2005; Villan
et al., 2007; Voloshynovskiy et al., 2006; Wang and Knox, 2000)
we do not have reliable non-intrusive watermarking methods for
printed images, without controlling printer characteristics such
as the halftone algorithm or the laser beam intensity. The proposed
method produces strong but pleasant patterns, making it an excel-
lent candidate for the application.

A preliminary version of this work was presented elsewhere (de
Queiroz, 2007). Here, we include substantial theorectical results,
including two theorems, comparison among subband transforms,
and real print-scan tests.

Fig. 2. The color to gray conversion method. The luminance is decomposed into
subbands through a wavelet transform. The high pass bands are replaced by the
chrominance planes and the image is inverse transformed generating a texturized
gray image which conveys the color information.

Fig. 3. The color recovery method. After scanning the image, the texturized image
undergoes a DWT, the chrominance planes are extracted, the corresponding
subbands are zeroed, and an inverse DWT is carried on the result, yielding the
luminance channel. The luminance and chrominance channels are used to recover
the color image.

wrEm
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Fig. 4. Zoom of two example texturized images using the proposed method, with a
4x4 DCT and N = 6. The high frequency patterns tend to interfere with sampling
grids resulting in annoying artifacts when displaying those texturized images at
lower resolution. Changing the viewing resolution may change the artifacts. PDF
conversion also causes artifacts. Please refer to the original bitmaps at http://
image.unb.br/queiroz/texture to verify how they really look like.

2. Embedding chrominance into subbands

The method presented in the previous section is simplistic. If
the gray image was to be scaled up, halftoned and faxed, it would
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work very well, allowing the recovery of vivid colors. If the image is
to be printed, the noise and errors are so intense that the simple
method presented would not work. Any minimal shift of a pixel
or rotations of one degree may completely impair the color recov-
ery (de Queiroz and Braun, 2006). As a result, in the original work
(de Queiroz and Braun, 2006), some non-linear redundancy was
introduced in the wavelet domain to prevent sign inversion and
to reduce noise sensitivity, with some success.

We propose to use a more aggressive redundancy scheme to
cope with noise. Indeed, we propose to:

e Use general M-band subband transforms rather than the DWT,
allowing the use of the discrete cosine transform (DCT) (Rao
and Yip, 1990) or general lapped transforms (de Queiroz and
Tran, 2001; Malvar, 1992).

e Embed the chrominance planes into a linear combination of
multiple subbands per chrominance channel, as illustrated in
Fig. 5.

e Decide upon the redundancy based on a signal to noise model
analysis of the embedding mechanisms.

The questions that need to be answered before we apply such a
method are:

(a) What subband transform should we use?

(b) How many channels M should it have?

(c) How many subbands N; should we use per chrominance?

(d) How do we decide upon the linear combination of the sub-
band, i.e. how do we distribute the chrominance information
onto the N channels?

An M-band subband transform (a) can be constructed through
the general association of 2-band filter banks (i.e. discrete wavelet
packets) or directly. Both approaches are roughly equivalent in this
context, with the latter having faster algorithms. We can use the
DCT, the lapped orthogonal transform (LOT), or the modulated (ex-
tended) lapped transform (MLT or ELT), (Malvar, 1992). The choice
on the number of bands (question b), we believe to be a function of
N;. We do not want to use too many subbands to carry chromi-
nance information, because it may impair the quality of the lumi-
nance information. For example, one can use a 4 x 4-band
(M =16) transform to embed up to 10 bands (N; = 5). Higher
numbers may be accommodated into an 8 x 8 transform. Note that
the larger M is, the better the luminance quality, but the worst the
chrominance representation since the chrominance planes must be
sub-sampled accordingly to fit the subbands. Hence, we want M to
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Fig. 5. Illustration of the proposed method, showing an example of the subbands of
a 4 x 4 transform, indicating the low-pass or DC band. In this example, 3 copies of
each chrominance channel were alternately embedded into the highest frequency
subbands.

be as small as possible as long as M is substantially larger than N;.
A detailed analysis on deciding upon N; will be carried later on and
questions (c,d) will be answered in the following sections.

3. Multiple description efficiency

Let the mapping from M to N source samples be linear. In other
words, the information M-tuple ¢ = [co,¢1,...,cu1]" is mapped
into an N-tuple vector y = [y, ..., Vy_1]" as

y=Ac, (1)

where A is an N x M matrix. We assume that A has full rank and
N > M. The {y;} are then conveyed to the decoder, being corrupted
by noise in the process. The decoder has to try to recover the infor-
mation, i.e. the {c;}, from the noisy version of {y;}.

Theorem 1. Let the noise be zero-mean white and additive, i.e.
y=y+n where n is a noise vector. The signal is reconstructed
linearly as

¢ =By (2)
and the error is e = ¢ — ¢. The average reconstruction error power is
o2 = E{LeTe}. Optimal recovery, in the sense of minimizing &2, is
achieved when the columns of A form an orthogonal basis.

Proof 1. - Since

¢ =B(y +n) = BAc +Bn,

then, if we define @ =BA —1,

e = (BA -I)c+Bn = &c+ Bn,

so that the cost function ] = No? = E{eTe} is

J=E{c"®"@c + c"®"Bn + n"B"®c + n"B'Bn} (3)

Since the noise is uncorrelated with ¢ and has zero-mean,
E{n} = 0 and the second and third terms, above, are zero. The first
term is quadratic and positive semi-definite. Hence, it will be min-
imal if null. In other words, if

B=A"=(ATA)'A", 4)

then @ = 0 and the first term is minimized. The choice of B impacts
the first and last terms. The first term attains its absolute minimum
and the last is not restricted by the choice of B=A". Since
A=B =B'(BB") !, then all degrees of freedom are maintained,
i.e. every full rank matrix A corresponds to a full rank matrix B.
We are then left with minimizing the last term. We assumed the
noise to be white and stationary, i.e. Ry, = ¢2I, so that we can re-
write the cost as

J =E{n"B'Bn} = Tr{BE{nn"}B}
=Tr{BR,,B"} = ¢2Tr{BB'}
=a?Tr{(A"A) 'ATA(A'A) "}
=, Tr{(A"A)"'}. (3)

If A=[vo,v1,...,vm_1], then ATA has elements {¢;} such that
¢; = v!v;. The variance and energy of the input ¢; can be normalized
without loss of generality. Note that y = ¢cqv; +... + cy_1Vm_1 and
we can normalize the input signals ¢; and compensate any normal-
ization through scaling the {v;}. Hence, we can assume, without sac-
rificing generality, that the {v;} have unity norm, i.e. ¢; =1 for
0<i<M.

As a symmetric matrix, the singular value decomposition of ATA
is ATA = UAU", where U is some unitary matrix and 4 is a full-rank
diagonal matrix with real positive diagonal entries /, (Horn and
Johnson, 1985). Then,
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M-1 -l
Jjoh =Tr{(ATA) "} =>" —. (6)
= i
Note that
M-1 M-1
Tr{ATA} =S "4 = lu =M. (7)
k=0 k=0

As a result, with the constraint in (7), then the cost in (6) is mini-
mized iff all 4; = 1. This implies that ATA =1, ie. that the set of
{v;} are orthogonal, hence form an orthonormal basis. Q.E.D.

An important consequence of the above theorem is that not
only the columns of A should be orthogonal, but any set of
orthogonal vectors leads to an optimal choice of A. Being that the
case, one can chose the simplest possible orthogonal set. For
example an incomplete permutation set, i.e. the v; are formed by
ones and zeros only. Another implication of the theorem is that
B=A'=A".

Hence, the optimal transform can be made deterministic and
signal independent: create the matrix [IyIy - - -]T by replicating the
M x M identity matrix as many times as necessary to generate
more than N rows. Then, set A as a truncated version of the
replicated matrix to have exactly N rows. Finally, set B=A’. In
summary, the multiple description can be optimally achieved
through replication rather than linear combination.

If we set the optimized values J, =1 in (6), then the error
variance is given by

2
a2 :MA‘I’“. )

In other words, the error is distributed evenly across the redun-
dant information. The more redundancy, the lower the error, as
expected.

In the coloured (correlated) noise case, the solution is less
incisive, nevertheless equally interesting. First, one needs to re-
address the problem. In (5) the term to be minimized is
Tr{BR,;,B"}. However, this is only part of the problem because
there are constraints to obey in order to make the solution useful.
We know B needs to be inverted, hence to have full-rank. Without
further restraints, in order to minimize the cost fucntion, one needs
only to find a full-rank matrix B and multiply it by a sufficiently
small number € — 0. However, since A = B~, y would contain huge
numbers, proportional to 1/¢, and the method would not be very
useful. One potential solution is to reduce the spread of the non-
zero eigenvectors of B and A. Alternatively, one can simply limit
the condition number (Horn and Johnson, 1985) (#) of BB and
normalize the range of its eigenvalues from 1/,/7 to /7], forn > 1.
If we limit 7 = 1, then the rows of B are orthonormal to each other,
and so are those of A.

Theorem 2. Let the noise be zero-mean additive with correlation
matrix Ry,. Then, in the conditions of Theorem 1, the orthonormal
matrix A that yields optimal recovery, in the sense of minimizing o2,
is the pseudo-inverse of a matrix with the eigenvectors of Ry, corre-
sponding to its M smallest eigenvalues.

Proof 2. R, is a Hermitian full-rank matrix and from previous
results in trace inequalities for orthogonal regression problems
(Coope and Renaud, 2000), we know that the trace of BR,,B" will
be minimized when B is made of the eigenvectors corresponding
to M smallest eigenvalues of R,,. From the derivation of Theorem
1 we also know that A is the pseudo inverse of B. Q.E.D.

For a more general condition number #, then

J = Tr{BR,,B"} = Tr{R,,BB"}

Let UXUT be the singular value decomposition of R, i.e. the eigen-
vectors of R, are in U while its eigenvalues are the diagonal ele-
ments of X. Same thing for the decomposition of BB' = VSV’.
Then, if W = UV, then

J = Tr{ULU'VSV'} = Tr{ZWSW}.

The solution can be found through unconstrained optimization, by
factorizing W into M(M — 1)/2 Givens rotations (Golub and Van
Loan, 1989) and limiting the search of the M diagonal elements of
S within the [1/,/7,/7] range. In other words, a search over
M(M +1)/2 parameters. Once W and S are set, V and BB’ can be
found. From BB', the factorization of B is not unique and can be
found as

B=VS¥,

where S; is a diagonal matrix with the positive square roots of the
diagonal entries of S, and ¥ can be any orthogonal matrix. Finally,
A=B'BB")"'. O

4. Noise analysis and the amount of redundancy

Let us move closer to our original problem of embedding chro-
minance into luminance subbands. The input signal is supposed to
be a triplet X(ny,ny) = [I(n1,n3),a(ny, n2), b(ny,nz)]", where {I(i,j)}
denotes the luminance image pixels and a, b are the same for the
chrominance image planes. We will drop the pixel index (n;,n;)
wherever convenient. The recovered image is X. The distance be-
tween colors is taken as the Euclidean distance between points
in the Lab color space for every pixel (Hunt, 2000), i.e.

0% = E{|Ix — x|’}
=E{|l - I} + E{ja — af*} + E{|b - b]*}
= 04+ 0%, + 0%, 9)

Let us use an m x m transform, i.e. M = m?. Note that the chro-
minance planes have a resolution that is m times larger than any of
the subbands in each direction. Hence, the chrominance planes are
to be decimated and will suffer losses. If we ignore that and assume
the noise that will affect the gray-scale (texturized) image is white
with zero-mean and variance ¢2, and the subband transform is
orthogonal, then o., and ., would be given by (8). However, to ac-
count for sub-sampling we should add a term to that.

Let us model the signal as a separable autoregressive process of
first order, AR(1), with autocorrelation rc(n;,ny) = g?pmlpin|, and
corresponding power spectral density S;(e/®1)S.(e/“2). If the anti-
aliasing filter is perfect, the sub-sampling by a factor of m in each
direction would remove all frequency contents above 7/m. Hence,
sub-sampling causes an error whose variance is

2

ol =g — (/On/m Sc(ef”)dw> . (10)

For an AR(1) signal with unit variance, we can show that:

‘/xlfsc(e"“)da) = %arctan E jﬁtan(%)} ::/: (11)
Let

o(p,m) = %arctan E jgmd%)}. (12)
Thus,

0% = 00 — oL p*(p.m). (13)

Note that if the signal was uncorrelated, i.e. p = 0, then the noise
variance would reduce to
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S M-1
c M ‘
However, the chrominance image is actually supposed to have a
correlation coefficient very close to 1. Then,

2

O-SS

=0

(14)

2 , 20, 2 2
Oq = Op = N +O—c(1 -Q (Pvm)) (15)

If there was no embedding, 6% = ¢2, but that is not true in general.
When we use one subband to embed a chrominance plane or its
replica, we actually erase the luminance in that subband. So, as
the distortion decreases because we improve chrominance repro-
duction, at the same time distortion also increases because lumi-
nance reproduction suffers.

Without loss of generality, let us number the M subbands one-
dimensionally, arranging them such that the embedded luminance
subbands would be the last N. Let the resulting filter for the kth
luminance subband be fi(n;,n,), be it the result of the cascade of
filters like in wavelet packets, or not. Then, the variance of each
luminance subband is

a; Z%// [Fi(el”r, &) *Si(€, 7)) dow ds, (16)
0

and because of the assumed orthogonality,

2 1 LS 2
o :M;“sk' (17)

As we embed the chrominance into the last N subbands, such that
these subbands disappear, the distortion on the luminance
becomes:

1 M-1
Ca=0nta; D 05 (18)
k=M-N
Now that we have computed the distortion for all planes, the signal-
to-noise ratio (SNR) of the embedding process can be written as:

2 2 2 2
O +0,+0y  0Og

SNR = ==
2 2 2 2"
O-el t 0+ O-eb ad

(19)
Since 02 is a property of the image itself, and is independent of
M and N, we are concerned with

202
N

1 M-1
04 =0n+3; > ol+2
k=M-N
+20¢(1 - @*(p,m))

k
+2(1 - @*(p,m))0z. (20)

Fig. 6. Zigzag ordering of subbands.
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Fig. 7. MSE plot for a 4 x 4 DCT embedding framework. Printing simulation used
K=4and o, =0.

Note that there are three terms contributing to noise. One de-
pends on the system noise ¢2, the other on the luminance subband
variances and the last on the chrominance energy ¢2. The latter
does not depend on N. The first term decreases and the second
grows with N. So the question we ask ourselves, and is the purpose
of this Section, is whether it is worthy to embed more chrominance
replicas into more luminance subbands? More specifically, if we
have already N subband embedded, is it worthy to embed two
more, one for each chrominance channel? If we grow the number
of subbands from N to N + 2 the chrominance error (apart from
sub-sampling) will decrease from o2 to 62 3. In the other hand,
the luminance error variance will increase by the sum of the vari-
ances of subbands sy _y_1 and sy _y_» scaled by 1/M. Thus, it is easy
to see that it is only advantageous to embed chrominance into two
more subbands in terms of SNR if

52 o NN +2)

—— 2
n SM SM-N-1
The above condition tells us that if the textured image suffers
small noise levels, it is not advantageous to add chrominance
redundancy in expense of luminance quality. In the extreme case
of noise free transmission, one can perfectly recover both chromi-
nance channels with only two subbands. No redundancy is neces-
sary. As the noise increases, the chrominance information
disappears as noise corrupts the textures, and it becomes neces-
sary to add redundancy (more subbands) to protect the channel.
This equation also tells us that, as N grows, it becomes harder
and harder to get any benefit from embedding even more sub-
bands. Of course, it all depends on the variance of the luminance
subbands that will be discarded. The more intense their energy,
the more intense the noise has to be to make it worthy embed
more subbands.

+02 ). (21)

SM-N-2

Table 1
Comparison of MSE results for embedding chrominance using simulated printing and
many transforms (M = 16,N = 10).

Transform Image “wine” Image “Lena”

o2 a2

P P

10 25 50 10 25 50
DCT 962 998 1122 811 850 998
MLT 1033 1075 1180 929 969 1118
ELT 1028 1067 1196 936 975 1114
LOT 1018 1058 1187 923 962 1101
LBT 1148 1182 1265 958 990 1089
DWT 1258 1306 1516 1017 1078 1302

MSE computed in RGB space.
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5. Experiments scan distortion to be additive white Gaussian noise. It is a reason-
able model if geometric distortions, caused by paper warping and

The condition in (21) is image dependent and hard to compute, misplacement, and halftoning, can be at least partially corrected
since it is not trivial to determine 2. We have assumed the print- after scans. The results will be heavily dependent on the correction

Fig. 8. (Top) Original color images “mandrill” and “Barbara”, (middle) their respective texturized grey versions, (bottom) and the recovered color images without printing by
scanning, or any other noise. In essence the bottom images are recovered directly from those in the middle row.

AR 1
il i:'al'il'dfl. [k :

|
¥ ”

Fig. 9. Enlarged portions of original (left) image “barbara” and its recovered version (right) without printing, scanning or other sources of noise.
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algorithms and on the distortions they aim to correct. Furthermore,
a study on modelling the print-scan noise will be presented
elsewhere.

Here, the subsampled chrominance planes are alternately
embedded into the last N (out of M) high frequency subbands
according to the zigzag path as shown in Fig. 6. Both real and sim-
ulated print-scan paths are used. In the simulations, we scale (inter-
polate) the gray image up by a factor of K in each direction, halftone
the resulting image using error diffusion (Roetling and Loce, 1994),
filter the bi-level image using a short Gaussian filter, add zero-mean
white noise with variance o'g, and downsample the noisy, filtered,
halftoned image by averaging K x K-pixel blocks.

As a first test we used the 4 x 4 DCT and varied N in the simu-
lated print-scan path. Mean squared error (MSE) plots are shown in
Fig. 7 for an average of few images. Results indicate that N =10

(out of 16) seems to be an efficient compromise. Results for simu-
lated print-scan and M =16,N = 10 for many transforms are
shown in Table 1, from which one can see that the DCT, despite
its simplicity, outperforms other subband transforms.

With these results in mind we then tested a few images using
4 x 4 DCT and N = 10. Grey Images were printed at an HP Laser]et
4250 DTN printer and scanned using an HP Scanjet 3570c scanner.
Two example images are shown in Fig. 8, along with their respec-
tive texturized versions. It also shows the recovered color images
without any printing, scanning, or halftoning. Even though there
is no noise source, it is quite interesting to see that the images at
the bottom would be produced exclusively by directly processing
the images in the middle row. The recovered images look very
good. Nevertheless, a closer look at the details, as shown in
Fig. 9, can easily reveal the artifacts.

Fig. 10. Enlarged portion of texturized image, shown along with the result after printing, scanning and applying geometric correction. Note the large distortion that is

imposed to the texture.

Fig. 11. Scanned and corrected images (top) and the corresponding recovered color images (bottom).



276 R.L. de Queiroz/Pattern Recognition Letters 31 (2010) 269-276

Once we print and scan the gray textured images, much of the
texture disappears, contrast is reduced and a very large amount
of noise is added. It can be seen in Fig. 10 the huge amount of deg-
radation. Despite the fact that we process and correct the scanned
image using an affine transform, there are still many non-linear ef-
fects that are not countered. In Fig. 11 we show the scanned images
corresponding to those in Fig. 8, along with the respective recov-
ered color images. The colors in Fig. 11 are not as saturated as those
in Fig. 8. Furthermore, there are image regions where the colors
were not recovered. These effects are caused by the very intense
distortion produced by the print-scan path.

6. Conclusions

In this paper, we propose a method for reversible conversion
from color images to gray ones based on redundant color informa-
tion embedded into subbands of an M-band subband transform.
Among the contributions, we propose to use a general subband
transform rather than wavelets, since it generates more subbands,
and the insertion of color information with strong linear redun-
dancy. We have shown that the ideal distribution of the chromi-
nance energy among many subbands is to replicate the
chrominance plane for each subband. We also have calculated
the SNR performance of the method and the bounds that limit
the effectiveness of chrominance embedding, as well as the
amount of redundancy. The bounds tell us that if the noise level
is high enough one should spare more luminance subbands to pro-
tect the chrominance channel. Tests have shown the effectiveness
of the method using both real and simulated print-scan paths.

Real print-scan paths have shown to cause severe degradation,
reducing color saturation. Future work is planned to carry further
non-linear processing on the recovered color image in order to re-
move luminance artifacts, saturate colors, etc. We also plan to im-
prove the scan correction process to see if we improve the quality
of the scanned image and reduce the noise of the print-scan path.
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