
Abstract—We present a reversible method to convert color 
graphics and pictures to gray images based on mapping colors 
to low-visibility high-frequency textures. From a monochrome 
textured image, the decoder can identify the textures and 
recover the color information. An image is textured by carrying 
a wavelet transform and replacing band-pass sub-bands by the 
chrominance images. The  low-pass sub-band is the same as that 
of the luminance signal. The decoder performs a wavelet 
transform on the received gray image and recovers the 
chrominance channels. Registration problems are discussed and 
examples are presented.  

I. INTRODUCTION 

OLOR documents are commonplace in contemporary  
offices and appear in a variety of forms. Documents are 

frequently prepared, stored, and displayed electronically, but 
they are also commonly printed and distributed as hardcopies. 
From brochures to technical papers, printed paper is still an 
important component of an office. When digital color 
documents are to be printed using a black-and-white printer 
or transmitted using a conventional black-and-white fax 
machine, we are faced with the problem of representing color 
images in black-and-white, while trying to retain the 
information conveyed in charts and pictures. Graphics, like 
pie charts, were likely prepared using very contrasting colors 
to enhance visibility. Once the color graphic is converted to 
monochrome, sometimes the contrasting colors are mapped to 
the same gray level and their visual difference vanishes. So, 
the first problem is how to convert colors to black and white 
such that different colors would look different on paper too, 
even if they have the same luminance component.   
 Beyond the above problem, we devised a color-to-gray 
mapping that is reversible; that is, given the monochrome 
image, or black and white printed paper produced with our 
method, we can recover the original colors.  

II. FROM COLOR  TO TEXTURED GRAY 

The problem with using the luminance component [1] as the 
gray image is that regions that have contrasting colors with 
similar luminance would be assigned similar output look the 
same. Figure 1 shows an example of a colorful map that 
might have different colors translated into similar shades of 
gray, thus obfuscating the borders between countries.  

An alternative is to compute the colors in the graphic 
(typically a small number of distinct colors) and to assign 
different levels of gray to all neighboring colors. This 
approach may not work for complex graphics. Another 
approach is to map colors to textures. One can control 

halftone dots or patterns as a function of the colors (e.g. as a 
function of hue and saturation). Hence, regions of different 
colors with similar luminance will look different after 
mapping because they would have different textures.  

Our method maps colors to texture. However, instead of 
having a dictionary (or palette) of textures and colors, it 
produces a continuum of textures that naturally switch 
between patterns without causing visual artifacts. The method 
works as follows:  
1)  The color image, assumed to be in any RGB color space  
is transformed into Y,Cb,Cr planes using popular compression 
RGB-YCbCr linear color transformations [2]-[3], even though 
a color space like CIELab [1] would work equally well.  
2) Using one level of the wavelet transform [4], the 
luminance image Y is divided into 4 sub-bands: Yfi(Sl , Sh , Sv 

, Sd),  corresponding to the low-pass, vertical, horizontal and 
diagonal (high-pass in both directions) sub-bands, 
respectively. Using decimated filter banks, the dimensions of 
Sl , Sh , Sv , Sd are half of those of Y in each direction. 
Oversampled filter banks and wavelets would also work.  
3) The planes Cb and Cr are spatially reduced by a factor of 2 
in each direction.   
4) Sh,is replaced by Cb and Sv,is replaced by Cr. 
5) An inverse wavelet (sub-band) transform [4] is carried to 
recompose the monochrome image as (Sl,, Cb, Cr , Sd) fi Y’ 
6) Image Y’ is the resulting gray image and may be printed, 
which often includes scaling and halftoning. 
  The process is illustrated in Fig. 2. Both the high-pass 
bands and chrominance signals adapt well to scene object 
contours, making the texture pattern changes appear to be 
natural. Apart from being based on wavelets, the novelty in 
this method lies on three other key aspects: (i) the texture 
differentiation is applied to the gray image and not directly to 
the halftone image; (ii) its smooth and natural color blending 
is suitable to both graphics and pictures; and, most important, 
(iii) it is reversible, enabling retrieval of the colors from the 
textured image. 
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Fig. 1.  The mapping from color to monochrome (gray) images. 
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III. RECOVERING COLOR 

One nice feature of the proposed embedding method is the 
ability to recover the color from the gray (textured) image. 
For that, we just need to reverse all steps in the color-to-gray 
mapping. The proposed method for embedding and retrieving 
color into and from a gray image is theoretically sound but 
faces some practical obstacles, when one halftones, prints and 
scans the gray image. First, after halftoning and perhaps 
printing and scanning back the image, the decoder (which 
maps the gray image back to color) needs to filter out the 
halftone and to scale the image to its right size.  Second, 
printing may warp the image, stretching the paper. Scanning 
may not be properly aligned, causing the recovered gray 
image to be a warped version of the one before printing. 
Results can be catastrophic. Figure 5 depicts the situation 
where a vertical texture pattern (which should not produce 
any vertical high frequency coefficients) is rotated by as little 
as half a degree. Such a small rotation will cause low 
frequency vertical patterns and distort the horizontal sub-
bands. An example is shown in Fig. 3. Third, the image 
needs to have perfect scanning registration. Any shift in the 
texture image may cause major color shifts as in the example 
in Fig. 4. Fourth and finally, the sharp texture we apply is 
blurred as a result of the printing process which translates to 
desaturation of the output image. The output image saturation 
can be boosted to account for this. 

To deal with these issues, we have to scale the image before 
halftoning and printing enough to ensure the gray texture 
patterns will survive printing, scanning, and filtering. Also, 
we de-warp and scale back the scanned image before 
processing. To do that, we detect corners of the scanned 
image and perform an affine transformation to make the 
scanned rectangle fit a specified image dimension. The 

inconvenience is that the decoder must know the image size 
and scaling. This can be solved by only allowing a small 
number of image dimensions and estimating which image 
size was used. Most important of all, we changed the way we 
embed the color information into the  subbands. 

   
In order to get more robust color embedding against 

decoding opposite colors caused by a small image shift, we 
divided the chrominance information into 4 planes. Cb is 
divided into two planes: Cb+ and Cb-. In Cb+ we reproduce 
the pixels of Cb which are greater than 0, i.e. Cb+ = (Cb>0). 
The remaining pixels are set to zero. Same thing happens for 
Cb-. In Cb- we reproduce the pixels of Cb which less than 0, 
i.e. Cb- = (Cb<0). The remaining pixels are set to zero. The 
same arrangement is made for Cr. Note that Cb=(Cb+) + (Cb-) 
and Cr=(Cr+) + (Cr-). The reason to create positive- and 
negative-valued chrominance planes is to avoid completely 
the color inversion problem depicted in Fig. 6. If a sub-band 
is supposed to have only positive values and we obtained 
negative ones, then it is a sign of texture inversion and we 
should use the absolute value of sub-bands, i.e.  

unrotated

0.5º rotation  
Fig. 3.  The effect of even the slightest rotation. Vertical texture (left) 
produces virtually no horizontal patterns in wavelet domain (center). A zoom 
of the horizontal sub-band is shown (right). After 0.5o rotation, low-frequency 
vertical patterns appear. Similar results are repeated for the rotated texture in 
the bottom row.  
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Fig.4.  Opposite colors produce inverted textures. Small shifts in the image 
can cause the textures to be inverted and lead to large color recovery errors.  
 

 

waveletwavelet

Inverse
wavelet

Cr

Cb

Cr

Cb

Cr

Cb

replace bands

 
Fig. 2.  The mapping from color to monochrome (gray) images. If Moiré is 
visible please change viewing resolution.  
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Cb = |Cb+| - |Cb-|    and   Cr = |Cr+| - |Cr-| . 
 
As a result, we have 4 images to embed: Cb+,  Cb-,  Cr+, 

and Cr-. If we do a 2-level wavelet transform, the image plane 
Y is transformed into Yfi (Sl, Sh1, Sv1, Sd1, Sh2, Sv2, Sd2), where 
the level-2 sub-bands are the higher-frequency bands. Then, 
band replacement occurs as follows:  

Sd1 ‹ Cb-  ;   Sh2 ‹ Cr+   ;   Sv2 ‹ Cb+  ;    Sd2 ‹ Cr- .  
Since Sd1 has lower resolution than the others, one has to 

reduce Cb-, further to ¼ of the resolution in each dimension, 
compared to the original Y plane. The color embedding 
scheme is illustrated in Fig. 5 while the recovery process is 

illustrated in Fig. 6. The embedding and recovery steps are:  
Color embedding: 
1) Convert image from RGB into Y,Cb,Cr (or CIELab).  
2) Use a two-level wavelet transform on Y , so that Y is 
divided into 7 sub-bands: Yfi (Sl, Sh1, Sv1, Sd1, Sh2, Sv2, Sd2). 
3) Reduce Cb and Cr by ½, construct Cb+,  Cb-,  Cr+, Cr-, and 
reduce Cb- further to ¼ of its original size.  
4) Replace sub-bands 

Sd1  ‹ Cb-  ;   Sh2 ‹ Cr+   ;   Sv2 ‹ Cb+  ;    Sd2 ‹ Cr- .  
5) Take inverse wavelet transform to obtain the textured gray 
image, i.e. (Sl, Sh1, Sv1, Cb-, Cr+, Cb+, Cr-) fi Y’.  
6) Scale, halftone, and print or transmit Y’ (the gray image).  
Color recovery: 
1) Read or scan the gray textured image. 
2) Determine image dimensions., identify corners and carry 
an affine transform to de-warp the gray image.  
3) Reduce image to the correct resolution. 
4) Use a wavelet transform to convert the gray image into 
sub-bands Y’fi (Sl, Sh1, Sv1, Sd1, Sh2, Sv2, Sd2). 
5) Interpolate Sd1, doubling its resolution. 
6) Make Cb = |Sv2| - |Sd1|, and Cr = |Sh2| - |Sd2|. 
7) Interpolate Cb and Cr, doubling their resolutions. 
8) Remove the embedded sub-bands, i.e. set Sd1 = Sh2=  Sv2= 
Sd2 = 0, and take the inverse wavelet transform to find Y as   
(Sl, Sh1, Sv1, 0, 0, 0, 0) fi Y. 

9) Convert the Y,Cb,Cr planes back to RGB.  

IV. RESULTS 

We have tested the algorithm with and without going 
through the printing and scanning cycle. The great difficulty 
with printing and scanning is the non-uniform stretching and 
rotation that might occur to the image after it is printed and 
then scanned. This is a hard registration problem that is 
common to many machine reading systems and is beyond the 
scope of this paper. In some cases like when sending the 
halftoned image via standard black and white faxes, 
registration is not an issue.  

Fig. 7 shows two typical color images, picked randomly 
among the many we tested. The textured images are shown in 
Fig. 8. The high-frequency textures have low visibility and 
blend well with the image. The textured image is often 
spatially scaled up by an integer factor K (e.g. K=4) in each 
direction, before printing, to ensure the texture will survive 
the printing and scanning process. In the simulation mode, 
the scaled images are halftoned using standard error diffusion 
or any other method, then reduced by averaging KxK binary 
pixels to recompose a gray image. The recovered “kids” 
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Fig. 6.  Recovering color from a textured gray image. The embedded sub-bands 
are recovered to form the chrominance planes and zeroed before inverse 
transform. The YCbCr data is then converted back into RGB.  
  

     
     

Fig. 7.  Two example color images: “wine” (764x832 pixels) and “kids” 
(488x340 pixels).  
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image for different scaling factors is shown in Fig. 9. Note 
how some colors are de-saturated. Nevertheless the colors 
seem to have the right hue and, on average, are 
approximately correct. The larger K, the better the 
reconstruction. If we compute the peak signal-to-noise ratio 
(PSNR)  between input and recovered RGB images, for   
image “kids”, the results will be for example 13.7dB for K=1, 
25.6dB for K=4 and 28.7dB for K=10. Figure 10 shows the 
reconstructed image “wine” using a scaling factor K=4. 

The same image was printed using a standard 600 dpi laser 
printer with K=4 and scanned using a 1200 dpi scanner. A 
portion of this scanned image is shown in Fig. 13. After 
applying the affine transformations to de-warp and to de-
rotate the gray textured image, the image after color recovery 
was sharpened and color enhanced yielding the image in Fig. 
12. Taking into account all non-linear and unpredictable 
variables derived from the physical processes involved, we 

consider images like those in Fig. 12 to be excellent results.   

V. CONCLUSIONS 

We have presented a method to convert color images to gray 
that is invertible and allows easy distinction of colors with 
similar luminance values. The highlight of this paper is the 
fact that the color to gray mapping is invertible by mapping 
color to textures which can be later decoded and converted 
back to color. We are unaware of any other attempt to do so. 
The method is based on wavelet transforms and on replacing 
sub-bands by chrominance planes.  

Registration and geometric distortions are still problems, 

except for fax transmission. Our next research step is to try 
shift invariant, complex wavelets, to test whether they would 
be more robust against geometric image distortions caused by 
the printing and scanning processes.   

REFERENCES 

[1] R. W. G. Hunt, The Reproduction of Color, Fountain Press, 
Toolworth, England, 2000. 

[2] W. B. Pennebaker and J. L Mitchell., JPEG: Still Image 
Compression Standard, Van Nostrand Reinhold, NY, 1993. 

[3] R. L. de Queiroz, Compression of Color Images , in The 
Handbook on Transforms and Data Compression, edited by G. 
Sharma, CRC Press, 2002. 

[4] G. Strang and T. Nguyen, Wavelets and Filter Banks, 
Wellesley-Cambridge, Welesley, MA, 1996.  

 
Textured Images in Figures 2, 3, 4, 8 will likely be displayed 
incorrectly by a combination of resampling artifacts caused by 
the conversion and display of PDF. Since they are crucial to the 
paper,  please take a look at the images in 

http://image.unb.br/queiroz/papers/textured-figures.doc 

              

        
 
Fig. 8.  Enlarged portions of textured images “kids” and “wine”. Without 
enlargement  (and without Acrobat’s re-sampling) the texture is not noticeable.    
 
 

 

 
 
Fig. 9.  Image with color recovery after error diffusion halftoning and scaling. 
From left to right, K=1, K=4 and K=8. 
 
 

 

 
Fig. 11.  Reconstructed color image, after sharpening and color enhancement 
(saturation) . 
 

 
 
Fig. 10.  Image “wine” recovered after haftoning and scaling with K=4. 
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